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1. Introduction and preliminaries

The concept of a frame in Hilbert space has been introduced by Duffin and
Schaeffer [13] to study some deep problems in nonharmonic Fourier series.
Since then various generalization of frames such as frame of subspaces [6],
pseudo-frames [16], oblique frames [10], continuous frames [1, 4, 14], general-
ized frames [19] have been developed by several mathematicians. The concept
of a frames in Banach space has been introduced by Christensen and Stoeva
[9], Casazza, Han and Larson [7] and Gröchenig [15].

The p-frame and g-frame are two important generalizations of frames
in Banach spaces and Hilbert spaces, which in this article we unify these two
concepts. By utilizing von Neumann–Schatten frames many basic properties
of frames can be derived in a more general setting. In fact, a von Neumann–
Schatten frame is a sequence of bounded linear operators from a Banach
space X into Cp ⊆ B(H). The von Neumann–Schatten trace ideals Cp play
an important role in the operator theory and mathematical physics [18]. The
main goal of this paper is to define von Neumann-Schatten frames and to show
that p-frames and g-frames can be considered as such frames. Throughout
this paper, H and K are Hilbert spaces and {Ki : i ∈ N} ⊂ K denotes
a sequence of Hilbert spaces. Note that for any sequence {Ki : i ∈ N} of
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Hilbert spaces, we can always find a larger space K containing all the Hilbert
space Ki by setting K =

⊕
i∈N Ki.

Definition 1.1. A sequence {fi}∞i=1 ⊆ H is called a frame for H if there exist
A,B > 0 such that

A‖f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ B‖f‖2 (f ∈ H). (1.1)

The numbers A and B are called frame bounds. If we can choose A = B,
the frame is called tight. Given a frame {fi}∞i=1, the frame operator is defined
by

Sf =
∞∑
i=1

〈f, fi〉fi .

The series defining Sf converges unconditionally for all f ∈ H and S is a
bounded invertible self-adjoint operator. This leads to the following frame
decomposition

f = S−1Sf =
∞∑
i=1

〈f, S−1fi〉fi (f ∈ H).

The possibility of representing every f ∈ H in this way is the main feature
of a frame. The coefficients {〈f, S−1fi〉}∞i=1 are called frame coefficients. A
sequence satisfying the upper frame condition is called a Bessel sequence. A
sequence {fi}∞i=1 is Bessel sequence if and only if the operator T : l2 → H
given by T{ci} =

∑∞
i=1 cifi is a well-defined operator. In that case T, which

is called the pre-frame operator, is automatically bounded. When {fi}∞i=1 is
a frame, the pre-frame operator T is well-defined and S = TT ∗. For general
references on this theory, we refer the reader to [8, Section 5.1].

The notion of a frame extended to some various directions by several
authors [1, 4, 7, 9, 16, 3]. We need the follow notion of a g-frame due to W.
Sun [19].

Definition 1.2. A sequence {Λi ∈ B(H,Ki) : i ∈ N} a generalized frame, or
simply a g-frame for H with respect to {Ki : i ∈ N} if there are two positive
constant A and B such that

A‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ B‖f‖2 (f ∈ H). (1.2)

A sequence {gi}∞i=1 ⊆ X ∗ is called a p-frame (1 < p < ∞) if the norm
‖.‖ of X is equivalent to the �p-norm of the sequence {gi(.)} or there exist
constants A and B such that

A‖f‖ ≤ (
∞∑
i=1

|gi(f)|p)
1
p ≤ B‖f‖ (f ∈ X ). (1.3)

Christensen and Stoeva [9] without further assumption prove that a p-frame
allows every element f ∈ X ∗ to be represented as an unconditionally series
g =

∑∞
i=1 αigi for coefficients {αi} ∈ �q.
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We introduce the notion of a von Neumann-Schatten p-frame and show
that every p-frame for a sparable Banach space X is a von Neumann-Schatten
p-frame with respect to C. Also, we give a characterization of von Neumann-
Schatten q-Riesz bases for X ∗.

