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1. Introduction and basic results

In this paper we shall consider a property which is related to Weyl type
theorems for bounded linear operators T ∈ L(X), defined on a complex
Banach space X. This property, that we call property (R), means that the
isolated points of the spectrum σ(T ) of T which are eigenvalues of finite
multiplicity are exactly those points λ of the approximate point spectrum for
which λI − T is upper semi-Browder (see later for definitions). Property (R)
is strictly related to a strong variant of classical Weyl’s theorem, the so-called
property (w) introduced by Rakočević in [26], and more extensively studied
in recent papers ([11], [3], [6], [8], [10]). We shall characterize property (R) in
several ways and we shall also describe the relationships of it with the other
variants of Weyl’s theorem. Our main tool is a localized version of the single
valued extension property. In the last part, we shall consider the property
(R) in the framework of polaroid type operators.

We begin with some preliminary definitions and basic properties.
Throughout this paper we denote by L(X) the Banach algebra of all bounded
linear operators on an infinite-dimensional complex Banach space X. For an
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operator T ∈ L(X) by α(T ) we denote the dimension of the kernel ker T ,
and by β(T ) the codimension of the range T (X). Let

Φ+(X) := {T ∈ L(X) : α(T ) <∞ and T (X) is closed}
be the class of all upper semi-Fredholm operators, and let

Φ−(X) := {T ∈ L(X) : β(T ) <∞}
be the class of all lower semi-Fredholm operators. The class of all semi-
Fredholm operators is defined by Φ±(X) := Φ+(X) ∪ Φ−(X), while the
class of all Fredholm operators is defined by Φ(X) := Φ+(X) ∩ Φ−(X). If
T ∈ Φ±(X), the index of T is defined by ind (T ) := α(T ) − β(T ). Recall
that a bounded operator T is said bounded below if it injective and has closed
range. The upper semi-Weyl operators are defined as

W+(X) := {T ∈ Φ+(X) : indT ≤ 0},
the lower semi-Weyl operators are defined by

W−(X) := {T ∈ Φ−(X) : indT ≥ 0}.
The set of Weyl operators is defined by

W (X) := W+(X) ∩W−(X) = {T ∈ Φ(X) : indT = 0}.
Evidently, if T is bounded below, then T ∈ W+(X), while if T is onto, then
T ∈ W−(X). The classes of operators defined above generate the following
spectra. The approximate point spectrum

σa(T ) := {λ ∈ C : λI − T is not bounded below},
and the surjectivity spectrum

σs(T ) := {λ ∈ C : λI − T is not surjective}.
The Weyl spectrum is defined by

σw(T ) := {λ ∈ C : λI − T /∈W (X)},
the upper semi-Weil spectrum (also known as the Weyl essential approximate
point spectrum) is defined by

σuw(T ) := {λ ∈ C : λI − T /∈W+(X)},
while the lower semi-Weil spectrum (also known as the Weyl essential sur-
jectivity spectrum) is defined by

σlw(T ) := {λ ∈ C : λI − T /∈W−(X)}.
Obviously, σw(T ) = σuw(T ) ∪ σlw(T ) and from the classical Fredholm

theory we have:

σuw(T ) = σlw(T
∗), σlw(T ) = σuw(T

∗).

Let p := p(T ) be the ascent of an operator T ; i.e. the smallest non-
negative integer p such that ker T p = ker T p+1. If such integer does not exist
we put p(T ) = ∞. Analogously, let q := q(T ) be descent of an operator T ;
i.e. the smallest non-negative integer q such that T q(X) = T q+1(X), and if
such integer does not exist we put q(T ) = ∞. It is well-known that if p(T )
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and q(T ) are both finite, then p(T ) = q(T )([22, Proposition 38.3]). Moreover,
0 < p(λI−T ) = q(λI−T ) <∞ precisely when λ is a pole of the resolvent of
T , see Proposition 50.2 of Heuser [22]. The class of all upper semi-Browder
operators is defined

B+(X) := {T ∈ Φ+(X) : p(T ) <∞},
the class of all lower semi-Browder operators is defined

B−(X) := {T ∈ Φ−(X) : q(T ) <∞}.
The class of all Browder operators is defined

B(X) := B+(X) ∩B−(X).

We have

B(X) ⊆W (X), B+(X) ⊆W+(X), B−(X) ⊆W−(X),

see [1, Theorem 3.4].
The Browder spectrum of T ∈ L(X) is defined by

σb(T ) := {λ ∈ C : λI − T /∈ B(X)},
the upper semi-Browder spectrum is defined by

σub(T ) := {λ ∈ C : λI − T /∈ B+(X)},
and analogously the lower semi-Browder spectrum is defined by

σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)}.
Clearly, σb(T ) = σub(T ) ∪ σlb(T ), σw(T ) ⊆ σb(T ) and σuw(T ) ⊆ σub(T ).

The single valued extension property plays an important role in local
spectral theory, see the recent monograph of Laursen and Neumann [24] and
Aiena [1]. In this article we shall consider the following local version of this
property:

Definition 1.1. Let X be a complex Banach space and T ∈ L(X). The operator
T is said to have the single valued extension property at λ0 ∈ C (abbreviated
SVEP at λ0), if for every open disc D centered at λ0, the only analytic func-
tion f : D → X which satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ D

is the function f ≡ 0.
An operator T ∈ L(X) is said to have SVEP if T has SVEP at every

point λ ∈ C.

