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1. Introduction

Consider the following system of exponents{
ei(nt+λn(t))

}
n∈Z

, (1.1)

where λn (t) ≡ −signn [αt+ βsign t], t ∈ [−π, π], α, β ∈ C are complex
parameters. We’ll study basicity of this system in Lebesgue space of functions
with variable summability exponent p (t), denoted as Lpt . Apparently, Paley -
Wiener [17], N.Levinson [11] first paid attention to studying basis properties
of the system of the form (1.1) in classic Lebesgue spaces (i.e. for p (t) ≡
const). In Lp, 1 ≤ p ≤ +∞, (L∞ ≡ C [−π, π]), the basis properties of the
system (1.1) were completely studied in [6;12;13] for β = 0 and in [1; 2] in
general case.

The present paper studies basis properties of the system (1.1) in the
spaces Lpt

≡ Lpt
(−π, π). In connection with consideration of some specific

problems of mechanics and mathematical physics (see for instance [10;18-23]),
there is a great interest to studying these or other problems of the spaces Lpt

and W k
pt
. Study of bounded action of singular integral in the spaces allows to

consider basis properties of systems in these spaces Lpt
related to Dirichlet

or Hilbert type kernels.

.
∗Corresponding author.
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It should be noted that these problems have been studied well (see for
instance [7;9;14]).

2. Necessary notion and facts

Let p : [−π, π] → [1,+∞) be a Lebesgue measurable function. By L0 we
denote a class of all functions measurable on [−π, π] (with respect to Lebesgue
measure). Accept the denotation

Ip (f) ≡
π∫

−π

|f (t)|p(t) dt.

Assume L ≡ {f ∈ L0 : Ip (f) < +∞}. Let
p+ = sup vrai

[−π,π]
p (t) ; p− = inf vrai

[−π,π]
p (t) .

For p+ < +∞, with respect to ordinary linear operations, L turns into a
linear space. If we define the norm ‖ · ‖pt

as:

‖f‖pt
≡ inf

{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
,

then L is a Banach space (see for instance [15]) and we denote it by Lpt .

Everywhere q (t) denotes the function
1

p (t)
+

1

q (t)
≡ 1 conjugated to p (t).

We’ll need the following class of functions:

H ln
π ≡

{
p :p(−π) = p(π), ∃c > 0; ∀t1, t2 ∈ [−π, π] ,

|t1 − t2| ≤ 1

2
⇒ |p (t1)− p (t2)| ≤ c

− ln |t1 − t2|
}
.

Basicity of the classic system of exponents
{
eint

}
n∈Z

(Z is a set of

integers) in the spaces Lpt
(−π, π) was studied in [16] and the necessity of

the condition p ∈ H ln
π for basicity was indicated.

It holds Hölder’s generalized inequality:

π∫
−π

|f (t) g (t)| dt ≤ c
(
p−, p+

) ‖f‖pt
‖g‖qt ,

where c (p−, p+) = 1 +
1

p−
− 1

p+
. From definition it directly follows

Property A. If |f (t)| ≤ |g (t)| a.e. on (−π, π), then ‖f‖pt
≤ ‖g‖pt

.

It is easily proved
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Statement 1. Let p ∈ H ln
π , p (t) > 0, ∀t ∈ [−π, π] and {αk}m1 ⊂ R (R is

a real axis). The function ω (t) ≡
m∏

k=1

|t− tk|αk belongs to the space Lpt
iff

αk > − 1

p (tk)
, ∀k = 1,m, where {tk}m1 ⊂ [−π, π] and ti �= j.

In the sequel we’ll use the following property.

Property B [18]. If p (t) : 1 < p− ≤ p+ < +∞, then the class C∞
0 (−π, π)

(finite and infinitely differentiable) is everywhere dense in Lpt
.

Let Γ be a piecewise-Hölder curve on a complex plane C and f be a
Lebesque summable function on Γ. Consider the singular integral S

Sf =
1

2πi

∫
Γ

f (τ)

τ − t
dτ, t ∈ Γ.