2. von Neumann-Schatten frames

Throughout this section we assume that (X , ‖.‖) is a separable Banach space
with dual X ∗ and H is a Hilbert space also 1 < p < ∞ and q is the conjugate
exponent to p, i.e., 1

p + 1
q = 1.

We first introduce some necessary definitions and notations and refer
the reader to [17, 11] more information. Suppose {Xi : i ∈ I} is a collection of
normed spaces. Then Π{Xi : i ∈ I} is a vector space if the linear operations
are defined coordinatewise. For 1 ≤ p < ∞, define⊕

p

Xi ≡ {x ∈ ΠiXi : ‖x‖ = (
∑
i

‖xi‖p)
1
p < ∞}.

It is known that
⊕

p Xi is a Banach space if and only if so is each Xi.

Let B(H) denote the C∗-algebra of all bounded linear operators on a
complex separable Hilbert space H. For a compact operator T ∈ B(H), let
s1(T ) ≥ s2(T ) ≥ ... ≥ 0 denote the singular values of T , i.e., the eigenval-

ues of the positive operator |T | = (T ∗T )
1
2 , arranged in a decreasing order

and repeated according to multiplicity. For 1 ≤ p < ∞, the von Neumann-
Schatten p-class Cp is defined to be the set all compact operators T for which∑∞

i=1 s
p
i (T ) < ∞.

For T ∈ Cp, the von Neumann Schatten p-norm of T is defined by

‖T ‖p =

( ∞∑
i=1

spi (T )

) 1
p

= (τ |T |p) 1
p (2.1)

where τ is the usual trace functional which defines as τ(T ) =
∑

e∈E〈T (e), e〉,
where E is any orthonormal basis of H. It is convenient to let C∞ denote
the class of compact operators, and in this case ‖T ‖∞ = s1(T ) is the usual
operator norm.

Lemma 2.1. [17] Suppose that 1 ≤ p ≤ ∞, q is the index conjugate to p, and
T ∈ B(H). Then T ∈ Cp if and only if

sup{|τ(ST )| : S ∈ F(H), ‖S‖q ≤ 1} < ∞ (2.2)

where F(H) is the set of finite-rank operators on H. When this is so, the
value of the supremum is ‖T ‖p.

The following theorem shows that the Banach space Cp is reflexive for
1 < p < ∞. It is known that if T ∈ Cp and S ∈ Cq, then T S,ST ∈ C1 and
τ(T S) = τ(ST ).
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Theorem 2.2. [17] Suppose that 1 < p < ∞ and q is the index conjugate to
p. Then for each S ∈ Cq the function ϑS(T ) = τ(T S), where T ∈ Cp, is
a continuous linear functional on Cp. Moreover the mapping S → ϑS is an
isometric isomorphism from Cq onto the dual space (Cp)∗ of Cp.

If x, y are elements of a Hilbert spaces H we define the operator x ⊗ y
on H by

(x⊗ y)(z) = 〈z, y〉x.

It is obvious that ‖x ⊗ y‖ = ‖x‖‖y‖ and the rank of x ⊗ y is one if x and
y are non-zero. If x1, x2, y2, y2 ∈ H, then the following equalities are easily
verified:

(x1 ⊗ x2)(y1 ⊗ y2) = 〈y1, x2〉(x1 ⊗ y2)

(x1 ⊗ y1)
∗ = y1 ⊗ x1.

Note that if x, y ∈ H, then ‖x⊗y‖p = ‖x⊗y‖q = ‖x‖‖y‖ and τ(x⊗y) = 〈x, y〉
so x⊗y is in Cp for all p ≥ 1. We recall that C2 is a Banach space with respect
to the norm ‖.‖2. It is shown that the space C2 with the inner product

[T ,S]τ = τ(S∗T )

is a Hilbert space. If {ηi : i ∈ I} and {ζi : i ∈ I} are orthonormal bases in H
and νi,j = ηi ⊗ ζj , then {νi,j : i, j ∈ I} is an orthonormal basis of C2 [17].

