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A Filippov’s Theorem, Some Existence
Results and the Compactness of Solution
Sets of Impulsive Fractional Order
Differential Inclusions

Johnny Henderson and Abdelghani Ouahab*

Abstract. In this paper, we first present an impulsive version of Filip-
pov’s Theorem for fractional differential inclusions of the form,

DYy(t) € F(ty®), ae teJ\{ti,...,tm}, a€(0,1],
y(t,t)—y(t(,;% = L(yty)), k=1,...,m,
y(0) = a,

where J = [0, b], D¢ denotes the Caputo fractional derivative and F'is a
set-valued map. The functions Ij characterize the jump of the solutions
at impulse points tx (k = 1,...,m). In addition, several existence results
are established, under both convexity and nonconvexity conditions on
the multivalued right-hand side. The proofs rely on a nonlinear alter-
native of Leray-Schauder type and on Covitz and Nadler’s fixed point
theorem for multivalued contractions. The compactness of solution sets
is also investigated.
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1. Introduction

Differential equations with impulses were considered for the first time in the
1960’s by Milman and Myshkis [43,44]. A period of active research, primar-
ily in Eastern Europe from 1960-1970, culminated with the monograph by
Halanay and Wexler [27].
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The dynamics of many evolving processes are subject to abrupt changes,
such as shocks, harvesting and natural disasters. These phenomena involve
short-term perturbations from continuous and smooth dynamics, whose du-
ration is negligible in comparison with the duration of an entire evolution.
In models involving such perturbations, it is natural to assume these pertur-
bations act instantaneously or in the form of “impulses”. As a consequence,
impulsive differential equations have been developed in modeling impulsive
problems in physics, population dynamics, ecology, biotechnology, industrial
robotics, pharmacokinetics, optimal control, and so forth. Again, associated
with this development, a theory of impulsive differential equations has been
given extensive attention. Works recognized as landmark contributions in-
clude [8,39, 51, 55]. There are also many different studies in biology and
medicine for which impulsive differential equations are good models (see, for
example, [3,36,37] and the references therein).

In recent years, many examples of differential equations with impulses
with fixed moments have flourished in several contexts. In the periodic treat-
ment of some diseases, impulses correspond to administration of a drug treat-
ment or a missing product. In environmental sciences, impulses correspond
to seasonal changes of the water level of artificial reservoirs.

During the last ten years, impulsive ordinary differential inclusions and
functional differential inclusions with different conditions have been intensely
studied by many mathematicians. At present the foundations of the general
theory are already laid, and many of them are investigated in detail in the
books of Aubin [4], Benchohra et al [9] and Henderson and Ouahab [30] and
the references therein.

Differential equations with fractional order have recently proved valu-
able tools in the modeling of many physical phenomena [19, 23,24, 40, 41].
There has been a significant theoretical development in fractional differential
equations in recent years; see the monographs of Kilbas et al [33], Miller and
Ross [42], Podlubny [52], Samko et al [54], and the papers of Bai and Lu [7],
Diethelm et al [18-20], El-Sayed and Ibrahim [21], Kilbas and Trujillo [34],
Mainardi [40], Momani and Hadid, [45], Momani et al [46], Nakhushev [48],
Podlubny et al [53], and Yu and Gao [57].

Very recently, some basic theory for initial value problems for fractional
differential equations and inclusions involving the Riemann-Liouville differ-
ential operator was discussed by Benchohra et al [10], Lakshmikantham [38].
El-Sayed and Ibrahim [21] initiated the study of fractional multivalued dif-
ferential inclusions.

Applied problems require definitions of fractional derivatives allowing
a utilization that is physically interpretable for initial conditions containing
y(0), ¥/(0), etc. The same requirements are true for boundary conditions.
Caputo’s fractional derivative satisfies these demands. For more details on
the geometric and physical interpretation for fractional derivatives of both
the Riemann-Liouville and Caputo types, see Podlubny [52].
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Recently fractional functional differential equations and inclusions with
standard Riemann-Liouville and Caputo derivatives with difference condi-
tions were studied by Benchohra et al [10,11], Henderson and Ouahab [28]
and Ouahab [49].

When « € (0, 2], the impulsive differential equations and inclusions with
Caputo fractional derivatives was studied by Agarwal et al [1,2], Henderson
and Ouahab [29] and Ouahab [50].

In this paper, we shall be concerned with Filippov’s theorem and global
existence of solutions for impulsive fractional differential inclusions with frac-
tional order. More precisely, we will consider the following problem,

D¢y(t) € F(t,y(t)), ae. t€ J=[0,b, 0<a<l, (1.1)
Ayli=t, :Ik(y(t;))v k=1,....m, (1.2)
y(0) = a, (1.3)

where D¢ is the Caputo fractional derivative, F :J x R — P(R) is a multi-

valued map with compact values (P(R) is the family of all nonempty subsets

of R), 0 =ty < t1 < ... <tm <tmy1 =0, I, € CR,R)(k =1,...,m),

Ayle—r, = y(t) —y(ty), and y(t) = lm y(t,+h) and y(t;) = lim y(t—
h—0+ h—0+

h) stand for the right and the left limits of y(t) at t = tj, respectively.

The paper is organized as follows. We first collect some background
material and basic results from multi-valued analysis and fractional calculus
in Sections 2 and 3, respectively. Then, we shall be concerned with Filippov’s
theorem for impulsive differential inclusions with fractional order in Section
4. In Section 5, we present some existence results of the above problem, as
well as compactness of solutions and upper semicontinuity of the operator
solution for problem (1.1)—(1.3).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that
will be used in the remainder of this paper. Let AC*([0,b], R™) be the space
of functions y : [0,b] — R™ i-differentiable and whose i derivative, y(¥, is
absolutely continuous.

We take C(J,R) to be the Banach space of all continuous functions from
J into R with the norm

[ylloo = sup{ly(¥)] : 0 <t < b}.

L'(J,R) refers to the Banach space of measurable functions y : J — R
which are Lebesgue integrable; it is normed by

b
Iyl = / ly(s)ds.
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Let (X, ]| -||) be a separable Banach space, and denote:

P = [YCX:Y#0},
Pew = {Y € P(X) : Yconvex},
P = {Y € P(X) : Yclosed},

)

) = {Y eP(X):Ybounded},
) = {Y e P(X):Ycompact},
) = Peu(X)NPep(X).

A multi-valued map G : X — P(X) has convez (closed) values it G(z) is

convex (closed) for all x € X. We say that G is bounded on bounded sets

if G(B) is bounded in X for each bounded set B of X (i.e., sup{sup{||y] :
z€EB

y € G(x)}} < 00). The map G is upper semi-continuous (u.s.c.) on X if for
each 29 € X the set G(z¢) is a nonempty, closed subset of X, and if for each
open set N of X containing G(xg), there exists an open neighborhood M of
xo such that G(M) C N. Finally, we say that G is completely continuous if
G(B) is relatively compact for every bounded subset B C X.

If the multi-valued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph (i.e.,
Ty — T, Yn — Yu, Yn € G(z,) imply y. € G(z4)). We say that G has a
fized point if there exists € X such that z € G(x).

The following two results are easily deduced from the limit properties.

