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Abstract. In this paper, we first present an impulsive version of Filip-
pov’s Theorem for fractional differential inclusions of the form,

Dα
∗ y(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, α ∈ (0, 1],

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,
y(0) = a,

where J = [0, b], Dα
∗ denotes the Caputo fractional derivative and F is a

set-valued map. The functions Ik characterize the jump of the solutions
at impulse points tk (k = 1, . . . ,m). In addition, several existence results
are established, under both convexity and nonconvexity conditions on
the multivalued right-hand side. The proofs rely on a nonlinear alter-
native of Leray-Schauder type and on Covitz and Nadler’s fixed point
theorem for multivalued contractions. The compactness of solution sets
is also investigated.

Mathematics Subject Classification (2010). 34A60, 34A37.

Keywords. Fractional differential inclusions, fractional derivative, frac-
tional integral, Caputo fractional derivatives,impulsive differential in-
clusions.

1. Introduction

Differential equations with impulses were considered for the first time in the
1960’s by Milman and Myshkis [43, 44]. A period of active research, primar-
ily in Eastern Europe from 1960-1970, culminated with the monograph by
Halanay and Wexler [27].
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The dynamics of many evolving processes are subject to abrupt changes,
such as shocks, harvesting and natural disasters. These phenomena involve
short-term perturbations from continuous and smooth dynamics, whose du-
ration is negligible in comparison with the duration of an entire evolution.
In models involving such perturbations, it is natural to assume these pertur-
bations act instantaneously or in the form of “impulses”. As a consequence,
impulsive differential equations have been developed in modeling impulsive
problems in physics, population dynamics, ecology, biotechnology, industrial
robotics, pharmacokinetics, optimal control, and so forth. Again, associated
with this development, a theory of impulsive differential equations has been
given extensive attention. Works recognized as landmark contributions in-
clude [8, 39, 51, 55]. There are also many different studies in biology and
medicine for which impulsive differential equations are good models (see, for
example, [3, 36, 37] and the references therein).

In recent years, many examples of differential equations with impulses
with fixed moments have flourished in several contexts. In the periodic treat-
ment of some diseases, impulses correspond to administration of a drug treat-
ment or a missing product. In environmental sciences, impulses correspond
to seasonal changes of the water level of artificial reservoirs.

During the last ten years, impulsive ordinary differential inclusions and
functional differential inclusions with different conditions have been intensely
studied by many mathematicians. At present the foundations of the general
theory are already laid, and many of them are investigated in detail in the
books of Aubin [4], Benchohra et al [9] and Henderson and Ouahab [30] and
the references therein.

Differential equations with fractional order have recently proved valu-
able tools in the modeling of many physical phenomena [19, 23, 24, 40, 41].
There has been a significant theoretical development in fractional differential
equations in recent years; see the monographs of Kilbas et al [33], Miller and
Ross [42], Podlubny [52], Samko et al [54], and the papers of Bai and Lu [7],
Diethelm et al [18–20], El-Sayed and Ibrahim [21], Kilbas and Trujillo [34],
Mainardi [40], Momani and Hadid, [45], Momani et al [46], Nakhushev [48],
Podlubny et al [53], and Yu and Gao [57].

Very recently, some basic theory for initial value problems for fractional
differential equations and inclusions involving the Riemann-Liouville differ-
ential operator was discussed by Benchohra et al [10], Lakshmikantham [38].
El-Sayed and Ibrahim [21] initiated the study of fractional multivalued dif-
ferential inclusions.

Applied problems require definitions of fractional derivatives allowing
a utilization that is physically interpretable for initial conditions containing
y(0), y′(0), etc. The same requirements are true for boundary conditions.
Caputo’s fractional derivative satisfies these demands. For more details on
the geometric and physical interpretation for fractional derivatives of both
the Riemann-Liouville and Caputo types, see Podlubny [52].
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Recently fractional functional differential equations and inclusions with
standard Riemann-Liouville and Caputo derivatives with difference condi-
tions were studied by Benchohra et al [10, 11], Henderson and Ouahab [28]
and Ouahab [49].

When α ∈ (0, 2], the impulsive differential equations and inclusions with
Caputo fractional derivatives was studied by Agarwal et al [1, 2], Henderson
and Ouahab [29] and Ouahab [50].

In this paper, we shall be concerned with Filippov’s theorem and global
existence of solutions for impulsive fractional differential inclusions with frac-
tional order. More precisely, we will consider the following problem,

Dα
∗ y(t) ∈ F (t, y(t)), a.e. t ∈ J = [0, b], 0 < α ≤ 1, (1.1)

Δy|t=tk = Ik(y(t
−
k )), k = 1, . . . ,m, (1.2)

y(0) = a, (1.3)

where Dα
∗ is the Caputo fractional derivative, F : J ×R→ P(R) is a multi-

valued map with compact values (P(R) is the family of all nonempty subsets
of R), 0 = t0 < t1 < . . . < tm < tm+1 = b, Ik ∈ C(R,R) (k = 1, . . . ,m),
Δy|t=tk = y(t+k )−y(t−k ), and y(t+k ) = lim

h→0+
y(tk+h) and y(t−k ) = lim

h→0+
y(tk−

h) stand for the right and the left limits of y(t) at t = tk, respectively.

The paper is organized as follows. We first collect some background
material and basic results from multi-valued analysis and fractional calculus
in Sections 2 and 3, respectively. Then, we shall be concerned with Filippov’s
theorem for impulsive differential inclusions with fractional order in Section
4. In Section 5, we present some existence results of the above problem, as
well as compactness of solutions and upper semicontinuity of the operator
solution for problem (1.1)–(1.3).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that
will be used in the remainder of this paper. Let ACi([0, b],Rn) be the space
of functions y : [0, b] → R

n i-differentiable and whose ith derivative, y(i), is
absolutely continuous.

We take C(J,R) to be the Banach space of all continuous functions from
J into R with the norm

‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ b}.
L1(J,R) refers to the Banach space of measurable functions y : J −→ R

which are Lebesgue integrable; it is normed by

|y|1 =

∫ b

0

|y(s)|ds.
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Let (X, ‖ · ‖) be a separable Banach space, and denote:

P(X) = {Y ⊂ X : Y �= ∅},
Pcv(X) = {Y ∈ P(X) : Y convex},
Pcl(X) = {Y ∈ P(X) : Y closed},
Pb(X) = {Y ∈ P(X) : Y bounded},
Pcp(X) = {Y ∈ P(X) : Y compact},

Pcv,cp(X) = Pcv(X) ∩ Pcp(X).

A multi-valued map G : X −→ P(X) has convex (closed) values if G(x) is
convex (closed) for all x ∈ X. We say that G is bounded on bounded sets
if G(B) is bounded in X for each bounded set B of X (i.e., sup

x∈B
{sup{‖y‖ :

y ∈ G(x)}} < ∞). The map G is upper semi-continuous (u.s.c.) on X if for
each x0 ∈ X the set G(x0) is a nonempty, closed subset of X, and if for each
open set N of X containing G(x0), there exists an open neighborhood M of
x0 such that G(M) ⊆ N . Finally, we say that G is completely continuous if
G(B) is relatively compact for every bounded subset B ⊆ X.

If the multi-valued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph (i.e.,
xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). We say that G has a
fixed point if there exists x ∈ X such that x ∈ G(x).

The following two results are easily deduced from the limit properties.

Lemma 2.1. (see e.g. [6], Theorem 1.4.13) If G : X −→ Pcp(X) is u.s.c., then
for any x0 ∈ X,

lim sup
x→x0

G(x) = G(x0).

Lemma 2.2. (see e.g. [6], Lemma 1.1.9) Let (Kn)n∈N ⊂ K ⊂ X be a sequence
of subsets where K is compact in the separable Banach space X. Then

co (lim sup
n→∞

Kn) =
⋂
N>0

co (
⋃

n≥N

Kn),

where coA refers to the closure of the convex hull of A.

A multi-valued map G : J −→ Pcp(X) is said to be measurable if for
each x ∈ R the function Y : J −→ R defined by

Y (t) = d(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)}
is measurable.

