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Abstract. Using Orlicz-Sobolev spaces and a variant of the Mountain-Pass
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1. Introduction

In this paper we consider systems of the type





−∆u = f(v) in Ω,
−∆v = g(u) in Ω,
u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in R
n, with a smooth boundary, and where f, g :

R → R are suitable monotone increasing functions satisfying f (0) = g (0) = 0.
The special case for which f and g are (asymptotically) pure powers has been
treated by numerous authors of which we mention [16], [17], [6], [10], [13]. Indeed,
if f(v) = |v|α−1

v and g(u) = |u|β−1
u with α, β > 0, then (1.1) possesses at least

one smooth positive solution for dimensions n ≥ 3 if the following holds:

1 >
1

α+ 1
+

1
β + 1

> 1 − 2
n
. (1.2)
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The first inequality corresponds to ‘superlinearity’ which leads to existence of
solutions via a minimax argument. The second inequality corresponds to ‘subcriti-
cality’ which guarantees the required compactness in the application of a Mountain
Pass Lemma as well as regularity of solutions through a bootstrap argument.

The main goal of the present paper is to allow more general nonlinearities.
The nonlinearities that we consider still have polynomial growth but are not nec-
essarily asymptotic to a pure power. We will still assume ‘superlinearity’ and ‘sub-
criticality’. In this present setting a similar condition as in (1.2) is used but the
numbers α and β that appear in the right hand side do not need to be the same
as the ones in the left hand side.

We obtain a positive solution to (1.1) by inverting the first equation in (1.1)
and employing a variant of the Mountain Pass Lemma of Ambrosetti-Rabinowitz
([2]). The right setting for this approach is the use of Orlicz-Sobolev spaces. See
e.g [9].

The paper is organized as follows. The exponents mentioned above are in-
troduced in section 2. Our main result is stated in Theorem 2.7. This theorem
addresses both existence and regularity. The existence part is based on an abstract
result stated in Proposition 3.2 which generalizes [7, Theorem 2]. This result is
stated and proved in section 3. The verification of condition ii) in Proposition 3.2
requires an interesting elliptic regularity result in Orlicz(-Sobolev) spaces which is
based on an interpolation theorem of Boyd ([5]). This is the content of section 4.
The regularity part of Theorem 2.7 is established by a bootstrap argument similar
as in [6]. Section 5 contains the proof of Theorem 2.7. For the sake of easy reference
and completeness we collect some auxiliary results in the Appendix.

2. Preliminaries and main result

Before we state our main result we have to fix the conditions on the nonlinearities
f and g.

2.1. Admissible functions

Condition 2.1. We call ϕ admissible if:
1. ϕ ∈ C (R; R) ;
2. ϕ is odd: ϕ (−t) = −ϕ (t) for all t ∈ R;
3. ϕ is strictly increasing;
4. ϕ (R) = R.

Note that if ϕ is admissible the inverse exists and is also admissible.

Notation 2.2. For an admissible function ϕ we will use the following:

Φ (s) =
∫ s

0

ϕ (t) dt Φ∗ (s) =
∫ s

0

ϕ−1 (t) dt (2.1)

The function Φ∗ is called the complementary function to Φ.
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Note that (Φ∗)∗ = Φ and that

Φ (s) + Φ∗ (ϕ (s)) = s ϕ (s) for all s ∈ R. (2.2)

We will fix some numbers which will replace the role of the pure powers
appearing in Φ respectively Φ∗ in the homogeneous case.

Notation 2.3. For an admissible function ϕ with Φ as in (2.1) we define:

mϕ = sup
t>0

tϕ(t)
Φ(t)

, m∞
ϕ = lim sup

t→∞
tϕ(t)
Φ(t)

, m̃ϕ = lim sup
t→∞

log (Φ(t))
log t

,

�ϕ = inf
t>0

tϕ(t)
Φ(t)

, �∞ϕ = lim inf
t→∞

tϕ(t)
Φ(t)

, �̃ϕ = lim inf
t→∞

log (Φ(t))
log t

.
(2.3)

The Boyd exponents for the Orlicz space LΦ(Ω), when Ω is bounded, are given by

qLΦ(Ω) = inf

{

q ; sup
h,t≥1

Φ(th)
Φ(t)hq

<∞
}

, (2.4)

pLΦ(Ω) = sup
{

p ; inf
λ,t≥1

Φ(th)
Φ(t)hp

> 0
}

. (2.5)

Lemma 2.4. For an admissible ϕ it holds that
1. �ϕ ≤ �∞ϕ ≤ qLΦ(Ω) ≤ �̃ϕ ≤ m̃ϕ ≤ pLΦ(Ω) ≤ m∞

ϕ ≤ mϕ;

2.
1
mϕ

+
1

�ϕ−1
= 1,

1
m∞
ϕ

+
1

�∞ϕ−1

= 1 and
1
m̃ϕ

+
1

�̃ϕ−1

= 1.

For the proof we refer to Corollary C.7 and Lemma D.1.

Remark 2.5. The numbers defined above all have their specific role: �ϕ, mϕ will
play a role in the Mountain Pass Theorem that we will use. Necessary for the el-
liptic regularity through interpolation are 1 < qLΦ(Ω) and pLΦ(Ω) <∞. Reflexivity
of the spaces involved is related to 1 < �∞ϕ and m∞

ϕ < ∞. Finally, the numbers
�̃ϕ and m̃ϕ will appear in the imbedding results for the Orlicz spaces that we will
use.

Let us finish the introduction with some examples showing some differences
in these numbers.

Example 1. In case of a pure power, that is ϕ (t) = |t|α−1 t with α > 0 one finds

�ϕ = �∞ϕ = �̃ϕ = α+ 1 = m̃ϕ = m∞
ϕ = mϕ.

