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Basicity of a System of Exponents with a
Piecewise Linear Phase in Variable Spaces
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Abstract. A system of exponents with a piecewise linear phase is consid-
ered in the paper. The criteria of basicity, completeness and minimality
of this system in Lebesgue space of functions with variable summability
exponent are established.
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1. Introduction

Consider the following system of exponents

i(nt+An (L)) } 11
{e nez ’ ( )

where A, (t) = —signn|at + Bsignt], t € [-m, 7], a, f € C are complex
parameters. We’ll study basicity of this system in Lebesgue space of functions
with variable summability exponent p (t), denoted as L,,,. Apparently, Paley -
Wiener [17], N.Levinson [11] first paid attention to studying basis properties
of the system of the form (1.1) in classic Lebesgue spaces (i.e. for p(t) =
const). In L,, 1 < p < 400, (Lo = C[—m,]), the basis properties of the
system (1.1) were completely studied in [6;12;13] for § = 0 and in [1; 2] in
general case.

The present paper studies basis properties of the system (1.1) in the
spaces Lp, = L, (—m, 7). In connection with consideration of some specific
problems of mechanics and mathematical physics (see for instance [10;18-23)),
there is a great interest to studying these or other problems of the spaces Ly,
and Wzﬁ . Study of bounded action of singular integral in the spaces allows to
consider basis properties of systems in these spaces L,, related to Dirichlet
or Hilbert type kernels.
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It should be noted that these problems have been studied well (see for
instance [7;9;14]).

2. Necessary notion and facts

Let p : [-m,7] — [1,400) be a Lebesgue measurable function. By Ly we
denote a class of all functions measurable on [—, 7] (with respect to Lebesgue
measure). Accept the denotation

1 (f) = / F P d.

Assume L= {f € Lo : I, (f) < +oo}. Let

pt = sup [vmz’]p (t);p~ =inf vrai p(t).
For p™ < +o0, with respect to ordinary linear operations, £ turns into a
linear space. If we define the norm |[[ - [|,,, as:

£, Einf{)\>0:lp (i) gl}7

then £ is a Banach space (see for instance [15]) and we denote it by L,,.

1 1
Everywhere ¢ (t) denotes the function — + —— = 1 conjugated to p ().

p(t)  q(t)

We'll need the following class of functions:
H}Tn = {p p(—7) = p(n),3e > 0; Viq,ts € [—7, 7],

1 c
th—to| < - = |p(t1) —p(t <7}.
13} 2\72 p (t1) p(Q)‘*—ln|t1—t2|

Basicity of the classic system of exponents {ei”t}nez (Z is a set of
integers) in the spaces Ly, (—m,m) was studied in [16] and the necessity of
the condition p € H!™ for basicity was indicated.

It holds Holder’s generalized inequality:

/ F®a@ldt <o) If1L,

1 1
where c(p~,pt) =1+ — — — - From definition it directly follows
p

p
Property A. If [f ()| < |g ()| a.e. on (=m,m), then |[f||,, <llgl,,

It is easily proved
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Statement 1. Let p € H®, p(t) > 0, Vt € [-m, 7] and {ax}]" C R (R is

T

a real azis). The function w (t) = T[] |t — tx|™" belongs to the space Ly, iff
k=1
1
ap > ————, Yk =1, m, where {t;}}" C [-m, 7] and t; # j.
p (tk)

In the sequel we’ll use the following property.

Property B [18]. If p(t) : 1 < p~ < pT < +o0, then the class C§° (—m, )
(finite and infinitely differentiable) is everywhere dense in Ly, .

Let T be a piecewise-Holder curve on a complex plane C' and f be a
Lebesque summable function on I'. Consider the singular integral .S
L [f(7)
Sf=—
f 2me ) T—1
r

dr, tel.

Take some weight function p : [—m, 7] — (0, +00) and define the weight
class Ly, ,, ={f : pf € Lp,} with the norm || f|| = |[p fll,,,- The following
theorem is valid.