From the identity theorem for analytic function it easily follows that
T ∈ L(X), as well as its dual T ∗, has SVEP at every point of the boundary
of the spectrum σ(T ) = σ(T ∗), so both T and T ∗ have SVEP at every isolated
point of the spectrum. Note that

p(λI − T ) <∞⇒ T has SVEP at λ, (1)

and dually

q(λI − T ) <∞⇒ T ∗ has SVEP at λ, (2)
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see [1, Theorem 3.8]. Furthermore, from definition of SVEP we have

σa(T ) does not cluster at λ⇒ T has SVEP at λ, (3)

and dually

σs(T ) does not cluster at λ⇒ T ∗ has SVEP at λ. (4)

An important T - invariant subspace in local spectral theory is the quasi-
nilpotent part of T , defined as

H0(T ) := {x ∈ X : lim
n→∞ ‖T

nx‖ 1
n = 0}.

We also have

H0(λI − T ) closed⇒ T has SVEP at λ. (5)

Theorem 1.2. ([1, Chapter 3]) All the implications (a)–(e) become equiva-
lences if we assume that λI − T ∈ Φ±(X).

2. Weyl’s type theorems

Let write iso K for the set of all isolated points of K ⊆ C. If T ∈ L(X) set

p00(T ) := σ(T ) \ σb(T ) = {λ ∈ σ(T ) : λI − T ∈ B(X)}.
Note that every λ ∈ p00(T ) is a pole of the resolvent and hence an isolated
point of σ(T ), see [22, Proposition 50.2 ]. Moreover, p00(T ) = p00(T

∗). Define

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) <∞}.
Obviously,

p00(T ) ⊆ π00(T ) for every T ∈ L(X). (6)

For a bounded operator T ∈ L(X) let us define

πa
00(T ) := {λ ∈ iso σa(T ) : 0 < α(λI − T ) <∞},

and

pa00(T ) := σa(T ) \ σub(T ) = {λ ∈ σa(T ) : λI − T ∈ B+(X)}.
Lemma 2.1. If T ∈ L(X), then

p00(T ) ⊆ pa00(T ) ⊆ πa
00(T ) and π00(T ) ⊆ πa

00(T ). (7)

Proof. Let λ ∈ p00(T ) . Then λI − T ∈ B(X) ⊆ W (X), and since λ ∈ σ(T )
we must have α(λI − T ) > 0. Hence λ ∈ σa(T ). Obviously, λI − T ∈ B+(X),
so λ ∈ pa00(T ). This shows the inclusion p00(T ) ⊆ pa00(T ). The inclusion
pa00(T ) ⊆ πa

00(T ) follows once observed that if λ ∈ pa00(T ), then p(λI − T ) <
∞, so T has SVEP at λ and this is equivalent, by Theorem 1.2, to saying that
λ ∈ isoσa(T ). Furthermore, α(λI − T ) > 0, since λI − T has closed range
and λ ∈ σa(T )), and α(λI − T ) < ∞, since λI − T ∈ B+(X). The inclusion
π00(T ) ⊆ πa

00(T ) is obvious. �
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Set Δ(T ) := σ(T ) \ σw(T ). Since λI − T ∈ W (X) implies that (λI −
T )(X) is closed, we can write

Δ(T ) = {λ ∈ C : λI − T ∈W (X), 0 < α(λI − T )}.
Analogously, if we set Δa(T ) := σa(T ) \ σuw(T ), then

Δa(T ) = {λ ∈ C : λI − T ∈W+(X), 0 < α(λI − T )}.
Following Coburn [17], we say that Weyl’s theorem holds for T ∈ L(X)

if Δ(T ) = π00(T ). There are several other variants of Weyl’s theorem. Two
variants of Weyl’s theorem, introduced by Harte and W. Y. Lee [21], are
defined as follows:

(I) T ∈ L(X) is said to satisfy Browder’s theorem if Δ(T ) = p00(T ), or
equivalently σw(T ) = σb(T ).

(II) T ∈ L(X) is said to satisfy a-Browder’s theorem if Δa(T ) = pa00(T ), or
equivalently σuw(T ) = σub(T ).

Note that Weyl’s theorem for T entails Browder’s theorem for T . More-
over, a-Browder’s theorem for T entails Browder’s theorem holds for T and
the converse is not true. It is known that both Browder’s theorem and a-
Browder’s theorem hold if T or T ∗ has SVEP. Precisely, we have that a-
Browder’s theorem holds for T if and only if T has SVEP at every λ /∈ σuw(T ),
and, dually, a-Browder’s theorem holds for T ∗ if and only if T has SVEP at
every λ /∈ σlw(T ), see [9, Theorem 2.3].

The following approximate point spectrum variants of Weyl’s theorem
have been introduced by Rakočević ([27], [26]):

(III) T ∈ L(X) is said to satisfy a-Weyl’s theorem if Δa(T ) = πa
00(T ).

(IV) T ∈ L(X) is said to satisfy property (w) if Δa(T ) = π00(T ).

The class of operators satisfying a-Weyl’s theorem has been studied by several
authors (see, for instance, [27], [19], [18], [2]). Property (w) and its pertur-
bation properties has been studied in very recent papers ([11], [6], [10], [3]).
The following diagram resume the relationships between Weyl’s theorems,
a-Browder’s theorem and property (w).

Property (w) ⇒ a-Browder’s theorem
⇓ ⇑

Weyl’s theorem ⇐ a-Weyl’s theorem

(see [26] and [11]). Examples of operators satisfying Weyl’s theorem but not
property (w) may be found in [11]. Property (w) is not intermediate between
Weyl’s theorem and a-Weyl’s theorem, see [11] for examples. The precise
relationships between Browder type theorems and Weyl type theorems are
described by the following theorem:

Theorem 2.2. Suppose that T ∈ L(X). Then we have

(i) T satisfies Weyl’s theorem if and only if Browder’s theorem holds for T
and p00(T ) = π00(T ) ([2]).
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(ii) T satisfies a-Weyl’s theorem if and only if a-Browder’s theorem holds
for T and pa00(T ) = πa

00(T ) ([2]).