Definition 2.3. A countable family {Gi}∞i=1 of bounded linear operators from
X to Cp ⊆ B(H) is said to be a von Neumann-Schatten p-frame for X with
respect to H if there exist constants A,B > 0 such that

A‖f‖ ≤
( ∞∑

i=1

‖Gi(f)‖pp

) 1
p

≤ B‖f‖ (f ∈ X ). (2.3)

The sequence {Gi} is a von Neumann-Schatten p-Bessel sequence if at least
upper von Neumann-Schatten p-frame condition is satisfied. In the other
words, countable family {Gi} of bounded linear operators from X to Cp is a
von Neumann-Schatten p-frame for X with respect to H if the norm ‖.‖ of
X is equivalent to �p-norm of the sequence {‖Gi(.)‖p}∞i=1 .

Now we define von Neumann-Schatten p-frame operators as follows. Let
{Gi} be a von Neumann-Schatten p-frame for X with respect to H. Define

U : X →
⊕

CP (2.4)

U(f) = {Gi(f)}

and

T :
⊕

Cq → X ∗ (2.5)

T ({Ai}) =
∞∑
i=1

AiGi .
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The operator U is frequently called the analysis operator and T is the synthe-
sis operator. It is clear that if {Gi} is a von Neumann-Schatten p-frame or just
a von Neumann-Schatten p-Bessel sequence then U is a bounded operator.

If set H = C, then B(H) = Cp = Cq = C,
⊕

Cp = �p and also
⊕

Cq = �q.
Hence every usual p-frame for X is a von Neumann-Schatten p-frame for X
with respect to C. Hence we have the following.

Lemma 2.4. A p-frame for X can be considered as a von Neumann-Schatten
p-frame for X with respect to C.

Lemma 2.5. If {Gi} is a von Neumann-Schatten p-frame for X with respect
to H, then the operator U given by (2.4) has closed range, and X is reflexive.

Proof. By the von Neumann-Schatten p-frame condition, the operator U is
bounded below so U has closed range and X is isomorphic to Ran(U). But
Ran(U) is reflexive because it is a closed subspace of the reflexive space

⊕
Cp.

Therefore X is reflexive. �

Theorem 2.6. A sequence {Gi} ⊆ B(X , Cp) is a von Neumann-Schatten p-
Bessel sequence with respect to H with a bound B if and only if the operator
defined by (2.5) is a well defined bounded operator with ‖T‖ ≤ B.

Proof. First, let {Gi} be a von Neumann-Schatten p-Bessel sequence, i ∈ N

and {Ai} ∈ Cq. Then for m > n we have∣∣∣∣∣
m∑
i=1

AiGi −
n∑

i=1

AiGi

∣∣∣∣∣ = sup
f∈X ,‖f‖≤1

{∣∣∣∣∣
m∑

i=n+1

τ (Gi(f)Ai)

∣∣∣∣∣
}

≤ sup
f∈X ,‖f‖≤1

{
m∑

i=n+1

|τ (Gi(f)Ai)|
}

≤ sup
f∈X ,‖f‖≤1

{
m∑

i=n+1

‖Gi(f)Ai‖1

}

≤ sup
f∈X ,‖f‖≤1

{
m∑

i=n+1

‖Gi(f)‖p‖Ai‖q

}

≤ sup
f∈X ,‖f‖≤1

{
(

m∑
i=n+1

‖Gi(f)‖pp)
1
p (

m∑
i=n+1

‖Ai‖qq)
1
q

}

≤ B

(
m∑

i=n+1

‖Ai‖qq

) 1
q

.