PPt

Theorem [9]. Let p € HI", p= > 1 and p(t) = [] |t — 7™, {m}] C
k=1

[—m, 7], 7 # 1 fori # j. The singular operator S bou?zdedly acts from Ly, ,,

1 1 N
to Ly, p, iff —— <oy < ——, k=1,m holds.
e P (7k) q(7k)
In the sequel we’ll need the Hardy classes of analytic functions with
variable summability exponent.

3. Hardy classes with a variable summability exponent

Let U = {z:|z|] <1} be a unit ball on a complex plane and I' = 9U
be a unit circle. For a function w (z) harmonic in U we accept ||u||hp =
t

sup | (re’)|| . where hy, = {u: Au=0 in U and ”“tht < +oo}. The

0<r<1 HP*
continuous imbeddings hy,+ C hy, C hy,- are true.

The Hardy class Hf = {f : f analytic in U and || f|| ;;+ < 400}, where

1fllz+ = sup ||f (re™) H is introduced in the same way.
Proo<r<t b

Define the Hardy class ,, H,,, of functions analytic outside the unit circle
and of order less or equal m at infinity. Let f (z) be a function analytic on
C\U (U =UUT) of finite order my < m, at infinity, i.e. f(2) = f1(2) +
f2 (2), where fi (2) is a polynomial of power myg, f2 (2) is a tame part of the
expansion of f(z) in Lorentz series in the vicinity of the point at infinity. If

1
the function ¢ (2) = fo (z) ((¥) is a complex conjugation) belongs to the

class H;, we’ll say that the function f () belongs to the class ,, H,,.
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4. Riemann problem in the classes

Consider a Cartesian product H x H, . Let G (t) and g (t) be the functions
given on [—m, 7). Under the solution of the Riemann problem in the class
H x H, we understand a pair of analytic functions (F*; F~) € H/ x
Hp , Whose non-tangential values F= (e’*) on a unit circle I' a.e. satisfy the
relation:

Fr(e")+G(t)F~ (e") =g (t), ae. on [—m, ], (4.1)
where g € Ly, .
When the summability exponent is constant (i.e. p(t) = const), the
theory of these problems has been well studied (see for instance [5]). On the
coefficient G (t) of problem (4.1) we impose the following conditions:

1) |G € Loc;

2) The argument 6 (t) = arg G (t) has a Jordan expansion 6 (t) = 0y (t) +
01 (t), where 6y € C' [—m, ] and 6, is a function with bounded variation
on [—, 7). 61 (t) has a finite number of discontinuity points of first kind
{sp}j:—m<s1<..<s <m;

3) {;;_—i—qék) :k=0,7p(Z = 0, where hy = 0 (s, +0) — 0 (s, — 0),
ho =0 (—n) — 0 (m), 0 is an empty set.

Consider Riemann’s homogeneous problem:
Ft(r)+G(argT)F~(1)=0, 7€l
(4.2)
+ + - -
FteHf, F~c,H,.
Consider the functions X;* (z) analytic inside (the sign “+”) and outside
(the sign “-”) the unit circle:

T

1 et + 2
X (2) = exp 15/1 n|G (0] Sty
e”+z
X3 (2) = exp :I:— o(t
Let
X (), <1,
ZI(Z)E .
(X7 (z)] ", |2l>1, i=1,2

Assume Z (z) = Zi (z) - Z> (). Determine {n;},_, C Z from the in-
equalities:
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h
Denote w, = 0 + n,..
2

The following theorem was established in [3].

1
Theorem [3]. Let the conditions 1)-2), p € H™, p~ > 1 and es) < wp <
q(m
1
Y be fulfilled. Then the general solution of the homogeneous problem (4.2)
plr
is of the form F (z) = Z () Pn, (%), where Pp,, (2) is an arbitrary polynomial
of power mg < m.

Corollary 1. Let all the requirements of the previous theorem be fulfilled. Then
under condition F~ (c0) = 0, homogeneous problem (5.1) has only a trivial
solution, i.e. zero solution.