Lemma 2.3. (see [25], Thm 19.7) Let E be a separable metric space and G
a multi-valued map with nonempty closed values. Then G has a measurable
selection.

Lemma 2.4. (see [58], Lemma 3.2) Let G : [0, b] → P(E) be a measurable
multifunction and u : [0, b] → E a measurable function. Then for any mea-
surable v : [0, b] → R

+ there exists a measurable selection g of G such that
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for a.e. t ∈ [0, b],

|u(t)− g(t)| ≤ d(u(t), G(t)) + v(t).

Lemma 2.5. [50] Let G : [0, b] → Pcl(R) be a measurable multifunction and
u : [0, b] → R a measurable function. Assume that there exist p ∈ L1(J,R)
such that G(t) ⊆ p(t)B(0, 1), where B(0, 1) denotes the closed ball in R. Then
there exists a measurable selection g of G such that for a.e. t ∈ [0, b],

|u(t)− g(t)| ≤ d(u(t), G(t)).

Lemma 2.6. (Mazur’s Lemma, [47], Theorem 21.4) Let E be a normed space
and {xk}k∈N ⊂ E be a sequence weakly converging to a limit x ∈ E. Then

there exists a sequence of convex combinations ym =

m∑
k=1

αmkxk with αmk > 0

for k = 1, 2, . . . ,m and
m∑

k=1

αmk = 1, which converges strongly to x.

Definition 2.7. The multivalued map F : J×X −→ P(X) is L1-Carathéodory
if

(i) t �−→ F (t, y) is measurable for each y ∈ X;
(ii) y �−→ F (t, y) is upper semi-continuous for almost all t ∈ J ;
(iii) For each q > 0, there exists φq ∈ L1(J,R+) such that

‖F (t, y)‖P = sup{‖v‖ : v ∈ F (t, y)} ≤ φq(t)

for all ‖y‖ ≤ q and for almost all t ∈ J.

Let (X, d) be a metric space induced from the normed space (X, | · |).
Consider Hd : P(X)× P(X) −→ R+ ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a

metric space and (Pcl(X), Hd) is a generalized metric space; see [35].

Definition 2.8. A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X;

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 2.9. (Covitz-Nadler, [16]) Let (X, d) be a complete metric space. If
N : X → Pcl(X) is a contraction, then FixN �= ∅.

For more details on multi-valued maps we refer to the books by Aubin et
al [5,6], Deimling [17], Gorniewicz [25], Hu and Papageorgiou [32], Kisielewicz
[35] and Tolstonogov [56].
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3. Fractional Calculus

According to the Riemann-Liouville approach to fractional calculus the no-
tation of fractional integral of order α (α > 0) is a natural consequence
of the well known formula (usually attributed to Cauchy), that reduces the
calculation of the n−fold primitive of a function f(t) to a single integral of
convolution type. In our notation, the Cauchy formula reads

Jnf(t) :=
1

(n− 1)!

∫ t

0

(t− s)n−1f(s)ds, t > 0, n ∈ N.

Definition 3.1. The fractional integral of order α > 0 of a function f ∈
L1([a, b],R) is defined by

Jα
a+f(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s)ds,

where Γ is the gamma function. When a = 0, we write Jαf(t) = f(t) ∗φα(t),

where φα(t) =
tα−1

Γ(α)
for t > 0 and φα(t) = 0 for t ≤ 0, and φα → δ(t) as

α → 0, where δ is the delta function and Γ is the Euler gamma function
defined by

Γ(α) =

∫ ∞

0

tα−1e−tdt, α > 0.

Also J0 = I (Identity operator), i.e. J0f(t) = f(t). Furthermore, by Jαf(0+)
we mean the limit (if it exists) of Jαf(t) for t→ 0+; this limit may be infinite.

After the notion of fractional integral, that of fractional derivative of
order α (α > 0) becomes a natural requirement and one is attempted to
substitute α with −α in the above formulas. However, this generalization
needs some care in order to guarantee the convergence of the integral and
preserve the well known properties of the ordinary derivative of integer order.
Denoting by Dn with n ∈ N, the operator of the derivative of order n, we
first note that

DnJn = I, JnDn �= I, n ∈ N,

i.e. Dn is the left-inverse (and not the right-inverse) to the corresponding
integral operator Jn. We can easily prove that

JnDnf(t) = f(t)−
n−1∑
k=0

f (k)(a+)
(t− a)k

k!
, t > 0.

As consequence, we expect that Dα is defined as the left-inverse to Jα. For
this purpose, introducing the positive integer n such that n− 1 < α ≤ n, one
defines the fractional derivative of order α > 0:

Definition 3.2. For a function f given on interval [a, b], the αth Riemann-
Liouville fractional-order derivative of f is defined by

Dαf(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)−α+n−1f(s)ds,

where n = [α] + 1 and [α] is the integer part of α.
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Also, we define D0 = J0 = I. Then we easily recognize that

DαJα = I, α ≥ 0, (3.1)

and

Dαtγ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α, α > 0, γ − 1, t > 0. (3.2)

Of course, the properties (3.1) and (3.2) are natural generalizations of those
known when the order is a positive integer.

Note the remarkable fact that the fractional derivative Dαf is not zero
for the constant function f(t) = 1 if α �∈ N. In fact, (3.2) with γ = 0 teaches
us that

Dα1 =
(t− a)−α

Γ(1− α)
, α > 0, t > 0. (3.3)

It is clear that Dα1 = 0 for α ∈ N, due to the poles of the gamma function
at the points 0,−1,−2, . . . , .

We now observe an alternative definition of fractional derivative, origi-
nally introduced by Caputo [12,13] in the late sixties and adopted by Caputo
and Mainardi [14] in the framework of the theory of Linear Viscoelasticity
(see a review in [40]).

Definition 3.3. Let f ∈ ACn([a, b]). The Caputo fractional-order derivative
of f is defined by

(Dα
∗ f)(t) :=

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds.

This definition is of course more restrictive than the Riemann-Liouville
definition, in that it requires the absolute integrability of the derivative of
order n. Whenever we use the operator Dα

∗ we (tacitly) assume that this
condition is met. We easily recognize that, in general,

Dαf(t) := DmJm−αf(t) �= Jm−αDmf(t) := Dα
∗ f(t), (3.4)

unless the function f(t) along with its first m − 1 derivatives vanishes at
t = a+. In fact, assuming that the passage of the m−derivative under the
integral is legitimate, one recognizes that, for m− 1 < α < m and t > 0,

Dαf(t) = Dα
∗ f(t) +

m−1∑
k=0

(t− a)k−α

Γ(k − α+ 1)
f (k)(a+), (3.5)

and therefore, recalling the fractional derivative of the power function (3.2),

Dα

(
f(t)−

m−1∑
k=0

(t− a)k−α

Γ(k − α+ 1)
f (k)(a+)

)
= Dα

∗ f(t). (3.6)

The alternative definition, that is, Definition 3.3, for the fractional derivative
thus incorporates the initial values of the function and of order lower than α.
The subtraction of the Taylor polynomial of degree m−1 at t = a+ from f(t)
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means a sort of regularization of the fractional derivative. In particular, ac-
cording to this definition, a relevant property is that the fractional derivative
of a constant is sill zero, i.e.

Dα
∗ 1 = 0, α > 0. (3.7)

We now explore the most relevant differences between Definitions 3.2 and
3.3 for the two fractional derivatives. From the Riemann-Liouville fractional
derivative, we have

Dα(t− a)α−j = 0, for j = 1, 2, . . . , [α] + 1. (3.8)

From (3.7) and (3.8) we thus recognize the following statements about func-
tions, which for t > 0 admit the same fractional derivative of order α, with
n− 1 < α ≤ n, n ∈ N,

Dαf(t) = Dαg(t)⇔ f(t) = g(t) +

m∑
j=1

cj(t− a)α−j , (3.9)

and

Dα
∗ f(t) = Dα

∗ g(t)⇔ f(t) = g(t) +

m∑
j=1

cj(t− a)n−j . (3.10)

In these formulas the coefficients cj are arbitrary constants. For proving all
our main results, we present the following auxiliary lemmas.