Example 2. For ϕ (t) = tα log
(
1 + tβ

)
for t ≥ 0 with α, β > 0 one finds

�ϕ = �̃ϕ = α+ 1 = m̃ϕ = m∞
ϕ < mϕ = α+ β + 1.

Example 3. For ϕ (t) = |t|α
log(1+|t|β) for t ≥ 0 with 0 < β < α one finds

�ϕ = α− β + 1 < �̃ϕ = α+ 1 = m̃ϕ = mϕ.
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Figure 1. The functions ϕ(t) = e[log(t)] respectively Φ(t) =
∫ t
0
ϕ(s) ds.

Example 4. The next ϕ is not admissible since it is not continuous and, although
increasing, not strictly increasing. A slightly perturbed ϕε however will be admis-
sible. Set

ϕ(t) = e[log(t)] for t > 0
with [x] = sup {n ∈ Z;n ≤ x} . Then

Φ(t) = te[log(t)] − e

e+ 1
e2[log(t)] for t > 0.

Straightforward computations show that

1 + e−1 = �∞ϕ < �̃ϕ = 2 = m̃ϕ < m∞
ϕ = 1 + e.

We remark that
e−1 t ≤ ϕ (t) ≤ t for all t ≥ 0,
1
e+1 t

2 ≤ Φ(t) ≤ e+1
4e t2 for all t ≥ 0,

(2.6)

and that these constants are optimal, even when restricting to large values of t.
One finds

4e
(e+1)2

h2−p ≤ Φ(th)
Φ(t)hp

≤ (e+1)2

4e h2−p,

which shows that qLΦ(Ω) = pLΦ(Ω) = 2.

2.2. The main result

Throughout the paper we assume the following.

Condition 2.6. The admissible functions f and g satisfy:

i) m∞
f <∞, ii) �f > 1,

iii) m∞
g <∞, iv) �g > 1.

Notice that we hence find that both for ϕ = f and ϕ = g :

1 < �ϕ ≤ �∞ϕ ≤ �̃ϕ ≤ m̃ϕ ≤ m∞
ϕ <∞.

There is no restriction from above for mf and mg.
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Theorem 2.7. Let Ω be a bounded domain in R
n with ∂Ω ∈ C2. Suppose that f

and g are admissible functions satisfying Condition 2.6.
• If

1 >
1
�f

+
1
�g

and
1
m̃f

+
1
m̃g

> 1 − 2
n

(2.7)

then system (1.1) has a positive solution (u, v) ∈ (
W 2,p(Ω) ∩ C0(Ω̄)

)2 for all
p ∈ (1,∞) .

• If (2.7) holds and if f, g ∈ Cγ(R) and ∂Ω ∈ C2,γ for some γ ∈ (0, 1) , then

(u, v) ∈ (
C2,γ(Ω̄) ∩ C0(Ω̄)

)2
. (2.8)

The existence part of this theorem is a consequence of an abstract result that
is proved in the next section. The proof of the theorem above will be postponed
accordingly.

Remark 2.8. Note that since �ϕ ≤ m̃ϕ for an admissible function ϕ we may refor-
mulate (2.7) as

1 >
1
�f

+
1
�g

≥ 1
m̃f

+
1
m̃g

> 1 − 2
n
. (2.9)

Remark 2.9. In case that f and g are pure powers: f(t) = |t|α−1
t and g(t) =

|t|β−1
t, the condition in (2.7) reduces to the well-known (see [6]) inequalities (1.2).

3. An abstract existence result

In this section we give an existence result for an abstract variational problem which
is used in the proof of our main theorem. Let f, g be two admissible functions with
F and G as in (2.1) and such that Condition 2.6 is satisfied.

Let (Ω,F , µ) be a finite measure space and let LF (Ω), LF∗(Ω), LG(Ω) and
LG∗(Ω) be the corresponding Orlicz spaces as defined in (A.3). Supposing thatX is
a real Banach space and A ∈ Isom (X,LF∗(Ω)) we define the following functionals:

I1 (u) :=
∫

Ω

F ∗ (Au) dµ for u ∈ X,

I2 (w) :=
∫

Ω

G (w) dµ for w ∈ LG(Ω),

I2,+ (w) :=
∫

Ω

G
(
w+

)
dµ for w ∈ LG(Ω) where w+ = w ∨ 0.

(3.1)

In view of Lemma A.6 we have I1 ∈ C1 (X; R) , I2, I2,+ ∈ C1 (LG(Ω); R) .
Supposing that X is continuously imbedded in LG(Ω) we may define

I (u) := I1 (u) − I2 (u) for u ∈ X,

I+ (u) := I1 (u) − I2,+ (u) for u ∈ X.
(3.2)

We also have I, I+ ∈ C1 (X; R) . Notice that I (0) = I+ (0) = 0.
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Lemma 3.1. Let (Ω,F , µ) be a finite measure space, and let f, g be two admis-
sible functions which are such that Condition 2.6 is satisfied. Assuming A ∈
Isom (X,LF∗(Ω)) and X ↪→ LG(Ω) let I and I+ be defined as in (3.2). Suppose
moreover that

1.
1
�f

+
1
�g
< 1;

2. X is compactly imbedded in LG(Ω).

Then there exist ū, ū+ ∈ X, such that

I (ū) > 0 and I ′ (ū) = 0,

I+ (ū+) > 0 and I ′+ (ū+) = 0.

Since we have
1
�g
< 1 − 1

�f
=

1
mf−1

a scheme for the situation is as follows:

X � LG
A↘ ∩

LF∗

Proof. The proof consists of two major steps. First we will show that the assump-
tions of the Mountain Pass Theorem as in Proposition B.1 are fulfilled. Next we
shall establish the existence of the critical point ū (respectively ū+).

Step 1.a: Verification that r, α > 0 exist such that ‖u‖X = r implies I (u) ≥ α.

