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Abstract. It is well-known the close relationship between reproducing
kernel Hilbert spaces and sampling theory. The concept of reproducing
kernel Hilbert space has been recently generalized to the case of Banach
spaces. In this paper, some sampling results are proven in this new
setting of reproducing kernel Banach spaces.
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1. Introduction

A reproducing kernel Hilbert space (RKHS in short) is a Hilbert space H of
functions defined on a fixed set Ω such that for each t ∈ Ω the evaluation
functional at t, i.e., Et(f) := f(t), f ∈ H, is continuous on H. The Riesz
representation theorem gives a unique function k : Ω× Ω −→ C such that

• {k(·, t) : t ∈ Ω} ⊂ H, and
• f(t) = 〈f, k(·, t)〉H , t ∈ Ω , f ∈ H .

The function k is called the reproducing kernel of H. For the theory of RKHS
see, for instance, [4, 24] and references therein; notice that the story of the
reproducing kernel property goes back to a paper of Zaremba [26].

Concerning sampling results in a separable RKHS H, let us assume that
there exists a sequence {tj}j∈I ⊂ Ω of sampling points, where I denotes an
indexing set contained in Z, such that the sequence {k(·, tj)}j∈I is a frame for
H. In particular, the frame concept includes Riesz and orthonormal bases.
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The well established frame theory (see, for instance, [5]) says that the frame
operator S : H −→ H, defined by

Sf :=
∑
j∈I

〈f, k(·, tj)〉H k(·, tj) , f ∈ H ,

is bounded, self-adjoint, positive, and invertible. Applying the inverse opera-
tor S−1 to both sides of the above expression we obtain, for each f ∈ H, the
sampling expansion

f(t) =
∑
j∈I

f(tj)S−1[k(·, tj)](t) , t ∈ Ω .

The convergence of the series above is absolute, and uniform on any subset
of Ω where the function t 	→ k(t, t) is bounded. Unless for some Riesz and
orthonormal bases examples the reconstruction funtions S−1[k(·, tj)] are not
avalaible, in general, in closed form. When H = PWπ is the classical Paley-
Wiener space of square-integrable functions on R whose Fourier transforms
are supported on [−π, π], and tj = j, j ∈ Z, the reproducing kernel is the
sine cardinal function k(t, s) = sinc(t−s), and the sampling expansion above
becomes the celebrated Whittaker-Shannon-Kotel’nikov sampling series

f(t) =
∑
j∈Z

f(j)
sinπ(t− j)
π(t− j)

, t ∈ R . (1.1)

For sampling in RKHS see, among others, [9, 22] and references therein.
The generalization of the concept of reproducing kernel in Banach spaces

has been proposed by several authors (see, for instance, [16, 28, 29]). The
aim in this work is to give some sampling results in the light of these new
reproducing kernel Banach space theories. Sampling in Banach spaces is not
a new topic in the mathematical literature: see, for instance, [17] for sampling
in Bernstein and Paley-Wiener spaces, and also [1, 2, 3, 13, 16] for sampling
in Lp shift-invariant spaces. Next, we briefly introduce the reproducing kernel
Banach space concept as it appears in [28].

1.1. Reproducing Kernel Banach Spaces

A normed vector space B is called a Banach space of functions on Ω if it is
a Banach space whose elements are functions on Ω, and for each f ∈ B, its
norm ‖f‖B vanishes if and only if f , as a function, vanishes everywhere on
Ω. Thus, the Lebesgue space Lp[0, 1], 1 ≤ p ≤ ∞, is not a Banach space of
functions as it consists of equivalent classes of functions with respect to the
Lebesgue measure.

Having in mind the definition of RKHS, one could define a reproducing
kernel Banach space (RKBS in short) as a Banach space of functions on Ω
such that the point evaluations are continuous linear functionals. If such a
definition was adopted, then the Banach space

(
C[0, 1], ‖ · ‖∞) of continuous

functions on [0, 1] equipped with the maximum norm satisfies the definition.
However, since for each f ∈ C[0, 1], f(t) = Et(f), t ∈ [0, 1], the reproducing
kernel for C[0, 1] would have to be the delta distribution, which is not a
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function that can be evaluated. This example suggests that there should exists
a way of identifying the elements in the dual of an RKBS with functions.
Recall that two normed vector spaces are isometric if there is a bijective
linear norm-preserving mapping between them, and we say that each one is
an identication of each other. We would like the dual space B∗ of an RKBS
B on Ω to be isometric to a Banach space of functions on Ω. In addition to
this requirement, later on we will find it very convenient to go from a Banach
space to its dual. For this reason, we would like a RKBS B to be reflexive in
the sense that (B∗)∗ = B. Thus, we give the following definition [28]:

Definition 1.1. A reproducing kernel Banach space on Ω is a reflexive Banach
space B of functions on Ω for which B∗ is isometric to a Banach space B̃ of
functions on Ω and the point evaluation is continuous on both B and B̃.