Lemma 2.1. (see e.g. [6], Theorem 1.4.13) If G : X — P.p(X) is u.s.c., then
for any xp € X,
limsup G(z) = G(zp).

Tr—rTo

Lemma 2.2. (see e.g. [6], Lemma 1.1.9) Let (K, )nen C K C X be a sequence
of subsets where K is compact in the separable Banach space X. Then

co (limsup K,,) = ﬂ co ( U K,),
nroo N>0  n>N

where ¢o A refers to the closure of the convex hull of A.

A multi-valued map G : J — Pgp(X) is said to be measurable if for
each z € R the function Y : J — R defined by

Y(t) =d(z,G(t)) = inf{||lx — z|| : z € G(t)}
is measurable.

Lemma 2.3. (sec [25], Thm 19.7) Let E be a separable metric space and G
a multi-valued map with nonempty closed values. Then G has a measurable
selection.

Lemma 2.4. (see [58], Lemma 3.2) Let G : [0,b] — P(E) be a measurable
multifunction and u : [0,0] — E a measurable function. Then for any mea-
surable v : [0,b] — RT there ewists a measurable selection g of G such that
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for a.e. t € 10,0],
lu(t) — g(@)] < d(u(t), G(t)) + v(?).

Lemma 2.5. [50] Let G : [0,b] — Po(R) be a measurable multifunction and
u : [0,b] — R a measurable function. Assume that there exist p € L*(J,R)
such that G(t) C p(t)B(0, 1), where B(0,1) denotes the closed ball in R. Then
there exists a measurable selection g of G such that for a.e. t € [0,],

u(t) = g(t)] < d(u(t), G(t))-

Lemma 2.6. (Mazur’s Lemma, [47], Theorem 21.4) Let E be a normed space
and {zk}reny C E be a sequence weakly converging to a limit x € E. Then

there exists a sequence of convex combinations vy, = E AprTr With e > 0

k=1
fork=1,2,....m and Z Qmik = 1, which converges strongly to x.
k=1
Definition 2.7. The multivalued map F : J x X — P(X) is L!-Carathéodory

if
(i) t — F(t,y) is measurable for each y € X;

(ii) y — F(t,y) is upper semi-continuous for almost all ¢ € J;
(iii) For each g > 0, there exists ¢, € L'(J,Ry) such that

IEEy)llp = sup{ljoll : v € F(t,y)} < ¢q(t)
for all ||y|| < ¢ and for almost all t € J.

Let (X,d) be a metric space induced from the normed space (X, | -|).
Consider Hy : P(X) x P(X) — Ry U {oo} given by

Hy(A, B) = max {sup d(a, B),sup d(A, b)} ,
acA beB

where d(A,b) = ;Ielg d(a,b), d(a,B) = ggg d(a,b). Then (Py.(X), Hy) is a
metric space and (P (X), Hy) is a generalized metric space; see [35].
Definition 2.8. A multivalued operator N : X — Py(X) is called
a) ~-Lipschitz if and only if there exists v > 0 such that
Hy(N(z),N(y)) < ~d(z,y), foreachz, ye X;
b) a contraction if and only if it is y-Lipschitz with v < 1.

Lemma 2.9. (Covitz-Nadler, [16]) Let (X,d) be a complete metric space. If
N : X — Py(X) is a contraction, then FizN # (.

For more details on multi-valued maps we refer to the books by Aubin et
al [5,6], Deimling [17], Gorniewicz [25], Hu and Papageorgiou [32], Kisielewicz
[35] and Tolstonogov [56].
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3. Fractional Calculus

According to the Riemann-Liouville approach to fractional calculus the no-
tation of fractional integral of order a (o > 0) is a natural consequence
of the well known formula (usually attributed to Cauchy), that reduces the
calculation of the n—fold primitive of a function f(t) to a single integral of
convolution type. In our notation, the Cauchy formula reads

n 1 ¢ n—1

J"f(t) ::m/0 (t—s)"""f(s)ds, t >0, neN
Definition 3.1. The fractional integral of order a > 0 of a function f €
L([a,b],R) is defined by

o F(t) = / =" s,

()
where T is the gamma function. When a = 0, we write Jf(t) = f(t) * do (1),
a—1
where ¢ (t) = ;‘(7) for t > 0 and ¢,(t) = 0 for t < 0, and ¢, — 4(t) as

o — 0, where ¢ is the delta function and I' is the Euler gamma function
defined by

I'(«) :/ t*~te~tdt, a > 0.
0

Also JY = I (Identity operator), i.e. JOf(t) = f(t). Furthermore, by J*f(0T)
we mean the limit (if it exists) of J* f(t) for ¢ — 07; this limit may be infinite.

After the notion of fractional integral, that of fractional derivative of
order o (o > 0) becomes a natural requirement and one is attempted to
substitute @ with —« in the above formulas. However, this generalization
needs some care in order to guarantee the convergence of the integral and
preserve the well known properties of the ordinary derivative of integer order.
Denoting by D™ with n € N, the operator of the derivative of order n, we
first note that

Dt =1, J'D"#1, neN,
i.e. D™ is the left-inverse (and not the right-inverse) to the corresponding
integral operator J". We can easily prove that

= (t —a)*
JUD™f(t) = f(t) — ka<k>(a+)T, t>0.
=0

As consequence, we expect that D is defined as the left-inverse to J¢. For
this purpose, introducing the positive integer n such that n —1 < o < n, one
defines the fractional derivative of order o > 0:

Definition 3.2. For a function f given on interval [a,b], the ath Riemann-
Liouville fractional-order derivative of f is defined by

) = oy () [ -9

where n = [a] + 1 and [a] is the integer part of a.
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Also, we define D° = J° = I. Then we easily recognize that

D¥J* =1, «a>0, (3.1)
and
'(v+1) . _
D= ——————t77% a>0, y—1, t > 0. 3.2
I'y+1-a) 7 (3:2)

Of course, the properties (3.1) and (3.2) are natural generalizations of those
known when the order is a positive integer.

Note the remarkable fact that the fractional derivative D® f is not zero
for the constant function f(¢) =1 if a ¢ N. In fact, (3.2) with v = 0 teaches
us that

D%:%, a>0, t>0. (3.3)
It is clear that D*1 = 0 for a € N, due to the poles of the gamma function
at the points 0, —1,—2,...,.

We now observe an alternative definition of fractional derivative, origi-
nally introduced by Caputo [12,13] in the late sixties and adopted by Caputo
and Mainardi [14] in the framework of the theory of Linear Viscoelasticity
(see a review in [40]).

Definition 3.3. Let f € AC™([a,b]). The Caputo fractional-order derivative
of f is defined by

1 ! —g n—a—1 ¢(n) $)ds
o [ = s

This definition is of course more restrictive than the Riemann-Liouville
definition, in that it requires the absolute integrability of the derivative of
order n. Whenever we use the operator D% we (tacitly) assume that this
condition is met. We easily recognize that, in general,

DEf(t) := DI f(t) # JmTOD™ f(t) := D f(), (3-4)

(DE)(E) =

unless the function f(¢) along with its first m — 1 derivatives vanishes at
t = a’. In fact, assuming that the passage of the m—derivative under the
integral is legitimate, one recognizes that, for m — 1 < o <m and ¢ > 0,

m—1

D f(t) = +ZF Mﬂw<> (3.5)

and therefore, recalling the fractional derivative of the power function (3.2),

m—1
( -2 ’H‘a /e >> = D2f(1). (3.6)

k=0

The alternative definition, that is, Definition 3.3, for the fractional derivative
thus incorporates the initial values of the function and of order lower than a.
The subtraction of the Taylor polynomial of degree m—1 at ¢ = a™* from f(¢)
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means a sort of regularization of the fractional derivative. In particular, ac-
cording to this definition, a relevant property is that the fractional derivative
of a constant is sill zero, i.e.