Since A ∈ Isom (X,LF∗(Ω)) we may choose ‖u‖X := ‖Au‖LF∗ . In view of
the second assumption of Lemma 3.1 there exists c > 0 such that

‖u‖LG
≤ c ‖Au‖LF∗ .

For u ∈ X with 0 < ‖u‖X ≤ 1
1+c we have both ‖u‖LG

< 1 as well as ‖Au‖LF∗ < 1.
From Lemma C.9 item (C.11) we have for such u that

∫

Ω

F ∗ (Au) dµ ≥ ‖Au‖�
∗
f

LF∗ , (3.3)

with 1
�∗f

= 1 − 1
�f

= 1
mf−1

. Hence

I1 (u) =
∫

Ω

F ∗ (Au) dµ ≥
(

1
c

)�∗f
‖u‖�

∗
f

LG
. (3.4)

On the other hand in view of Lemma C.9 item (C.9) we have
∫

Ω

G (u) dµ ≤ ‖u‖�gLG
. (3.5)
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We may even assume that ‖Au‖LF∗ = r < min
(
1, c−1

)
and find for such u by

combining (3.4) and (3.5) that

I (u) =
∫

Ω

F ∗ (Au (x)) dx−
∫

Ω

G (u (x)) dx =

≥ ‖Au‖�
∗
f

LF∗ − ‖u‖�gLG
= ‖Au‖�

∗
f

LF∗

(
1 − c−�g ‖Au‖�g−�

∗
f

LF∗

)
.

Since �∗f =
(
1 − 1

�f

)−1

< �g one finds that appropriate r ∈ (
0,min

(
1, c−1

))
> 0

and α > 0 exist.
Since for all u ∈ X

∫

Ω

G
(
u+

)
dµ ≤

∫

Ω

G (u) dµ

the same r and α can be taken for I+.

Step 1.b: The verification of the second condition of Proposition B.1.

Take u0 ∈ X with
∫

Ω

G
(
u+

0

)
dµ > 0 and λ > 1. Then, in view of Lemma

C.4.iv, ∫

Ω

F ∗ (λAu0) dµ ≤ λ�
∗
f

∫

Ω

F ∗ (Au0) dµ

and by Lemma C.4.ii
∫

Ω

G
(
λu+

0

)
dµ ≥ λ�g

∫

Ω

G
(
u+

0

)
dµ.

Then

I (λu0) ≤ I+ (λu0) ≤ λ�
∗
f

∫

Ω

F ∗ (Au0) dµ− λ�g
∫

Ω

G
(
u+

0

)
dµ < −1

for λ sufficiently large since �g > �∗f and
∫

Ω

G
(
u+

0

)
dµ > 0.

Step 2: With the result of the first step we may apply Proposition B.1. Let
{un}∞n=1 ⊂ X be a sequence as in the conclusion which is such that I (un) → c > 0
and I ′ (un) → 0 in X ′ for n→ ∞.

Step 2.a: First we will show that {un}∞n=1 is bounded in X.
We will proceed by contradiction and suppose that ‖Aun‖LF∗ → ∞ for n→

∞. Then one finds by Lemma C.9 item (C.10) for ϕ = f−1 that for n large

I1 (un) =
∫

Ω

F ∗ (Aun) dx ≥ ‖Aun‖�
∗
f

LF∗ (3.6)

and hence I1 (un) → ∞. Since I (un) is bounded one finds that also
∫

Ω
G (un) dx =

I2 (un) → ∞. One can even conclude that

lim
n→∞

∫

Ω
G (un) dx

∫

Ω
F ∗ (Aun) dx

= 1 − lim
n→∞

I (un)
I1 (un)

= 1. (3.7)
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The assumption I ′ (un) → 0 in X ′ for n → ∞ means that there are εn > 0
with εn → 0 such that

∣
∣
∣
∣

∫

Ω

f−1 (Aun)Avdx−
∫

Ω

g (un) vdx
∣
∣
∣
∣ ≤ εn ‖Av‖LF∗ for all v ∈ X. (3.8)

It follows from the definition of �∗f and �g, (3.7), (3.8) and (3.6) that

�g ≤ lim sup
n→∞

∫

Ω
g (un)undx

∫

Ω
G (un) dx

= lim sup
n→∞

∫

Ω
g (un)undx

∫

Ω
F ∗ (Aun) dx

≤

≤ lim sup
n→∞

(∫

Ω
f−1 (Aun)Aundx
∫

Ω
F ∗ (Aun) dx

+ εn
‖Aun‖LF∗∫

Ω
F ∗ (Aun) dx

)

≤

≤ �∗f + lim sup
n→∞

εn ‖Aun‖1−�∗f
LF∗ = �∗f ,

contradicting the restriction for �g and �f in this lemma. Indeed �∗f =
(
1 − 1

�f

)−1

<

�g. So we may assume that ‖Aun‖LF∗ ≤ C for some C ∈ R
+.

Step 2.b: Existence of a limit ū ∈ X with the desired properties.
Since X is a reflexive Banach space we may assume that there exists a sub-

sequence, again denoted by {un}∞n=1 and a ū ∈ X such that un ⇀ ū in X. Since
X is compactly imbedded in LG(Ω) by condition ii, we have un → ū in LG(Ω).

Since I2 ∈ C1 (LG(Ω); R) it follows that I2 (un) → I2 (ū) and I ′2 (un) →
I ′2 (ū) . Since F ∗ is convex it follows that

I1 (v) − I1 (un) ≥ 〈I ′1 (un) , v − un〉 for all v ∈ X.

