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1. Introduction

Let N be the set of natural numbers. For any subset A ⊆ N and x > 0 let A(x)
be the cardinality of A∩ [0, x). If the limit lim

x→+∞
x−1A(x) := d(A) exists, then we

say that A has the asymptotic density . For more details on asymptotic density we
refer to the paper [2]. By aD we denote the set of all subsets of N which have the
asymptotic density. Let the conditions
(a) ∀A ⊆ N: A ∈ aD ⇐⇒ g(A) ∈ aD,
(b) ∀A ∈ aD: d

(
g(A)

)
= d(A) ,

hold for a permutation g : N → N. Then we say that g preserves the asymptotic
density . Denote by G the set of all permutations g : N → N such that

lim
N→+∞

1
N
|{j ≤ N : g(j) > N}| = 0.

This set is a group with respect to the composition and is called Lévy’s group,
originated in [3]. It can be easilly proved that the permutations from G preserve
the asymptotic density. This group is the object of observations in [5].

The aim of this paper is to study the permutations from the point of view
of other type of finitely additive measure on the set of positive integers – the
Buck’s measure density. This notion was introduced in 1946 by R.C. Buck in [1]

This research was supported by the VEGA Grant 2/7138/27.
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as follows: For any r, m ∈ N, m 6= 0, let r + mN = {r + m · n : n ∈ N} denote
the arithmetic progression with modulus m and first element r. Let S ⊂ N, then

the value µ∗(S) = inf
{

1
m1

+ · · · + 1
mk

: S ⊆
k⋃

i=1

ri + miN, k ∈ N
}

is called the

measure density of S. It is proved

(i) µ∗
(
S1 ∪ S2

)
≤ µ∗(S1) + µ∗

(
S2

)
∀S1, S2 ⊆ N.

The set S ⊆ N is called Buck’s measurable if and only if µ∗(S) + µ∗(N \ S) = 1.
We denote the class of all these sets by Dµ. It is known that

(ii) Dµ is an algebra of sets.

We can consider the restriction of µ∗ on Dµ, i.e.,

µ = µ∗
∣∣
Dµ

,

and then the following holds:

(iii) The set function µ is a finitely additive probability measure on Dµ.

For the proofs we refer to [1], [6].
Remark that there are some analogies between the Buck’s measure density

and Buck’s measurability on the set of positive integers and the Jordan measure
and the Jordan measurability on the unit interval.

It is easy to see that a set S belongs to Dµ if and only if ∀ε > 0 there exists
two sets S1, S2 which are union of finite number of arithmetic progressions such
that S1 ⊂ S ⊂ S2 and µ(S2) − µ(S1) < ε (see [1]). Let m be a positive integer
divisible by all its moduli, for instance the product of all moduli. Then, every
one from these arithmetic progressions can be represented as the union of finite
number of arithmetic progressions with the modulus m. And so we obtain:

(iv) S ∈ Dµ ⇐⇒ ∀ε > 0 ∃m ∈ N and a1, . . . , ak, b1, . . . , bl ∈ N such that

k⋃
i=1

ai + mN ⊆ S ⊆
l⋃

j=1

bj + mN if
l − k

m
< ε

(ai incongruent mod m, bj incongruent mod m).

In this paper we study the permutations g : N → N such that

(c) g(S) ∈ Dµ ∀S ∈ Dµ,
(d) µ

(
g(S)

)
= µ(S) ∀S ∈ Dµ.

In the first part we prove some criterions and give an example that these
permutations do not form a group. In the second part we prove the ergodic property
for a subgroup of these permutations (see Proposition 3.5). A similar result for G
is proved in [5].

Recently, in [4] it has been proved that (a) =⇒ (b). We give an example
that this does not hold for Buck’s measurability.
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2. Buck’s Measure Density

Let g : N → N be a permutation which satisfies (c) and (d). Then we say that g
preserves Buck’s measure density.