D*1=0, a>0. (3.7)

We now explore the most relevant differences between Definitions 3.2 and
3.3 for the two fractional derivatives. From the Riemann-Liouville fractional
derivative, we have

Dot —a)* 9 =0, forj=1,2,...,[a]+1. (3.8)
From (3.7) and (3.8) we thus recognize the following statements about func-

tions, which for ¢ > 0 admit the same fractional derivative of order «, with
n—1<a<nneN,

Def(t) = Dg(t) & f(1) = g(t) + 3¢5t = ), (3.9)

and .
D2 f(t) = D2g(t) & f(t) = g(t) + Y c;(t —a)" 7. (3.10)

j=1

In these formulas the coefficients c; are arbitrary constants. For proving all
our main results, we present the following auxiliary lemmas.

Lemma 3.4. [33] Let o > 0 and let y € L*°(a,b) or C([a,b]). Then
(DETy)(t) = y(b)-

Lemma 3.5. [33] Let o > 0 and n = [a| + 1. If y € AC™[a,b] ory € C"|a,b],
then

(J*Dgy)(t) = y(t) —

Now we state the following generalization of Gronwall’s lemma for sin-
gular kernels (whose proof can be found in Lemma 7.1.1 in [31]). This will
be essential for the main result of Section 5.1.

Lemma 3.6. Let v : [0,b] — [0,00) be a real function and w(-) is a non-
negative, locally integrable function on [0,b], and suppose there are constants
a>0and0 < a <1 such that

v(s)

v(t)gw(t)—i—a/o L s

Then, there exists a constant K = K(«) such that

wwaw+Ku/tw“>

(s

for every t € [0, b].

For further reading and details on fractional calculus, we refer to the
books and papers by Kilbas [33], Podlubny [52], Samko [54] and Caputo
[12-14].
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4. Filippov’s Theorem

Let Jg = (tg,trkt1], K =0,...,m, and let yj be the restriction of a function y
to Jg. In order to define mild solutions for problem (1.1)—(1.3), consider the
space

PC = {y: J=>R|y, € C(Jp,R), k=0,...,m, and y(t, )
and y(t]) exist and satisfy y(t,) =y(ty) for k=1,...,m}.
Endowed with the norm
”y”PC = max{”kaOO : k=0,... 7m}v

this is a Banach space.

Definition 4.1. A function y € PC is said to be a solution of (1.1)—(1.3) if
there exists v € L'(J,R) with v(t) € F(t,y(t)) for a.e. t € J such that y
satisfies the fractional differential equation D$y(t) = v(¢) a.e. on J, and the
conditions (1.2)—(1.3).

Let a € R, g € L*(J,R) and let z € PC be a solution of the impulsive
differential problem with fractional order,

Dex(t) = g(4), a.e. t€ JJ\{t1,...,tm}, a€(0,1],
Axt?kj = Iip(z(ty)), k=1,....m, (4.1)
z(0) = a,

1 t
where sup{r(a)/ (t —s)* g(s)|ds : t € [0,b]} < co. We will need the
0
following two assumptions:
(H1). The function F': J x R — Py(R) is such that
(a) for all y € R, the map t+— F(¢,y) is measurable,
(b) the map ~v: t — d(g(t), F(t,z(t)) is integrable.
(Hz). There exists a function p € L*(J,R") such that
Hy(F(t,z1),F(t,22)) < p(t)|z1 — 22|, forall z, 20 € R.

Remark 4.2. From Assumptions (Hi(a)) and (Hz), it follows that the multi-
function ¢ — F(t,z(t)) is measurable and by Lemmas 1.4 and 1.5 from [22],
we deduce that vy(t) = d(g(t), F'(t,x(t)) is measurable (see also the Remark
p. 400 in [6]).

Theorem 4.3. Suppose that hypotheses (H1)—(Ha) are satisfied. If
1 t
1% *:sup{/ t—s)* Ip(s)ds: te O,b}<1,
11°p| o) ; (t—s)*""p(s) [0, b]

then Problem (1.1)—(1.3) has at least one solution y satisfying, for a.e. t €
[0,0], the estimates

) =z < D m),

0<tp<t
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and
IDSy(t) —g(t)| <p(t) > He()+ Y w(t), fork=1,....m
O<tp<t O<tp<t

where
Ok A+ kllso [ TPl

MO =" el
O + vk lloo
L —|[[Iopll.’

O = |z(te) — y(e)| + 1 (y(te)) — I(@())ls e =ln, k=1,...,m
and

1 th—1 3
||fy|oor(a)sup{/ (t—s)” 1’y(5)ds} <o, k=0,1,...,m

173

t€ (te,try],

Hy(t) =

Proof. We are going to study Problem (1.1)—(1.3) respectively in the intervals
[0,t1], (t1,t2], ..., (tm,b]. The proof will be given in three steps and then
continued by induction.

Step 1. In this first step, we construct a sequence of functions (y, )nen which
will be shown to converge to some solution of Problem (1.1)—(1.3) on the
interval [0,¢1], namely to

Dey(t) € F(t,yt), te Jo=10,t1], a€(0,1],
{ s = a (4.2)
Let fo =g on [0,¢1] and yo(t) = z(t), t € [0,¢1], i.e
wlt) =+ o [ = s telonl

Then define the multi-valued map Uy : [0, 1] — P(R) by Uy (t) = F (¢, y0(t))N
(9(t) +~(t)B(0,1)). Since g and + are measurable, Theorem II1.4.1 in [15]
tells us that the ball (g(t) + v(¢)B(0, 1)) is measurable. Moreover F(t,yo(t))
is measurable (see Remark 4.2). We claim that U; is nonempty. It is clear
that

d(0, F(t,0)) d(0,9(t)) + d(g(t), F'(t, y0(t))) + Ha(F(t, yo(t)), F(t,0))
lg(®)] +~(t) + p()|yo(t)], ae. t € [0,11].
Hence for all w € F(t,yo(t)) we have

< lg(®)] + () + 2p(t )|yo( )| = ( )7 aet €0,t].

This implies that

<
<

F(t,yo(t)) € M()B(0,1), t € [0,t,].

From Lemma 2.5, there exists a function u which is a measurable selection
of F(t,yo(t)) such that

u(t) — g(H)] < d(g(t), F(t, y0(t))) = (1)
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Then u € Uy (t), proving our claim. We deduce that the intersection multival-
ued operator Uy (t) is measurable (see [6,15,25]). By Lemma 2.3 (Kuratowski-
Ryll-Nardzewski selection theorem), there exists a function ¢ — f;(¢) which
is a measurable selection for U;. Consider

yl(t) =a-+ F(104>/0 (t — s)aflfl(s)ds, te [O,tl].