It follows from {Ai} ∈
⊕

Cq that,
∑∞

i=1 AiGi is convergent and T is well-
defined. It is obvious that with the same calculations as above now gives
that

‖T ({Ai})‖ ≤ B‖{Ai}‖q.
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Therefore T is bounded and ‖T‖ ≤ B. For the converse, assume that T is
well defined. By the Banach Steinhaus theorem T is automatically bounded
in this case. Given f ∈ X , define

ϕj
f : Cq → C, ϕj

f (A) = T ({Ai})(f) = AjGj(f),

where {Ai}∞i=1 is a sequence with the property Ai = 0 if i �= j and Aj = A.
Then

‖ϕj
f‖ = sup{|ϕj

f (A)| : A ∈ Cq, ‖A‖ ≤ 1}
= sup{|τ(Gj(f)A)| : A ∈ Cq, ‖A‖ ≤ 1}
= ‖Gj(f)‖p.

It follows that ϕj
f is a continues linear functional on Cq.

Now we define the linear functional ϕf =
⊕

ϕi
f on

⊕
Cq as follows

ϕ({Ai}) =
⊕

ϕi
f (Ai) = T ({Ai})(f) =

∞∑
i=1

AiGi(f).

Therefore,

|ϕf{Ai}| = |(T{Ai})(f)| ≤ ‖f‖‖T{Ai}‖ ≤ ‖f‖‖T‖‖{Ai}‖q .
Whence ϕf is a continues linear functional. On the other hand,

‖ϕf‖ = (

∞∑
i=1

‖ϕi
f‖p)

1
p = (

∞∑
i=1

‖Gi(f)‖p)
1
p ,

since (
⊕

Cq)∗ =
⊕

Cp. Now by the last inequality we get
∞∑
i=1

‖Gi(f)‖p)
1
p = ‖ϕf‖ ≤ ‖T‖‖f‖.

So {Gi} is a von Neumann–Schatten p-Bessel sequence with bound ‖T‖ . �
Now we can consider the following lemma which is similar to Lemma

2.3 in [9].

Lemma 2.7. Suppose that {Gi} is a von Neumann–Schatten p-Bessel sequence.
Then

(i) U∗ = T
(ii) U ⊆ T ∗, i.e., T ∗ is an extension of U . If X is reflexive, then U = T ∗.

In the following theorem we get an equivalent characterization of a von
Neumann-Schatten p-frame for X .

Theorem 2.8. Let X be a reflexive Banach space. Then {Gi}∞i=1 ⊆ B(X , Cp) is
a von Neumann-Schatten p-frame for X if and only if the operator T defined
as following

T :
⊕

Cq → X ∗

T ({Ai}) =
∞∑
i=1

AiGi
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is well-defined and onto.

Definition 2.9. Let 1 < q < ∞. A family {Gi}∞i=1 ⊆ B(X , Cp) where 1
p+

1
q = 1,

is called a von Neumann-Schatten q-Riesz basis for X ∗ with respect to H if

(i) {f ∈ X : Gi(f) = 0 ∀i ∈ N} = {0},
(ii) there are positive constant A and B such that for any finite subset

I1 ⊆ N and {Ai} ∈
⊕

Cq

A(
∑
i∈I1

‖Ai‖qq)
1
q ≤ ‖

∑
i∈I1

AiGi‖ ≤ B(
∑
i∈I1

‖Ai‖qq)
1
q .

The assumption of latter definition implies that
∑∞

i=1 AiGi converges uncon-
ditionally for all {Ai}∞i=1 ∈

⊕
Cq and

A‖{Ai}‖q ≤ ‖
∞∑
i=1

AiGi‖ ≤ B‖{Ai}‖q .

Thus {Gi}∞i=1 ⊆ B(X , Cp) is a von Neumann-Schatten q-Riesz basis for X ∗
with respect to H if and only if the operator T defined in Theorem 2.8 is
both bounded and bounded below. For p = 2 and H = C this definition is
consistent with the standard definition of a Riesz basis for the closed span of
its elements.

Corollary 2.10. Let {Gi}∞i=1 ⊆ B(X , Cp) be a von Neumann-Schatten q-Riesz
basis for X ∗ with respect to H. Then {Gi}∞i=1 is a von Neumann-Schatten
p-Bessel sequence for X with a bound ‖T‖.