Proposition 2.1. Let g : N → N be a permutation. The following properties are
equivalent:

a) g preserves Buck’s measure density;
b) For A ⊆ N it holds that µ∗

(
g(A)

)
≤ µ∗(A);

c) For every arithmetic progression a + mN, a,m ∈ N, m 6= 0, it holds that
µ∗

(
g(a + mN)

)
≤ 1

m .

Proof. b) ⇒ a) Let b) hold. Then for A ⊆ Dµ we have N \ g(A) = g(N \A) and so

1 ≤ µ∗
(
g(A)

)
+ µ∗

(
N \ g(A)

)
≤ µ∗(A) + µ∗(N \A) = 1,

thus, g(A) ∈ Dµ and µ∗(A) = µ∗
(
g(A)

)
.

a) ⇒ b) Let g preserves Buck’s measure density. Then µ∗
(
g(a + mN)

)
= 1

m . For
A ⊆ N and ε > 0 there exist arithmetic progressions a1 +m1N, . . . , as +msN such
that

A ⊆ (a1 + m1N) ∪ · · · ∪ (as + msN) (2.1)
and

s∑
i=1

1
mi

≤ µ∗(A) + ε. (2.2)

From (2.1) we obtain

g(A) ⊂ g(a1 + m1N) ∪ · · · ∪ g(as + msN)

and so

µ∗
(
g(A)

)
≤

s∑
i=1

1
mi

≤ µ∗(A) + ε.

For ε → 0+ we obtain µ∗
(
g(A)

)
≤ µ∗(A).

a) ⇔ c) If g preserves Buck’s measure density, then c) holds. Vice versa, if c) holds,
then we can consider the covering (2.1) and (2.2). We obtain µ∗

(
g(A)

)
≤ µ∗(A),

thus g preserves Bucks’s measure density. �

Let S be the set of all permutations from N to N which preserve Buck’s
measure density. Clearly, S contains the identical permutation and Proposition
2.1 implies that with two permutations S contains its composition. Thus S is a
semigroup with identity.

In the paper [6] a limit formula for the Buck’s measure density is proved. In
the following we shall use this statement. First of all we recall the notation, which
will be used also in the proofs: For any A ⊂ N, B ∈ N, B 6= 0, let R(A : B) be the
maximal number of elements of A which are incongruent modulo B.

Theorem 2.2. Suppose that {Bn} is a sequence of positive integers such that
(v) ∀ d ∈ N ∃n0 such that it holds d|Bn for n > n0.
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Then, for an arbitrary A ⊂ N we have

µ∗(A) = lim
n→+∞

R(A : Bn)
Bn

. (2.3)

For the proof, we refer to [6, Theorem 1].

Remark 2.3. If for some permutation g the value |g(n) − n| is bounded then g
belongs to G and so it preserves the asymptotic density. The following example
shows that this is not true for the case of Buck’s measure density.

Example 2.4. Let A = {k + k! : k = 2, 3, ...}. For m ≥ 2, 0 ≤ a < m it holds
(m + a) + (m + a)! ∈ a + mN thus A has non empty intersection with every
arithmetic progression and so (2.3) yields µ∗(A) = 1(see [6]). Let the permutation
g : N → N be defined as follows:

g(2n + (2n + 1)!) = 2n + 1 + (2n + 1)!, g(2n + 1 + (2n + 1)!) = 2n + (2n + 1)!)

and g(a) = a in other cases. Now, consider the set B = {2n+(2n+1)!, 2n+(2n)! :
n = 1, 2, ...}. Clearly, it holds B ⊂ 2N and so µ∗(B) ≤ 1

2 . But g(B) = A thus
Proposition 2.1 a) yields that g does not preserve the Buck’s measure density.
Trivially we have that |g(n)− n| ≤ 1.

Now, we give an example which shows that S is not a group.