For each t € [0,11], we have
_ I o
@ w0 < la-al+ g [ (=97 () - AG)ds. (43)
L(a) Jo
Hence
ly1(t) —wo(H)] < 0+ [Vlleo, t€[0,¢1] with [a —a| =o0.

Now Lemma 1.4 in [22] tells us that F'(¢,y;(t)) is measurable. The ball (f; (t)+
p(t)|y1(t) — yo(t)|B(0, 1)) is also measurable by Theorem II1.4.1 in [15]. The
set Ua(t) = F(t,y1(6))N(f1(t)+p(t)|y1(t) —yo(¢)|)B(0, 1) is nonempty. Indeed,
since fi is a measurable function, Lemma 2.5 yields a measurable selection u
of F(t,y1(t)) such that

lu) = fr()] < d(f(t), F(t,51(1)))-
Then using (Hs), we get

lu(t) — f1(t)] d(f1(t), F(t,y1(t)))
Ha(F(t, yo(t)), F(t,y1(t)))
p()[yo(t) — v (t)],

ie. u € Us(t), proving our claim. Now, since the intersection multi-valued
operator U, defined above is measurable (see [6,15,25]), there exists a mea-
surable selection f5(t) € Us(t). Hence

|f1(t) = fo(t)] < p()|y1(t) — yo(t)]. (4.4)

IAIACIA

Define
I 1
wt) =a+ mis (=9 alo)ds e 0.1
I(a) Jo
Using (4.3) and (4.4), a simple integration of the following estimates, valid
for every t € [0, t1],

1

T(a)
L t —$)% p(s s
)/Oa ) 1p(s) (6 + [lloc) d

IN(e
< Il (6 + [1Ylloo), € [0, 24].

Let Us(t) = F(t,y2(t)) N (f2(t) + p(t)|y2(t) — y1(¢)])B(0,1). Arguing as for

U,, we can prove that Us is a measurable multi-valued map with nonempty

() — g (t)] < / (t— ) fals) — fa(s)|ds

IN
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values; so there exists a measurable selection f3(t) € Us(t). This allows us to
define

y3(t) = a+ F(la)/o (t —8)* 1 f3(s)ds, t€[0,tq].

For t € [0, 1], we have

lys(t) — yo(t)] < / (t— ) "p(s)]y2(s) — y1(s)| ds.
0
Then

lys(s) =y ()] < I°PIZ0 + [V]lo), t € [0,8].

Repeating the process for n =0,1,2,3,..., we arrive at the following bound

yn(t) = g1 < [1pl27H0 + [Vlle),  t € [0,1]. (4.5)

By induction, suppose that (4.5) holds for some n and check (4.5) for n + 1.
Let Ups1(t) = F(t,ya(1) N (fa + pOlyn(t) — g1 (DIB(0,1)). Since Uy
is a nonempty measurable set, there exists a measurable selection f,11(t) €
U,+1(t), which allows us to define for n € N

yn+1(t):a+ﬁ /0 (t= )" fusa(s)ds, te[0,tr].  (4.6)

Therefore, for a.e. ¢t € [0,¢;1], we have

nsr(8) — ya(t)] < ﬁ / (t— )2 fugr(3) — fuls)]ds
I o
< / (t = )2 1p(8)yn(5) — Y1 (5)| ds.
Then
nir (1) — (] < NI°BI7G + []loo)s £ € [0,12]:
Hence

[Ynt1 = Ynlloo < NPT + [171o0)-

Consequently, (4.5) holds true for all n € N. We infer that {y,} is a Cauchy
sequence in PCy, converging uniformly to a limit function y € PCY, where

PC; = C([0,t1],R).
Moreover, from the definition of {U,}, we have
[fr1(®) = fa (D] < p(O)]yn(t) = yna ()], ae t €[0,4].

Hence, for almost every ¢ € [0,t1], {f.(¢)} is also a Cauchy sequence in R
and then converges almost everywhere to some measurable function f(-) in
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R. In addition, since fy = g, we have for a.e. t € [0, 1]

n

@] < Zp(t)|fi(t)_fifl(t)|+|f0(t)|

i=1

Zp(t)|yi_1(t) —yi—2(t)] + |g(t)]

<
< Zlyz —yi—1(O)] + () + |g(t)].
Hence
|fn(t)] < Ho(t)p(t) +~(t) + [g(t)],
where 5+ lle)
0+l
Holt) = T rap,
Then
1/t(lﬁ—S)"‘llf (8)lds < [[I%g|l« + Hol[I*pll« < o0
F(a) . n > 9|l 0 P« .

Hence for every ¢ fixed in (0, 1], we have that

[t —.|*" fn() € LY([0,1],R),

and
= 7 () = [E— [*LF(), ace. on [0,4].
Put
ha(t) = a + ﬁ/@ (t— )2 f(s)ds e 0,t1].
Let t =0, then

lim y,,(t) = a = h.(0).

-0
If ¢t € (0,t1] we have

’r(la /t@— ) (fu(s) = f(s))ds

< / £ = 51 fuls) — F(s)]ds.

By the Lebesgue dominated convergence theorem

lyn(t) — R ()] =

|yn (t) — hi(t)] — 0, as n — oco.

Consequently,

y(w:ﬁﬁ / (t— 82 f(s)ds, t€ [0,02], y(0) =a,

465

(4.7)
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is a solution of the problem (1.1)—(1.2) with condition y(0) = a, y € Sjy,(a).
Moreover, for a.e. t € (0,;], we have

2(t) — y(t)] = a+ﬁ / (t — )2 g(s)ds

1 ! a—1
- / (t— )21 f(s)ds

< 5*%@) /Ot@ S F(s) — fols)lds
< 5+F(1a)t0<t S (s) = fuls)lds
+ﬁ (=95 = oo
< 6+1/tl(t—S)“1||f(8)—fn(8)|ds
F(Oé) 0
L G+ Inllopl.

L—|[[Iop].
Passing to the limit as n — oo, we get
[2(t) — g < mo(t), ac. t€ [0,t], (4.8)

with
(O + Iyl [Pl
t) := .
= T
Next, we give an estimate for |Dy(t) — g(t)], for t € [0, ¢1]. We have

|Dy(t) — g(t)] 1£(t) = fo(®)]

< fu(®) = fo(O] + [fa(t) = f(2)]
< p) D i () = %) + (@) + [ falt) = F(2)]-
i=0

Arguing as in (4.7) and passing to the limit as n — 400, we deduce that
DLy (t) — g(t)] < Ho(t)p(t) + (1), ¢ €[0,t1].
The obtained solution is denoted by y1 := yjj0,¢,]-

Step 2: Consider now Problem (1.1)—(1.3) on the second interval (¢1, 2], i.e.

{foy(t) € F(t,yt)), a.e. t € (t1,1ta], (4.9)
y(th) = i)+ Li(yi(t)). '

Let fo = g and set

() = x(t1)+11(x(t1))+ﬁ /tl(tS)alfo(S)dsa L (b ta).
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Notice that (4.8) allows us to use Assumption (Hz), apply again Lemma
1.4 in [22] and argue as in Step 1 to prove that the multi-valued map Uy :
[t1,t2] — P(R), defined by Uy (t) = F(t,4°(t))N(g(t)+~(t)B(0, 1)), is measur-
able. Hence, there exists a function ¢ — f(¢) which is a measurable selection
for U;. Define

y'(t) = yi(t)+ Li(yi(tr)) + /(t_s)ailfl(s)dsv t € (t1,ta].