Lemma 3.4. [33] Let α > 0 and let y ∈ L∞(a, b) or C([a, b]). Then

(Dα
∗ J

αy)(t) = y(t).

Lemma 3.5. [33] Let α > 0 and n = [α] + 1. If y ∈ ACn[a, b] or y ∈ Cn[a, b],
then

(JαDα
∗ y)(t) = y(t)−

n−1∑
k=0

y(k)(a)

k!
(t− a)k.

Now we state the following generalization of Gronwall’s lemma for sin-
gular kernels (whose proof can be found in Lemma 7.1.1 in [31]). This will
be essential for the main result of Section 5.1.

Lemma 3.6. Let v : [0, b] → [0,∞) be a real function and w(·) is a non-
negative, locally integrable function on [0, b], and suppose there are constants
a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)α
ds.

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) +Ka

∫ t

0

w(s)

(t− s)α
ds,

for every t ∈ [0, b].

For further reading and details on fractional calculus, we refer to the
books and papers by Kilbas [33], Podlubny [52], Samko [54] and Caputo
[12–14].
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4. Filippov’s Theorem

Let Jk = (tk, tk+1], k = 0, . . . ,m, and let yk be the restriction of a function y
to Jk. In order to define mild solutions for problem (1.1)–(1.3), consider the
space

PC = {y : J → R | yk ∈ C(Jk,R), k = 0, . . . ,m, and y(t−k )

and y(t+k ) exist and satisfy y(t−k ) = y(tk) for k = 1, . . . ,m}.
Endowed with the norm

‖y‖PC = max{‖yk‖∞ : k = 0, . . . ,m},
this is a Banach space.

Definition 4.1. A function y ∈ PC is said to be a solution of (1.1)–(1.3) if
there exists v ∈ L1(J,R) with v(t) ∈ F (t, y(t)) for a.e. t ∈ J such that y
satisfies the fractional differential equation Dα

∗ y(t) = v(t) a.e. on J , and the
conditions (1.2)–(1.3).

Let a ∈ R, g ∈ L1(J,R) and let x ∈ PC be a solution of the impulsive
differential problem with fractional order,⎧⎨⎩

Dα
∗ x(t) = g(t), a.e. t ∈ J\{t1, . . . , tm}, α ∈ (0, 1],

Δxt=tk = Ik(x(t
−
k )), k = 1, . . . ,m,

x(0) = a,
(4.1)

where sup{ 1

Γ(α)

∫ t

0

(t − s)α−1|g(s)|ds : t ∈ [0, b]} < ∞. We will need the

following two assumptions:

(H1). The function F : J × R→ Pcl(R) is such that
(a) for all y ∈ R, the map t �→ F (t, y) is measurable,
(b) the map γ : t �→ d(g(t), F (t, x(t)) is integrable.

(H2). There exists a function p ∈ L1(J,R+) such that

Hd(F (t, z1), F (t, z2)) ≤ p(t)|z1 − z2|, for all z1, z2 ∈ R.

Remark 4.2. From Assumptions (H1(a)) and (H2), it follows that the multi-
function t �→ F (t, x(t)) is measurable and by Lemmas 1.4 and 1.5 from [22],
we deduce that γ(t) = d(g(t), F (t, x(t)) is measurable (see also the Remark
p. 400 in [6]).

Theorem 4.3. Suppose that hypotheses (H1)–(H2) are satisfied. If

‖Iαp‖∗ =
1

Γ(α)
sup

{∫ t

0

(t− s)α−1p(s)ds : t ∈ [0, b]

}
< 1,

then Problem (1.1)–(1.3) has at least one solution y satisfying, for a.e. t ∈
[0, b], the estimates

|y(t)− x(t)| ≤
∑

0≤tk<t

ηk(t),
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and

|Dα
∗ y(t)− g(t)| ≤ p(t)

∑
0<tk<t

Hk(t) +
∑

0<tk<t

γk(t), for k = 1, . . . ,m,

where

ηk(t) =
δk + ‖γk‖∞‖Iαp‖∗

1− ‖Iαp‖∗ , t ∈ (tk, tk+1],

Hk(t) =
δk + ‖γk‖∞
1− ‖Iαp‖∗ ,

δk := |x(tk)− y(tk)|+ |I1(y(tk))− Ik(x(tk))|, γk = γ|Jk
, k = 1, . . . ,m.

and

‖γ‖∞ =
1

Γ(α)
sup

{∫ tk−1

tk

(t− s)α−1γ(s)ds

}
<∞, k = 0, 1, . . . ,m.

Proof. We are going to study Problem (1.1)–(1.3) respectively in the intervals
[0, t1], (t1, t2], . . . , (tm, b]. The proof will be given in three steps and then
continued by induction.

Step 1. In this first step, we construct a sequence of functions (yn)n∈N which
will be shown to converge to some solution of Problem (1.1)–(1.3) on the
interval [0, t1], namely to{

Dα
∗ y(t) ∈ F (t, y(t)), t ∈ J0 = [0, t1], α ∈ (0, 1],
y(0) = a.

(4.2)

Let f0 = g on [0, t1] and y0(t) = x(t), t ∈ [0, t1], i.e.

y0(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1f0(s)ds, t ∈ [0, t1].

Then define the multi-valued map U1 : [0, t1]→ P(R) by U1(t) = F (t, y0(t))∩
(g(t) + γ(t)B(0, 1)). Since g and γ are measurable, Theorem III.4.1 in [15]
tells us that the ball (g(t) + γ(t)B(0, 1)) is measurable. Moreover F (t, y0(t))
is measurable (see Remark 4.2). We claim that U1 is nonempty. It is clear
that

d(0, F (t, 0)) ≤ d(0, g(t)) + d(g(t), F (t, y0(t))) +Hd(F (t, y0(t)), F (t, 0))

≤ |g(t)|+ γ(t) + p(t)|y0(t)|, a.e. t ∈ [0, t1].

Hence for all w ∈ F (t, y0(t)) we have

|w| ≤ d(0, F (t, 0)) +Hd(F (t, 0), F (t, y0(t)))

≤ |g(t)|+ γ(t) + 2p(t)|y0(t)| := M(t), a.e.t ∈ [0, t1].

This implies that

F (t, y0(t)) ⊆M(t)B(0, 1), t ∈ [0, t1].

From Lemma 2.5, there exists a function u which is a measurable selection
of F (t, y0(t)) such that

|u(t)− g(t)| ≤ d(g(t), F (t, y0(t))) = γ(t).
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Then u ∈ U1(t), proving our claim. We deduce that the intersection multival-
ued operator U1(t) is measurable (see [6,15,25]). By Lemma 2.3 (Kuratowski-
Ryll-Nardzewski selection theorem), there exists a function t → f1(t) which
is a measurable selection for U1. Consider

y1(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1f1(s)ds, t ∈ [0, t1].

For each t ∈ [0, t1], we have

|y1(t)− y0(t)| ≤ |a− a|+ 1

Γ(α)

∫ t

0

(t− s)α−1|f0(s)− f1(s)| ds. (4.3)

Hence

|y1(t)− y0(t)| ≤ δ + ‖γ‖∞, t ∈ [0, t1] with |a− a| = δ.

Now Lemma 1.4 in [22] tells us that F (t, y1(t)) is measurable. The ball (f1(t)+
p(t)|y1(t)− y0(t)|B(0, 1)) is also measurable by Theorem III.4.1 in [15]. The
set U2(t) = F (t, y1(t))∩(f1(t)+p(t)|y1(t)−y0(t)|)B(0, 1) is nonempty. Indeed,
since f1 is a measurable function, Lemma 2.5 yields a measurable selection u
of F (t, y1(t)) such that

|u(t)− f1(t)| ≤ d(f1(t), F (t, y1(t))).

Then using (H2), we get

|u(t)− f1(t)| ≤ d(f1(t), F (t, y1(t)))

≤ Hd(F (t, y0(t)), F (t, y1(t)))

≤ p(t)|y0(t)− y1(t)|,
i.e. u ∈ U2(t), proving our claim. Now, since the intersection multi-valued
operator U2 defined above is measurable (see [6, 15, 25]), there exists a mea-
surable selection f2(t) ∈ U2(t). Hence

|f1(t)− f2(t)| ≤ p(t)|y1(t)− y0(t)|. (4.4)

Define

y2(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1f2(s)ds, t ∈ (0, t1].