Hence
I1 (v) − I1 (un) − 〈I ′2 (un) , v − un〉 ≥ 〈I ′ (un) , v − un〉 ≥

≥ −‖I ′ (un)‖X′ ‖v − un‖X → 0 (3.9)

since I ′ (un) → 0 and ‖v − un‖X is bounded. Since I ′2 (un) → I ′2 (ū) in (LG(Ω))′

and v − un → v − ū in LG(Ω) it follows that

〈I ′2 (un) , v − un〉 → 〈I ′2 (ū) , v − ū〉 .
By (3.9) we obtain

I1 (v) − lim sup
n→∞

I1 (un) ≥ 〈I ′2 (ū) , v − ū〉

and taking v = ū

lim sup
n→∞

I1 (un) ≤ I1 (ū) .

Since I1 is lower semi-continuous lim inf
n→∞ I1 (un) ≥ I1 (ū) holds and hence we find

that lim
n→∞ I1 (un) = I1 (ū) .

Since lim
n→∞ I2 (un) = I2 (ū) and lim

n→∞ I1 (un) = I1 (ū) we have

I (ū) = lim
n→∞ I (un) = c.
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By I ′ (un) → 0 and I ′2 (un) → I ′2 (ū) one finds I ′1 (un) → I ′2 (ū) and hence by (3.9)
it follows that

I1 (v) − I1 (un) ≥ 〈I ′1 (ū) , v − un〉 =

= 〈I ′2 (ū) , v − un〉 + 〈I ′1 (un) − I ′2 (ū) , v − un〉 for all v ∈ X.

We find as in [9] that

I1 (v) − I1 (ū) ≥ 〈I ′2 (ū) , v − ū〉 for all v ∈ X

and hence I ′1 (ū) = I ′2 (ū) and I ′ (ū) = 0. Moreover I (ū) = c > 0.
Notice that the last part of this proof is identical when I is replaced by I+. �

We conclude this section by giving an existence result for an abstract system
of the form {

Au = f (v) ,
Bv = g (u) .

(3.10)

Proposition 3.2. Let f and g in system (3.10) be admissible functions satisfying
Condition 2.6. Let (Ω,F , µ) be a finite measure space and let X, Y be two real
Banach spaces. Suppose that

1. X and Y are continuously imbedded in respectively LG(Ω) and LF (Ω);
2. A ∈ Isom (X;LF∗(Ω)) , B ∈ Isom (Y ;LG∗(Ω));

3.
∫

Ω

Auv dµ =
∫

Ω

uBv dµ for all u ∈ X, v ∈ Y .

If moreover

4.
1
�f

+
1
�g
< 1 and

5. X is compactly imbedded in LG(Ω),
then system (3.10) possesses at least one nontrivial solution (u, v) ∈ X × Y .
If in addition

6. A is inverse positive: 0 ≤ z ∈ LF∗(Ω) implies 0 ≤ A−1z,
then system (3.10) possesses at least one positive solution (u, v) ∈ X × Y.

Proof. In view of Lemma 3.1 there exists u ∈ X\ {0} such that
∫

Ω

f−1 (Au) Aû dµ =
∫

Ω

g (u) û dµ for all û ∈ X. (3.11)

Set v := f−1 (Au) . Since Au ∈ LF∗(Ω) it follows from Lemma A.5 that v ∈ LF (Ω).
Since u ∈ X ⊂ LG(Ω) we have g (u) ∈ LG∗(Ω) and hence ṽ := B−1g (u) ∈
Y is well-defined. Therefore v, ṽ ∈ LF (Ω) and from the third condition in the
proposition and (3.11) we have

∫

Ω

v Aû dµ =
∫

Ω

g (u) û dµ =
∫

Ω

Bṽ û dµ =
∫

Ω

ṽ Aû dµ for all û ∈ X.

Since A is surjective we obtain v = ṽ. Hence, (u, v) ∈ X×Y is a solution of (3.10).
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In case that the operator A is inverse-positive we replace I2 by I2,+ and obtain
(u, v) ∈ X×Y such that Au = f (v) and Bv = g (u+) . We are done provided that
also B is also inverse-positive. For the sake of convenience we give a proof.

Let v ∈ Y be such that Bv ≥ 0. Then for every z ∈ LG(Ω) with z ≥ 0, we
have A−1z ≥ 0 and

∫

Ω

v z dµ =
∫

Ω

v A
(
A−1z

)
dµ =

∫

Ω

BvA−1z dµ ≥ 0.

Hence v ≥ 0. �

4. Elliptic regularity in Orlicz spaces

Let us consider
{ −∆w = f in Ω,

w = 0 on ∂Ω, (4.1)

with Ω a bounded domain in R
n. Let LΦ(Ω) be the Orlicz space associated with the

Lebesgue measure on Ω. If the Boyd indices pLΦ(Ω) and qLΦ(Ω) are such that 1 <
pLΦ(Ω) and qLΦ(Ω) <∞ one may use interpolation theory in order to show that the
solution operator for (4.1) is an isomorphism from LΦ(Ω) into W 2,Φ(Ω)∩W 1,Φ

0 (Ω).

Lemma 4.1. Suppose that Ω is a bounded domain in R
n with ∂Ω ∈ C2. Let ϕ be

admissible with 1 < �∞ϕ and m∞
ϕ <∞. Then for every f ∈ LΦ there exists exactly

one solution w ∈ W 2,Φ(Ω) ∩W 1,Φ
0 (Ω) of (4.1). Moreover, there exists a constant

c, independent of f , such that

‖w‖W 2,Φ ≤ c ‖f‖LΦ
.