Take some weight function ρ : [−π, π]→ (0,+∞) and define the weight
class Lpt,ρt

≡ {f : ρ f ∈ Lpt
} with the norm ‖f‖pt,ρt

≡ ‖ρ f‖pt
. The following

theorem is valid.

Theorem [9]. Let p ∈ H ln
π , p− > 1 and ρ (t) ≡

m∏
k=1

|t− τk|αk , {τk}m1 ⊂
[−π, π], τi �= τj for i �= j. The singular operator S boundedly acts from Lpt,ρt

to Lpt,ρt
iff − 1

p (τk)
< αk <

1

q (τk)
, k = 1,m holds.

In the sequel we’ll need the Hardy classes of analytic functions with
variable summability exponent.

3. Hardy classes with a variable summability exponent

Let U ≡ {z : |z| < 1} be a unit ball on a complex plane and Γ = ∂U
be a unit circle. For a function u (z) harmonic in U we accept ‖u‖hpt

≡
sup

0<r<1

∥∥u (reit)∥∥
pt

, where hpt
≡ {u : Δu = 0 in U and ‖u‖hpt

< +∞}. The
continuous imbeddings hp+ ⊂ hpt ⊂ hp− are true.

The Hardy class H+
pt
≡ {f : f analytic in U and ‖f‖H+

pt
< +∞}, where

‖f‖H+
pt
≡ sup

0<r<1

∥∥f (reit)∥∥
pt

is introduced in the same way.

Define the Hardy class mH−
pt

of functions analytic outside the unit circle
and of order less or equal m at infinity. Let f (z) be a function analytic on
C\U (

U = U
⋃
Γ
)
of finite order m0 ≤ m, at infinity, i.e. f (z) = f1 (z) +

f2 (z), where f1 (z) is a polynomial of power m0, f2 (z) is a tame part of the
expansion of f (z) in Lorentz series in the vicinity of the point at infinity. If

the function ϕ (z) ≡ f2

(
1

z̄

)
(( · ) is a complex conjugation) belongs to the

class H+
pt
, we’ll say that the function f (z) belongs to the class mH−

pt
.
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4. Riemann problem in the classes H±
pt

Consider a Cartesian product H+
pt
×H−

pt
. Let G (t) and g (t) be the functions

given on [−π, π]. Under the solution of the Riemann problem in the class
H+

pt
× H−

pt
we understand a pair of analytic functions (F+;F−) ∈ H+

pt
×

H−
pt
, whose non-tangential values F± (

eit
)
on a unit circle Γ a.e. satisfy the

relation:

F+
(
eit
)
+G (t)F− (

eit
)
= g (t) , a.e. on [−π, π] , (4.1)

where g ∈ Lpt .
When the summability exponent is constant (i.e. p (t) ≡ const), the

theory of these problems has been well studied (see for instance [5]). On the
coefficient G (t) of problem (4.1) we impose the following conditions:

1) |G|±1 ∈ L∞;
2) The argument θ (t) ≡ argG (t) has a Jordan expansion θ (t) = θ0 (t) +

θ1 (t), where θ0 ∈ C [−π, π] and θ1 is a function with bounded variation
on [−π, π]. θ1 (t) has a finite number of discontinuity points of first kind
{sk}r1 : −π < s1 < ... < sr < π;

3)

{
hk

2π
+

1

q (sk)
: k = 0, r

}⋂
Z = ∅, where hk = θ (sk + 0) − θ (sk − 0),

h0 = θ (−π)− θ (π), ∅ is an empty set.

Consider Riemann’s homogeneous problem:⎧⎨⎩
F+ (τ) +G (arg τ)F− (τ) = 0, τ ∈ Γ ;

F+ ∈ H+
pt
, F− ∈ mH−

pt
.

(4.2)

Consider the functionsX±
i (z) analytic inside (the sign “+”) and outside

(the sign “-”) the unit circle:

X±
1 (z) ≡ exp

⎧⎨⎩± 1

4π

π∫
−π

ln |G (t)| e
it + z

eit − z
dt

⎫⎬⎭ ,

X±
2 (z) ≡ exp

⎧⎨⎩± i

4π

π∫
−π

θ (t)
eit + z

eit − z
dt

⎫⎬⎭ .