Example 2.5. Let P be the set of all prime numbers. Then it is known that µ(P ) =
0 (see [1], [7]. Let A = {a + a! : a ∈ N \P} and B = N \A = {b1 < b2 < . . . }. Let
us consider the arbitrary arithmetic progression r + mN. This set contains some
number r+mk which is not a prime. Then the number r+mk+(r+mk)! belongs to
the intersection (r+mN)∩A. Thus A has the nonempty intersection with arbitrary
arithmetic progression, therefore for arbitrary sequence of positive integers {Bn}
satisfying the condition (v) we have R(A : Bn) = Bn and so (2.3) yields µ∗(A) = 1.
But the asymptotic density of A is zero, thus the asymptotic density of B is 1.
Easily, it can be derived that the asymptotic density does not exceed the measure
density (see [6]) and so µ∗(B) = 1. Therefore, we have A,B /∈ Dµ.
Define g : N → N as follows: g(B) = P and g is one to one on B and g(a + a!) =
a, a /∈ P . Then g(A) = N \ P and g is one to one on A. Let us denote for two sets
C1, C2 : C1

.= C2 if and only if their symmetric difference

C1 	 C2 := (C1 \ C2) ∪ (C2 \ C1)

is a finite set (for this symbol we refer to [1]). Now, consider an arithmetic pro-
gression r + mN. Then for a ≥ m a + a! ≡ r (mod m) if and only if it is a ≡ r
(mod m). We see that

A ∩ (r + mN) .=
{
(r + ms) + (r + ms)! : s = 1, 2, . . . , and r + m · s ∈ P

}
.

And so g
(
A ∩ (r + mN)

) .= (r + mN) \ P . Moreover g
(
B ∩ (r + mN)

)
⊆ P and so

µ
(
g(B ∩ (r + mN)

)
= 0, thus µ∗

(
g(r + mN)

)
= 1

m . From Proposition 2.1 we get
that g preserves Buck’s measure density. But evidently g−1(P ) = B and so g−1

does not preserve Buck’s measure density.
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Remark 2.6. a) If we consider in Example 2.5 all possibilities of bijective mapping
g(B) = P we obtain that the cardinality of S is continuum.
b) Proposition 2.1 yields immediately that g, g−1 ∈ S if and only if µ∗

(
g(A)

)
=

µ∗(A) for an arbitrary A ⊆ N.

Now, we use Proposition 2.1 and (2.3) for the proof of the criterions in the
limit form. Let {a(n)}, {b(n)} be two sequences of positive integers. As usual, we
shall write a(n) = o(b(n)) if and only if a(n)

b(n) → 0 for n → +∞.

Corollary 2.7. Suppose that {Bn} is a sequence of positive integers which satisfies
the condition (v). Then, for a permutation g : N → N the following conditions are
equivalent:

a) g preserves Buck’s measure density,
b) for every m ∈ N, m 6= 0, a ∈ N, the set g(a+mN) contains at most Bn

m +o(Bn)
elements incongruent modulo Bn, where the therm o(Bn) depends on m and
a modulo m.

Proof. a) =⇒ b) Consider an arithmetic progression a + mN, a,m ∈ N,m 6= 0.
Denote by a′ the rest of a after division by m. Then a + mN ⊂ a′ + mN, therefore
the set g(a + mN) contains at most R(g(a′ + mN) : Bn) elements incongruent
modulo Bn. But (2.3) yields

R(g(a′ + mN) : Bn) = µ∗(g(a′ + mN))Bn + o(Bn).

And so Proposition 2.1 b) implies b).
b) =⇒ a) From b) we deduce that R(g(a + mN) : Bn) ≤ Bn

m + o(Bn). Now, from
Proposition 2.1 b) we obtain that g preserves Buck’s measure density. �

Proposition 2.8. Suppose that {Bn} is a sequence of positive integers which satisfies
the condition (v). Then, a permutation g : N → N preserves Buck’s measure
density if and only if for every m ∈ N, m 6= 0, and an arbitrary sequence of
finite sets of positive integers {k(n)

1 , . . . , k
(n)
r(n)}, r(n) ≥ 1, n = 1, 2, . . . , which are

incongruent modulo Bn, the set of co-images {g−1
(
k

(n)
1

)
, . . . , g−1

(
k

(n)
r(n)

)
} contains

at least

Tn =
r(n)
Bn

(
1
m

+ o(1)
)−1

(2.4)

elements incongruent modulo m, for n = 1, 2, . . . .