As pointed out in [28], the identification B̃ of B∗ is not unique; we will
refer to the dual space B∗ of a RKBS B as its chosen identification. It has
been proved in [28] that there exists a reproducing kernel for an RKBS as
defined above. To this end, we introduce the bilinear form on B × B∗ by
setting (

u, v∗
)
B := v∗(u) , u ∈ B, v∗ ∈ B∗ .

Notice that as B is a reflexive Banach space then for any bounded linear
functional T on B∗ there exists a unique u ∈ B such that T (v∗) =

(
u, v∗

)
B

for each v∗ ∈ B∗. The following result holds [28, Theorem 2]:

Theorem 1.2. Suppose that B is an RKBS on Ω. Then there exists a unique
function k : Ω× Ω −→ C such that the following statements hold:

(a) For every t ∈ Ω, k(·, t) ∈ B∗ and f(t) =
(
f, k(·, t)

)
B for all f ∈ B.

(b) For every t ∈ Ω, k(t, ·) ∈ B and f∗(t) =
(
k(t, ·), f∗)

B for all f∗ ∈ B∗.
(c) The linear span of {k(t, ·) : t ∈ Ω} is dense in B.
(d) The linear span of {k(·, t) : t ∈ Ω} is dense in B∗.
(e) For all t, s ∈ Ω, k(t, s) =

(
k(t, ·), k(·, s)

)
B.

The function k in Theorem 1.2 is the reproducing kernel for the RKBS
B. This reproducing kernel is unique. However, as showed in [28], different
RKBS may have the same reproducing kernel: For 1 < p < ∞, the Paley-
Wiener classes

Bp :=
{
f ∈ C(R) | supp f̂ ⊂ [−1/2, 1/2] and f̂ ∈ Lp[−1/2, 1/2]

}
with norm ‖f‖Bp := ‖f̂‖Lp[−1/2,1/2] are RKBS (not isomorphic), and they all
have the sinc function k(t, s) = sinc(t−s) as the reproducing kernel. In other
words, although we have at hand a reproducing kernel k, we can not determine
the norm on B. Also, the reproducing kernel for a general RKBS can be an
arbitrary function on Ω × Ω which, in particular, might be non-symmetric
or non-positive definite [28, Proposition 5]. In order to have the reproducing
kernel of a RKBS the desired properties of those of RKHS, we impose certain
structures on RKBS, which in some sense are substitutes of the inner product
for RKHS. For this purpose, we shall adopt the semi-inner-product introduced
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by Lumer [21] (see also [14]). A semi-inner-product possesses some but not
all properties of an inner product. Some Hilbert space arguments and results
become available in the presence of a semi-inner-product. Next, we briefly
introduce the notion of semi-inner-product RKBS as in [28]:

1.2. Semi-Inner-Product Reproducing Kernel Banach Spaces

Let B be a Banach space. A semi-inner-product on B is a function

[·, ·] : B × B −→ C ,

such that (see, for instance, [14, 21]), for all x1, x2, x3 ∈ B and α ∈ C:

1. [x1 + x2, x3] = [x1, x3] + [x2, x3] ,
2. [αx1, x2] = α[x1, x2] and [x1, αx2] = α[x1, x2] ,
3. [x1, x1] > 0 for all x1 �= 0 ,
4. |[x1, x2]|2 ≤ [x1, x1][x2, x2] .

The difference between a semi-inner-product and an inner product is
the conjugate symmetry and, as a consequence, a semi-inner-product is not
additive in the second variable. Every normed vector space B has a semi-
inner-product that induces its norm [14, 21], i.e., ‖x‖B = [x, x]1/2 for each
x ∈ B. In general, a semi-inner-product for a normed vector space may not be
unique; however, if the space B is uniformly Fréchet differentiable we obtain
the uniqueness of the semi-inner-product (see [28] for the details). Recall that
the space B is uniformly Fréchet differentiable for all x, y ∈ B with x �= 0,

lim
t∈R

t→0

∥∥x + ty
∥∥
B −

∥∥x∥∥B
t

exists and the limit is uniform on S(B)× S(B) where S(B) denotes the unit
sphere S(B) :=

{
x ∈ B :

∥∥x∥∥B = 1
}

in B.
Assuming also that the Banach space is uniformly convex we obtain

a Riesz representation theorem [14]: For each f ∈ B∗ there exists a unique
x ∈ B such that f = x∗. In other words,

f(y) = [y, x]B for all y ∈ B .

Moreover, ‖f‖B∗ = ‖x‖B. Recall that B is uniformly convex if for all ε > 0
there exists δ > 0 such that

∥∥x + y
∥∥
B ≤ 2 − δ for all x, y ∈ S(B) with∥∥x− y

∥∥
B ≥ ε.