Now let’s consider Riemann’s homogeneous problem,

Ft (1) + G (arg 7) F~ (1) = g (1) elloargm+Bsign(arg 1)}
(4.3)
FteHS

Pt

F~e,H,,
where g € L,, (I') is an arbitrary function. It is obvious that the problem
(4.3) has a unique solution (if it is solvable) iff the appropriate homogeneous
problem (4.2) has only a trivial solution. In the general case, the solution
F (z) of the problem (4.3) is of the form F (z) = Fp (2) + F1 (z), where Fy (2)
is one of particular solutions of the problem (4.3), F} (z) is a general solution
of the homogeneous problem.

5. Basic results

Further we’ll consider a more specific case, exactly, let v (t) = ot + Bsignt. In
the place of G (t) we take G (t) = ¢"®). Assume that «, 3 € R. The complex
case may be investigated similarly. Consider problem (4.3) and assume that
the right hand side g (e”) is Holderian on [—r, 7]. In the sequel, for simplicity
we'll denote g (¢™) as g (). We'll solve this problem by the method worked
out in [8]. For that we’ll need the auxiliary functions.

Let (z+1)7, and 27, ((z—1)]; and 2J,) be the branches of multi-
valued analytic functions (z +1)” and 27 ((z — 1)” and 27) that are analytic
on complex plane cut along negative (positive) part of a real axis, respectively.

Accept
241\ _E+DL z-1\" (-1,
Z /a ACEAN 2y
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Thus, a particular solution of problem (4.3) is of the form:

L f e () dt gy
2 2 (e T (e - D (e T

P ( ) 1 }r ei(octJrﬁsignt)g (eit) dt 241 Mo 1\ 2
0 2 (et +1)7 ) (et — 1)121 (1 — zeit) z )\ 2z )4

Fy (2) =

(5.1)
26 26 . :
where v, = 2a + —; 79 = ——. Consider the following systems:
0 71'
i(at+Bsignt—23)
4 _ € it Y1/ gt -2
hy () = s (e +1) ) (" =1)

n
XZ(— ) kC’” kZC’,’;—Se—”, n>0;
k=0

ei(othrBsignthﬁ)
2m
n
XZ(f me ka kZC’;;Se*St, m>1;
=1

k
where €7 = 1=y —=n+1)
n!

The following lemma is proved in [4].

h,, (t) = (e"+1)_ " (e —1). "

n

, CS = 1 are binomial coefficients.

Lemma 1. Let the inequalities

1
0§a+§<7, 0§é<
T 2 T

be fulfilled. Then there hold the following relations:
<zl bl >=<a. b, >=0u, Vn,k>0;

[N

<@l hyy >=<ap 4, bt >=0, Vn, k>0,

where
s

<x,y>= /x(t) y(t)dt, at = tiln—a)t=psign],

From the representations of the functions Fi- (z) it directly follows that
Fy € H{"; Fy € _1Hy if it holds || < 1, i = 1,2. It follows from the
known relations [5]

/|FO+ (e") = Fy (re’)|dt -0, r—1-0;

—T

/}FO— (e") = Fy (re’)|dt =0, r— 140,
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that
17 -

=g B L ) et W > 0;ap = / (c) ettt k> 1,
v

where

Z a, ( Z a, % ”) ,
n=0 n=1

is a Taylor expansion of the function Fy (2) (Fy (z)) in the vicinity of the
zero (of a point at infinity).

Consider the case 0 < 5 < 1, k = 1,2. Assume that the function g (7)
is Holderian on I' : g (1) = g (—1) = 0. Then, using the representation of the
Cauchy type integral with power character peculiarity in the vicinity of the
first order density discontinuity point (see [8], p.74), it is easy to show that
the functions FOi (e“) satisfy some Holderian conditions on I'. Therefore,
the Fourier series by the system of exponents {emt}n ¢z converge to them
uniformly on the segment [—m, 7]. Thus,

oo

§ a+ znt E — 77.nt

uniformly on [—, 7). Then7 from the relation (4.3) we get that the function
g (t) expands in uniformly convergent series by the system (1.1).