Proof. Uniqueness. Let u ∈ W 2,Φ(Ω) ∩W 1,Φ
0 (Ω) be such that ∆u = 0. Then by

(A.5) and Definition A.2 u ∈ W 2,q(Ω) ∩W 1,q
0 (Ω) for q ∈ (

1, �∞ϕ
)
. By standard

results for elliptic p.d.e. ([12]) it follows that u = 0.
Existence. Since the Boyd indices are strictly between 1 and ∞ there are p and
q with 1 < q < p < ∞ such that Lp(Ω) ↪→ LΦ(Ω) ↪→ Lq(Ω). Moreover, Boyd’s
interpolation Theorem (see [15, part II, Theorem 2.b.11, page 145]) applied to Z ∈
L(Lq(Ω)) with Z|Lp(Ω) ∈ L(Lp(Ω)) yields that Z|LΦ(Ω) ∈ L(LΦ(Ω)). For f ∈ Lq(Ω)
let the function Kf := u denote the unique solution of −∆u = f in W 2,q(Ω) ∩
W 1,q

0 (Ω). By elliptic regularity ([12]) one finds that Zα := DαK ∈ L(Lq(Ω)) for
α ∈ N

n with |α| ≤ 2 and Dα =
∏n
i=1(

∂
∂x

i
)αi and also that Zα|Lp(Ω) ∈ L(Lp(Ω)).

So Zα|LΦ(Ω) ∈ L(LΦ(Ω)) holds. It remains to show that Zα|LΦ(Ω)f = Dα (Kf)
for f ∈ LΦ(Ω). Since LΦ(Ω) ↪→ Lq(Ω) one has f ∈ Lq(Ω) and Zα|LΦ(Ω)f =
Zαf = Dα (Kf) as a weak derivative in Lq(Ω) and hence in LΦ(Ω). Therefore
Kf ∈ W 2,Φ(Ω) ∩W 1,Φ

0 (Ω). The inequality follows from the boundedness of DαK
in LΦ(Ω). �
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Whenever we are proceeding with inequalities for the coefficients of the spaces
involved it will be sufficient to proceed through imbeddings and we may not need
maximal regularity. Then we could use �̃ϕ ≥ pLΦ(Ω) and m̃ϕ ≤ qLΦ(Ω).

Lemma 4.2. Let Ω be a bounded domain in R
n with ∂Ω ∈ C2 and let ϕ be an

admissible function with
1 < �̃ϕ ≤ m̃ϕ <∞. (4.2)

Then for every ε > 0 there is cε > 0 such that for every f ∈ LΦ(Ω) problem (4.1)

has a solution w ∈W �̃ϕ−ε,2(Ω) ∩W �̃ϕ,1
0 (Ω), and moreover

‖w‖
W �̃ϕ−ε,2(Ω)

≤ cε ‖f‖LΦ
.

Proof. Since LΦ(Ω) is continuously imbedded in L�̃ϕ−ε(Ω) for any ε > 0 one finds
‖f‖

L�̃ϕ−ε ≤ c̃ε ‖f‖LΦ
. By regularity theory (see [12]) there is a unique solution

w ∈W �̃ϕ−ε,2(Ω) ∩W �̃ϕ,1
0 (Ω) with ‖w‖

W �̃ϕ−ε,2 ≤ c̃ ‖f‖
L�̃ϕ−ε . �

5. Proof of Theorem 2.7

Let X = W 2,F∗
(Ω)∩W 1,F∗

0 (Ω) and Y = W 2,G∗
(Ω)∩W 1,G∗

0 (Ω) supplied with the
Lebesgue measure. See Definition A.1.

5.1. Existence through Proposition 3.2
We will verify the conditions of Proposition 3.2.
1. X is compactly imbedded in LG(Ω). Indeed, this result follows from the as-
sumption in the right hand side of (2.7), Lemma 2.4 ii. and Corollary D.5. By
symmetry Y is compactly imbedded in LF (Ω).
2. (−∆)−1

0 : LF∗(Ω) → X and (−∆)−1
0 : LG∗(Ω) → Y are well-defined and

continuous. This result immediately follows from Lemma 4.1.
3. By the assumption in (2.7) and by Lemma 2.4 we find

1
m̃f

+
1
m̃g

> 1 − 2
n

and
1
m̃f

+
1

�̃f−1

= 1.

Hence the conditions of Corollary D.5 are satisfied and there are p ∈ (m̃g,∞) and
q ∈ (1, �̃f−1) such that

W 2,F∗
(Ω) ⊂W 2,q(Ω) � Lp(Ω) ⊂ LG(Ω).

The following relation holds:
1
m̃g

>
1
p
>

1
q
− 2
n
>

1
�̃f−1

− 2
n

which is, due to Lemma 2.4, equivalent to
1

�̃g−1

− 2
n
< 1 − 1

p
− 2
n
< 1 − 1

q
<

1
m̃f

.
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Defining p∗ and q∗ by 1
p + 1

p∗ = 1, respectively 1
q + 1

q∗ = 1 we find

1
�̃g−1

− 2
n
<

1
p∗

− 2
n
<

1
q∗

<
1
m̃f

and hence by Lemma D.2, respectively Rellich-Kondrachov (see [1, Theorem 6.2]),
it follows that

W 2,G∗
(Ω) ⊂W 2,p∗(Ω) � Lq

∗
(Ω) ⊂ LF (Ω).

So for u ∈ X we have u ∈ W 2,q(Ω) ∩W 1,q
0 (Ω) ⊂ Lp(Ω) and, by symmetry, for

v ∈ Y that v ∈ W 2,p∗(Ω) ∩W 1,p∗
0 (Ω) ⊂ Lq

∗
(Ω). Hence the following integrals are

well defined and the identity holds:
∫

Ω

(∆u) v dx =
∫

Ω

u (∆v) dx.

Since (−∆)−1
0 : LF∗(Ω) → X and (−∆)−1

0 : LG∗(Ω) → Y are positive opera-
tors one even has u ≥ 0 and v ≥ 0.

This completes the verification that the conditions of Proposition 3.2 hold.
We find that (1.1) has a positive solution (u, v) ∈ X × Y.

5.2. Bootstrapping to regularity

Here is the result for one step in the bootstrapping argument in Lp(Ω) spaces.

Lemma 5.1. Suppose that Ω is a bounded domain in R
n with ∂Ω ∈ C2 and let

(u, v) ∈ X × Y be a solution of (1.1) with u ∈ Lp(Ω) and p > m̃g.