Using (4.3) and (4.4), a simple integration of the following estimates, valid
for every t ∈ [0, t1],

|y2(t)− y1(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f2(s)− f1(s)|ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s) (δ + ‖γ‖∞) ds

≤ ‖Iαp‖∗(δ + ‖γ‖∞), t ∈ [0, t1].

Let U3(t) = F (t, y2(t)) ∩ (f2(t) + p(t)|y2(t) − y1(t)|)B(0, 1). Arguing as for
U2, we can prove that U3 is a measurable multi-valued map with nonempty
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values; so there exists a measurable selection f3(t) ∈ U3(t). This allows us to
define

y3(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1f3(s)ds, t ∈ [0, t1].

For t ∈ [0, t1], we have

|y3(t)− y2(t)| ≤
∫ t

0

(t− s)α−1p(s)|y2(s)− y1(s)| ds.

Then

|y3(s)− y2(s)| ≤ ‖Iαp‖2∗(δ + ‖γ‖∞), t ∈ [0, t1].

Repeating the process for n = 0, 1, 2, 3, . . . , we arrive at the following bound

|yn(t)− yn−1(t)| ≤ ‖Iαp‖n−1
∗ (δ + ‖γ‖∞), t ∈ [0, t1]. (4.5)

By induction, suppose that (4.5) holds for some n and check (4.5) for n+ 1.
Let Un+1(t) = F (t, yn(t)) ∩ (fn + p(t)|yn(t) − yn−1(t)|B(0, 1)). Since Un+1

is a nonempty measurable set, there exists a measurable selection fn+1(t) ∈
Un+1(t), which allows us to define for n ∈ N

yn+1(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1fn+1(s)ds, t ∈ [0, t1]. (4.6)

Therefore, for a.e. t ∈ [0, t1], we have

|yn+1(t)− yn(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|fn+1(s)− fn(s)| ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)|yn(s)− yn−1(s)| ds.

Then

|yn+1(t)− yn(t)| ≤ ‖Iαp‖n∗ (δ + ‖γ‖∞), t ∈ [0, t1].

Hence

‖yn+1 − yn‖∞ ≤ ‖Iαp‖n∗ (δ + ‖γ‖∞).

Consequently, (4.5) holds true for all n ∈ N. We infer that {yn} is a Cauchy
sequence in PC1, converging uniformly to a limit function y ∈ PC1, where

PC1 = C([0, t1],R).

Moreover, from the definition of {Un}, we have

|fn+1(t)− fn(t)| ≤ p(t)|yn(t)− yn−1(t)|, a.e t ∈ [0, t1].

Hence, for almost every t ∈ [0, t1], {fn(t)} is also a Cauchy sequence in R

and then converges almost everywhere to some measurable function f(·) in
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R. In addition, since f0 = g, we have for a.e. t ∈ [0, t1]

|fn(t)| ≤
n∑

i=1

p(t)|fi(t)− fi−1(t)|+ |f0(t)|

≤
n∑

i=2

p(t)|yi−1(t)− yi−2(t)|+ |g(t)|

≤ p(t)

∞∑
i=1

|yi(t)− yi−1(t)|+ γ(t) + |g(t)|.

Hence

|fn(t)| ≤ H0(t)p(t) + γ(t) + |g(t)|,
where

H0(t) :=
(δ + ‖γ‖∞)

1− ‖Iαp‖∗ . (4.7)

Then

1

Γ(α)

∫ t

0

(t− s)α−1|fn(s)|ds ≤ ‖Iαg‖∗ +H0‖Iαp‖∗ <∞.

Hence for every t fixed in (0, t1], we have that

|t− .|α−1fn(.) ∈ L1([0, t],R),

and

|t− .|α−1fn(.)→ |t− .|α−1f(.), a.e. on [0, t].

Put

h∗(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds t ∈ [0, t1].

Let t = 0, then

lim
t→0

yn(t) = a = h∗(0).

If t ∈ (0, t1] we have

|yn(t)− h∗(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1(fn(s)− f(s))ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

|t− s|α−1|fn(s)− f(s)|ds.

By the Lebesgue dominated convergence theorem

|yn(t)− h∗(t)| → 0, as n→∞.

Consequently,

y(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t ∈ [0, t1], y(0) = a,
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is a solution of the problem (1.1)–(1.2) with condition y(0) = a, y ∈ S[0,t1](a).
Moreover, for a.e. t ∈ (0, t1], we have

|x(t)− y(t)| =

∣∣∣∣a+
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds

−a− 1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

∣∣∣∣
≤ δ +

1

Γ(α)

∫ t

0

(t− s)α−1|f(s)− f0(s)|ds

≤ δ +
1

Γ(α)

∫ t

0

(t− s)α−1|f(s)− fn(s)|ds

+
1

Γ(α)

∫ t

0

(t− s)α−1)|fn(s)− f0(s)|ds

≤ δ +
1

Γ(α)

∫ t

0

|(t− s)α−1||f(s)− fn(s)|ds

+
(δ + ‖γ‖∞)‖Iαp‖∗

1− ‖Iαp‖∗ .

Passing to the limit as n→∞, we get

|x(t)− y(t)| ≤ η0(t), a.e. t ∈ [0, t1], (4.8)

with

η0(t) :=
(δ + ‖γ‖∞)‖Iαp‖∗

1− ‖Iαp‖∗ .

Next, we give an estimate for |Dα
∗ y(t)− g(t)|, for t ∈ [0, t1]. We have

|Dα
∗ y(t)− g(t)| = |f(t)− f0(t)|

≤ |fn(t)− f0(t)|+ |fn(t)− f(t)|

≤ p(t)

∞∑
i=0

|yi+1(t)− yi(t)|+ γ(t) + |fn(t)− f(t)|.

Arguing as in (4.7) and passing to the limit as n→ +∞, we deduce that

|Dα
∗ y(t)− g(t)| ≤ H0(t)p(t) + γ(t), t ∈ [0, t1].

The obtained solution is denoted by y1 := y|[0,t1].

Step 2: Consider now Problem (1.1)–(1.3) on the second interval (t1, t2], i.e.{
Dα

∗ y(t) ∈ F (t, y(t)), a.e. t ∈ (t1, t2],
y(t+1 ) = y1(t1) + I1(y1(t1)).

(4.9)

Let f0 = g and set

y0(t) = x(t1) + I1(x(t1)) +
1

Γ(α)

∫ t

t1

(t− s)α−1f0(s)ds, t ∈ (t1, t2].
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Notice that (4.8) allows us to use Assumption (H2), apply again Lemma
1.4 in [22] and argue as in Step 1 to prove that the multi-valued map U1 :
[t1, t2]→ P(R), defined by U1(t) = F (t, y0(t))∩(g(t)+γ(t)B(0, 1)), is measur-
able. Hence, there exists a function t �→ f1(t) which is a measurable selection
for U1. Define

y1(t) = y1(t1) + I1(y1(t1)) +
1

Γ(α)

∫ t

t1

(t− s)α−1f1(s)ds, t ∈ (t1, t2].

Next define the measurable multi-valued map U2(t) = F (t, y1(t)) ∩ (f1(t) +
p(t)|y1(t) − y0(t)|B(0, 1)). It has a measurable selection f2(t) ∈ U2(t) by
the Kuratowski-Ryll-Nardzewski selection theorem. Repeating the process of
selection as in Step 1, we can define by induction a sequence of multi-valued
maps Un(t) = F (t, yn−1(t))∩ (fn−1(t)+p(t)|yn−1(t)−yn−2(t)|B(0, 1)) where
{fn} ∈ Un and (yn)n∈N is as defined by

yn(t) = y1(t1) + I1(y1(t1)) +
1

Γ(α)

∫ t

t1

(t− s)α−1fn(s)ds, t ∈ (t1, t2],

and we can easily prove that

|yn+1(t)− yn(t)| ≤ ‖Iαp‖n∗ (δ + ‖γ‖∞), t ∈ (t1, t2].