L(a) J;,

Next define the measurable multi-valued map Us(t) = F(t,y'(t)) N (f1(t) +
p(t)yt(t) — y°()|B(0,1)). It has a measurable selection fa(t) € Us(t) by
the Kuratowski-Ryll-Nardzewski selection theorem. Repeating the process of
selection as in Step 1, we can define by induction a sequence of multi-valued

maps Uy, (t) = F(t, 4" () N (fr1(t) +p()[y" ' (t) —y"2(t)|B(0,1)) where
{fn} € U, and (y")nen is as defined by

t
y*(t) = yi(t1) + Li(yi(th)) + %/ (t —8)* L fu(s)ds, t € (t1,ta],
(@) Je,
and we can easily prove that
) =y < HOplR6 + Illse), € (t1,t2].
Let
PCy = {y: y € C((t1,ta],R) and y(t]) exists}.

Asin Step 1, we can prove that the sequence {y"} converges to some y € PCq,
a solution to Problem (4.9), such that, for a.e. t € (¢1, 2], we have

2() —y(®)] < lar(t) — i ()] + [ ((t) - D (0)]
+ﬁ / (t— )2 £(5) — g(s)|ds.
Hence

(0 + [ lloo)IT*pll«
[z(t) —y(®)] < ;
L—|[[Iopll

and
D2y(t) — g(t)] = |£(t) = folt)] < Hy(D)p() +7(1), t € (b1, ta]
Denote the restriction y, ,) by yo.
Step 3: We continue this process until we arrive at the function y,,+1 =

Y as a solution of the problem

tm,

y(t;) Ym—1(tm) + L (Ym—1(tm))-

Then, for a.e. t € (t,, b], the following estimates are easily derived:

2(0) =y < [yo(m) — 2(tw)] + | + [T (@(tn)) — L (y(t))]
1 t
) / (t— )21 £(5) — g(s)|ds.

{ Dy(t) €  Fl(ty(t)), a.e. t€ (tm,b],
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Then

(6 + lIvlloo) 1P«
z(t) —y(t)] <
20 =yl < =g

and
|D2y(t) — g(t)] < Hp(t)p(t) + (1))

Step 4: Summarizing, a solution y of Problem (1.1)—(1.3) can be defined as

follows
Y1 (t)v ift € [07 tl]a
1), if t € (t1,ts],
=] et
Ymi1(t), ift € (tm,b].
From Steps 1 to 3, we have that, for a.e. t € [0, 4],
[(t) —y(t)| < mo(t), and [DZy(t) — g(t)| < Ho(t)p(t) + (1),

as well as the following estimates, valid for ¢ € (¢1, b]

() =y < > m(D)
k=0

Similarly
[DZy(t) — g(t)] < p(t) Z Hy(t Z Ve (t),
O<trp<t 0<tp<t
where vy 1=y I The proof of Theorem 4.3 is complete. g

4.1. Filippov’s Theorem on the Half-Line
We may consider Filippov’s Problem on the half-line as given by,

Doy(t) € F(tyt), ae teJJ\{t,...},
Ayt:(tk) = ILe(y(ty)), k=1,..., (4.10)
y(t) = a,

Wherej:[O,oo)7O=t0<t1<...<tm<..., lim t,, = +o0, F': JxR —
m— o0

P(R) is a multifunction, and ¢ € R. Let = be the solution of Problem (4.1)
but on the half-line. We will need the following assumptions:

(H1). The function F: J x R — Py (R) is such that
(a) for all y € R, the map ¢ — F(t,y) is measurable,
_(b) the map ¢ = ~(t) = d(g(t), F'(t,2(t)) € L([0,00), R+)
(Hz). There exists a function p € L!([0, 00), RT) such that

Hy(F(t,z1), F(t,2z2)) < p(t)|z1 — 22|, forall 2, 20 € R.

(7:/,;,) For every x € R, we have

Zuk |<OO

Then we can extend Filippov’s Theorem to the half-line.
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Theorem 4.4. Let vy, =, and assume (H1)—~(H3) hold. If

sup {I‘(la) /Ot(t —8)* Ip(s)ds : t € [O,oo)} <1,

then, Problem (4.10) has at least one solution y satisfying, for t € [0,00), the
estimates

yt) -z < D m(),

and

IDSy(t) —gt)| < p(t) > Hi(t)+ Y wlt).

0<ty<t 0<tp<t
Proof. The solution will be sought in the space
PC = {y: [0,00) = R, yr € C(Jy,R), k=0,..., such that
y(t, ) and y(t;) exist and satisfy y(t,) =y(tx) for k=1,...},

where gy, is the restriction of y to Ji = (tk,tk+1], & > 0. Theorem 4.3

yields estimates of y; on each one of the bounded intervals Jy = [0, 1], and

Jr = (tk—1,tx], kK =2,.... Let yo be solution of Problem (1.1)—(1.3) on Jj.
Then, consider the problem,

Dy(t) € F(t,yt)), a.e. t € (t1,ta),
{ y(t7) = woltr) + Li(yo(tr))-
From Theorem 4.3, this problem has a solution y;. We continue this process
taking into account that y,, ==y o is a solution to the problem,
myltm-41
Dy(t) € F(ty(t)), a.e. t € (tm, tm1]s
{ y(tjn) = ymfl(tm) + Im(ymfl(t%))'

Then a solution y of Problem (4.10) may be rewritten as

yl(t)v ift € [O7t1]a

yg(t), ift e (tl,tg],

ym,(t)a ift e (tmatm+1]7

5. Existence results

5.1. Convex case

In a main consideration of the problem (1.1)-(1.3), a nonlinear alternative of
Leray Schauder type is used to investigate the existence of solutions for first
order impulsive fractional differential inclusions.
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Theorem 5.1 (Convex case). Assume the hypotheses:

(B1) The function F : J X R — Pgp e (R) is an Carathéodory.
(By) There exist My, Ms > 0 such that

|E(t,2)||p < My + Ms|z| for a.e. t €J and each z € R.

Then the set of solutions for Problem (1.1)—(1.3) is nonempty and compact.
Moreover the operator solution S(-) : R — P(PC), defined by

S(a) ={y € PC : y solution of the problem with y(0) = a},
18 u.S.C.

Proof. Transform the problem into a fixed point problem. Consider first the
problem (1.1)—(1.3) on the interval [0, ¢1], that is, the problem

D¢y(t) € F(t,y(t)), a.e. te|0,t1], o€ (0,1] (5.1)

y(0) = a. (5.2)
It is clear that the solutions of the problem (5.1)—(5.2) are fixed points of the
multivalued operator, Ny : C([0,#1],R) — P(C([0,¢1],R)) defined by

No(y) = {h € C([0,t1],R) : h(t) = a + ﬁ/o (t—s)*"1g(s)ds,t € [0,t1] }

where

g€ Spy = {g e LY([0,1],R) : g(t) € F(t,y(t)) for ae. te [O,tl]}.

Asin [11,28,49], we can show that Ny is completely continuous, with compact
and convex values.