Proof. The von Neumann-Schatten q-Riesz basis assumption implies that
the operator T given as in Theorem 2.8 is well defined and bounded. By
Proposition 2.6 we conclude that {Gi}∞i=1 is a von Neumann-Schatten p-Bessel
sequence for X with a bound ‖T‖. �

3. Hilbert-Schmidt frames

In this section, we introduce the Hilbert-Schmidt frames as a class of von
Neumann-Schatten p-frames and present some examples. We also show that
every g-frame can be considered as a Hilbert-Schmidt frame.

Definition 3.1. In the Definition 2.3 assume that X = K is a Hilbert space
and p = 2, then countable family {Gi} of bounded linear operators from K
to C2 ⊆ B(H) is said to be a Hilbert Schmidt frame for K with respect to H.

In other word a sequence {Gi} of bounded linear operators from H into
C2 ⊆ B(K) is said to be a Hilbert-Schmidt frame, or simply a HS-frame for
H with respect to K, if there exist two positive number A and B such that

A‖f‖2 ≤
∑
i∈I

‖Gi(f)‖22 ≤ B‖f‖2, (f ∈ H).
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Example 3.2. Let H be a separable Hilbert space and {fi}∞i=1 be a frame for
H. Let Gi be the functional induced by fi, namely

Gi(f) = 〈f, fi〉 (f ∈ H).

It is obvious that {Gi}∞i=1 is a HS- frame for H with respect to C since

A‖f‖2 ≤
∑
i∈I

‖Gi(f)‖22 =
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2,

Example 3.3. Let {ei} be an orthonormal basis in H. Define Gi : C2 → C2 by

Gi(A) = A(ei ⊗ ei) = Aei ⊗ ei

Then
∑

‖Gi‖22 =
∑

‖Aei‖2 = ‖A‖22. Hence {Gi} is a HS-tight frame for C2
respect to H.

Lemma 3.4. Let {fi}∞i=1 be a frame with bounds A and B for a Hilbert space
H. Then the bounded operators {Gi}∞i=1 defined by

Gi : C2 → C2, Gi(T ) = T (fi ⊗
fi

‖fi‖
) = T fi ⊗

fi
‖fi‖

is a HS-frame for C2 respect to H.

Proof. First for an orthonormal basis {ei}∞i=1 of H we would show that

A
∑
i

‖T ∗ei‖2 ≤
∑
j

‖T fj‖2 ≤ B
∑
i

‖T ∗ei‖2, (3.1)

where T ∗ is the adjoint of T . Indeed,∑
j

‖T fj‖2 =
∑
j

∑
i

|〈T fj , ei〉|2

=
∑
i

∑
j

|〈fj , T ∗ei〉|2

≤ B
∑
i

‖T ∗ei‖2.

Also the first inequality in (3.1) is similar. It is well-known that T is an Hilbert
Schmidt operator if and only if its adjoint is as well, and ‖T ‖2 = ‖T ∗‖2.
Combining this with (3.1) we get

A‖T ‖22 ≤
∑
j

‖Gi(T )‖22 =
∑
j

‖T fj‖2 ≤ B‖T ‖22 .

Hence {Gi} is a HS-frame for C2 respect to H with the same bounds. �

Let y0 be an unit vector in Hilbert spaceK then the operator U fromK to
B(K) defined by Ux = x⊗y0 is a linear isometry since ‖Ux‖ = ‖x⊗y0‖ = ‖x‖,
so we can consider K as subspace of B(K).