• If
p

m̃g
<

(
1 − 1

m̃g

) (
1 − 1

m̃f

) n

2
, then u ∈ Lp̂(Ω) for every p̂ satisfying

p̂ <



1 +
1
m̃g

+ 1
m̃f

+ 2
n

p
m̃g

− 1
(
1 − 1

m̃g

) (
1 − 1

m̃f

)
− 2

n
p
m̃g



 p.

• If
p

m̃g
=

(
1 − 1

m̃g

) (
1 − 1

m̃f

) n

2
, then u ∈ Lp̂(Ω) for every p̂ ∈ (1,∞) .

• If
p

m̃g
>

(
1 − 1

m̃g

) (
1 − 1

m̃f

) n

2
, then u ∈ C(Ω̄).

Remark 5.2. Notice that whenever p > m̃g the assumption in (2.7) guarantees
that

1
m̃g

+
1
m̃f

+
2
n

p

m̃g
− 1 > 0.

Proof. By Remark C.2 one finds that for any ε > 0

g (s) ≤ CG s−1G (s) ≤ CG,ε s
m̃g−1+ε for s large enough.

Hence, if u ∈ Lp(Ω) then one finds for any number p̃ ∈ (1, p/ (m̃g − 1)) that
g (u) ∈ Lp̃(Ω). Standard regularity, see [12], implies that v ∈ W 2,p̃(Ω) and by
Sobolev imbedding

v ∈ L
np̃

n−2p̃ (Ω) if p̃ < 1
2n,

v ∈ C(Ω̄) if p̃ > 1
2n.
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Repeating similar steps for v if p/ (m̃g − 1) ≤ 1
2n we find for any

q̃ <
np/ (m̃g − 1)

n− 2p/ (m̃g − 1)
/ (m̃f − 1) =

p
(
m̃g − 1 − 2 pn

)
(m̃f − 1)

that f (v) ∈ Lq̃(Ω) and hence u ∈W 2,q̃(Ω). By Sobolev imbedding

u ∈ L
nq̃

n−2q̃ (Ω) if q̃ < 1
2n,

u ∈ C(Ω̄) if q̃ > 1
2n.

If p

(m̃g−1−2 p
n )(m̃f−1)

< 1
2n, then u ∈ Lp̂(Ω) for all p̂ satisfying

p̂ <
n p

(m̃g−1−2 p
n )(m̃f−1)

n− 2 p

(m̃g−1−2 p
n )(m̃f−1)

=
1

(m̃g − 1) (m̃f − 1) − 2 pnm̃f
p

Notice that p̂ > p whenever (m̃g − 1) (m̃f − 1) − 2 pnm̃f < 1. This inequality is
equivalent to

1 <
1
m̃f

+
1
m̃g

+
2
n

p

m̃g
. �

Corollary 5.3. Suppose that Ω is a bounded domain in R
n with ∂Ω ∈ C2 and let

(u, v) ∈ X × Y be a solution of (1.1) with u ∈ Lp(Ω) and p > m̃g. If

1
m̃g

+
1
m̃f

> 1 − 2
n

p

m̃g
, (5.1)

then u ∈ C0(Ω̄).

Proof. Since (5.1) holds and p > m̃g one obtains for p
m̃g

<
(
1 − 1

m̃g

) (
1 − 1

m̃f

)
n
2

that

1 +
1
m̃g

+ 1
m̃f

+ 2
n

p
m̃g

− 1
(
1 − 1

m̃g

) (
1 − 1

m̃f

)
− 2

n
p
m̃g

> 1 +
1
m̃g

+ 1
m̃f

+ 2
n − 1

(
1 − 1

m̃g

) (
1 − 1

m̃f

)
− 2

n

> 1

independently of p, and hence, after finitely many iterations using the first item
in Lemma 5.1, one comes to the second or third item of this lemma. If p

m̃g
=

(
1 − 1

m̃g

) (
1 − 1

m̃f

)
n
2 holds then after a single step one arrives to the third item.

This third item in Lemma 5.1 yields u ∈ C(Ω̄). Since W 1,p
0 (Ω) ∩ C(Ω̄) ⊂ C0(Ω̄)

the conclusion follows. �

Whenever one reaches an L∞-bound one continues by standard arguments
to find higher regularity. We have the following result.

Lemma 5.4. Fix γ ∈ (0, 1) . Let f, g ∈ Cγ (R) and suppose that Ω is a bounded
domain in R

n with ∂Ω ∈ C2,γ . Let (u, v) ∈ X × Y be a solution of (1.1) with
u ∈ C0(Ω̄). Then u ∈ C2,γ(Ω̄).
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Proof. If u ∈ C(Ω̄), then g (u) ∈ C(Ω̄) ⊂ Lp(Ω) for any p ∈ (1,∞) , and one finds
(see [12, Th. 9.15]) that v ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for all p ∈ (1,∞) . Taking p > n
the Sobolev imbedding gives v ∈ C1(Ω̄) which implies that f (v) ∈ Cγ(Ω̄). Since
also ∂Ω ∈ C2,γ holds, regularity results (see [12, Th. 6.14]) yield u ∈ C2,γ(Ω̄). �

Now we may complete the proof of Theorem 2.7. In the previous section we
found that there exist a positive nontrivial solution (u, v) ∈ X × Y. Moreover by
Corollary D.5 one finds that there are appropriate p and q such that u ∈W 2,q(Ω)∩
W 1,q

0 (Ω) ⊂ Lp(Ω) with p > m̃g. Next Corollary 5.3 implies that u ∈ C0(Ω̄).
Similarly v ∈ C0(Ω̄) holds. With the additional assumption that f, g ∈ Cγ (R) and
∂Ω ∈ C2,γ for some γ ∈ (0, 1) one finds by Lemma 5.4 that (2.8) holds.