Let

Zi (z) ≡
⎧⎨⎩

X+
i (z) , |z| < 1,[
X−

i (z)
]−1

, |z| > 1, i = 1, 2.

Assume Z (z) ≡ Z1 (z) · Z2 (z). Determine {ni}ri=1 ⊂ Z from the in-
equalities: ⎧⎪⎪⎨⎪⎪⎩

− 1

q (sk)
<

hk

2π
+ nk − nk−1 <

1

p (sk)
,

n0 = 0, k = 1, r.
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Denote ωr =
h0

2π
+ nr.

The following theorem was established in [3].

Theorem [3]. Let the conditions 1)–2), p ∈ H ln
π , p− > 1 and

1

q(π)
< ωr <

1

p(π)
be fulfilled. Then the general solution of the homogeneous problem (4.2)

is of the form F (z) = Z (z)Pm0
(z), where Pm0

(z) is an arbitrary polynomial
of power m0 ≤ m.

Corollary 1. Let all the requirements of the previous theorem be fulfilled. Then
under condition F− (∞) = 0, homogeneous problem (5.1) has only a trivial
solution, i.e. zero solution.

Now let’s consider Riemann’s homogeneous problem,⎧⎨⎩
F+ (τ) +G (arg τ)F− (τ) = g (τ) ei[α arg τ+βsign(arg τ)],

F+ ∈ H+
pt
, F− ∈ mH−

pt
,

(4.3)

where g ∈ Lpt (Γ) is an arbitrary function. It is obvious that the problem
(4.3) has a unique solution (if it is solvable) iff the appropriate homogeneous
problem (4.2) has only a trivial solution. In the general case, the solution
F (z) of the problem (4.3) is of the form F (z) = F0 (z)+F1 (z), where F0 (z)
is one of particular solutions of the problem (4.3), F1 (z) is a general solution
of the homogeneous problem.

5. Basic results

Further we’ll consider a more specific case, exactly, let γ (t) ≡ αt+βsignt. In
the place of G (t) we take G (t) ≡ eiγ(t). Assume that α, β ∈ R. The complex
case may be investigated similarly. Consider problem (4.3) and assume that
the right hand side g

(
eit
)
is Hölderian on [−π, π]. In the sequel, for simplicity

we’ll denote g
(
eit
)
as g (t). We’ll solve this problem by the method worked

out in [8]. For that we’ll need the auxiliary functions.

Let (z + 1)
γ
−1 and zγ−1

(
(z − 1)

γ
+1 and zγ+1

)
be the branches of multi-

valued analytic functions (z + 1)
γ
and zγ ((z − 1)

γ
and zγ) that are analytic

on complex plane cut along negative (positive) part of a real axis, respectively.
Accept (

z + 1

z

)γ

−1

=
(z + 1)

γ
−1

zγ−1

,

(
z − 1

z

)γ

+1

=
(z − 1)

γ
+1

zγ+1

.
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Thus, a particular solution of problem (4.3) is of the form:

F+
0 (z) =

1

2π

π∫
−π

ei(αt+βsignt)g
(
eit
)
dt

(eit + 1)
γ
−1 (e

it − 1)
γ2

+1 (1− zeit)
(z + 1)

γ1

−1 (z − 1)
γ2

+1

F−
0 (z)=

1

2π

π∫
−π

ei(αt+βsignt)g
(
eit
)
dt

(eit + 1)
γ
−1 (e

it − 1)
γ2

+1 (1− zeit)

(
z + 1

z

)γ1

−1

(
z − 1

z

)γ2

+1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(5.1)

where γ1 = 2α+
2β

π
; γ2 = −2β

π
. Consider the following systems:

h+
n (t) =

ei(αt+βsignt−2β)

2π

(
eit + 1

)−γ1

−1

(
eit − 1

)−γ2

+1

×
n∑

k=0

(−1)n−k
Cn−k

γ2

k∑
s=0

Ck−s
γ1

e−st, n ≥ 0 ;

h−
n (t) =

ei(αt+βsignt−2β)

2π

(
eit + 1

)−γ1

−1

(
eit − 1

)−γ2

+1

×
n∑

k=1

(−1)m−k
Cm−k

γ2

k∑
s=1

Ck−s
γ1

e−st, m ≥ 1 ;

where Cn
γ =

γ (γ − 1) · ... · γ (γ − n+ 1)

n!
, C0

γ = 1 are binomial coefficients.