Let

PC2 = {y : y ∈ C((t1, t2],R) and y(t+1 ) exists}.
As in Step 1, we can prove that the sequence {yn} converges to some y ∈ PC2,
a solution to Problem (4.9), such that, for a.e. t ∈ (t1, t2], we have

|x(t)− y(t)| ≤ |x1(t1)− y1(t1)|+ |I1(x(t1))− I1(y1(t1))|

+
1

Γ(α)

∫ t

t1

(t− s)α−1|f(s)− g(s)|ds.

Hence

|x(t)− y(t)| ≤ (δ + ‖γ1‖∞)‖Iαp‖∗
1− ‖Iαp‖∗ ,

and

|Dα
∗ y(t)− g(t)| := |f(t)− f0(t)| ≤ H1(t)p(t) + γ(t), t ∈ (t1, t2].

Denote the restriction y|(t1,t2] by y2.

Step 3: We continue this process until we arrive at the function ym+1 :=

y
∣∣∣
(tm,b]

as a solution of the problem{
Dα

∗ y(t) ∈ F (t, y(t)), a.e. t ∈ (tm, b],
y(t+m) = ym−1(tm) + Im(ym−1(tm)).

Then, for a.e. t ∈ (tm, b], the following estimates are easily derived:

|x(t)− y(t)| ≤ |ym(tm)− x(tm)|+ |+ |Im(x(tm))− Im(y(tm))|
+

1

Γ(α)

∫ t

tm

(t− s)α−1|f(s)− g(s)|ds.
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Then

|x(t)− y(t)| ≤ (δ + ‖γ‖∞)‖Iαp‖∗
1− ‖Iαp‖∗

and

|Dα
∗ y(t)− g(t)| ≤ Hm(t)p(t) + γ(t)).

Step 4: Summarizing, a solution y of Problem (1.1)–(1.3) can be defined as
follows

y(t) =

⎧⎪⎪⎨⎪⎪⎩
y1(t), if t ∈ [0, t1],
y2(t), if t ∈ (t1, t2],
. . . . . .
ym+1(t), if t ∈ (tm, b].

From Steps 1 to 3, we have that, for a.e. t ∈ [0, t1],

|x(t)− y(t)| ≤ η0(t), and |Dα
∗ y(t)− g(t)| ≤ H0(t)p(t) + γ(t),

as well as the following estimates, valid for t ∈ (t1, b]

|x(t)− y(t)| ≤
m∑

k=0

ηk(t).

Similarly

|Dα
∗ y(t)− g(t)| ≤ p(t)

∑
0<tk<t

Hk(t) +
∑

0<tk<t

γk(t),

where γk := γ|Jk
. The proof of Theorem 4.3 is complete. �

4.1. Filippov’s Theorem on the Half-Line

We may consider Filippov’s Problem on the half-line as given by,⎧⎨⎩ Dα
∗ y(t) ∈ F (t, y(t)), a.e. t ∈ J̃\{t1, . . .},

Δyt=tk = Ik(y(t
−
k )), k = 1, . . . ,

y(t) = a,

(4.10)

where J̃ = [0,∞), 0 = t0 < t1 < . . . < tm < . . . , lim
m→∞ tm = +∞, F : J̃×R→

P(R) is a multifunction, and a ∈ R. Let x be the solution of Problem (4.1)
but on the half-line. We will need the following assumptions:

(H̃1). The function F : J̃ × R→ Pcl(R) is such that
(a) for all y ∈ R, the map t �→ F (t, y) is measurable,
(b) the map t �→ γ(t) = d(g(t), F (t, x(t)) ∈ L1([0,∞),R+)

(H̃2). There exists a function p ∈ L1([0,∞),R+) such that

Hd(F (t, z1), F (t, z2)) ≤ p(t)|z1 − z2|, for all z1, z2 ∈ R.

(H̃3). For every x ∈ R, we have

∞∑
k=1

|Ik(x)| <∞.

Then we can extend Filippov’s Theorem to the half-line.
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Theorem 4.4. Let γk := γ|Jk
and assume (H̃1)–(H̃3) hold. If

sup

{
1

Γ(α)

∫ t

0

(t− s)α−1p(s)ds : t ∈ [0,∞)

}
< 1,

then, Problem (4.10) has at least one solution y satisfying, for t ∈ [0,∞), the
estimates

|y(t)− x(t)| ≤
∑

0<tk<t

ηk(t),

and

|Dα
∗ y(t)− g(t)| ≤ p(t)

∑
0<tk<t

Hk(t) +
∑

0<tk<t

γk(t).

Proof. The solution will be sought in the space

P̃C = {y : [0,∞)→ R, yk ∈ C(Jk,R), k = 0, . . . , such that
y(t−k ) and y(t+k ) exist and satisfy y(t−k ) = y(tk) for k = 1, . . .},

where yk is the restriction of y to Jk = (tk, tk+1], k ≥ 0. Theorem 4.3
yields estimates of yk on each one of the bounded intervals J0 = [0, t1], and
Jk = (tk−1, tk], k = 2, . . . . Let y0 be solution of Problem (1.1)–(1.3) on J0.

Then, consider the problem,{
Dα

∗ y(t) ∈ F (t, y(t)), a. e. t ∈ (t1, t2],
y(t+1 ) = y0(t1) + I1(y0(t1)).

From Theorem 4.3, this problem has a solution y1. We continue this process

taking into account that ym := y
∣∣∣
(tm,tm+1]

is a solution to the problem,{
Dα

∗ y(t) ∈ F (t, y(t)), a. e. t ∈ (tm, tm+1],
y(t+m) = ym−1(tm) + Im(ym−1(t

−
m)).

Then a solution y of Problem (4.10) may be rewritten as

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(t), if t ∈ [0, t1],

y2(t), if t ∈ (t1, t2],

. . . . . .

ym(t), if t ∈ (tm, tm+1],

. . . . . . �

5. Existence results

5.1. Convex case

In a main consideration of the problem (1.1)–(1.3), a nonlinear alternative of
Leray Schauder type is used to investigate the existence of solutions for first
order impulsive fractional differential inclusions.
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Theorem 5.1 (Convex case). Assume the hypotheses:

(B1) The function F : J × R→ Pcp,cv(R) is an Carathéodory.
(B2) There exist M1,M2 > 0 such that

‖F (t, z)‖P ≤M1 +M2|z| for a.e. t ∈ J and each z ∈ R.

Then the set of solutions for Problem (1.1)–(1.3) is nonempty and compact.
Moreover the operator solution S(·) : R→ P(PC), defined by

S(a) = {y ∈ PC : y solution of the problem with y(0) = a},
is u.s.c.

Proof. Transform the problem into a fixed point problem. Consider first the
problem (1.1)–(1.3) on the interval [0, t1], that is, the problem

Dα
∗ y(t) ∈ F (t, y(t)), a.e. t ∈ [0, t1], α ∈ (0, 1] (5.1)

y(0) = a. (5.2)

It is clear that the solutions of the problem (5.1)–(5.2) are fixed points of the
multivalued operator, N0 : C([0, t1],R)→ P(C([0, t1],R)) defined by

N0(y) = {h ∈ C([0, t1],R) : h(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ [0, t1] }

where

g ∈ SF,y =
{
g ∈ L1([0, t1],R) : g(t) ∈ F (t, y(t)) for a.e. t ∈ [0, t1]

}
.

As in [11,28,49], we can show that N0 is completely continuous, with compact
and convex values.

Now we show that N0 is upper semi-continuous. Since N0 is completely
continuous, it suffices to prove that N0 has a closed graph. Let yn −→
y∗, hn ∈ N0(yn) and hn −→ h∗, yn −→ y∗ as n → ∞. We will prove that
h∗ ∈ N0(y∗). Now hn ∈ N0(yn) implies that there exists gn ∈ SF,yn such that
for each t ∈ J ,

hn(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1gn(s)ds.

We must prove that there exists g∗ ∈ SF,y∗ such that for each t ∈ J ,

h∗(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1g∗(s)ds.

Since gn(·) ∈ F (·, yn(·)), then
|gn(t)| ≤M1 +M2|yn(t)|, t ∈ [0, t1]⇒ gn(t) ∈MB(0, 1),

where

‖yn‖∞ < M, for all n ∈ N.