The equalities p00(T ) = π00(T ) and pa00(T ) = πa
00(T ) have been charac-

terized in several ways, see [1, Chapter 3]. In this note we study the equality
pa00(T ) = π00(T ).

Definition 2.3. We say that an operator T ∈ L(X) satisfies property (R) if
the equality pa00(T ) = π00(T ) holds.

The next result shows that, roughly speaking, property (R) may be
thought as half of the property (w):

Theorem 2.4. T satisfies property (w) if and only if a-Browder’s theorem
holds for T and T has property (R) ([11]).

The first example shows that property (R) is weaker than property (w).

Example 2.5. Let R ∈ L(�2(N)) denote the classical unilateral right shift, let
Q denote a quasi-nilpotent operator. Define T := R⊕R′⊕Q, R′ the Hilbert
adjoint of R. It is well-known that R′ is an unilateral left shift. Clearly,
σa(T ) = σub(T ) = D(0, 1), where D(0, 1) denotes the the closed unit disc.
Since π00(T ) = ∅, then T satisfies property (R), while T does not satisfy
property (w), since σuw(T ) = Γ ∪ {0}, where Γ denotes the unit circle of C,
so σa(T ) \ σuw(T ) �= ∅ = π00(T ).

The following example shows that property (R) for an operator T is not
transmitted to the dual T ∗.

Example 2.6. Let T ∈ �2(N)) be the weighted right unilateral shift defined
by

T (x1, x2, . . . ) := (0,
x1

2
,
x2

3
, . . . ) for all x = (x1, x2, . . . ) ∈ �2(N).

Clearly, T is quasi-nilpotent, σa(T ) = σub(T ) = {0}, pa00(T ) = ∅, so T satisfies
property (R). On the other hand T ∗ does not satisfy property (R).

Definition 2.7. A bounded operator T ∈ L(X) is said to be left Drazin invert-
ible if p := p(T ) < ∞ and T p+1(X) is closed. We say that λ is a left pole
if λ ∈ σa(T ) and λI − T is left Drazin invertible. A left pole λ is said to be
of finite rank if α(λI − T ) < ∞. Analogously, T ∈ L(X) is said to be right
Drazin invertible if q := q(T ) <∞ and T q(X) = T q+1(X) is closed. We say
that λ is a right pole if λ ∈ σs(T ) and λI − T is right Drazin invertible. A
right pole λ is said to be of finite rank if β(λI − T ) <∞.

Clearly, if λ is a pole of the resolvent of T , then λ is either a left-pole
and a right pole of the resolvent of T . Indeed, if p := p(λI − T ) = q(λI − T ),
then the subspace (λI−T )p+1(X) = (λI−T )p(X) is closed, since it coincides
with the kernel of the spectral projection associated with the set {λ}.
Remark 2.8. If α(T ) < ∞, then α(Tn) < ∞ for all n ∈ N, and analogously
if β(T ) <∞, then β(Tn) <∞ for all n ∈ N, for a proof see [12, Lemma 2.2].
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Clearly, p00(T ) is the set of all poles of the resolvent having finite rank.
The next result gives a similar characterization of pa00(T ).

Lemma 2.9. Let T ∈ L(X). Then we have:

(i) λ ∈ pa00(T ) if and only if λ is a left pole of finite rank for T .
(ii) λ ∈ pa00(T

∗) if and only if λ is a right pole of finite rank for T .

Proof. (i) Suppose λ be a left pole of finite rank. We may assume λ = 0.
Then, 0 ∈ σa(T ), T is left Drazin invertible, so p(T ) < ∞. The condition
of left Drazin invertibility is equivalent to saying that T is upper semi B-
Browder, i.e. there exists n ∈ N such that Tn(X) is closed and the restriction
Tn := T |Tn(X) is upper semi-Browder (see [7, Theorem 2.5] for details),
in particular upper semi-Fredholm. Since λ is a left pole of finite rank we
have α(T ) < ∞ and hence α(Tn) < ∞, so Tn ∈ Φ+(X) and from the
classical Fredholm theory this implies that T ∈ Φ+(X). Since p(T ) < ∞
we then conclude that T ∈ B+(X), so 0 /∈ σub(T ), and consequently 0 ∈
σa(T ) \ σub(T ) = pa00(T ).

Conversely, assume that 0 ∈ pa00(T ). Then 0 ∈ σa(T ) \ σub(T ), hence
p := p(T ) < ∞ and T ∈ Φ+(X). From Fredholm theory we know that
Tn ∈ Φ+(X) for all n ∈ N, so T p+1(X) is closed. Thus T is left Drazin
invertible. But 0 ∈ σa(T ), thus 0 is a left pole having finite rank, since
α(T ) <∞.

(ii) Suppose λ be a right pole of finite rank. We may assume λ = 0.
Then 0 ∈ σs(T ) = σa(T

∗), T is right Drazin invertible and q(T ) < ∞. The
condition of right Drazin invertibility is equivalent to saying that T is lower
semi B-Browder, i.e. there exists n ∈ N such that Tn(X) is closed and the
restriction Tn := T |Tn(X) is lower semi-Browder (see [7, Theorem 2.5]), in
particular lower semi-Fredholm. Since β(T ) < ∞, then β(Tn) < ∞, hence
Tn ∈ Φ−(X), from which we obtain that T ∈ Φ−(X). Since q(T ) < ∞
we then conclude that T ∈ B−(X), or equivalently T ∗ ∈ B+(X

∗), hence
0 /∈ σub(T

∗). Therefore, 0 ∈ σa(T
∗) \ σub(T

∗) = pa00(T
∗).

Conversely, assume that 0 ∈ pa00(T
∗). Then 0 ∈ σa(T

∗) \ σub(T
∗) and

since, by duality σub(T
∗) = σlb(T ), it then follows that 0 ∈ σs(T ) \ σlb(T ).