Appendices

Appendix A. Orlicz space setting

Let us shortly recall the setup for Orlicz spaces. Every convex function Φ : R → R
+
0

with Φ (0) = 0 can be represented by Φ (s) =
∫ s
0
ϕ (t) dt where ϕ : R → R is right

continuous and nondecreasing (see [14, Theorem 1.1]). If ϕ (0) = 0, ϕ (t) > 0 or
t > 0, ϕ nondecreasing and such that limt→∞ ϕ (t) = ∞ the function Φ is called
an N-function (see also [1, Chapter VIII]). If we assume the somewhat stronger
condition above that ϕ is admissible then ϕ−1 is admissible and Φ∗ is also an
N-function.

The Orlicz class KΦ(Ω) is defined by

KΦ(Ω) =
{

u : Ω → R measurable;
∫

Ω

Φ (u (x)) dx <∞
}

(A.1)

and the Orlicz spaces EΦ(Ω) and LΦ(Ω) by

EΦ(Ω) = the maximal linear subspace of KΦ(Ω); (A.2)
LΦ(Ω) = the linear hull of KΦ(Ω). (A.3)

The Luxemburg norm for LΦ(Ω) is defined by

‖u‖LΦ
= inf

{

k > 0;
∫

Ω

Φ
(
u (x)
k

)

dx < 1
}

. (A.4)

Assuming that Ω has a finite volume and that the 
2-condition holds for
large numbers one finds (see[1, page 240]) that

EΦ(Ω) = KΦ(Ω) = LΦ(Ω).

Moreover, if Ω has finite volume, then LΦ(Ω) is reflexive if and only if the 
2-
condition for large numbers holds both for Φ and Φ∗. In that case the mapping
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R : LΦ∗(Ω) → (LΦ(Ω))′ , defined for u ∈ LΦ∗(Ω) by

(Ru) (v) =
∫

Ω

u v dµ, for every v ∈ LΦ(Ω),

is an isomorphism.
Higher order Orlicz-Sobolev spaces are defined as follows.

Definition A.1. Let k ∈ N and LΦ(Ω) as above. Set

W k,Φ(Ω) = {u : Ω → R ;Dκu ∈ LΦ(Ω) for all κ ∈ N
n with |κ| ≤ k} ,

‖u‖Wk,Φ =
∑

0≤|κ|≤k
‖Dκu‖LΦ

,

where κ ∈ N
n is a multi-index and |κ| =

∑n
i=1 κi.

In order to define the Orlicz-Sobolev spaces of functions that vanish on the
boundary we remark that the trace operator Tp : W 1,p(Ω) → Lp(∂Ω) with 1 ≤
p < ∞ is uniquely defined (as the only continuous operator with Tpu = u|∂Ω for
u ∈ W 1,p(Ω) ∩ C(Ω̄); see [11, Section 5.5]) and is such that Tpu = T1u for all
u ∈ W 1,p(Ω) with p ∈ (1,∞) whenever Ω is bounded and ∂Ω ∈ C1. Indeed, in
that case C1(Ω̄) is dense in W 1,p(Ω) and Tp = T1 on C1(Ω̄).

So we have
W 1,p

0 (Ω) =
{
u ∈W 1,p(Ω);T1u = 0

}
, (A.5)

and may define W k,Φ
0 (Ω) in a similar way.

Definition A.2. Assume that Ω is bounded and ∂Ω ∈ C1 (see [1, page 67]). We
will define the Orlicz-Sobolev space of functions vanishing on the boundary by

W 1,Φ
0 (Ω) =

{
u ∈W 1,Φ(Ω);T1u = 0

}
. (A.6)

Remark A.3. For Ω is bounded and ∂Ω ∈ C1 one may also define

W k,Φ
0 (Ω) =

{
u ∈W k,Φ(Ω);T1Dκu = 0 for all κ ∈ N

n with |κ| ≤ k − 1
}
.

Next we state a lemma relating convergence in the mean to convergence in
norm.

Lemma A.4. Let ϕ be an admissible function. Suppose that µ(Ω) < ∞ and that
Φ satisfies the 
2-condition for large numbers. Let {un}∞n=1 in LΦ(Ω). Then the
following are equivalent:

• lim
n→∞

∫

Ω
Φ (un) dµ = 0;

• lim
n→∞ ‖un‖LΦ(Ω) = 0.

Proof. (⇒) It is sufficient to show that a subsequence {unk
}∞k=0 tends to 0 in norm.

Since Φ (un) converges in L1(Ω) there is a subsequence {unk
}∞k=0 and a g ∈ L1(Ω)

such that

unk
→ 0 in Ω µ-a.e.,

|unk
| ≤ g in Ω µ-a.e.
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Let ε ∈ (0, 1) . Since Φ satisfies the 
2-condition for large numbers there are
m,R > 0 such that

Φ (h t) ≤ hmΦ (t) for all t > R and h ≥ 1.

Let Ωk := {x ∈ Ω; |unk
(x)| ≤ R} . Then

∫

Ω\Ωk

Φ
(
unk

(x)
ε

)

dµ ≤ ε−m
∫

Ω\Ωk

Φ (unk
(x)) dµ ≤

≤ ε−m
∫

Ω

Φ (unk
(x)) dµ→ 0 as k → ∞.

On the other hand 1Ωk
(x)Φ

(
unk

(x)

ε

)
→ 0 in Ω µ-a.e. for k → ∞ and

∣
∣
∣
∣1Ωk

(x)Φ
(
unk

(x)
ε

)∣
∣
∣
∣ ≤

{
0 if x /∈ Ωk,
Φ

(
R
ε

)
if x ∈ Ωk,

which is integrable, imply that
∫

Ωk

Φ
(
unk

(x)
ε

)

dµ→ 0 as k → ∞.