Now we show that Ny is upper semi-continuous. Since Ny is completely
continuous, it suffices to prove that Ny has a closed graph. Let y, —
Ys, i € No(yn) and hy, — hy, yn — Yy« as n — oco. We will prove that
hs € No(y«). Now h,, € No(y,) implies that there exists g, € Sg,y, such that
for each t € J,

1 t
hn(t) =a+ 7/ (t —5)*"Lg,(s)ds.
I(a) Jo
We must prove that there exists g. € Sg,, such that for each t € J,
h()=a+ o | (- 5™ gu(s)ds
' I(a) Jo ' '

Since gn(-) € F(-,yn(+)), then
|gn(t)| < M+ MZ‘yn(t”a le [Oatl] = gn(t) € MB(Oa 1)7

where
[Ynllco < M, for all n € N.

It is clear that M B(0,1) is a compact set in R, and then there exists a
subsequence of {g,(-)} converging to g.(-).
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It remains to prove that g.(t) € F(t,y(t)), for a.e. t € J. Lemma 2.6
k(n)

yields the existence of a > 0, i =n, ..., k(n) such that Z o =1 and the
i=1

k(n)
sequence of convex combinations g, (-) = Z al'gi(+) converges strongly to v
i=1

in L'. Since F takes convex values, using Lemma 2.2, we obtain that

9:(t) € N Am®)}, ae teJ

c bfﬂ%@%kzm
c Ny Feuw) (5:3)

— %(lim su_p F(t,yr(t))).

k—o0

Since F'is u.s.c. with compact values, then by Lemma 2.1, we have
limsup F(t,yn(t)) = F(t,y(t), forae. teJ
n—oQ
This with (5.10) imply that g.(t) € @ F(t,y(t)). Since F(.,.) has closed,

convex values, we deduce that ¢.(t) € F(t,y(t)), for a.e. t € J. prove that
Let t € (0,t1], then

I 1 I 1 —
— —5)o < — 8)* Y[ M, + MM.
o [ =9 las < g [0t o 20
t¢ (M, + M M)
- Ia+1)
and
I o1 ¢ (My + MM>)
_ _ < AT mmL)
g R RO e
Set
I .
h*t:a+—/ t—s)*" g.(s)ds,
0 =0t o [ (=970
where g. € Sp,,. As in Theorem 4.3 we can prove that
I L
Y (t :a—i-i/ (t —s)* " gu(s)ds, t €10,t1].
)=+ | ( 0,11

A priori bounds. We now show there exists an open set U C C([0,t1],R) with
y € ANo(y), for A € (0,1) and y € 9Uj.

Let y € C([0,t1],R) and y € ANy(y) for some 0 < A < 1. Thus there
exists g € Sp,, such that, for each t € [0, b], we have

y(t) = )\[a + ﬁ /Ot(t - s)a—lg(s)ds} (5.4)
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and

M,y M,
t)| <
O] < lal + 5 T

)/O(t—s)o‘_l\y(s)\ds, te[0,t].

Lemma 3.6 implies

|MW§R+KM®RA@7ng5

where
t¢ M,
R= A
I+ Fa 1
Hence
REy(o)tf _ —
o0 <R+ ———+ = M,.
Ivlle < B+ o gy = Mo
Set

Uo = {y € C(0,:],R) : [lylloe < Mo +1}.
N :U — P(C([0,t1],R)) is continuous and completely continuous. From the
choice of Uy, there is no y € AU, such that y € ANy(y), for some A € (0,1).

As a consequence of the nonlinear alternative of Leray-Schauder type [26], we
deduce that Ny has a fixed point yo in Uy, which is a solution to (5.1)—(5.2).

Now, let y3 ==y be a solution to the problem
1,t2
Dly(t) € F(t,y(t)), a.e.te€ (t1,t2], (5.5)
y(t) = yo(tr) + L (yo(ty))- (5.6)

Then y; is a fixed point of the multivalued operator Ny : PCy; — P(PCy)
defined by, for t € [th tQ],

[,

Ni(y) == {h € PCy : h(t) = y1(t1) + Li(y1(t1)) + L(a) J,

where
g€ Spy={g€ LMt L R) 1 g(t) € Plt,y(t) for ae. t€ [t o]},
Clearly, N7 is completely continuous, u.s.c. with compact and convex valued.
We now show there exists an open set Uy C PCy with z € AN1(y) for

A€ (0,1) and y € OU;.
Let y € PCy and y € AN;(y) for some 0 < A < 1.

y(t) = A [Z/o(tl) + L(yo(t) + ﬁ /t (t - s)o‘_lg(s)ds} ,

for some A € (0,1). Then

ly@®)] < Jyo(t1)] + |11 (yo(t1))] (
i ! g a—1 s o
T /t (t = )" [My + Maly(s)llds, t € (t1,t2].

5.7)
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Then, for ¢ € (t1,ts],

~ (ta —t1)*M; My [* 1
ly(t)| < Mo+ sup |I1(q)| + + (t =) ly(s)|ds.
4€B(0.3T) Mo +1) () Jy,

Lemma 3.6 implies

()| < Ry + K1(a)R /0 (t— )2~ 1ds

where
—~ to —t1)*M
R1:M0+ sup |Il(q)‘+(2r#
q€B(0,Mo) (a+1)
Hence
RKl(a)(tg — tl)a —
o <R = M.
ylloo < Ry + T(a+1) 1
Set

Uy ={y € PC: : |lyllpc, < M +1}.

Ny : U — P(PC4) is continuous and completely continuous. From the choice
of Uy, there is no y € 0U; such that y € ANy(y), for some A € (0,1). As
a consequence of the nonlinear alternative of Leray-Schauder type [26], we
deduce that N7 has a fixed point y; in Uy, which is solution to (5.5)—(5.6).

We continue this process and taking into account that y,, = y o) is a
tm,
solution to the problem

Diy(t) € F(t,y(t), a.e. t€ (tm,b], a€(0,1], (5.8)
Y(tm) = Yym—1(t1) + I (ym—1(t,))- (5.9)
A solution y of the problem (1.1)—(1.3) is then defined by
yo(t), ift e [O,tl],

y1(7f), ift e (tl,tﬂ,

Ym(t), ift € (tm,b].

Now, we will show that S(-) is u.s.c. by proving that the graph of S(-),
I'(a) == {(a,y) | y € S(a)},

is closed. Let (an,yn) € T, ie., y, € S(an), and let (an,yn) — (a,y) as
n — oo. Since y,, € S(a,), there exists v,, € L' (J,R) such that
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ap + —— t—s)* tuy(s)ds, ifte0,t],

Yn(t1) + L1 (yn(t1))

i ! _sa—l,USs i
w@:*ﬂmﬁ“> W(s)ds, AT (b, 1],

Yn(tm) + {m(yn(tm))

L —$)% Lo, (s)ds i
+F(a) /tl(t ) n(s)ds, fte (tm,?].

Since (an,yn) converges to (a,y), there exists M > 0 such that

lan| < M for all n € N.
By using (Bs), we can easily prove that there exist M, > 0 such that
lynllpc < M, for all n€N.

From the definition of y,, we have DSy, (t) = v,(t) a.e. t € J, and so

|on(t)| < My + Mo M, t € J.