Notice that if B is uniformly convex then it is reflexive (see [23, p. 410])
and strictly convex, i.e., for every x, y ∈ B with x �= y and

∥∥x∥∥ =
∥∥y∥∥ = 1,

we have that
∥∥x + y

∥∥ < 2.
For 1 < p <∞, the classical Lp(I), where I denotes any interval on R,

and �p(N) spaces are uniformly convex and uniformly Fréchet differentiable
Banach spaces. Their semi-inner-product are given, respectively, by

[f, g]p :=
∥∥g∥∥2−p

p

∫
I

f(t)g(t)|g(t)|p−2 dt ,
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and

[x, y]p :=
∥∥y∥∥2−p

p

∞∑
n=1

xnyn|yn|p−2 .

Following [28], we define a semi-inner-product reproducing kernel Ba-
nach space (hereafter s.i.p. RKBS) on Ω as a uniformly convex and uniformly
Fréchet differentiable RKBS on Ω.

An RKHS is an s.i.p. RKBS. Also, the dual of an s.i.p. RKBS remains
an s.i.p. RKBS. An s.i.p. RKBS B is by definition uniformly Fréchet differen-
tiable. Therefore, it has a unique semi-inner-product which represents all the
interaction between B and B∗ . This leads to a more specific representation
of the reproducing kernel [28, Theorem 9]:

Theorem 1.3. Let B be an s.i.p. RKBS on Ω and k its reproducing kernel.
Then there exists a unique function G : Ω×Ω −→ C such that {G(t, ·) : t ∈
Ω} ⊂ B and

f(t) = [f,G(t, ·)]B for all f ∈ B , t ∈ Ω .

Moreover, there holds the relationship

k(·, t) = (G(t, ·))∗ , t ∈ Ω

and

f∗(t) = [k(t, ·), f ]B for all f ∈ B , t ∈ Ω .

We call the unique function G in the Theorem above the s.i.p. kernel of
the s.i.p. RKBS B. It coincides with the reproducing kernel k when B is an
RKHS. In general, when G = k in Theorem 1.3, we call G an s.i.p. reproducing
kernel. An s.i.p. reproducing kernel G satisfies that G(t, s) = [G(t, ·), G(s, ·)]B
for every t, s ∈ Ω.

2. Sampling in a s.i.p. RKBS Induced by a Banach Space
Valued Kernel

Consider a separable complex uniform (i.e., both uniformly Fréchet differen-
tiable and uniformly convex) Banach space B and denote by [·, ·]B the unique
compatible semi-inner product on B. Note that its dual B∗ is also a uniform
Banach space [6].

Let Xd be a BK-space on N, i.e., a Banach space of sequences c =
{cn}n∈N ∈ C

N such that the linear functionals c 	→ cn are continuous on Xd

for n ∈ N. It is known [20] that its dual space X∗
d is also a BK-space such

that the series
∞∑

n=1

cndn converges for every c ∈ Xd and d ∈ X∗
d . We suppose

that if the series above converges for every c ∈ Xd, then d ∈ X∗
d and if it

converges for every d ∈ X∗
d , then c ∈ Xd. We also assume that Xd is reflexive,

and that the sequence of the canonical unit vectors {δn}∞n=1 is a Schauder
basis for both Xd and X∗

d . An example of such BK-spaces is Xd = �p(N) for
1 < p <∞; in this case, X∗

d = �q(N) with 1/p + 1/q = 1.
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Let {x∗
n}∞n=1 ⊂ B∗ be an X∗

d -Riesz basis for B∗. Remember that this
means that:

1. span{x∗
n : n ∈ N} = B∗;

2.
∞∑

n=1

cnx
∗
n converges in B∗ for all c ∈ X∗

d ;

3. there exist 0 < A ≤ B <∞ such that

A
∥∥c∥∥

X∗
d

≤
∥∥∥∥ ∞∑
n=1

cnx
∗
n

∥∥∥∥
B∗
≤ B

∥∥c∥∥
X∗

d

for all c ∈ X∗
d . (2.1)

By [29, Theorem 2.15], there exists a unique (dual) Xd-Riesz basis
{yn}∞n=1 for B such that [ym, xn]B = δm,n for m,n ∈ N, and satisfying the
expansions:

x =
∞∑

n=1

[x, xn]B yn and x∗ =
∞∑

n=1

[yn, x]B x∗
n , (2.2)

for all x ∈ B and x∗ ∈ B∗, respectively. If the spaces Xd and X∗
d possess

the additional property that for all c ∈ Xd and d ∈ X∗
d the series

∞∑
n=1

cndn

converges absolutely, then the expansions in (2.2) are unconditionally conver-
gent, i.e., independent of the summation order (see [29, p. 7]). In particular,
it is true for �p-Riesz bases due to Hölder inequality.

Following the steps in [28, Theorem 10], in the next section we give a
s.i.p. RKBS with explicit s.i.p. reproducing kernel where a sampling theory
holds. It is the Banach counterpart of the sampling theory given in [11, 18]
for the RKHS introduced by Saitoh in [24].

2.1. A Sampling Theory in BK

Consider a B-valued function K : Ω ⊂ C→ B and define, for each x ∈ B, the
function

fx : z ∈ Ω 	−→ [x,K(z)]B ∈ C.