It is clear that MB(0, 1) is a compact set in R, and then there exists a
subsequence of {gn(·)} converging to g∗(·).
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It remains to prove that g∗(t) ∈ F (t, y(t)), for a.e. t ∈ J. Lemma 2.6

yields the existence of αn
i ≥ 0, i = n, . . . , k(n) such that

k(n)∑
i=1

αn
i = 1 and the

sequence of convex combinations ḡn(·) =
k(n)∑
i=1

αn
i gi(·) converges strongly to v

in L1. Since F takes convex values, using Lemma 2.2, we obtain that

g∗(t) ∈ ⋂
n≥1

{ḡn(t)}, a.e. t ∈ J

⊂ ⋂
n≥1

co{gk(t), k ≥ n}
⊂ ⋂

n≥1

co{ ⋃
k≥n

F (t, yk(t))}
= co(lim sup

k→∞
F (t, yk(t))).

(5.3)

Since F is u.s.c. with compact values, then by Lemma 2.1, we have

lim sup
n→∞

F (t, yn(t)) = F (t, y(t), for a.e. t ∈ J.

This with (5.10) imply that g∗(t) ∈ co F (t, y(t)). Since F (., .) has closed,
convex values, we deduce that g∗(t) ∈ F (t, y(t)), for a.e. t ∈ J. prove that
Let t ∈ (0, t1], then

1

Γ(α

∫ t

0

(t− s)α−1|gn(s)|ds ≤ 1

Γ(α

∫ t

0

(t− s)α−1[M1 +MM2]ds

≤ tα1 (M1 +MM2)

Γ(α+ 1)

and

1

Γ(α

∫ t

0

(t− s)α−1|g∗(s)|ds ≤ tα1 (M1 +MM2)

Γ(α+ 1)
.

Set

h∗(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1g∗(s)ds,

where g∗ ∈ SF,y∗ . As in Theorem 4.3 we can prove that

y∗(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1g∗(s)ds, t ∈ [0, t1].

A priori bounds. We now show there exists an open set U ⊆ C([0, t1],R) with
y ∈ λN0(y), for λ ∈ (0, 1) and y ∈ ∂U0.

Let y ∈ C([0, t1],R) and y ∈ λN0(y) for some 0 < λ < 1. Thus there
exists g ∈ SF,y such that, for each t ∈ [0, b], we have

y(t) = λ
[
a+

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds
]
, (5.4)
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and

|y(t)| ≤ |a|+ tα1M1

Γ(α+ 1)
+

M2

Γ(α)

∫ t

0

(t− s)α−1|y(s)|ds, t ∈ [0, t1].

Lemma 3.6 implies

|y(t)| ≤ R+K0(α)R

∫ t

0

(t− s)α−1ds

where

R = |a|+ tα1M1

Γ(α+ 1)
.

Hence

‖y‖∞ ≤ R+
RK0(α)t

α
1

Γ(α+ 1)
:= M̃0.

Set

U0 = {y ∈ C([0, t1],R) : ‖y‖∞ < M̃0 + 1}.
N : U → P(C([0, t1],R)) is continuous and completely continuous. From the
choice of U0, there is no y ∈ ∂U0 such that y ∈ λN0(y), for some λ ∈ (0, 1).
As a consequence of the nonlinear alternative of Leray-Schauder type [26], we
deduce that N0 has a fixed point y0 in U0, which is a solution to (5.1)–(5.2).

Now, let y2 := y
∣∣∣
(t1,t2]

be a solution to the problem

Dα
∗ y(t) ∈ F (t, y(t)), a.e. t ∈ (t1, t2], (5.5)

y(t+1 ) = y0(t1) + I1(y0(t
−
1 )). (5.6)

Then y1 is a fixed point of the multivalued operator N1 : PC1 → P(PC1)
defined by, for t ∈ [t1, t2],

N1(y) := {h ∈ PC1 : h(t) = y1(t1) + I1(y1(t1)) +
1

Γ(α)

∫ t

t1

(t− s)α−1g(s)ds},

where

g ∈ SF,y =
{
g ∈ L1([t1, t2],R) : g(t) ∈ F (t, y(t)) for a.e. t ∈ [t1, t2]

}
.

Clearly, N1 is completely continuous, u.s.c. with compact and convex valued.

We now show there exists an open set U1 ⊆ PC1 with z ∈ λN1(y) for
λ ∈ (0, 1) and y ∈ ∂U1.

Let y ∈ PC1 and y ∈ λN1(y) for some 0 < λ < 1.

y(t) = λ

[
y0(t1) + I1(y0(t1)) +

1

Γ(α)

∫ t

t1

(t− s)α−1g(s)ds

]
,

for some λ ∈ (0, 1). Then

|y(t)| ≤ |y0(t1)|+ |I1(y0(t1))|
+

1

Γ(α)

∫ t

t1

(t− s)α−1[M1 +M2|y(s)|]ds, t ∈ (t1, t2].
(5.7)
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Then, for t ∈ (t1, t2],

|y(t)| ≤ M̃0 + sup
q∈B(0,˜M0)

|I1(q)|+ (t2 − t1)
αM1

Γ(α+ 1)
+

M2

Γ(α)

∫ t

t1

(t− s)α−1|y(s)|ds.

Lemma 3.6 implies

|y(t)| ≤ R1 +K1(α)R

∫ t

0

(t− s)α−1ds

where

R1 = M̃0 + sup
q∈B(0,˜M0)

|I1(q)|+ (t2 − t1)
αM1

Γ(α+ 1)
.

Hence

‖y‖∞ ≤ R1 +
RK1(α)(t2 − t1)

α

Γ(α+ 1)
:= M̃1.

Set

U1 = {y ∈ PC1 : ‖y‖PC1
< M̃1 + 1}.

N1 : U → P(PC1) is continuous and completely continuous. From the choice
of U1, there is no y ∈ ∂U1 such that y ∈ λN1(y), for some λ ∈ (0, 1). As
a consequence of the nonlinear alternative of Leray-Schauder type [26], we
deduce that N1 has a fixed point y1 in U1, which is solution to (5.5)–(5.6).

We continue this process and taking into account that ym := y
∣∣∣
(tm,b]

is a

solution to the problem

Dα
∗ y(t) ∈ F (t, y(t)), a.e. t ∈ (tm, b], α ∈ (0, 1], (5.8)

y(t+m) = ym−1(t1) + Im(ym−1(t
−
m)). (5.9)

A solution y of the problem (1.1)–(1.3) is then defined by

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0(t), if t ∈ [0, t1],

y1(t), if t ∈ (t1, t2],

...

ym(t), if t ∈ (tm, b].

Now, we will show that S(·) is u.s.c. by proving that the graph of S(·),
Γ(a) := {(a, y) | y ∈ S(a)},

is closed. Let (an, yn) ∈ Γ, i.e., yn ∈ S(an), and let (an, yn) → (a, y) as
n→∞. Since yn ∈ S(an), there exists vn ∈ L1(J,R) such that



474 J. Henderson and A. Ouahab Mediterr. J. Math.

yn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an +
1

Γ(α)

∫ t

0

(t− s)α−1vn(s)ds, if t ∈ [0, t1],

yn(t1) + I1(yn(t1))

+
1

Γ(α)

∫ t

t1

(t− s)α−1vn(s)ds, if t ∈ (t1, t2],

...

yn(tm) + Im(yn(tm))

+
1

Γ(α)

∫ t

t1

(t− s)α−1vn(s)ds, if t ∈ (tm, b].

Since (an, yn) converges to (a, y), there exists M > 0 such that

|an| ≤M for all n ∈ N.

By using (B2), we can easily prove that there exist M∗ > 0 such that

‖yn‖PC ≤M∗ for all n ∈ N.

From the definition of yn, we have Dα
∗ yn(t) = vn(t) a.e. t ∈ J , and so

|vn(t)| ≤M1 +M2M∗, t ∈ J.