Therefore, q := q(T ) <∞ and T ∈ Φ−(X). From Fredholm theory we know
that Tn ∈ Φ−(X) for all n ∈ N, in particular T q(X) is closed. Thus T is right
Drazin invertible. But 0 ∈ σs(T ), thus 0 is a right pole of T . Finally, since
T ∈ Φ−(X) we have β(T ) < ∞ and consequently 0 is a right pole of finite
rank for T . �

Theorem 2.10. If T ∈ L(X), then we have:

(i) T satisfies property (R) if and only if π00(T ) coincides with the set of
left poles of T having finite rank.

(ii) T ∗ satisfies property (R) if and only if π00(T
∗) coincides with the set of

right poles of T having finite rank.
(iii) If T satisfies property (R), then π00(T ) = p00(T ). In particular, every

left pole of finite rank of T is a pole.
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Proof. The statements (i) and (ii) are clear by Lemma 2.9.

To show (iii) observe first that by (6) the inclusion p00(T ) ⊆ π00(T )
holds for all T ∈ L(X). To show the opposite inclusion, suppose that T
satisfies (R) and let λ ∈ π00(T ) = pa00(T ). Then p(λI − T ) < ∞, and since
λ ∈ isoσ(T ), then T ∗ has SVEP at λ. By Theorem 1.2, since λI−T ∈ B+(X),
the SVEP for T ∗ at λ is equivalent to saying that q(λI −T ) <∞. Moreover,
α(λI − T ) < ∞, since λ ∈ π00(T ). From Theorem 3.4 of [1] it then follows
that β(λI − T ) < ∞, so that λI − T ∈ B(X). Since α(λI − T ) > 0 we then
conclude that λ ∈ σ(T ) \ σb(T ) = p00(T ), thus π00(T ) = p00(T ). The last
assertion is clear: p00(T ) = pa00(T ). �

The following example shows that neither of the two equalities π00(T ) =
p00(T ), π

a
00(T ) = pa00(T ) implies π00(T ) = pa00(T ).

Example 2.11. Let X be the Hilbert space �2(N) provided by the canonical
basis {e1, e2, . . . }, and define for 0 < ε < 1

S(x1, x2, . . . ) = (εx1, 0, x2, x3, . . . ) (xn) ∈ �2(N).

Clearly, σ(S) = σ(S∗) = D(0, 1). We show that S∗ does not satisfies property
(R). It is easily seen that

α(λI − S) = 1 for all |λ| < 1, λ �= ε,

while α(εI − S) = 2. We claim that λI − S is a Fredholm operator for all
|λ| < 1. In fact, �2(N) is the direct sum of the one dimensional subspace
generated by {e1} and its orthogonal complement M , so to the restriction of
λI − T |M we can apply the results of [23, Example IV.5.24]. From the index
theorem we can deduce that

β(λI − S) = 0 for |λ| < 1 λ �= ε,

while β(εI − S) = 1. Now, ε ∈ σs(S) and σs(S) ⊆ Γ ∪ {ε}, where Γ denotes
the unit circle. On the other hand, for every operator the approximate point
spectrum of an operator contains always the boundary of the spectrum [1,
Theorem 2.42], hence σs(S) = σa(S

∗) ⊇ Γ, and consequently

σs(S) = σa(S
∗) = Γ ∪ {ε}.

Now, from above we know that λI − S ∈ Φ−(X) and ind (λI − S) > 0 for
all |λ| < 1, thus σlw(S) ⊆ Γ. The following simple argument shows that
the opposite inclusion also holds. Suppose that for some μ ∈ Γ we have
μ /∈ σlw(S), i.e. μI − S ∈ W−(X). Since both S and S∗ have SVEP at μ it
then follows from (1) and (2) that p(μI −S) = q(μI −S) <∞, so μ is a pole
of the resolvent, hence an isolated point of the spectrum, a contradiction.
Therefore,

σlw(S) = σuw(S
∗) = Γ.

Now, S∗ has SVEP at the points of Γ, since these points belong to the
boundary of the spectrum, and S∗ has SVEP at ε, since this point is an
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isolated point of σa(S
∗). Therefore, S∗ has SVEP and consequently both

Browder’s theorem and a-Browder’s theorem hold for S∗, i.e.

σuw(S
∗) = σub(S

∗) = Γ.

Since σ(S∗) has no isolated points we have

p00(S
∗) = π00(S

∗) = ∅,
while S∗ does not satisfy property (R), since

σa(S
∗) \ σub(S

∗) = {ε} �= π00(S
∗).

Observe that the operator S∗ also satisfies the equality pa00(S
∗) = πa

00(S
∗).

Indeed, εI − S∗ is Fredholm and ε is an isolated point of σa(S
∗), so

πa
00(S

∗) = {ε} = σa(S
∗) \ σub(S

∗) = pa00(S
∗). �

In the case of Hilbert space operators instead of the dual T ∗ is more
appropriate to consider the Hilbert adjoint T ′. It is well-known that the
relationship between T ′ and T ∗ is determined by the classical Frechet-Riesz
representation theorem: If U is the conjugated linear isometry defined as
U : y ∈ H → fy ∈ H∗ where fy(x) :=< x, y > for all x ∈ H, then we have:

U(λI − T ′) = (λI − T ∗)U. (8)

From (8) it then easily follows

λI − T ∗ ∈ Φ+(H
∗)⇔ λI − T ′ ∈ Φ+(H). (9)

The following result is surely known. For sake of completeness we give
the proof.

Lemma 2.12. Let T ∈ L(H), H a Hilbert space. Then σub(T
∗) = σub(T ′).