Then, we have a linear transform TK on B with values in C
Ω such that

TKx = fx. Indeed, for x, y ∈ B and λ, μ ∈ C, we have

fλx+μy(z) = [λx+μy,K(z)]B = λ[x,K(z)]B+μ[y,K(z)]B = λfx(z)+μfy(z) ,

for all z ∈ Ω.
Having in mind (2.2), for each z ∈ Ω, we can write[

K(z)
]∗ =

∞∑
n=1

[yn,K(z)]B x∗
n .

We denote Sn(z) := [yn,K(z)]B = fyn(z). Suppose that there exists a se-
quence {zn}∞n=1 in Ω and {an}∞n=1 in C \ {0} such that the interpolatory
condition

Sn(zm) = anδn,m , (2.3)
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holds. Then, we have that
[
K(zm)

]∗ = amx∗
m and that TK is one-to-one.

Indeed, if fx(z) = 0 for all z ∈ Ω,

0 = fx(z) = [x,K(z)]B =
[ ∞∑
n=1

[x, xn]B yn,K(z)
]

=
∞∑

n=1

[x, xn]B [yn,K(z)]B =
∞∑

n=1

[x, xn]B Sn(z) ,

where we have used that x 	→ [x, y]B is a continuous functional for any fixed
y ∈ B. Evaluating in zm for m ∈ N, we have that [x, xm]B = 0 for m ∈ N.
Having in mind (2.2), this implies that x = 0 and TK is one-to-one.

Denote BK := rg(TK), the range of the operator TK . If we define∥∥fx∥∥BK
:=

∥∥x∥∥
B

we obtain that BK is a Banach space of functions defined
on Ω and valued on C. Moreover, [fx, fy]BK

:= [x, y]B defines a compatible
semi-inner product on BK . The space BK becomes a s.i.p. RKBS whose s.i.p.
reproducing kernel is given by

k(z, w) = [K(z),K(w)]B , z, w ∈ Ω .

Indeed, for each z ∈ Ω, the evaluation functional Ez : BK −→ C is continuous:

|Ez(fx) = |fx(z)| = |[x,K(z)]B| ≤
∥∥x∥∥B

∥∥K(z)
∥∥
B =

∥∥K(z)
∥∥
B
∥∥fx∥∥BK

.

Observe that, by definition, kz := k(z, ·) = fK(z) ∈ BK for all z ∈ Ω. Hence
we deduce that

fx(z) = [x,K(z)]B = [fx, kz]BK
= [fx, k(z, ·)]BK

,

being k the s.i.p. reproducing kernel for BK . See [28, Theorem 10] for more
details.

Note also that convergence in the norm of BK implies pointwise conver-
gence which is uniform on subsets of Ω where the function z 	→

∥∥K(z)
∥∥
B is

bounded.

Proposition 2.1. For every z ∈ Ω, the sequence
{
Sn(z)

}∞
n=1

is an element of
X∗

d .

Proof. Consider c ∈ Xd and z ∈ Ω. We must prove that
∞∑

n=1

cnSn(z) is

convergent. Indeed, by using that, for each z ∈ B, the mapping x 	→ [x, z]B is
a continuous linear functional on B, and {yn}∞n=1 is an Xd-Riesz basis for B,∣∣∣ ∞∑

n=1

cnSn(z)
∣∣∣ =

∣∣∣ ∞∑
n=1

cn[yn,K(z)]B
∣∣∣ =

∣∣∣[ ∞∑
n=1

cnyn,K(z)
]
B

∣∣∣
≤

∥∥K(z)
∥∥
B

∥∥∥ ∞∑
n=1

cnyn

∥∥∥
B
≤ B

∥∥K(z)
∥∥
B
∥∥c∥∥

Xd

which completes the proof. �
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Theorem 2.2 (A Kramer-Type Sampling Theorem for BK). Suppose that, for

each z ∈ Ω, we have the expansion
[
K(z)

]∗ =
∞∑

n=1

Sn(z)x∗
n, where {x∗

n}∞n=1 ⊂

B∗ is an X∗
d -Riesz basis for B∗ and Sn(z) = [yn,K(z)]B, being {yn}∞n=1 the

dual Xd-Riesz basis for B of {x∗
n}∞n=1. Assume also the existence of sequences

{zm}∞m=1 ⊂ C and {am}∞m=1 ⊂ C \ {0} such that the interpolatory condition
(2.3) holds. Then, the sequence {Sn}∞n=1 is an Xd-Riesz basis for BK and,
for each f ∈ BK , we have the sampling expansion

f(z) =
∞∑

n=1

f(zn)
Sn(z)
an

, z ∈ Ω .

The convergence of the series above is in the norm of BK , and uniform on
subsets of Ω where the function z 	→

∥∥K(z)
∥∥
B is bounded.

Proof. First, we prove that the sequence {Sn}∞n=1 is an Xd-Riesz basis for
BK .