Thus, vn(t) ∈ (M1 + M2M∗)B(0, 1) := χ(t) a.e. t ∈ J . It is clear that
χ : J → Pcp,cv(R) is a multivalued map that is integrably bounded. Since
{vn(·) : n ≥ 1} ∈ χ(·), we may pass to a subsequence if necessary to obtain
that vn converges to v in L1.

It remains to prove that v(t) ∈ F (t, y(t)), for a.e. t ∈ J. Lemma 2.6

yields the existence of αn
i ≥ 0, i = n, . . . , k(n) such that

k(n)∑
i=1

αn
i = 1 and the

sequence of convex combinaisons gn(·) =
k(n)∑
i=1

αn
i vi(·) converges strongly to v

in L1. Since F takes convex values, using Lemma 2.2, we obtain that

v(t) ∈ ⋂
n≥1

{gn(t)}, a.e. t ∈ J

⊂ ⋂
n≥1

co{vk(t), k ≥ n}
⊂ ⋂

n≥1

co{ ⋃
k≥n

F (t, yk(t))}
= co(lim sup

k→∞
F (t, yk(t))).

(5.10)

Since F is u.s.c. with compact values, then by Lemma 2.1, we have

lim sup
n→∞

F (t, yn(t)) = F (t, y(t), for a.e. t ∈ J.
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This with (5.10) imply that v(t) ∈ co F (t, y(t)). Since F (., .) has closed, con-
vex values, we deduce that v(t) ∈ F (t, y(t)), for a.e. t ∈ J,

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a+
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds, if t ∈ [0, t1],

y(t1) + I1(y(t1))

+
1

Γ(α)

∫ t

t1

(t− s)α−1v(s)ds, if t ∈ (t1, t2],

...

y(tm) + Im(y(tm))

+
1

Γ(α)

∫ t

t1

(t− s)α−1v(s)ds, if t ∈ (tm, b].

Since the functions Ik, k = 1, . . . ,m, are continuous, we obtain the estimates

|yn(t)− z(t)| ≤ |an − a|+ 1

Γ(α)

∫ t

0

(t− s)α−1|vn(s)− v(s)|ds, t ∈ [0, t1].

Let t ∈ (t1, t2]. Then we have

|yn(t)− z(t)| ≤ |yn(t1)− y(t1)|+ |I1(yn(t1))− I1(y(t1))|

+
1

Γ(α)

∫ t

t1

(t− s)α−1|vn(s)− v(s)|ds
≤ ‖yn − y‖PC + |I1(yn(t1))− I1(y(t1))|

+
1

Γ(α)

∫ t

t1

(t− s)α−1|vn(s)− v(s)|ds.

We continue this process taking into account that

yn(t) = yn(tm) + Im(yn(tm)) +
1

Γ(α)

∫ t

t1

(t− s)α−1v(s)ds, t ∈ (tm, b].

Thus

|yn(t)− z(t)| ≤ |yn(tm)− y(tm)|+ |Im(yn(tm−1))− Im(y(tm−1))|

+
1

Γ(α)

∫ t

tm

(t− s)α−1|vn(s)− v(s)|ds, t ∈ (tm, b].

Hence

|yn(t)− z(t)| ≤ ‖yn − y‖PC + |Im(yn(tm−1))− Im(y(tm−1))|

+
1

Γ(α)

∫ t

tm

(t− s)α−1|vn(s)− v(s)|ds.
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The right-hand side of the above expression tends to 0, as n → +∞.
Hence,

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a+
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds, if t ∈ [0, t1],

y(t1) + I1(y(t1))

+
1

Γ(α)

∫ t

t1

(t− s)α−1v(s)ds, if t ∈ (t1, t2],

...

y(tm) + Im(y(tm))

+
1

Γ(α)

∫ t

t1

(t− s)α−1v(s)ds, if t ∈ (tm, b].

Thus, y ∈ S(a). Now, we show that S(·) maps bounded sets into relatively
compact sets of PC. Let B be a bounded set in R and let {yn} ⊂ S(B). Then
there exist {an}n∈N ⊂ B such that

yn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an +
1

Γ(α)

∫ t

0

(t− s)α−1vn(s)ds, if t ∈ [0, t1],

yn(t1) + I1(yn(t1))

+
1

Γ(α)

∫ t

t1

(t− s)α−1vn(s)ds, if t ∈ (t1, t2],

...

yn(tm) + Im(yn(tm))

+
1

Γ(α)

∫ t

t1

(t− s)α−1vn(s)ds, if t ∈ (tm, b],

where vn ∈ SF,yn , n ∈ N. Since {an} is a bounded sequence, there exists a
subsequence of {an} converging to a, and so from (B2), there exist M∗ > 0
such that

‖yn‖PC ≤M∗, n ∈ N.

As in [2, 11, 49], we can show that {yn : n ∈ N} is equicontinuous in PC. As
a consequence of the Arzelá-Ascoli Theorem, we conclude that there exists
a subsequence of {yn} converging to y in PC. By a similar argument to the
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one above, we can prove that

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a+
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds, if t ∈ [0, t1],

y(t1) + I1(y(t1))

+
1

Γ(α)

∫ t

t1

(t− s)α−1v(s)ds, if t ∈ (t1, t2],

...

y(tm) + Im(y(tm))

+
1

Γ(α)

∫ t

t1

(t− s)α−1v(s)ds, if t ∈ (tm, b].

where v ∈ SF,y. Thus, y ∈ S(a), and this implies that S(·) is u.s.c. Also for
every a ∈ R we have S(a) ∈ Pcp(R). �

5.2. Nonconvex case

In this section, we present a second result for the problem (1.1)–(1.3) with a
non-convex valued right-hand side. We will make use of some new conditions.

(A1) F : [0, b]×R×R −→ Pcp(R); t �−→ F (t, x) is measurable for each x ∈ R.
(A2) There exists a function p ∈ L1([0, b],R+) such that, for a.e. t ∈ [0, b]

and all x, y ∈ R,

Hd(F (t, x), F (t, y) ≤ p(t)|x− y|,
and

Hd(0, F (t, 0)) ≤ p(t) for a.e. t ∈ [0, b].

Theorem 5.2. Suppose that hypotheses (A1) and (A2) are satisfied. If

1

Γ(α)
sup

{∫ t

0

(t− s)α−1p(s)ds : t ∈ [0, b]

}
< 1,

then the IVP (1.1)–(1.3) has at least one solution.

Proof. We are going to study Problem (1.1)–(1.3) in the respective intervals
[0, t1], (t1, t2], . . . , (tm, b]. The proof will be given in three steps and then
continued by induction.

Step 1. Consider the problem on the interval [0, t1], that is,{
Dα

∗ y(t) ∈ F (t, y(t)), a.e. t ∈ [0, t1],
y(0) = a.

(5.11)

It is clear that all solutions of Problem (5.11) are fixed points of the multi-
valued operator N0 : PC1 → P(PC1) defined by

N0(y) :=

{
h ∈ PC1 : h(t) = a+

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ [0, t1]

}
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where

g ∈ SF,y =
{
g ∈ L1([0, t1],R) : g(t) ∈ F (t, y(t)) for a.e. t ∈ (0, t1]

}
and PC1 = C([0, t1],R). To show that N0 satisfies the assumptions of Lemma
2.9, the proof will be given in two claims.

Claim 1. N0(y) ∈ Pcl(PC1), let y ∈ PC1: Indeed, let {yn} ∈ N0(y) be
such that yn → ỹ in PC1, as n → +∞. Then ỹ ∈ PC1 and there exists a
sequence gn ∈ SF,y such that

yn(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1gn(s)ds, t ∈ [0, t1].

Then {gn} is integrably bounded. Since F (·, ·) has compact values, let w(·) ∈
F (·, 0) be such that |w(t)| = d(0, F (t, 0)). From (A1) and (A2), we infer that
for a.e. t ∈ [0, t1],

|gn(t)| ≤ d(0, F (t, 0)) +Hd(F (t, 0), F (t, y(t))
≤ p(t)‖y‖PC1

+ d(0, F (t, 0)) := M∗(t), ∀n ∈ N.

that is,

gn(t) ∈M∗(t)B(0, 1), a.e.t ∈ [0, t1].