Za ez[(n a)t—PBsignt] +Za— —i[(n—a)t— Bszgnt]

If p € H™ and p~ > 1, then it directly follows from Property A that
the system (1.1) belongs to the space Ly, . As is known, the space conjugated
to Ly, is Lg, (see for instance [18]). It follows from statement 1 and represen-

tations {h;} that, if the inequalities 1 < are fulfilled, the

1 - 1
— )2 —
q(m) q(0)
system {hj{; hy, iy }n>0 belongs to the space L. As a result, having paid
attention to the Property B, we get that when the inequality

1 1
0<m<—F=, 0<<—=,
P g(m) * 7 q(0)
is fulfilled, the system (1) is complete and minimal in L,,. Accept the deno-

tation
s

s (Z) _ / ei(at+ﬁ~signt)g (t) dt
@ T (e ) (2o )

—T

Consequently,

FF (&) = 5T () (4 17 (= D ol < 1,

F~(z)= %I(z) (1 —|—z’1)111 (1—2" )+1 )|zl > 1.
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In the place of g (7) we take a function that is finite in some vicini-
ties of the points z = £1. From the above cited reasoning we get that the
Fourier series of functions I (e*) uniformly converge to them on [—, .

1
and 72 > ——— hold, the

1

p(m) p(0)

functions (1 + ej”'t)"il17 (1- ei“)jfl belong to L,,. By the result of the pa-
per [16], the classic system of exponents {ei”t}n ¢y forms a basis in Lp,.
Expanding these functions by this system and considering that the function
+1)M -7 ((1 +27H7 (1- 2’1)121> belongs to H, (H,,), from
(4.3) we get that g (t) expands in series in L,, by the system (1.1). Here we
used the circumstance that the functions from H;; (Hp’t ) have Fourier zero
coefficients for negative (positive) values of summation index. Again, having
paid attention to the Property B, we get the completeness of the system (1.1)
in L, in this case as well. Thus, we proved the following

As it follows from Statement 1, if v3 > —

Statement 2. Let p € H'™, p~ > 1 and the inequalities
1 1 1 1
—m<%<m, —m<72<m,
be fulfilled. Then the system (1.1) is complete and minimal in Ly, .

(5.2)

Consider the basicity of the system (1.1) in L,,. Let the inequalities
(5.2) be fulfilled. So, the system (1.1) is complete and minimal in L,, and let
{hj; h C L, be an appropriate biorthogonal system. Take Vg € Ly,

n+1l Sn>0
m m
— E + ..+ E —
Sm [g] - an xn + an ‘Tnv
n=0 n=1

and consider

where af =< g, h¥ >. Consider the problem (4.3) and require F'~(c0) = 0.
Then by Corollary 1 it has a unique solution F* (z) from the class H;rt X
—1H,, . It is clear that F* (e) € L,,. As we have established

T

1 i —in — 1 r — (0 i
ai:% F* (6t)e tdt, ay, :%/F (6t)ektdt.

—T
Since the system {ei"t}nez forms a basis in L,,, it is clear that M > 0:
m
>_ane™|| < M|F* ()]
n=0

Dt

e’

m

— _—int
E a, e
n=1

Considering these relations and having taken into attention the Property A,
we get:

< MHF* (eit)H , Vm e N.

Pt

Pt
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m m
HSm [g] ||pt < Z axeinte—i(at+ﬁsignt) + Z a; e—inte—i(at+ﬁsignt)
n=0 e n=1 e
m m
< Z aieint + Z agefint
n=0 pe n=1 Dt

< M(EF ), +1F @)],) -
Applying the Sokhotskiy—Plemel formula to expressions (5.1), we get:
F:t (eit) _ ie:ﬁ:i(at—i—ﬁsz‘gnt)g (t) + S:t (g) ,

where S* (g) are singular type integrals

- i ] ei(atJrﬂsignt)g (t) dt
C2m ) (et + 1) (et — 1)7 (1 —eilsh)

S* (9)

+is\7Y +is v
x(T+er) 0 (e F1) 5
Applying Theorem [9] to these expressions, we get IMs > 0:
[5* @I, < Mzllgll,, , Vg€ Ly,
Considering the above mentioned estimations, we have:
1w lalll,, < M (2llgl, + 157 @), + 15~ @I],)
<2M(1+M)|gll,,, Vg€ Ly, VYmeN.