1. Consider z ∈ Ω and x ∈ B. Then

fx(z) = [x,K(z)]B =
[ ∞∑
n=1

[x, xn]B yn,K(z)
]
B

=
∞∑

n=1

[x, xn]B Sn(z) ,

hence, span{Sn}∞n=1 = BK .
2. Let c be in Xd. As TK is an isometry and {yn}∞n=1 is an Xd-Riesz basis

for B, ∥∥∥ ∞∑
n=1

cnSn

∥∥∥
BK

=
∥∥∥ ∞∑
n=1

cnyn

∥∥∥
B
,

and thus it is convergent for all c ∈ Xd.
3. As TK is an isometry, for every c ∈ Xd,

A
∥∥c∥∥

Xd
≤

∥∥∥ ∞∑
n=1

cnyn

∥∥∥
B

=
∥∥∥ ∞∑
n=1

cnSn

∥∥∥
BK

≤ B
∥∥c∥∥

Xd
.

Now consider m ∈ N. We have that

fx(zm) = [x,K(zm)]B =
∞∑

n=1

[x, xn]B Sn(zm) = am[x, xm]B .

Thus,

fx(z) =
∞∑

n=1

[x, xn]B Sn(z) =
∞∑

n=1

fx(zn)
an

Sn(z) ,

in the norm of BK . The pointwise and uniform convergence comes from the
fact that BK is a s.i.p. RKBS. �

The above result generalizes the classical Kramer sampling result (see,
for instance, [17, 27]).
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2.2. Average Sampling in the Space BK

Consider an X∗
d -Riesz basis for B∗ expressed as {x∗

1,n}n∈N ∪ · · · ∪ {x∗
M,n}n∈N;

denote as {y1,n}n∈N ∪ · · · ∪ {yM,n}n∈N its dual Xd-Riesz basis for B. For
0 ≤ � ≤ L, consider functions K� : Ω → B and define, for each x ∈ B, the
functions

f�,x(z) = [x,K�(z)]B , 0 ≤ � ≤ L .

Thus we have L + 1 linear transforms T� : B → C
Ω such that T� x = f�,x

for 0 ≤ � ≤ L. Assume that M ≤ L and that, for each z ∈ Ω, we have the
expansions

K�(z)∗ =
∞∑

n=1

M∑
m=1

S�
m,n(z)x∗

m,n , 0 ≤ � ≤ L ,

where S�
m,n(z) := [ym,n,K�(z)]B = f�,ym,n(z).

Suppose that there exist L sequences {z�n}∞n=1 in Ω, � ∈ {1, 2, . . . , L},
such that

S�
m,n(z�k) = an�,mδn,k , n, k ∈ N , (2.4)

where 1 ≤ m ≤M , 1 ≤ � ≤ L and the coefficents an�,m are complex numbers
such that the matrices

An :=

⎛⎜⎜⎜⎝
an1,1 an1,2 · · · an1,M
an2,1 an2,2 · · · an2,M

...
...

. . .
...

anL,1 anL,2 · · · anL,M

⎞⎟⎟⎟⎠ ∈ C
L×M , (n ∈ N) (2.5)

have full rank for n ∈ N, i.e., rank(An) = M for every n ∈ N.
Suppose the compatibility condition: ker T0 ⊆

⋂L
�=1 ker T� which implies

that the mapping T0 is one-to-one. Indeed, if T0 x = 0, then T� x = 0 for any
� ∈ {1, 2, . . . , L}. Hence, for every z ∈ Ω we have

0 = T� x(z) = f�,x(z) = [x,K�(z)]B =
[ ∞∑
n=1

M∑
m=1

[x, xm,n]B ym,n,K�(z)
]
B

=
∞∑

n=1

M∑
m=1

[x, xm,n]B [ym,n,K�(z)]B =
∞∑

n=1

M∑
m=1

[x, xm,n]B S�
m,n(z) ,

where we have used that x 	→ [x, y]B is a continuous functional for each y ∈ B.
By using (2.4), we have, for each n ∈ N, the linear system

M∑
m=1

an�,m[x, xm,n]B = 0 , (1 ≤ � ≤ L).

As the matrices An have full rank, we conclude that x = 0 (see (2.2)). If
x ∈ B, then we have proved that

M∑
m=1

an�,m[x, xm,n]B = f�(z�n) , (1 ≤ � ≤ L) ,
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where {f�(z�n)}∞n=1 denotes the sequence of samples of the function f�(z) =[
x,K�(z)

]
B, z ∈ Ω. Notice that this system is consistent. As the matrices

An has full rank for every n ∈ N, we always can choose a regular M ×M

submatrix A
[M ]
n of An for obtaining the coefficients [x, xm,n]B in terms of the

samples. Thus we have proved the following result:

Theorem 2.3. Suppose that ker T0 ⊆
⋂L

�=1 ker T� and that the matrix An given
in (2.5) has full rank M for all n ∈ N. Then, each function f ∈ BK0

can be
recovered from the L sequences of samples {f�(z�n)}∞n=1, 1 ≤ � ≤ L, by means
of the following sampling formula

f(z) =
∞∑

n=1

Sn(z)�
(
A[M ]

n

)−1

Fn , z ∈ Ω , (2.6)

where Fn :=
[
f1(z1n), . . . , fL(zLn )

]�
and Sn(z) :=

[
Sn
0,1(z), . . . , S

n
0,M (z)

]�
.