Proof. Let g preserve the Buck’s measure density. Let g−1(k(n)
j ) = l

(n)
j , j =

1, . . . , r(n). Suppose that the numbers l
(n)
j , j = 1, . . . , r(n) contain Wn elements

incongruent modulo m. Then, these numbers belong to Wn arithmetic progressions
a1 + mN, . . . , as + mN, s = Wn. By applying Corollary 2.7 to the arithmetic pro-
gression aj +mN we obtain that the set g(aj +mN) contains at most Bn

m + δj(Bn)
elements incongruent modulo Bn, where δj(Bn) = o(Bn), j = 1, . . . , s.
Therefore, the sequence k

(n)
j = g

(
l
(n)
j

)
, j = 1, . . . , r(n), contains at most Wn · Bn

m +
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δ1(Bn) + · · ·+ δs(Bn) elements incongruent modulo Bn. Clearly, 1 ≤ s = Wn ≤ m
thus δ1(Bn) + · · ·+ δs(Bn) = o(Bn). Therefore,

r(n) ≤ Wn ·
Bn

m
+ o(Bn) = Wn(·Bn

m
+ o(Bn))

and this implies Tn ≤ Wn.
Let us suppose that (2.4) holds. Let g(a + ms1), . . . , g(a + msr(n)), sj ∈ N for
j = 1, ..., r(n), be the representatives of g(a+mN) modulo Bn. Then these numbers
are incongruent modulo Bn and r(n) = R

(
g(a + mN) : Bn

)
.

From (2.4) we see that the sequence a + ms1, . . . , a + msr(n) contains at least
Tn elements incongruent modulo m, but it contains only 1 element incongruent
modulo m, thus

r(n)
Bn

(
1
m

+ o(1)
)−1

≤ 1

and so
r(n)
Bn

≤ 1
m

+ o(1).

Therefore, (2.3) yields that

µ∗
(
g(a + mN)

)
= lim

n→+∞

R
(
g(a + mN) : Bn

)
Bn

≤ 1
m

.

Now, Proposition 2.1 implies that g preserves Buck’s measure density. �

Corollary 2.9. If g preserves Buck’s measure density then for every m ∈ N,
m 6= 1, and every sequence of complete remainder systems modulo Bn, n = 1, 2, ...

k
(n)
1 , . . . , k

(n)
Bn

, the sequence g−1
(
k

(n)
1

)
, . . . , g−1

(
k

(n)
Bn

)
contains at least m

1+o(1) ele-
ments incongruent modulo m.

3. A Countable System of Permutations

In this part we construct a sufficiently small set, countable, of permutations which
preserve Buck’s measure density, but which is sufficiently rich from the ergodic
point of view (see Proposition 3.5). We shall use the following result.

Proposition 3.1. Suppose that {Bn} is a sequence of positive integers which sat-
isfies the condition (v). Let g : N → N be such a permutation that for every
sequence of complete remainder systems {k(n)

1 , . . . , k
(n)
Bn
} modulo Bn, the set of the

co-images {g−1
(
k

(n)
1

)
, . . . , g−1

(
k

(n)
Bn

)
} contains at least Bn

1+o(1) elements incongru-
ent modulo Bn, n = 1, 2, . . . . Then g preserves Buck’s measure density.

Proof. Let A ⊆ N and let g
(
l
(n)
1

)
, . . . , g

(
l
(n)
r(n)

)
, for l

(n)
j ∈ A, are incongruent mod-

ulo Bn. Then, this sequence can be completed building the complete remainder sys-
tem modulo Bn, by the elements g

(
l
(n)
j

)
, j = r(n)+1, . . . , Bn. Thus, l

(n)
1 , . . . , l

(n)
r(n) ,
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l
(n)
r(n)+1, . . . , l

(n)
Bn

contains at least Bn

1+o(1) elements incongruent modulo Bn.