Proof. We prove that λI − T ∗ ∈ B+(H
∗) if and only if λI − T ′ ∈ B+(H).

Suppose that p := p(λI −T ∗) <∞ and let x ∈ ker (λI −T ′)p+1 be arbitrary.
Then

U(λI − T ′)p+1x = (λI − T ∗)p+1x = 0,

so Ux ∈ ker (λI − T ∗)p+1 = ker (λI − T ∗)p from which we obtain (λI −
T ∗)pUx = U(λI−T ′)px = 0. Since U is injective we then have (λI−T ′)px =
0, so ker (λI − T ′)p+1 ⊆ ker (λI − T ′)p. Since the opposite inclusion always
holds we then conclude p(λI − T ′) ≤ p. A similar argument shows that if
p(λI − T ′) < ∞, then p(λI − T ∗) ≤ p(λI − T ′). Therefore, p(λI − T ∗) =
p(λI−T ′). Taking into account (9) we then conclude that λI−T ∗ ∈ B+(H

∗)
if and only if λI − T ′ ∈ B+(H). �

Theorem 2.13. Let T ∈ L(H), H a Hilbert space. Then T ∗ has property (R)
if and only if T ′ has property (R).

Proof. By Theorem 2.12 we have

pa00(T
∗) = σa(T

∗) \ σub(T
∗) = σa(T ′) \ σub(T ′) = pa00(T

′)

and obviously, π00(T
∗) = π00(T ′). �
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The condition π00(T ) = p00(T ) may be characterized in several ways,
for instance:

π00(T ) = p00(T )⇔ dimH0(λI − T ) <∞ for all λ ∈ π00(T ), (10)

see [1, Theorem 3.84].
As noted in Example 2.11 the condition π00(T ) = p00(T ) is strictly

weaker than property (R). However, we have:

Theorem 2.14. T ∈ L(X) satisfies property (R) if and only if the following
two conditions hold:

(i) pa00(T ) ⊆ isoσ(T ).
• (ii)] dimH0(λI − T ) <∞ for all λ ∈ π00(T )

Proof. If T satisfies property (R), then pa00(T ) = π00(T ) ⊆ isoσ(T ) and by
Theorem 2.10 we have π00(T ) = p00(T ), thus H0(λI−T ) is finite-dimensional
for all λ ∈ π00(T ). Conversely, suppose that both (i) and (ii) hold. If λ ∈
pa00(T ) = σa(T ) \ σub(T ), then λI − T ∈ B+(X), hence λI − T has closed
range. Since λ ∈ σa(T ), then 0 < α(λI − T ) < ∞, from which we conclude
that pa00(T ) ⊆ π00(T ). The condition (ii) is equivalent to saying that π00(T ) =
p00(T ), so, by (6), we also have π00(T ) ⊆ pa00(T ). Therefore p

a
00(T ) = π00(T ).

�

The following examples show that Weyl’s theorem and property (R) are
independent.

Example 2.15. Let S be defined as in Example 2.11. As already observed, S∗

does not satisfy property (R) while and S∗ has SVEP and hence Browder’s
theorem holds for S∗. By part (i) of Theorem 2.2 then S∗ satisfies Weyl’s
theorem.
To show that property (R) does not entail Weyl’s theorem, consider the
operator T := L⊕R, where L and R are the left shift and the right shift on
�2(N), respectively. We have α(T ) = β(T ) = 1 and p(T ) =∞. Therefore, 0 /∈
σw(T ) while 0 ∈ σb(T ), so Browder’s theorem (and hence Weyl’s theorem)
does not hold for T . On the other hand, σ(T ) = D(0, 1), so π00(T ) = ∅, and
since σa(T ) = σub(T ) = Γ we then have π00(T ) = pa00(T ), so property (R)
holds for T .

It has been already noted that both a-Browder’s theorem and property
(R) (or equivalently, property (w)) entails Weyl’s theorem. We can improve
this result as follows:

Theorem 2.16. If T ∈ L(X) satisfies both Browder’s theorem and property
(R), then T satisfies Weyl’s theorem. Moreover, σ(T ) \ σw(T ) = pa00(T ).

Proof. T satisfies Browder’s theorem and p00(T ) = π00(T ), by part (iii) of
Theorem 2.10. Therefore, Weyl’s theorem holds for T by part (i) of Theorem
2.2, i.e. σ(T ) \ σw(T ) = π00(T ). Property (R) then implies σ(T ) \ σw(T ) =
pa00(T ). �
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The class of operators T satisfying the equality σ(T ) \ σw(T ) = pa00(T )
has been recently introduced and studied in [16], and an operator T is said to
have property (ab) exactly when this equality holds. The following examples
show that properties (R) and (ab) are independent.

Example 2.17. Let T ∈ �2(N) be defined as in Example 2.15. Then T satisfies
property (R), while property (ab) does not hold for T , since 0 ∈ σ(T )\σw(T )
and pa00(T ) = ∅. This example also shows that without the assumption that
T satisfies Browder’s theorem the result of Corollary 2.16 does not hold.

An example of operator satisfying property (ab) but not property (R)
is the following: let Q ∈ �2(N) be defined

Q(x1, x2, . . . ) := (0, 0,
x2

3
,
x3

4
, . . . ) for all (xn) ∈ �2(N).

Clearly, Q is quasi-nilpotent and hence

σ(Q) = σa(Q) = σw(Q) = σub(Q) = {0}.
We have α(Q) = 1, so that 0 ∈ π00(Q), and since 0 /∈ pa00(Q) = ∅ it then
follows that Q does not satisfy property (R). On the other hand, Q has
property (ab), since σ(Q) \ σw(Q) = ∅.