The convergence of the series in (2.6) is uniform in subsets of Ω where the
function z 	→

∥∥K(z)
∥∥
B is bounded.

The above abstract sampling result includes, as particular cases, sam-
pling with samples of the derivative of the function to recover or its Hilbert
transform, and Hermite-type interpolation series among others (see [11, 12]).

2.3. An Illustrative Example

Consider p ∈ (1, 2] and its conjugate index q ∈ R, i.e., 1/p + 1/q = 1. We
consider the compatible semi-inner-product for B := Lp[−1/2, 1/2] given by

[f, g]p :=
∥∥g∥∥2−p

p

∫ 1/2

−1/2

f(x)g(x)|g(x)|p−2 dx .

Remember that B∗ = Lq[−1/2, 1/2]. We take Xd := �q(Z), then, X∗
d = �p(Z).

Define en(ξ) := e2πinξ for n ∈ Z. Easy computations show that ‖en‖p =
1 for any n ∈ Z. On the other hand, by [28], we have that e∗n(ξ) = e−2πinξ

and that ‖e∗n‖q = ‖en‖p = 1. We know that (see [25, p. 20]):

span
{
e−2πinξ : n ∈ Z

}
= Lq[−1/2, 1/2] .

We define the linear operator

U : F ∈ Lp[−1/2, 1/2] 	−→
{
[F, en]p

}
n∈Z

∈ C
Z.

The Hausdorff-Young theorem (see [30, p. 101]) ensures that U is a bounded
operator with values on �q(Z) (and thus a closed operator). We have that
U(Lp[−1/2, 1/2]) is a closed subspace of �q(Z) and thus, a Banach space
with the metric induced by �q(Z). Remember that {δn}n∈Z where δn(m) = 0
if n �= m and δn(n) = 1, is a Schauder basis for �q(Z). Thus, as δn = U(en),
we obtain that U is a surjective mapping. By using [29, Proposition 2.12],
the sequence

{
e∗n

}
n∈Z

is an �p(Z)-Riesz basis for B∗ = Lq[−1/2, 1/2].
Now, we define K(z) := e2πizξ ∈ Lp[−1/2, 1/2] for every z ∈ C. Thus,

we obtain the following s.i.p. RKBS

BK :=
{
f(z) =

[
F, e2πizξ

]
p
, z ∈ C , where F ∈ Lp[−1/2, 1/2]

}
,
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endowed with the norm ‖f‖BK
:= ‖F‖Lp[−1/2,1/2].

Next, we compute Sn(z) = [en,K(z)]p. First, observe that, if we write
z = x + iy,

∥∥K(z)
∥∥
p

=

(∫ 1/2

−1/2

∣∣e2πizξ∣∣pdξ)1/p

=

(∫ 1/2

−1/2

e−2πyξpdξ

)1/p

= sinc1/p(iyp) .

Thus, we have that

Sn(z) = [en,K(z)]p = sinc(2−p)/p(iyp)
∫ 1/2

−1/2

e2πinξe−2πizξe−2πyξ(p−2)dξ

= sinc(2−p)/p(iyp)
∫ 1/2

−1/2

e−2πi[(z−n)−iy(p−2)]ξdξ

= sinc(2−p)/p(iyp) sinc
[
(z − n)− iy(p− 2)

]
, z ∈ C ,

for n ∈ Z. Moreover, Sn(m) = δm,n for every m,n ∈ Z. Finally, Theorem 2.2
gives the following sampling formula for any f ∈ BK :

f(z) = sinc(2−p)/p(iyp)
∑
n∈Z

f(n) sinc
[
(z − n)− iy(p− 2)

]
, (2.7)

where z = x + iy ∈ C. The convergence of the series in (2.7) is uniform on
horizontal strips of C. Observe that, if p = 2 or z ∈ R, formula (2.7) coincides
with the cardinal series (1.1). Compare the sampling result for BK given by
(2.7) with the one obtained in [7, Theorem 1] for slightly different functional
spaces.

3. Sampling in a RKBS: the Case of Lp Shift-Invariant Spaces

In this section we obtain an average sampling result valid in the Lp shift-
invariant space V p

ϕ := spanLp(R)

{
ϕ(t − n)

}
n∈Z

where 1 ≤ p < ∞. Under
appropriate hypotheses on the generator ϕ we see that these spaces are RKBS
sharing the same reproducing kernel k. Next we introduce some technical
background:

3.1. Preliminaries on the Lp Shift-Invariant Space V p
ϕ

First, we introduce the following Banach spaces: A measurable function f :
R → C belongs to Lp(R), where 1 ≤ p ≤ ∞, whenever the function f̃(t) :=∑
n∈Z

|f(t − n)| belongs to the Lebesgue space Lp[0, 1]. In this case, we define

|f |p := ‖f̃‖Lp[0,1]. Endowed with this norm, the space (Lp(R), | · |p) becomes
a Banach space (see [19]).