Let l
(n)
1 , . . . , l

(n)
r(n) contain at most p(n) elements incongruent modulo Bn. Then,

Bn

1 + o(1)
≤ p(n) +

(
Bn − r(n)

)
,

and so

r(n)− p(n) ≤ Bn

(
1− 1

1 + o(1)

)
.

Therefore,

lim
n→+∞

r(n)− p(n)
Bn

= 0. (3.1)

Let r(n) = R
(
g(A) : Bn

)
, then A contains at least p(n) elements incongruent

modulo Bn and so

R(A : Bn) ≥ p(n) = R
(
g(A) : Bn

)
+ p(n)− r(n),

thus from (3.1) and (2.3) we have

µ∗(A) ≥ µ∗
(
g(A)

)
and Proposition 2.1 implies the assertion. �

Now, we construct a system of quite trivial permutations g ∈ S such that
g−1 ∈ S.

Proposition 3.2. Suppose that m is a positive integer. Let Zm be two complete
reminder systems modulo m and π : Zm → Zm a permutation. Then the mapping
gπ : N → N, defined as

gπ(a + jm) = π(a) + j ·m, (3.2)

is a permutation which preserves Buck’s measure density.

Proof. It is trivial that gπ defined by (3.2) is a permutation. Suppose that {Bn} is
a sequence of positive integers which fulfils the condition (v) and m|Bn, n = 1, . . . .
Let {k(n)

1 , . . . , k
(n)
Bn
} be a complete reminder system modulo Bn. Put k

(n)
j = aj +

mlj . Then, g−1
π

(
k

(n)
j

)
= π−1(aj) + mlj . If g−1

π

(
k

(n)
j

)
≡ g−1

π

(
k

(n)
i

)
(mod Bn), then

π−1(aj) + mlj ≡ π−1(ai) + mli (mod Bn), and so π−1(aj) ≡ π−1(ai) (mod m),
thus aj = ai. Therefore, mlj ≡ mli (mod Bn), this implies k

(n)
j ≡ k

(n)
i (mod Bn):

a contradiction. So, Proposition 3.1 yields the assertion. �

Remark 3.3. It is easy to see that the value |gπ(n) − n| is bounded and so gπ

preserves the asymptotic density. Moreover, these permutations form a countable
set.

Proposition 3.4. Let A,B ∈ Dµ and µ(A) = µ(B). Then, for ε > 0 there exist the
sets A1 ⊆ A, B1 ⊆ B, A1, B1 ∈ Dµ and a permutation gπ (given by (3.2)) such
that µ(A)− µ(A1) < ε, µ(B)− µ(B1) < ε and gπ(A1) = B1.
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Proof. If µ(A) = 0 = µ(B), we can consider A1 = ∅ = B1 and gπ-identic permu-
tation. Suppose that µ(A) > 0. Then, from (iv) it follows that there exists m ∈ N
and a1, . . . , as, b1, . . . , bq ∈ N such that

(a1 + mN) ∪ · · · ∪ (as + mN) ⊆ A, (b1 + mN) ∪ · · · ∪ (bq + mN) ⊆ B

and µ(A) − s
m < ε, µ(B) − q

m < ε. If µ(A) = µ(B) we can assume that s = q.
Now, if we consider A1 =

⋃
ai + mN, B1 =

⋃
bi + mN, and a permutation π

of complete reminder system modulo m such that π(ai (mod m)) = bi (mod m),
then gπ satisfies the assertion. �

Proposition 3.5. Let A ∈ Dµ be a set such that

µ
(
A	 gπ(A)

)
= 0 (3.3)

(	 is the symmetric difference), for every permutation gπ given by (3.2). Then
µ(A) = 1 or µ(A) = 0.