Lemma 3.5. Let {Λi : i ∈ N} be a g-frame for H with respect to {Ki : i ∈ N}.
Then {Λi : i ∈ N} is HS-frame for H with respect K =

⊕
i∈N Ki.
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Proof. We can consider Ki ⊆ K ⊆ C2 ⊆ B(K). For every f ∈ H we have
Λif ∈ Ki ⊆ C2 and ‖Λif‖2 = ‖Λif‖, so

A‖f‖2 ≤
∞∑
i=1

‖Λif‖22 =
∞∑
i=1

‖Λif‖2 ≤ B‖f‖2 (f ∈ H). �

Remark 3.6. W. Sun [19] shown that pseudo-frames (Li and Ogawa [16]), or
similar, oblique frames (Christensen and Eldar [10]) or outer frames (Al-
droubi, Cabrelli, and Molter [2]), frames of subspaces (Casazza and Ku-
tyniok [6] and Asgari and Khosravi [5]), time-frequency localization oper-
ators Dörfler, Feichtinger and Gröchenig [12]) are a class of g-frames. Hence,
Lemma 3.5 implies that all of them are a class of HS-frames.

Let {Gi} be a HS-frame for H with respect to K. Define the HS- frame
operator S as follows,

Sf =
∑
i∈I

G∗i Gi(f) (f ∈ H), (3.2)

where G∗i is the adjoint operator of Gi.
Now we show that that the operator S is well define on H. To see this,

let n < m be integers. We have∥∥∥∥∥
m∑
i=n

G∗i Gi(f)

∥∥∥∥∥ = sup
g∈H,‖g‖=1

{∣∣∣∣∣〈
m∑
i=n

G∗i Gi(f), g〉
∣∣∣∣∣
}

= sup
g∈H,‖g‖=1

{∣∣∣∣∣
[

m∑
i=n

Gif,Gig

]
τ

∣∣∣∣∣
}

= sup
g∈H,‖g‖=1

{∣∣∣∣∣
m∑
i=n

τ(G∗i (g)Gi(f))

∣∣∣∣∣
}

≤ sup
g∈H,‖g‖=1

{
m∑
i=n

‖(G∗i (g)Gi(f)‖1

}

≤ sup
g∈H,‖g‖=1

{
m∑
i=n

‖G∗i (g)‖2‖Gi(f)‖2

}

≤ sup
g∈H,‖g‖=1

{
m∑
i=n

(‖Gi(g)‖22)
1
2 ‖(

m∑
i=n

‖Gi(f)‖22)
1
2

}

≤ B
1
2

(
m∑
i=n

‖Gi(f)‖22

) 1
2

.

Now we see that the series in (3.2) is convergent. Hence Sf is well defined
for any f ∈ H.

Lemma 3.7. Let {Gi} be a HS-frame with frame operator S and frame bounds
A and B. Then S is bounded invertible self-adjoint and positive.
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Proof. It is easy to check that for any f, g ∈ H

〈Sf, g〉 = 〈
∞∑
i=1

G∗i Gi(f), g〉 =
∞∑
i=1

[Gi(f),Gi(g)]τ =

∞∑
i=1

〈f,G∗i Gi(g)〉 = 〈f, Sg〉.

Hence S is self-adjoint. On the other hand,

‖S‖ = sup{|〈Sf, f〉| : ‖f‖ = 1} = sup

{∑
i∈I

‖Gi(f)‖22 : ‖f‖ = 1

}
≤ B.

Thus S is a bounded self-adjoint operator. SinceA‖f‖2 ≤ 〈Sf, f〉 ≤ ‖Sf‖‖f‖,
we have ‖Sf‖ ≥ A‖f‖, which implies that S is bounded below (injective) and
Ran(S) is closed in H. Let g ∈ H such that 〈Sf, g〉 = 0 for every f ∈ H.
Then we have 〈f, Sg〉 = 0 for every f ∈ H. This implies that Sg = 0 and
therefore g = 0. Hence Ran(S) = H. Consequently, S is invertible, and
‖f‖ = ‖S−1Sf‖ ≤ A−1‖Sf‖ and ‖S−1‖ ≤ A−1 . �

Remark 3.8. By using the properties of the Hilbert-Schmidt operator in
Lemma 3.7 we have

f = SS−1f =
∑
i∈I

G∗i GiS
−1f (f ∈ H)

and

f = S−1Sf =
∑
i∈I

S−1G∗i Gif (f ∈ H).
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