As observed before, the SVEP of T at every λ /∈ σuw(T ) is equivalent to
saying that T satisfies a-Browder’s theorem. Consequently, by Theorem 2.4,
if T has SVEP at every λ /∈ σuw(T ), then property (R) and property (w) are
equivalent for T . However, the following example shows that, always under
the assumption of SVEP of T at the points λ /∈ σuw(T ), this equivalence
cannot be extended to a-Weyl’s theorem.

Example 2.18. Let R denote the right shift on �2(N) and let Q be defined as

Q(x1, x2, x3, . . . ) = (
x2

2
,
x3

3
, · · · ) for all (xn) ∈ �2(N).

Define T := R ⊕ Q on H := �2(N) ⊕ �2(N). We have σ(T ) = D(0, 1),
thus π00(T ) = ∅, and σa(T ) = σuw(T ) = Γ ∪ {0}. If λ /∈ σuw(T ), then
λ /∈ σa(T ), so T has SVEP at λ. Therefore a-Browder’s theorem holds for T ,
i.e. σuw(T ) = σub(T ). From this we obtain

pa00(T ) = σa(T ) \ σuw(T ) = ∅,
so T satisfies property (R), or equivalently T satisfies property (w) (and hence
Weyl’s theorem holds for T ). On the other hand, πa

00(S) = {0}, so a-Weyl’s
theorem does not hold for T .

The next result shows that the equivalence of property (R), property
(w) and a-Weyl’s theorem is true whenever we assume that T ∗ has SVEP at
the points λ /∈ σuw(T ).

Theorem 2.19. Suppose that T ∗ has SVEP at every λ /∈ σuw(T ). Then the
following statements are equivalent:

(i) π00(T ) = p00(T );
(ii) πa

00(T ) = pa00(T );
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(iii) π00(T ) = pa00(T ).

Consequently, property (R), property (w), Weyl’s theorem and a-Weyl’s the-
orem are equivalent for T .

Proof. First we show that

σa(T ) = σ(T ) and σub(T ) = σb(T ). (11)

To show σa(T ) = σ(T ), suppose that λ /∈ σa(T ). Then p(λI − T ) = 0 and
λI − T ∈W+(X), so λ /∈ σuw(T ) and hence by assumption T ∗ has SVEP at
λ. By Theorem 1.2 it then follows that q(λI−T ) <∞ and hence p(λI−T ) =
q(λI − T ) = 0, i.e. λ /∈ σ(T ). This proves the equality σa(T ) = σ(T ).

To show the equality σub(T ) = σb(T ), observe first that σub(T ) ⊆ σb(T )
holds for every operator. To show the opposite inclusion, let λ /∈ σub(T ). Then
λI − T ∈ B+(X) and hence both the quantities α(λI − T ) and p(λI − T )
are finite. But σuw(T ) ⊆ σub(T ) holds for every operator, so λ /∈ σuw(T ) and
the SVEP of T ∗ at λ implies, by Theorem 1.2, that also q(λI − T ) < ∞.
Therefore, by [1, Theorem 3.4], we have β(λI − T ) = α(λI − T ) < ∞, so
λ /∈ σb(T ). Hence σub(T ) = σb(T ).
From the equalities (11) we deduce that π00(T ) = πa

00(T ) and

pa00(T ) = σa(T ) \ σub(T ) = σ(T ) \ σb(T ) = p00(T ),

from which the equivalence of (i), (ii) and (iii) easily follows. To show the
last statement observe that the SVEP of T ∗ at the points λ /∈ σuw(T ) entails
that a-Browder’s theorem (and hence Browder’s theorem) holds for T , see [9,
Theorem 2.3]. By Theorem 2.2 and Theorem 2.4 then property (R), property
(w), Weyl’s theorem and a-Weyl’s theorem are equivalent for T . �

Dually, we have

Theorem 2.20. Suppose that T has SVEP at every λ /∈ σlw(T ). Then the
following statements are equivalent:

(i) π00(T
∗) = p00(T

∗);
(ii) πa

00(T
∗) = pa00(T

∗);
(iii) π00(T

∗) = pa00(T
∗).

Consequently, property (R), property (w), Weyl’s theorem and a-Weyl’s the-
orem are equivalent for T ∗.

Proof. The proof is dual to that of Theorem 2.19. In fact, by using dual
arguments to those of the proof of Theorem 2.19, if T has SVEP at every
λ /∈ σlw(T ), then σs(T ) = σ(T ) and σlb(T ) = σb(T ). Consequently, σa(T

∗) =
σ(T ∗) and σub(T

∗) = σb(T
∗), from which we obtain π00(T

∗) = πa
00(T

∗) and
pa00(T

∗) = p00(T
∗). The SVEP of T at every λ /∈ σlw(T ) ensures that a-

Browder’s theorem holds for T ∗ and hence, by Theorem 2.2 and Theorem
2.4, property (R), property (w), Weyl’s theorem and a-Weyl’s theorem are
equivalent for T ∗. �
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3. Property (R) for polaroid type operators

In this section we consider classes of operators for which the isolated points
of the spectrum are poles of the resolvent-

Definition 3.1. A bounded operator T ∈ L(X) is said to be polaroid if every
isolated point of σ(T ) is a pole of the resolvent of T . T ∈ L(X) is said to be
a- polaroid if every isolated point of σa(T ) is a pole of the resolvent of T .

It is easily seen that

T a-polaroid⇒ T polaroid, (12)

while, in general, the converse does not hold. It is well known that λ is a pole
of the resolvent of T if and only if λ is a pole of the resolvent of T ∗. Since
σ(T ) = σ(T ∗) we then have

T is polaroid⇔ T ∗ is polaroid. (13)

From the proof of Theorem 2.19 we know that if T ∗ has SVEP, then
σ(T ) = σa(T ). Therefore, if T

∗ has SVEP, then

T a-polaroid⇔ T polaroid. (14)

If T has SVEP, from the proof of Theorem 2.20 we know that σ(T ∗) = σa(T
∗).