Thus, v,(t) € (M1 + MaM,)B(0,1) := x(t) a.e. t € J. It is clear that
X : J = Pepev(R) is a multivalued map that is integrably bounded. Since
{vn(-) : n > 1} € x(-), we may pass to a subsequence if necessary to obtain
that v,, converges to v in L'.
It remains to prove that v(t) € F(¢,y(t)), for ae. t € J. Lemma 2.6
k(n)
yields the existence of a’ > 0, i =n, ..., k(n) such that Z a; =1 and the
i=1

k(n)
sequence of convex combinaisons g, (-) = Z af'v;(+) converges strongly to v
i=1

in L'. Since F takes convex values, using Lemma 2.2, we obtain that

v(t) € N {gn(t)}, ae teJ

C n@ico{vk(t), k>n}
A @ U Flt0) (5:10)

n>1 k>n
— co(limsup F(t, s (1))).
k—o0
Since F' is u.s.c. with compact values, then by Lemma 2.1, we have

limsup F(t,yn(t)) = F(t,y(t), forae. teJ

n—o0
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This with (5.10) imply that v(t) € o F(t,y(t)). Since F(.,.) has closed, con-
vex values, we deduce that v(t) € F(t,y(t)), for a.e. t € J,
+ ! /t(t ) u(s)d if t €[0,t1]
a+ —— —s v(s)ds, i
F(O{) 0 ) s V1]
y(t1) +11§y(t1))
1
+—/ (t —5)* tu(s)ds, itt € (t1,t2],

z(t) = I'(a) /i,

Y(tm) + L (y(tm))

1 / —1
+—— [ (t—5)*"v(s)ds, ift € (tm,b].
F(a) t1 "
Since the functions I, kK =1,...,m, are continuous, we obtain the estimates

() — 2(8)] < m—mﬁ / (t = ) oa(s) — v(s)lds, ¢ € [0,41].

Let ¢ € (t1,t2]. Then we have

lyn(t) =2 < yn(t1) = y(E)] + 11 (yn(t1)) — Li(y(tr))]

+ﬁ / (t — )* on(s) — v(s)|ds

< Nlgm —yllre + () — L ()]
1 ! a—1

—l—m/t (t—8)* " up(s) — v(s)|ds.

We continue this process taking into account that

Yn(t) = Yn(tm) + I (yn(tm)) + i/ (t—s)*"u(s)ds, t € (tm,b].

I(a) Jy,
Thus
[n(8) = 2@ < Nyn(tm) = y(tm)| + L o (tm=1)) = T (y(tm1))]
+ﬁ /tt (t =) |on(s) = v(s)lds, t € (tm,b].
Hence

lyn(®) =2 < Nyn = yllpe + [Tm(Yn(tn-1)) = Ln(y(tm-1))|

L t — )% Yo, (s) — v(s)|ds
g [ =9 o) (s

m
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The right-hand side of the above expression tends to 0, as n — +oc.
Hence,

1 k a—1 :
a+ F(a)/o (t—s5)* to(s)ds, iftel0,t],

y(t1) + 11 (y(t))

1 ' a—1 .
oy = ) HE 6o, e vt

y(tm) + I’rtn (y(tm))

1 a1 .
+@ /t1 (t—8)* wv(s)ds, if t € (tm,b].

Thus, y € S(a). Now, we show that S(-) maps bounded sets into relatively
compact sets of PC'. Let B be a bounded set in R and let {y,} C S(B). Then
there exist {a, }nen C B such that

1 ‘ a—1 :
a”@/o (t— 8)2 Loa(s)ds, if ¢ € [0,41],

Yn(t1) + L (yn(t1))
1 ! a—1 .
) =1 (@) / (t =) on(s)ds, it € (tr,ta],

Yn(tm) + {m(yn(tm))

1 a—1 1
Fig [T s, it

where v,, € Sp,,, n € N. Since {a,} is a bounded sequence, there exists a
subsequence of {a,} converging to a, and so from (Bz), there exist M, > 0
such that

”yn”PC S M*7 n € N.

As in [2,11,49], we can show that {y, : n € N} is equicontinuous in PC. As
a consequence of the Arzeld-Ascoli Theorem, we conclude that there exists
a subsequence of {y,} converging to y in PC'. By a similar argument to the
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one above, we can prove that
1 /t . .
a+ —— [ (t—95)""v(s)ds, ifte]0,t],
I'(a) Jo
y(t1) + Li(y(t1))

1 ' a—1 .
y(t) = —&-m /tl(t—s) v(s)ds, if t € (t1,ta],

Y(tm) + L (y(tm))

—&—@ /t1 (t—s)* " v(s)ds, if t € (tm, b].

where v € Sp,. Thus, y € S(a), and this implies that S(-) is u.s.c. Also for
every a € R we have S(a) € Pcp(R). O

5.2. Nonconvex case

In this section, we present a second result for the problem (1.1)—(1.3) with a
non-convex valued right-hand side. We will make use of some new conditions.

(A1) F:[0,b) x RXxR — P.,(R); t — F(t, x) is measurable for each = € R.
(A2) There exists a function p € L([0,b],RT) such that, for a.e. t € [0,b]
and all z,y € R,

Hy(F(t,z), F(t,y) < p(t)|lz —yl,
and

Hy(0, F(t,0)) < p(t) for a.e. t€]0,b].
Theorem 5.2. Suppose that hypotheses (A1) and (A2) are satisfied. If

1 /t .
—— sup t—s)*"'p(s)ds: te 0,b}<1,
e { [ -9 s te oy
then the IVP (1.1)~(1.3) has at least one solution.

Proof. We are going to study Problem (1.1)—(1.3) in the respective intervals
[0,t1], (t1, t2], --., (tm,b]. The proof will be given in three steps and then
continued by induction.

Step 1. Consider the problem on the interval [0, ], that is,
(P € P, werepel )
y(0) = a

It is clear that all solutions of Problem (5.11) are fixed points of the multi-
valued operator Ny : PCy — P(PCy) defined by

No(y) = {h € POy h(t) = a+ ﬁ/o (t— 5)* Lg(s)ds, t € [O,tl}}
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where
g€ Spy = {g e LY([0,11],R) : g(t) € F(t,y(t)) for ae. t e (O,tl]}

and PC1 = C([0,1], R). To show that Ny satisfies the assumptions of Lemma
2.9, the proof will be given in two claims.

Claim 1. Ny(y) € P(PC4), let y € PCy: Indeed, let {y,} € No(y) be
such that y,, — ¢ in PCy, as n — 4o00. Then § € PC; and there exists a
sequence g, € S, such that

yn(t) = a+ ﬁ/o (t —5)*Lg,(s)ds, t€0,ty].

Then {g,} is integrably bounded. Since F(-,-) has compact values, let w(-) €
F(-,0) be such that |w(t)| = d(0, F(t,0)). From (A1) and (A2), we infer that
for a.e. t € [0,t1],

|gn(t)| d(o F(t 0)) +Hd(F( ’ )7 (ta (

= t))
< p®llyllpc, +d(0, F(t,0)) := M. (t

), VneN.
that is,
gn(t) € M.(t)B(0,1), a.e.t € [0,11].