The following lemma is proved in [4].

Lemma 1. Let the inequalities

0 ≤ α+
β

π
<

1

2
, 0 ≤ β

π
<

1

2
,

be fulfilled. Then there hold the following relations:

< x+
k , h

+
n >=< x−

k , h
−
n >= δnk, ∀n, k ≥ 0;

< x+
k , h

−
n+1 >=< x−

k+1, h
+
n >= 0, ∀n, k ≥ 0 ,

where

< x, y >=

π∫
π

x (t) y (t)dt, x±
n = e±i[(n−α)t−βsignt],.

From the representations of the functions F±
0 (z) it directly follows that

F+
0 ∈ H+

1 ; F−
0 ∈ −1H

−
1 if it holds |γi| < 1, i = 1, 2. It follows from the

known relations [5]
π∫

−π

∣∣F+
0

(
eit
)− F+

0

(
reit

)∣∣ dt→ 0, r → 1− 0;

π∫
−π

∣∣F−
0

(
eit
)− F−

0

(
reit

)∣∣ dt→ 0, r → 1 + 0,
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that

a+n =
1

2π

π∫
−π

F+
0

(
eit
)
eintdt, ∀n ≥ 0; a−k =

1

2π

π∫
−π

F−
0

(
eit
)
eiktdt, ∀k ≥ 1,

where

F+
0 (z) =

∞∑
n=0

a+n z
n

(
F−
0 (z) =

∞∑
n=1

a−n z
−n

)
,

is a Taylor expansion of the function F+
0 (z)

(
F−
0 (z)

)
in the vicinity of the

zero (of a point at infinity).
Consider the case 0 ≤ γk < 1, k = 1, 2. Assume that the function g (τ)

is Hölderian on Γ : g (1) = g (−1) = 0. Then, using the representation of the
Cauchy type integral with power character peculiarity in the vicinity of the
first order density discontinuity point (see [8], p.74), it is easy to show that
the functions F±

0

(
eit
)
satisfy some Hölderian conditions on Γ. Therefore,

the Fourier series by the system of exponents
{
eint

}
n∈Z

converge to them

uniformly on the segment [−π, π]. Thus,

F+
0

(
eit
)
=

∞∑
n=0

a+n e
int, F−

0

(
eit
)
=

∞∑
n=1

a−n e
−int,

uniformly on [−π, π]. Then, from the relation (4.3) we get that the function
g (t) expands in uniformly convergent series by the system (1.1).

g (t) =
∞∑

n=0

a+n e
i[(n−α)t−βsignt] +

∞∑
n=1

a−n e
−i[(n−α)t−βsignt].

If p ∈ H ln
π and p− > 1, then it directly follows from Property A that

the system (1.1) belongs to the space Lpt
. As is known, the space conjugated

to Lpt
is Lqt (see for instance [18]). It follows from statement 1 and represen-

tations {h±
n } that, if the inequalities γ1 <

1

q(π)
; γ2 <

1

q (0)
are fulfilled, the

system
{
h+
n ; h−

n+1

}
n≥0

belongs to the space Lqt . As a result, having paid

attention to the Property B, we get that when the inequality

0 ≤ γ1 <
1

q(π)
, 0 ≤ γ2 <

1

q (0)
,

is fulfilled, the system (1) is complete and minimal in Lpt
. Accept the deno-

tation

I (z) =

π∫
−π

ei(αt+β·signt)g (t) dt
(eit + 1)

γ1

−1 (e
it − 1)

γ2

+1 (1− ze−it)
.