Therefore, if T has SVEP, then

T ∗ a-polaroid⇔ T ∗ polaroid⇔ T polaroid. (15)

It should be noted that general a polaroid operator has not SVEP. A
trivial example is the left shift T on �2(N). This operator is polaroid, since
σ(T ) is the unit disc of C, so isoσ(T ) = ∅ and it is well known that T fails
SVEP at 0.

Theorem 3.2. Suppose that T ∈ L(X) is a-polaroid. Then T satisfies property
(R).

Proof. Let λ ∈ pa00(T ). By Lemma 1.2 then λ ∈ πa
00(T ), so λ is an isolated

point of σa(T ). Since T is a-polaroid, then λ is a pole of the resolvent of T and
hence an isolated point of the spectrum. Clearly, 0 < α(λI − T ) < ∞, thus
λ ∈ π00(T ) and consequently pa00(T ) ⊆ π00(T ). To show the opposite inclusion
π00(T ) ⊆ pa00(T ), let λ ∈ π00(T ) be arbitrary given. Since 0 < α(λI − T ),
then λ ∈ isoσa(T ) and hence λ a pole of the resolvent of T , or equivalently
λI − T has both ascent and descent finite. Since α(λI − T ) < ∞, then
β(λI − T ) < ∞, see [1, Theorem 3.4], hence λI − T ∈ B(X), in particular
λ /∈ σub(T ). Therefore λ ∈ σa(T ) \ σub(T ) = pa00(T ), as desired. �

The next example shows that under the weaker condition of being T
polaroid the result of Theorem 3.2 does not hold.

Example 3.3. Let R ∈ �2(N) be the unilateral right shift and

U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ �2(N).

If T := R ⊕ U , then σ(T ) = D(0, 1), so isoσ(T ) = π00(T ) = ∅. Therefore,
T is polaroid. Moreover, σa(T ) = Γ ∪ {0}, where Γ denotes the unit circle,
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so isoσa(T ) = {0}. Since R is injective and p(U) = 1 it then follows that
p(T ) = p(R) + p(U) = 1. Furthermore, T ∈ Φ+(X) and hence T is upper
semi-Browder, so 0 ∈ σa(T ) \ σub(T ) = pa00(T ), from which we conclude that
pa00(T ) �= π00(T ).

Let Hnc(σ(T )) denote the set of all analytic functions, defined on an
open neighborhood of σ(T ), such that f is non constant on each of the com-
ponents of its domain. Define, by the classical functional calculus, f(T ) for
every f ∈ Hnc(σ(T )).

Theorem 3.4. Suppose that T ∈ L(X) is polaroid and f ∈ Hnc(σ(T )).

(i) If T ∗ has SVEP, then property (R) holds for f(T ), or equivalently prop-
erty (w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ).

(ii) If T has SVEP, then property (R) holds for f(T ∗), or equivalently prop-
erty (w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ∗).

Proof. (i) By [5, Lemma 3.11] we know that f(T ) is polaroid. By [1, Theorem
2.40] f(T ∗) has SVEP, hence from the equivalence (14) we conclude that f(T )
is a-polaroid. By Theorem 3.2 it then follows that property (R) holds for f(T )
and this, by Theorem 2.19), is equivalent to saying that property (w), Weyl’s
theorem and a-Weyl’s theorem hold for f(T ).

(ii) From the equivalence (13) we know that T ∗ is polaroid and hence,
again by [5, Lemma 3.11], f(T ∗) is polaroid. Moreover, always by [1, Theorem
2.40], f(T ) has SVEP, hence from the equivalence (15) we conclude that
f(T ∗) is a-polaroid. By Theorem 3.2 it then follows that property (R) holds
for f(T ∗) and this, by Theorem 2.20), is equivalent to saying that property
(w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ∗). �

In the case of Hilbert space operators the SVEP for the dual T ∗ and
the SVEP for the Hilbert adjoint T ′ are equivalent. Consequently, for Hilbert
space operators in the statements of Theorem 3.4, T ∗ may be replaced by T ′.

The condition of being polaroid may be characterized by means of the
quasi-nilpotent part: T is polaroid if and only if there exists p := p(λI−T ) ∈
N such that

H0(λI − T ) = ker (λI − T )p for all λ ∈ isoσ(T ), (16)

see [8]. The class of polaroid operators having SVEP is very large. An inter-
esting class of polaroid operators is given by the H(p)-operators, where an
operator T ∈ L(X) is said to belong to the class H(p) if there exists a natural
p := p(λ) such that:

H0(λI − T ) = ker (λI − T )p for all λ ∈ C. (17)

From the implication (5) it is obvious that every operator T which belongs
to the class H(p) has SVEP. Moreover, from (16) we also see that every H(p)
operator T is polaroid. The class H(p) has been introduced by Oudghiri in
[25]. Property H(p) is satisfied by every generalized scalar operator (see [24]
for definition and properties of this class), and in particular the propertyH(p)
is satisfied by p-hyponormal, log-hyponormal or M-hyponormal operators
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on Hilbert spaces, see [25]. Multipliers of commutative semi-simple Banach
algebras T are H(1), in particular every convolution Tμ operator on L1(G), G
a locally compact Abelian group isH(1), see [13]. Moreover, every convolution
operator Tμ on L1(G) is a-polaroid, since σa(Tμ) = σ(Tμ), see [1, Corollary
5.88].

Other examples of polaroid operators having SVEP are given by the
completely hereditarily normaloid operators on Banach spaces. In particular,
all paranormal operators on Hilbert spaces and all (p, k)-quasihyponormal
operators on Hilbert spaces are polaroid and have SVEP, see for details [20].
Also the algebraically quasi-class A operators on a Hilbert space considered
in [14] are polaroid and have SVEP.