Given a function ϕ in the Banach space L∞(R), for 1 ≤ p < ∞ we
consider the Lp shift-invariant space

V p
ϕ := spanLp(R)

{
ϕ(t− n)

}
n∈Z

⊂ Lp(R) .
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If in addition we assume that the sequence
{
ϕ(t−n)

}
n∈Z

is an �p-Riesz basis
for V p

ϕ , i.e., there exist constants 0 < A ≤ B such that for any a := {an}n∈Z ∈
�p(Z) we have

A‖a‖�p ≤
∥∥∑

n∈Z

an ϕ(t− n)
∥∥
Lp(R)

≤ B‖a‖�p , (3.1)

then the space V p
ϕ can be expressed as

V p
ϕ =

{∑
n∈Z

an ϕ(t− n) : {an} ∈ �p(Z)
}
⊂ Lp(R) .

Since V p
ϕ is a closed subspace of Lp(R), it is a uniformly Fréchet differentiable

and uniformly convex Banach space [29].
Following [19], a necessary and sufficient condition for the sequence{

ϕ(t − n)
}
n∈Z

to be an �p-Riesz basis (regardless p) is that there exists a

sequence b ∈ �1(Z) such that the function ϕ∗(t) :=
∑
n∈Z

bn ϕ(t− n) is dual to

the function ϕ in the sense that∫ ∞

−∞
ϕ(t− n)ϕ∗(t−m)dt = δn,m , n,m ∈ Z ,

where δn,m denotes the Kronecker symbol.
We assume throughout this section that the functions in the shift-

invariant space V p
ϕ are continuous on R. Equivalently, that the generator

ϕ is continuous on R and the function
∑
n∈Z

|ϕ(t−n)|q, where 1/p+1/q = 1, is

uniformly bounded on R; this is a consequence of Banach-Steinhaus theorem
(see [10, Theorem 1]).

Thus, the shift-invariant space V p
ϕ becomes a RKBS, and the conver-

gence in the Lp sense implies pointwise convergence which is uniform on R

since Hölder’s inequality shows that

|f(t)| ≤ ‖a‖�p‖{ϕ(t− n)}n∈Z‖�q ≤ A−1K‖f‖Lp(R) , f ∈ V p
ϕ and t ∈ R .

In the sense of Theorem 1.2, we have that the function

k : (t, s) ∈ R× R 	−→ k(t, s) :=
∑
n∈Z

ϕ(s− n)ϕ∗(t− n) ∈ C

is the reproducing kernel for V p
ϕ . Notice that all the spaces V p

ϕ , 1 < p < ∞,
have the same reproducing kernel k although they are not isomorphic.

3.2. An Average Sampling Formula in V p
ϕ

For any function f ∈ V p
ϕ , throughout this section we consider the sequence

of samples {(Cf)(n)}n∈Z, where the convolution system C satisfies:

(a)
(
Cf

)
(t) := [f ∗ h](t) =

∫
C
f(x)h(t− x)dx , t ∈ R , with h ∈ Lq(R) and q

satisfying 1/p + 1/q = 1; or
(b) (Cf)(t) := f(t + a) for some fixed a ∈ R.
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Note that the sequence of samples {(Cf)(n)}n∈Z ∈ �p(Z) since the inequality∥∥{h ∗ f(n)}n∈Z

∥∥
p
≤ |h|q ‖f‖p (see [19, p. 220]) in the first case, and the

inequality ‖a ∗ b‖�p ≤ ‖a‖�p‖b‖�1 in the second one.
Let A be the Wiener algebra of the functions of the form

f(x) =
∑
n∈Z

ane
−2πinx with a := {an}n∈Z ∈ �1(Z).

The space A, normed by ‖f‖A := ‖a‖1 and with pointwise multiplication
becomes a commutative Banach algebra. If f ∈ A and f(x) �= 0 for every
x ∈ R, the function 1/f is also in A by Wiener’s lemma (see, for instance,
[15]).

Theorem 3.1. Assume that the function G(x) :=
∑
n∈Z

(Cϕ)(n)e−2πinx does not

vanish for any x ∈ [0, 1]. Then, there exists a function S ∈ L∞(R)∩V p
ϕ such

that, for any f ∈ V p
ϕ , the following sampling formula holds:

f(t) =
∑
n∈Z

(Cf)(n)S(t− n) , t ∈ R . (3.2)

The convergence of the series is in the Lp-sense and uniform on R.