As a result, from this estimation and from basicity criterion we get that the
system (1.1) forms a basis in L,,. So, we proved

Theorem 2. Let p € H'™, p~ > 1 and the inequalities (5.2) hold

LR I
p(m) =S gy p(0) =S q(0)

Then, the system (1.1) forms a basis in L, .

1
We separately consider the case v, = _ﬁ' It follows from the argu-
p(m
ments cited above and from the expressions of the system {h}; h, >0
that the system (1.1) is minimal in L,, in this case as well. B
Represent the system (1.1) in the form
{ei[(n+1)t7(a+1)t+ﬂsignt], e*i[mtfat%»ﬁsignt] } ) (53)
’ n>0;m>1

It is obvious that multiplication of each term of the system (5.3) by the
function e’z doesn’t influence on its completeness in L,, . After multiplication

we get the system {I5.,, (t)}n>1.m>1, where

ch}-m (t) = (ei[nt—&t+ﬂsignt]; e—i[mt—&t+Bsignt]>
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1
a = oz+§. The appropriate parameter 7; of this system is 7; = 2 (d + ’8) =
T
v1 + 1. Therefore,

is fulfilled for 4.
Then, from the previous arguments, we get that the system

{Ig;m (t) }HZO; m>1"’

is complete in L,,. By {ﬁj{, hoiq }n>0 we denote a system determined by

the expressions hf, wherein we take & in the place of the parameter a. The

systems {I3.,, (t)}nZO; m>p and {hf{; hoy iy } satisfy the relations of Lemma

1. It directly follows from the expressions for the system {B;‘L‘, iL,_L 1 } N
n>0

that it doesn’t belong to the space L,,, since 7, > ﬁ and the required one
follows from Statement 1. From the uniqueness of the biorthogonal system to

the complete system, hence we get that the system {I{f;m (t)}n>0'fn>1 is not

minimal in Ly, . As a result, the system {IZ.,, (¢)} is also complete and

n;m>1
so the system (1.1) is complete in L,,. The fact that in this case it doesn’t
form a basis in L,,, is proved similar to the paper [12]. Consequently, it is
valid

Theorem 3. Let p € H™, p~ > 1 and the relations

T

+ b ! L < b < L
«@ - = ’ - - )

T 2p(m) 2¢(0) 7w  2p(0)

be fulfilled. Then the system (1.1) is complete and minimal in L,,, but it
doesn’t form a basis in it.

The remaining cases for the values of the parameters a and [ are con-
sidered similar to the paper [12]. As a result we get the following result.

1 1
Theorem 4. Let p € H®, p~ > 1 and ——— < é < ——— hold. The sys-

2¢(0) 7  2p(0)

1 B
tem (1.1) forms a basis in Ly, iff the inequality ——— < a+ — < 18
(- ’ 2m < T um
fulfilled.
Acknowledgment

The authors express their thanks to professor I.I. Sharapudinov for valuable
remarks.



Vol. 9 (2012) Basicity in Variable Spaces 497

References

[1] B.T. Bilalov, Basicity of some systems of exponents, cosines and sines, Differ.
Uravn., (26)1990, No.1, 10-16.

[2] B.T. Bilalov, Basis properties of some system of exponents cosines and sines.
Sibirsk. Mat. Zh., (45)2004, No.2, 264-273.

[3] B.T. Bilalov and Z.G. Guseynov, Bases from exponent in Lebesque spaces of
functions with variable summability exponents, Trans. Acad. Sci. Azerb. Ser.
Phys.-Tech. Math. Sci., (XXVIII)2008, No.1, 43-48.