Since B(0, 1) is compact in R, there exists a subsequence still denoted
{gn} which converges to g. Then the Lebesgue dominated convergence theo-
rem implies that, as n→∞,

‖gn − g‖L1 → 0 as and n→∞.

As in Theorem 4.3, we can prove that

ỹ(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ [0, t1],

proving that ỹ ∈ N(y).
Claim 2. There exists γ < 1 such that Hd(N(y), N(y)) ≤ γ‖y − y‖PC1

for each y, y ∈ PC1 where the norm ‖y − y‖PC1 will be chosen conveniently:
Indeed, let y, y ∈ PC([0, t1]) and h1 ∈ N0(y). Then there exists g1(t) ∈
F (t, y(t)) such that for each t ∈ [0, t1]

h1(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1g1(s)ds.

Since, for each t ∈ [0, t1],

Hd(F (t, yt), F (t, y(t))) ≤ p(t)|y(t)− y(t)|,
then there exists some w(t) ∈ F (t, y(t)) such that

|g1(t)− w(t)| ≤ p(t)|y(t)− y(t)|, t ∈ [0, t1].

Consider the multi-map U1 : [0, t1]→ P(R) defined by

U1(t) = {w ∈ R : |g1(t)− w| ≤ p(t)|y(t)− y(t)|}.
As in the proof of Theorem 4.3, we can show that the multi-valued operator
V1(t) = U1(t) ∩ F (t, y(t)) is measurable and takes nonempty values. Then
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there exists a function g2(t), which is a measurable selection for V1. Thus,
g2(t) ∈ co F (t, y(t)) and

|g1(t)− g2(t)| ≤ p(t)|y − y|, for a.e. t ∈ [0, t1].

For each t ∈ [0, t1], let

h2(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1g2(s)ds.

Therefore, for each t ∈ [0, t1], we have

|h1(t)− h2(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|g1(s)− g2(s)| ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)|y(s)− ȳ(s)|ds

≤ 1

Γ(α)

∫ t

0

(t− s)αp(s)ds‖y − ȳ‖PC1
.

Hence,

‖h1 − h2‖PC1 ≤ p0‖y − ȳ‖PC1 ,

where

p0 = sup

{∫ t

0

(t− s)α−1p(s)ds : t ∈ [0, t1]

}
< 1.

By an analogous relation, obtained by interchanging the roles of y and
ȳ, we find that

Hd(N0(y), N0(ȳ)) ≤ p0‖y − ȳ‖PC1
.

Then N0 is a contraction and hence, by Lemma 2.9, N0 has a fixed point y0,
which is solution to Problem (5.11).

Step 2. Let y2 := y
∣∣∣
(t1,t2]

be a possible solution to the problem{
Dα

∗ y(t) ∈ F (t, y(t)), t ∈ (t1, t2],
y(t+1 ) = y0(t1) + I1(y0(t

−
1 )),

(5.12)

Then y2 is a fixed point of the multivalued operator N1 : PC2 → P(PC2)
defined by, for t ∈ (t1, t2],

N1(y) :=

⎧⎨⎩h ∈ PC2 : h(t) =

⎧⎨⎩
y0(t1) + I1(y0(t1))

+
1

Γ(α)

∫ t

t1

(t− s)α−1g(s)ds,

where

g ∈ SF,y = {g ∈ L1([t1, t2],R) : g(t) ∈ F (t, y(t)) for a.e. t ∈ [t1, t2]}.
Again, we show that N1 satisfies the assumptions of Lemma 2.9. Clearly,
N1(y) ∈ Pcl(PC2) for each y ∈ PC2. It remains to show that there exists
0 < γ < 1 such that

Hd(N1(y), N1(y)) ≤ γ‖y − y‖PC2
,
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for each y, y ∈ PC2. For this purpose, let y, y ∈ PC2 and h1 ∈ N1(y). Then
there exists g1(t) ∈ F (t, y(t)) such that, for each t ∈ [0, t2],

h1(t) = y0(t1) + I1(y0(t1)) +
1

Γ(α)

∫ t

t1

(t− s)α−1g1(s)ds.

Since from (A2)

Hd(F (t, y(t)), F (t, yt)) ≤ p(t)|y(t)− y(t)|, t ∈ [t1, t2],

we deduce that there is a w(·) ∈ F (·, y(·)) such that

|g1(t)− w(t)| ≤ p(t)|y(t)− y(t)|, t ∈ [t1, t2].

Consider the multi-valued map U2 : [t1, t2]→ P(R) defined by

U2(t) = {w ∈ R : |g1(t)− w| ≤ p(t)|y(t)− y(t)|}.
Since the multivalued operator V2(t) = U2(t) ∩ F (t, y(t)) is measurable with
nonempty values, there exists g2(t) which is a measurable selection for V2.
Then g2(t) ∈ F (t, y(t)) and

|g1(t)− g2(t)| ≤ p(t)|y(t)− y(t)|, for a.e. t ∈ [t1, t2].

For a.e. t ∈ [t1, t2], define

h2(t) = y0(t1) + I1(y0(t1)) +
1

Γ(α)

∫ t

0

(t− s)α−1g2(s)ds.

Then for t ∈ (t1, t2] we have the estimates

|h1(t)− h2(t)| ≤ 1

Γ(α)

∫ t

t1

(t− s)α−1|g1(s)− g2(s)| ds

≤ tα2
Γ(α)

∫ t

t1

p(s)|y(s)− y(s)|ds

≤ 1

Γ(α)
sup

{∫ t

t1

(t− s)α−1p(s)ds : t ∈ [t1, t2]

}
‖y − y‖PC2

.

By an analogous relation, obtained by interchanging the roles of y and y, we
obtain

Hd(N1(y), N1(y)) ≤ p1‖y − y‖PC2
,

where

p1 :=
1

Γ(α)
sup

{∫ t

t1

(t− s)α−1p(s)ds : t ∈ [t1, t2]

}
.

Therefore N1 is a contraction and thus, by Lemma 2.9, N1 has a fixed point
y1 solution of Problem (5.12).

Step 3. We continue this process taking into account that ym := y
∣∣∣
[tm,b]

is a

solution of the problem,{
Dα

∗ y(t) ∈ F (t, y(t)), t ∈ (tm, b],
y(t+m) = ym−1(tm) + Im(ym−1(t

−
m)).

(5.13)
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Then a solution y of Problem (1.1)–(1.3) may be defined by

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y0(t), if t ∈ [0, t1],

y2(t), if t ∈ (t1, t2],

. . . . . .

ym(t), if t ∈ (tm, b].
�

Lemma 5.3. Assume that the conditions of Theorem 5.2 are satisfied and
F : [0, b]×R→ Pcv,cp(R). Then the solution set of the problem (1.1)–(1.3) is
compact.

Proof. Using the fact F (·, ·) ∈ Pcv,cp(R) and Mazur’s lemma, and by Ascoli’s
theorem, we can prove that the solutions set of the problem (1.1)–(1.3) is
compact. �

6. Concluding remarks

In this paper, we investigated Problem (1.1)–(1.3) under various assumptions
on the multi-valued right hand-side nonlinearity, and we obtained a number
of new results regarding existence of solutions. We first proved a Filippov’s
result for impulsive differential inclusions with fractional order. The main
assumptions on the nonlinearity are the Carathéodory and the Lipschitz con-
ditions with respect to the Hausdorf distance in generalized metric spaces.
In the case where α ∈ (0, 1) and the convex case of the problem (1.1), (1.3)
or the problem (1.1), (1.2), (1.3) some authors assume the growth conditions
along with Lipchitz conditions, and there are some errors in the proofs of the
u.s.c of the operator solution of the problem; for example, in the paper [ [11],
Theorem 3.4 step 4], it is assumed that |fn(t)−f(t)| ≤ d(fn(t), F (t, yt)) with
f ∈ F (t, y), but that result is not correct. But the correct proof of Step 4
follows from the integral operator of the problem having compact values, and
then by the Lipchitz conditions, the operator integral is Hd− u.s.c, or the
same technique of Theorem 5.1 of this paper can be used.

This paper is a generalization of the papers [11, 28] and as well as of
other works in the literature.

Acknowledgements. The authors would like to thank anonymous referees for
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