Consequently,

F+ (z) =
1

2π
I (z) (z + 1)

γ1

−1 (z − 1)
γ2

+1 , |z| < 1,

F− (z) =
1

2π
I (z)

(
1 + z−1

)γ1

−1

(
1− z−1

)γ2

+1
, |z| > 1.

⎫⎪⎪⎬⎪⎪⎭
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In the place of g (τ) we take a function that is finite in some vicini-
ties of the points z = ±1. From the above cited reasoning we get that the
Fourier series of functions I

(
e±it

)
uniformly converge to them on [−π, π].

As it follows from Statement 1, if γ1 > − 1

p(π)
and γ2 > − 1

p (0)
hold, the

functions
(
1 + e±it

)γ1

−1
,
(
1− e±it

)γ2

+1
belong to Lpt

. By the result of the pa-

per [16], the classic system of exponents
{
eint

}
n∈Z

forms a basis in Lpt
.

Expanding these functions by this system and considering that the function

(z + 1)
γ1

−1(z − 1)
γ2

+1

((
1 + z−1

)γ1

−1

(
1− z−1

)γ2

+1

)
belongs to H+

pt

(
H−

pt

)
, from

(4.3) we get that g (t) expands in series in Lpt
by the system (1.1). Here we

used the circumstance that the functions from H+
pt

(
H−

pt

)
have Fourier zero

coefficients for negative (positive) values of summation index. Again, having
paid attention to the Property B, we get the completeness of the system (1.1)
in Lpt in this case as well. Thus, we proved the following

Statement 2. Let p ∈ H ln
π , p− > 1 and the inequalities

− 1

p(π)
< γ1 <

1

q(π)
, − 1

p (0)
< γ2 <

1

q (0)
, (5.2)

be fulfilled. Then the system (1.1) is complete and minimal in Lpt .

Consider the basicity of the system (1.1) in Lpt . Let the inequalities
(5.2) be fulfilled. So, the system (1.1) is complete and minimal in Lpt and let{
h+
n ; h−

n+1

}
n≥0

⊂ Lqt be an appropriate biorthogonal system. Take ∀g ∈ Lpt

and consider

Sm [g] =
m∑

n=0

a+nx
+
n +

m∑
n=1

a−n x
−
n ,

where a±n =< g, h±
n >. Consider the problem (4.3) and require F−(∞) = 0.

Then by Corollary 1 it has a unique solution F± (z) from the class H+
pt
×

−1H
−
pt
. It is clear that F± (

eit
) ∈ Lpt . As we have established

a+n =
1

2π

π∫
−π

F+
(
eit
)
e−intdt, a−k =

1

2π

π∫
−π

F− (
eit
)
eiktdt.

Since the system
{
eint

}
n∈Z

forms a basis in Lpt , it is clear that ∃M > 0:∥∥∥∥∥
m∑

n=0

a+n e
int

∥∥∥∥∥
pt

≤M
∥∥F+

(
eit
)∥∥

pt
,

∥∥∥∥∥
m∑

n=1

a−n e
−int

∥∥∥∥∥
pt

≤M
∥∥F− (

eit
)∥∥

pt
, ∀m ∈ N.

Considering these relations and having taken into attention the Property A,
we get:
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‖Sm [g]‖pt
≤
∥∥∥∥∥

m∑
n=0

a+n e
inte−i(αt+βsignt)

∥∥∥∥∥
pt

+

∥∥∥∥∥
m∑

n=1

a−n e
−inte−i(αt+βsignt)

∥∥∥∥∥
pt

≤
∥∥∥∥∥

m∑
n=0

a+n e
int

∥∥∥∥∥
pt

+

∥∥∥∥∥
m∑

n=1

a−n e
−int

∥∥∥∥∥
pt

≤M
(∥∥F+

(
eit
)∥∥

pt
+
∥∥F− (

eit
)∥∥

pt

)
.

Applying the Sokhotskiy–Plemel formula to expressions (5.1), we get:

F± (
eit
)
= ie±i(αt+βsignt)g (t) + S± (g) ,

where S± (g) are singular type integrals

S± (g) =
1

2π

π∫
−π

ei(αt+βsignt)g (t) dt

(eit + 1)
γ1

−1 (e
it − 1)

γ2

+1

(
1− ei(s−t)

)
× (

1 + e±is
)γ1

−1

(±e±is ∓ 1
)γ2

+1
.