[4] B.T. Bilalov and V.F. Salmanov, Uniform convergence of biorthogonal series
on one system of exponents, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math.
Sci., (XXIIT)2003, No.4, 25-34.

[5] I.I. Danilyuk, Nonregular boundary value problems on plane, Moscow, Nauka,
1975.

[6] G.G. Devdariani, On basicity of a system of functions. Differ. Uravn., (22)1987,
No.1, 170-171.

[7] L. Diening and M. Ruzicka, Calderon — Zigmund operators on generalized
Lebesgue spaces LPC) and problems related to fluid dynamics, J. Reine Angew.
Math., (563)2003, 197-220.

[8] F.D. Gakhov, Boundary value problems, Moscow, Nauka, 1977.

[9] V. Kokilashvili and S. Samko, Singular Integrals in Weighted Lebesgue Spaces
with Variable Exponent, Georgian Math. J., (10)2003, No.1, 145-156.

[10] O. Kovacik and J. Rakosnik, On Spaces LP*) and W™P®)  Czechoslovak Math.
J., (116)1991, No.41, 592-618.

[11] B.Ya. Levin, Distribution of the roots of entire functions, Moscow, GITTL,
1956

[12] E.I. Moiseev, Basicity of the system of exponents, cosines and sines in Lp.
Dokl. Akad. Nauk, (275)1984, No.4, 794-798.

13] A.M. Sedletskii, Biorthogonal expansion in series of exponents on the intervals

g

of a real azis. Uspekhi Mat. Nauk, (37)1982, No. 227, 51-95.

[14] LI. Sharapudinov, On uniform boundedness in L? (p = p(x)) of some families
of convolution operators, Mat. Zametki, (59)1996, No.2, 291-302.

[15] I.I. Sharapudinov, On topology of the space £r@ ([0,1]), Mat. ZametKki,
(26)1979, No.4, 613-632.

[16] I.I. Sharapudinov, On some problems of approzimation theory in the spaces
LP(®) (E), Anal. Math., (33)2007, No.2, 135-153.

[17] N. Wiener and R. Paley, Fourier transform in complex plane, Moscow, Nauka,
1964.

[18] F. Xianling and Z. Dun, On the spaces LP® (Q) and W™P®) (Q), J. Math.
Anal. Appl., (263)2001, 424-446.

[19] V.V. Zhikov, Averaging of variational calculus and theory of elasticity func-
tionals. Izv. Ross. Akad. Nauk Ser. Mat. , (50)1986, No.4, 675-710.

[20] V.V. Zhikov, Meier type estimations for solving Stockes nonlinear system. Dif-
fer. Uravn., (33)1997, No.1, 107-114.

[21] V.V. Zhikov, On some wvariational problems. Russ. J. Math. Phys., (5)1997,
No.1, 105-116.



498 B.T. Bilalov and Z.G. Guseynov Mediterr. J. Math.

[22] V.V. Zhikov and S.E. Pastukhova, On increased summability of the gradient
of solution of elliptic equations with variable nonlinearity exponent. Mat. Sb.,
(199)2008, No.12, 19-52.

[23] V.V. Zhikov and S.E. Pastukhova, On Trotter-Kato theorem in variable space.
Funct. Anal. Appl, (41)2007, No.4, 22-29.

Bilal T. Bilalov

Department of Nonharmonic Analysis

Institute of Mathematics and Mechanics of NAS of Azerbaijan
Str. F. Agayev 9

AZ1141 Baku

Azerbaijan

e-mail: bilalov.bilal@gmail.com

Zafar G. Guseynov

Sumgqait State University
Sumgqait

Azerbaijan

e-mail: s_sadigova@mail.ru

Received: May 3, 2010.
Revised: November 11, 2010.
Accepted: February 2, 2011.



	Basicity of a System of Exponents with a Piecewise Linear Phase in Variable Spaces
	Abstract
	1. Introduction
	2. Necessary notion and facts
	3. Hardy classes with a variable summability exponent
	4. Riemann problem in the classes H±pt
	5. Basic results
	Acknowledgment
	References