Proof. Suppose that 0 < µ(A) < 1. Clearly, (3.3) holds also for N \ A and so we
can suppose that 0 < µ(A) ≤ 1

2 , 1
2 ≤ µ(N \ A) < 1. The Darboux property of

Buck’s measure density (cf. [6]) implies that there exists a set B ⊂ N\A such that
µ(B) = µ(A). Let µ(A) > ε > 0 and A1 ⊂ A, B1 ⊂ B be the sets from Proposition
3.4. Then gπ(A1) = B1 for a suitable permutation gπ. Clearly,

µ
(
A	 gπ(A)

)
= µ

(
A \ gπ(A)

)
+ µ

(
gπ(A) \A

)
.

Put A = A1 ∪ Ã, where A1 ∩ Ã = ∅, then Ã ∈ Dµ and µ(Ã) < ε, thus

A\gπ(A) = A\gπ

(
A1∪Ã

)
= A\

(
gπ(A1)∪g(Ã )

)
= A\

(
B1∪gπ(Ã )

)
= A\gπ

(
Ã

)
and so

µ
(
A \ gπ(A)

)
= µ(A)− µ

(
gπ(Ã )

)
≥ µ(A)− ε.

Considering ε < 1
2µ(A) we obtain µ(A	 gπ(A)) > 0: a contradiction. �

4. An Example

Now, we construct an example of permutation g : N → N which preserves Buck’s
measurability but does not preserve Buck’s measure density. Put

g(2n) = 4n, g(4n + 1) = 4n + 2, g(4n + 3) = 2n + 1.

Clearly, this mapping is a permutation from N to N. Now, consider an arithmetic
progression of the form a + 4mN.

Suppose that 2|a. Then a = 2a1, thus for k ∈ a+4mN we have k+2a1 +4mj ,
and so g(k) = 4a1 + 8mj , therefore it holds g(a + 4mN) = 2a + 8mN.

Now, suppose that a ≡ 1 (mod 4). Then a + 4mN = 1 + 4a1 + 4mN and so
for k ∈ a + 4mN we have k = 4a1 + 1 + 4mj , thus g(k) = 4a1 + 2 + 4mj , therefore
in this case g(a + 4mN) = a + 1 + 4mN.

Finally, consider a ≡ 3 (mod 4). Then, for k ∈ a + 4mN we have k = 4a1 +
3 + 4mj , and so g(k) = 1 + 2a1 + 2mj , thus g(a + 4mN) = a−1

2 + 2mN.
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Let A ⊆ 3+4N be a Buck’s measurable set. Then, for ε > 0 there exists such
m ∈ N and a1, . . . , as, b1, . . . , br ∈ N such that

(a1 + 4mN) ∪ · · · ∪ (as + 4mN) ⊆ A ⊆
r⋃

i=1

(bi + 4mN)

and r−s
4m < ε. As A ⊆ 3 + 4N, we can consider ai ≡ 3 (mod 4), bj ≡ 3 (mod 4).

Thus,
s⋃

i=1

g(ai + 4mN) ⊆ g(A) ⊆
r⋃

i=1

g(bi + 4mN).

Clearly, it results
s⋃

i=1

a′i + 2mN ⊆ g(A) ⊆
r⋃

i=1

b′i + 2mN, with a′i =
ai − 1

2
, b′i =

bi − 1
2

,

moreover,
r − s

2m
< 2ε

and so g(A) is a Buck’s measurable set, and from the previous considerations it
follows that µ

(
g(A)

)
= 2µ(A).

Analogously we can prove that for B ⊆ 1 + 4N the image g(B) is Buck’s
measurable and µ

(
g(B)

)
= µ(B), and for C ⊆ 2N the set g(C) is Buck’s measur-

able, and µ
(
g(C)

)
= 1

2µ(C). If S ⊆ N is a Buck’s measurable set then it can be
represented in the form

S = A ∪B ∪ C, A ⊆ 3 + 4N, B ⊆ 1 + 4N, C ⊆ 2N.

From (ii) it follows that the sets A,B,C are Buck’s measurable and so g(S) =
g(A)∪ g(B)∪ g(C) is a Buck’s measurable set. Similarly it can be proved that g−1

preserves Buck’s measurability. It is easy to see that g does not preserve Buck’s
measure density.
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