Applying Theorem [9] to these expressions, we get ∃M2 > 0:∥∥S± (g)
∥∥
pt
≤M2 ‖g‖pt

, ∀g ∈ Lpt
.

Considering the above mentioned estimations, we have:

‖Sm [g]‖pt
≤M

(
2 ‖g‖pt

+
∥∥S+ (g)

∥∥
pt

+
∥∥S− (g)

∥∥
pt

)
≤ 2M (1 +M2) ‖g‖pt

, ∀g ∈ Lpt , ∀m ∈ N.

As a result, from this estimation and from basicity criterion we get that the
system (1.1) forms a basis in Lpt

. So, we proved

Theorem 2. Let p ∈ H ln
π , p− > 1 and the inequalities (5.2) hold

− 1

p(π)
< γ1 <

1

q(π)
, − 1

p (0)
< γ2 <

1

q (0)
.

Then, the system (1.1) forms a basis in Lpt
.

We separately consider the case γ1 = − 1

p(π)
. It follows from the argu-

ments cited above and from the expressions of the system
{
h+
n ; h−

n+1

}
n≥0

that the system (1.1) is minimal in Lpt in this case as well.
Represent the system (1.1) in the form{

ei[(n+1)t−(α+1)t+βsign t]; e−i[mt−αt+βsign t]
}
n≥0;m≥1

. (5.3)

It is obvious that multiplication of each term of the system (5.3) by the

function ei
t
2 doesn’t influence on its completeness in Lpt . After multiplication

we get the system
{
I α̃n;m (t)

}
n≥1;m≥1

, where

I α̃n;m (t) ≡
(
ei[nt−α̃t+βsign t]; e−i[mt−α̃t+βsign t]

)
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α̃ = α+
1

2
. The appropriate parameter γ̃1 of this system is γ̃1 = 2

(
α̃+

β

π

)
=

γ1 + 1. Therefore,

γ̃1 = 1− 1

p(π)
=

1

q(π)
< 1,

is fulfilled for γ̃1.

Then, from the previous arguments, we get that the system{
I α̃n;m (t)

}
n≥0;m≥1

,

is complete in Lpt . By
{
h̃+
n ; h̃−

n+1

}
n≥0

we denote a system determined by

the expressions h±
n , wherein we take α̃ in the place of the parameter α. The

systems
{
I α̃n;m (t)

}
n≥0;m≥1

and
{
h̃+
n ; h̃−

n+1

}
satisfy the relations of Lemma

1. It directly follows from the expressions for the system
{
h̃+
n ; h̃−

n+1

}
n≥0

that it doesn’t belong to the space Lqt , since γ̃1 ≥ 1
q(π) and the required one

follows from Statement 1. From the uniqueness of the biorthogonal system to
the complete system, hence we get that the system

{
I α̃n;m (t)

}
n≥0;m≥1

is not

minimal in Lpt
. As a result, the system

{
I α̃n;m (t)

}
n;m≥1

is also complete and

so the system (1.1) is complete in Lpt . The fact that in this case it doesn’t
form a basis in Lpt

, is proved similar to the paper [12]. Consequently, it is
valid

Theorem 3. Let p ∈ H ln
π , p− > 1 and the relations

α+
β

π
= − 1

2p(π)
, − 1

2q (0)
<

β

π
<

1

2p (0)
,

be fulfilled. Then the system (1.1) is complete and minimal in Lpt
, but it

doesn’t form a basis in it.

The remaining cases for the values of the parameters α and β are con-
sidered similar to the paper [12]. As a result we get the following result.

Theorem 4. Let p ∈ H ln
π , p− > 1 and − 1

2q (0)
<

β

π
<

1

2p (0)
hold. The sys-

tem (1.1) forms a basis in Lpt
iff the inequality − 1

2p(π)
< α+

β

π
<

1

2q(π)
is

fulfilled.
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