Proof. First of all, notice that the sequence {(Cϕ)(n)}n∈Z belongs to �1(Z);
for systems of type (a) we have used that

∥∥{h ∗ ϕ(n)}n∈Z

∥∥
�1
≤ |h|q|ϕ|∞ [19,

p. 220]. Therefore, the function G ∈ A and, as a consequence of Wiener’s
lemma, the function 1/G belongs to A, i.e.,

1
G(x)

=
∑
n∈Z

dne
−2πinx with {dn} ∈ �1(Z) . (3.3)

Consider the operator Tϕ defined by

Tϕ :
∑
n∈Z

ane
−2πinx ∈ A 	−→

∑
n∈Z

an ϕ(t− n) ∈ V p
ϕ . (3.4)

Note that the operator Tϕ is bounded since
∥∥∥∑
n∈Z

an ϕ(t− n)
∥∥∥
p
≤ |ϕ|∞‖a‖�1

(see [19, p. 212]). Next we prove that formula (3.2) holds for any function
f ∈ span{ϕ(· − n)}n∈Z. Indeed, consider a function f(t) =

∑
finite

anϕ(t− n) in

span{ϕ(· − n)}n∈Z and its corresponding F (x) =
∑
finite

ane
−2πinx ∈ A. Since

(Cf)(m) =
∑
finite

an(Cϕ)(m− n) =
∫ 1

0

F (x)G(x)e2πimxdx ,

and having in mind that the sequence {(Cf)(m)}m∈Z ∈ �1(Z), we obtain that

F (x)G(x) =
∑
m∈Z

(Cf)(m)e−2πimx in A .
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In other words, F (x) =
∑
m∈Z

(Cf)(m)
(
1/G(x)

)
e−2πimx in A. By applying the

operator Tϕ we get

f(t) =
∑
m∈Z

(Cf)(m)Tϕ
(e−2πimx

G(x)

)
(t) =

∑
m∈Z

(Cf)(m)S(t−m) , t ∈ C ,

where S = Tϕ
(
1/G(x)

)
. Notice that S(t) =

∑
n∈Z

dnϕ(t−n) where {dn} is the

sequence in �1(Z) given in (3.3). Moreover, the function S belongs to L∞(C)
since

∣∣∑
n∈Z

dnϕ(t− n)
∣∣
∞ ≤ |ϕ|∞‖{dn}‖�1 (see [19, p. 212]).

Finally, we prove that the sampling formula (3.2) holds for every f ∈ V p
ϕ .

To this end, for f ∈ V p
ϕ consider a sequence {fN} ⊂ span{ϕ(· − n)}n∈Z such

that ‖fN − f‖p −→
N→∞

0. The sampling operator

Γ : f ∈ V p
ϕ 	−→ Γf :=

∑
n∈Z

(Cf)(n)S(· − n) ∈ V p
ϕ ,

is a well-defined bounded operator. Indeed, for a system of type (a) we have∥∥∥∑
n∈Z

(Cf)(n)S(· − n)
∥∥∥
p
≤ |S|∞

∥∥{(Cf)(n)}n∈Z

∥∥
�p
≤ |S|∞|h|q‖f‖p . (3.5)

where we have used the inequalities
∥∥∑

n∈Z

an ϕ(t−n)
∥∥
p
≤ |ϕ|∞‖a‖�p (see [19,

p. 212]) and
∥∥{h ∗ f(n)}n∈Z

∥∥
�p
≤ |h|q ‖f‖p (see [19, p. 220]). For a system of

type (b) we use the inequality ‖a ∗ b‖�p ≤ ‖a‖�p‖b‖�1 for sequences, and the
left inequality in (3.1). Moreover, Γf = f for each f ∈ span{ϕ(· − n)}n∈Z.
Thus,

0 ≤ ‖f − Γf‖p ≤ ‖f − fN + ΓfN − Γf‖p ≤ (1 + ‖Γ‖)‖fN − f‖p −→
N→∞

0 .

As a consequence, Γf = f for each f ∈ V p
ϕ . �

Corollary 3.2. The sequence of reconstruction functions {S(· − n)}n∈Z is a
�p-Riesz basis for the Banach space (V p

ϕ , ‖ · ‖p).

Proof. Having in mind the arguments in (3.5), we conclude that there exist
two positive constants 0 < Ap ≤ Bp such that

Ap‖f‖p ≤ ‖{(Cf)(n)}n∈Z‖�p ≤ Bp‖f‖p , f ∈ V p
ϕ .

In other words, we have

1
Bp
‖{(Cf)(n)}n∈Z‖�p ≤

∥∥∥ ∑
n∈Zd

(Cf)(n)S(· − n)
∥∥∥
p
≤ 1

Ap
‖{(Cf)(n)}n∈Z‖�p .

As a consequence, it is sufficient to prove that the mapping f 	→ {(Cf)(n)}n∈Z

is surjective from V p
ϕ → �p(Z). Given {bn}n∈Z ∈ �p(Z), the function g =
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n∈Z

bnS(t− n) belongs to V p
ϕ . Besides, the interpolatory condition

(CS)(m) =
∫ 1

0

1
G(x)

G(x)e2πimxdx = δm,0

gives that (Cg)(m) = bm for each m ∈ Z. �

As a consequence of the above corollary, the convergence of the series in
(3.2) is also absolute due to the unconditional character of an �p-Riesz basis
expansion.
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