Since B(0,1) is compact in R, there exists a subsequence still denoted
{gn} which converges to g. Then the Lebesgue dominated convergence theo-
rem implies that, as n — oo,

llgn — gllLr — 0 as and n — occ.
As in Theorem 4.3, we can prove that
1 t
g(t)=a+ 7/ (t —s)*"tg(s)ds, t €[0,t1],
I'(a) Jo
proving that § € N(y).

Claim 2. There exists v < 1 such that Hq(N(y), N([@)) < vlly — ¥llpc,
for each y,y € PCy where the norm |y — g|| pc, will be chosen conveniently:
Indeed, let y, 7 € PC([0,t1]) and hy € No(y). Then there exists ¢1(t) €
F(t,y(t)) such that for each t € [0, ]

1 t

—_ — ) gy (s)ds.
7 =

hl(t) =a-+

Since, for each t € [0, 4],

Ha(F(t, ), F(t,7(1))) <
then there exists some w(t) € F(¢,7(t)) such that
lg1(t) —w(®)] < p(B)|y(t) —7(@)], ¢ €0,t1].
Consider the multi-map U; : [0,¢1] — P(R) defined by
Ur(t) = {w e R [g2(t) — w| < p(t)[y(t) —H(#)[}-

As in the proof of Theorem 4.3, we can show that the multi-valued operator
Vi(t) = Ui(t) N F(t,5(t)) is measurable and takes nonempty values. Then

p(O)ly(t) = H(t)l;
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there exists a function go(t), which is a measurable selection for V;. Thus,
g2(t) € T F(t,5(t)) and

lg1(t) — g2(t)| < p(t)|y —gl|, for a.e. t€0,t].
For each t € [0, 1], let

t
ha(t) = a + ﬁ/@ (t — 5)°1ga(5)ds.
Therefore, for each ¢ € [0, ], we have
t
(0 = hatt)) < s / (t— 5)* g (s) — ga(s)] ds
< v/ (= " p(s)lu(s) — 7(s)\ds
- I'(a) Jo
1 ¢ N -
< | =il =gl e
Hence,
[lh1 = hallpey, < polly — §llpcy,
where

t
Po = Sup {/ (t—s)*p(s)ds:t e [O,tl]} < 1.
0
By an analogous relation, obtained by interchanging the roles of y and
7, we find that
Ha(No(y), No()) < polly — yllpc, -

Then Ny is a contraction and hence, by Lemma 2.9, Ny has a fixed point yyg,
which is solution to Problem (5.11).

Step 2. Let y5 : =y ( be a possible solution to the problem

Dey(t) € F(ty()), t € (t1,ta],
{ y(t) = wo(tr) + Liyo(ty)), (5.12)

Then y9 is a fixed point of the multivalued operator Ny : PCy — P(PC3)
defined by, for t € (¢1,t2],

yo(t1) + i (yo(t1))
Ni(y):=<{ he PCy:h(t)= I o1
iy 9 o
where
g€ Sry={9€ L' ([t1,t2],R) : g(t) € F(t,y(t)) for a.e. t € [t1,ta]}.

Again, we show that N7 satisfies the assumptions of Lemma 2.9. Clearly,
Ni(y) € Pu(PCs) for each y € PCs. It remains to show that there exists
0 <~ < 1 such that

Hy(N1(y), N1(7)) <lly —Fllpc,,
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for each y, 5 € PCy. For this purpose, let y, 5 € PCy and hy € Ny(y). Then
there exists ¢1(t) € F(t,y(t)) such that, for each ¢ € [0, t2],

/ (= 9™ g1 (s)ds.

hi(t) = yo(t1) + I (yo(t1)) + e /.

Since from (A2)
Hq(F(t,y(t), F(t,7,)) < p(®)ly(t) —y@)], t € [t1, t2],
we deduce that there is a w(-) € F(-,7(-)) such that
lg1.(t) —w(®)] < p(t)|y(t) —Y@)], t € [tr,t2].
Consider the multi-valued map Us : [t1,t2] — P(R) defined by
Us(t) ={w e R: |g1(t) —w| < p(t)[y(t) —y(¥)[}.

Since the multivalued operator Va(t) = Us(t) N F(¢,7(t)) is measurable with
nonempty values, there exists go(¢) which is a measurable selection for V5.
Then g2(t) € F(t,5(t)) and

91(8) — g2(D)] < p(O)|y(t) —Y(B)], for ae. ¢ € [t1, ],
For a.e. t € [t1,t2], define

ha(t) = yo(t1) + T (yo (1)) + ﬁ / (1 — )1 ga(s)ds.

Then for ¢t € (t1,t2] we have the estimates

1 a-
F(Of)/(ts) Hg1(s) = ga(s)| ds

t1

|ha(t) = ha (D))

IN

t(X

<ty /. PO Tl
F(la) sup {/ (t—8)*"1p(s)ds: te [tl,tg]} ly — 7l pe,-

t1

<

By an analogous relation, obtained by interchanging the roles of y and ¥, we
obtain

Hay(N1(y), N1(9)) < p1lly = ¥llpcs,

po= e [ f(t — ) ple)ds s 0€ ]}

Therefore N7 is a contraction and thus, by Lemma 2.9, N; has a fixed point
y1 solution of Problem (5.12).

where

Step 3. We continue this process taking into account that y,, := y‘ is a

solution of the problem,

Diyt) e F(ty), t € (tm, b,
{ y(tr) = Ym—1(tm) + Ln(Ym—1(t;))- (5.13)
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Then a solution y of Problem (1.1)-(1.3) may be defined by
yo(t)7 ift € [07151],

yg(t), ifte (tl,tg],

Ym(t), ift € (tm,b].
O

Lemma 5.3. Assume that the conditions of Theorem 5.2 are satisfied and
F :]0,b] xR = Peyep(R). Then the solution set of the problem (1.1)—(1.3) is
compact.

Proof. Using the fact F'(-,-) € Pey,cp(R) and Mazur’s lemma, and by Ascoli’s
theorem, we can prove that the solutions set of the problem (1.1)-(1.3) is
compact. O

6. Concluding remarks

In this paper, we investigated Problem (1.1)—(1.3) under various assumptions
on the multi-valued right hand-side nonlinearity, and we obtained a number
of new results regarding existence of solutions. We first proved a Filippov’s
result for impulsive differential inclusions with fractional order. The main
assumptions on the nonlinearity are the Carathéodory and the Lipschitz con-
ditions with respect to the Hausdorf distance in generalized metric spaces.
In the case where o € (0,1) and the convex case of the problem (1.1), (1.3)
or the problem (1.1), (1.2), (1.3) some authors assume the growth conditions
along with Lipchitz conditions, and there are some errors in the proofs of the
u.s.c of the operator solution of the problem; for example, in the paper [ [11],
Theorem 3.4 step 4], it is assumed that | f,,(t) — f(¢)| < d(fn(t), F(t,y:)) with
f € F(t,y), but that result is not correct. But the correct proof of Step 4
follows from the integral operator of the problem having compact values, and
then by the Lipchitz conditions, the operator integral is Hy;— u.s.c, or the
same technique of Theorem 5.1 of this paper can be used.

This paper is a generalization of the papers [11,28] and as well as of
other works in the literature.

Acknowledgements. The authors would like to thank anonymous referees for
their careful reading of the manuscript and pertinent comments; their con-
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