Definition 3.5. A bounded operator T ∈ L(X) is said to be left polaroid if
every isolated point of σa(T ) is a left pole of the resolvent of T . The operator
T ∈ L(X) is said to be right polaroid if every isolated point of σs(T ) is a
right pole of the resolvent of T .

Trivially,
T a-polaroid⇒ T left polaroid. (18)

The following example shows that the implication (18) cannot be reversed.

Example 3.6. Let T := R ⊕ U be the operator defined in Example . We
have T ∈ Φ+(X) and hence T 2 ∈ Φ+(X), so that T 2(X) is closed. We
also have p(T ) = 1 so that 0 is a left pole of T . Since σa(T ) = Γ ∪ {0} it
then follows that T is left polaroid. On the other hand q(R) = ∞, so that
q(T ) = q(R)+q(U) =∞, so T is neither a-polaroid or polaroid. This example
also shows that a left polaroid operator in general does not satisfy property
(R).

Furthermore,

T left and right polaroid⇒ T polaroid,

see [5], and the operator T defined in Example 2.18 provides an example of
operator which is polaroid but not left polaroid. In fact, 0 ∈ isoσa(T ) and
p(T ) =∞. Moreover, T ∗ is polaroid but not right polaroid

Theorem 3.7. Suppose that T ∈ L(X) and f ∈ Hnc(σ(T )). Then the following
assertions hold:

(i) If T ∗ has SVEP and T is left polaroid, then property (R) holds for f(T ),
or equivalently property (w), Weyl’s theorem and a-Weyl’s theorem holds
for f(T ).

(ii) If T has SVEP and T is right polaroid, then property (R) holds for
f(T ∗), or equivalently property (w), Weyl’s theorem and a-Weyl’s the-
orem holds for T ∗.

Proof. (i) Let λ ∈ isoσ(T ). Since T ∗ has SVEP we have σ(T ) = σa(T ), see
the proof of Theorem 2.19, so λ ∈ isoσa(T ) and hence a left pole for T . In
particular, λI − T is left Drazin invertible and hence p(λI − T ) < ∞. By
Theorem 2.5 of [7] we know that λI − f(T ) is semi B-Fredholm (i.e. there
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exists a natural n ∈ N such that (λI − T )n(X) is closed and the restriction
λI−T |(λI−T )n(X) is semi-Fredholm, in particular λI−T is quasi-Fredholm,
see [15] for details). By Theorem [4, Theorem 2.3] the SVEP for T ∗ at λ entails
that q(λI−T ) <∞. Hence λ is a pole of the resolvent of T . This proves that
T is polaroid. By [5, Lemma 3.11] f(T ) is polaroid and since, by [1, Theorem
2.40], f(T ∗) has SVEP, the assertion follows from part (i) of Theorem 3.4.

(ii) We show that T ∗ is polaroid, or equivalently that T is polaroid.
Suppose that T is right polaroid and has SVEP. The SVEP for T entails
that σ(T ) = σs(T ), see the proof of Theorem 2.19. Let λ ∈ isoσ(T ). Then
λ ∈ isoσs(T ) and hence is a right pole of T . Therefore, q(λI − T ) < ∞.
On the other hand, since λI − T is left Drazin invertible, then λI − T is
semi B-Fredholm, again by Theorem 2.5 of [7], in particular λI − T is quasi-
Fredholm. By Theorem [4, Theorem 2.7] the SVEP for T at λ entails that
p(λI − T ) <∞. Consequently, λ is a pole of the resolvent of T and hence T
is polaroid. By [5, Lemma 3.11] it follows that f(T ∗) is polaroid and since
f(T ) has SVEP, then the assertion follows from part (ii) of Theorem 3.4. �

Remark 3.8. Note that the result of part (ii) of Theorem 3.7 does not hold if
we replace the SVEP for T ∗ by the SVEP for T . For instance, if T is defined
as in Example 3.6, we have isoσa(T ) = {0} and 0 is clearly a left pole of T ,
since 0 ∈ pa00(T ). Therefore T is a left polaroid. Moreover, T has SVEP by
(3), since σa(T ) clusters only on the boundary of the spectrum (where every
operator has SVEP). As it has been observed in Example 3.6, T does not
satisfy property (R).

However, we have:

Theorem 3.9. Suppose that T ∈ L(X) is left polaroid and has SVEP. Then
we have:

(i) T satisfies a-Weyl’s theorem.
(ii) T satisfies property (R) if and only if pa00(T ) ⊆ π00(T ).

Proof. (i) The SVEP for T entails that a-Browder’s holds for T . By Theo-
rem 2.2 to show that a-Weyl’s theorem holds for T it suffices to prove that
pa00(T ) = πa

00(T ). By Lemma 2.1 the inclusion pa00(T ) ⊆ πa
00(T ) holds for

every operator. Conversely, suppose that λ ∈ πa
00(T ). Then λ is an isolated

point of σa(T ) and hence a left pole of T . Moreover, α(λI − T ) < 0, so λ has
finite rank and hence, by Lemma 2.9, λ ∈ pa00(T ).

(ii) If T has property (R), then, by definition, π00(T ) = pa00(T ). Con-
versely, suppose that pa00(T ) ⊆ π00(T ). Let λ ∈ π00(T ). Then λ ∈ πa

00(T ),
by Lemma 2.9, and since T has SVEP, a-Browder’s theorem holds for T , i.e.
σuw(T ) = σub(T ). By part (i) we then have

λ ∈ πa
00(T ) = σa(T ) \ σuw(T ) = σa(T ) \ σub(T ) = pa00(T ),

so the equality pa00(T ) = π00(T ) holds. �
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