Therefore there exists K ∈ N such that for k > K
∫

Ω

Φ
(
unk

(x)
ε

)

dµ ≤ 1,

and hence ‖unk
‖LΦ(Ω) ≤ ε for k > K.

(⇐) Since Φ (0) = 0 and Φ is convex Φ (s) ≤ εΦ
(

1
εs

)
for ε ∈ (0, 1) . Hence

βn := inf
{

β > 0;
∫

Ω

Φ
(
un (x)
β

)

dµ ≤ 1
}

→ 0,

implies that for n large (βn ≤ 1
2 )

∫

Ω

Φ (un (x)) dµ ≤ 2βn
∫

Ω

Φ
(
un (c)
2βn

)

dµ ≤ 2βn → 0.

�
Lemma A.5. Let (Ω,F , µ) be a finite measure space and let ϕ be an admissible
function with m∞

ϕ <∞. Then

1. (u �→ Φ (u)) ∈ C
(
LΦ(Ω);L1(Ω)

)
;

2. ϕ (u) ∈ LΦ∗(Ω) for every u ∈ LΦ(Ω).
If moreover �∞ϕ > 1, then

3. (u �→ ϕ (u)) ∈ C (LΦ(Ω);LΦ∗(Ω)) .

Proof. First let us recall that m∞
ϕ < ∞ implies the 
2-condition of Φ for large

numbers. See Remark C.8.
1. Let un, u ∈ LΦ(Ω) be such that un → u in LΦ(Ω), in other words,

βn := inf
{

β > 0;
∫

Ω

Φ
(
un − u

β

)

dµ ≤ 1
}

→ 0.
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Since m∞
ϕ < ∞ it follows by Lemma C.4, interchanging the role of Φ and Φ∗ and

using βn = h−1, that (n large implies 2βn < 1)
∫

Ω

Φ (un − u) dµ ≤ (2βn)
�
∫

Ω

Φ
(
un − u

2βn

)

dµ ≤ (2βn)
� → 0.

Hence Φ (un − u) → 0 in L1(Ω) and hence there is a subsequence {unk
}∞k=1 and

g ∈ L1(Ω) such that

Φ (unk
(x) − u (x)) → 0 for x ∈ Ω µ-a.e., (A.7)

Φ (unk
(x) − u (x)) ≤ g (x) for x ∈ Ω µ-a.e. (A.8)

Since Φ−1 is continuous we find unk
(x) → u (x) for x ∈ Ω µ-a.e. and by the

continuity of Φ hence Φ (unk
(x)) → Φ (u (x)) for x ∈ Ω µ-a.e. By convexity and

the 
2-condition of Φ for large numbers for x ∈ Ω µ-a.e.

Φ (unk
(x)) = Φ (u (x) + unk

(x) − u (x))
≤ 1

2Φ (2u (x)) + 1
2Φ (2 (unk

(x) − u (x)))
≤ C + c1Φ (u (x)) + c1Φ (unk

(x) − u (x))
≤ C + c1Φ (u (x)) + c1g (x) .

The dominated convergence theorem implies:

lim
k→∞

∫

Φ (unk
) dµ =

∫

Φ (u) dµ.

Since this holds for any subsequence {unk
} of {un} one finds continuity of Φ.

2. For the second claim notice that

Φ∗ (ϕ (s)) ≤ Φ (s) + Φ∗ (ϕ (s)) = s ϕ (s) ≤
∫ 2s

s

ϕ (t) dt ≤ Φ (2s) ,

and hence by the 
2-condition for large numbers
∫

Ω

Φ∗ (ϕ (u)) dµ ≤
∫

Ω

Φ (2u) dµ ≤ C + c1

∫

Ω

Φ (u) dµ,

implying
∫

Ω
Φ∗ (ϕ (u)) dµ <∞ and hence ϕ (u) ∈ LΦ∗(Ω).

3. We proceed as in the proof of 1. Let {unk
}∞k=1 be a subsequence in LΦ(Ω)

satisfying (A.7-A.8) we have ϕ (unk
(x)) → ϕ (u (x)) for x ∈ Ω µ-a.e. and hence

Φ∗ (ϕ (unk
(x)) − ϕ (u (x))) for x ∈ Ω µ-a.e.

Observe that ϕ (unk
) , ϕ (u) ∈ LΦ∗(Ω) by ii. and hence since �∞ϕ > 1 that ϕ (unk

)−
ϕ (u) ∈ LΦ∗(Ω). Moreover we have by convexity and the 
2-condition of Φ∗ for
large numbers (since �∞ϕ > 1) that for x ∈ Ω µ-a.e.

Φ∗ (ϕ (unk
(x)) − ϕ (u (x))) ≤ C + c∗1Φ

∗ (ϕ (unk
(x))) + c∗1Φ

∗ (ϕ (u (x))) .

The right hand side is integrable since µ(Ω) <∞ and since Φ∗ (ϕ (v)) ≤ Φ (2v) ≤
C + c1Φ (v) for v ∈ LΦ(Ω). Notice that

Φ∗ (ϕ (unk
(x))) ≤ C + c1Φ (unk

(x)) ≤ C ′ + c′1g (x) + c′1Φ (u (x)) .
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Again the dominated convergence theorem implies

lim
k→∞

∫

Φ∗ (ϕ (unk
(x)) − ϕ (u (x))) dµ = 0.

By Lemma A.4 we find

lim
k→∞

‖ϕ (unk
) − ϕ (u)‖LΦ∗ (Ω) = 0.

�

We end this section by a differentiability result.

Lemma A.6. Let ϕ be admissible and let µ(Ω) <∞. Set

IΦ (u) :=
∫

Ω

Φ (u) dµ for u ∈ LΦ(Ω),

IΦ,+ (u) :=
∫

Ω

Φ
(
u+

)
dµ for u ∈ LΦ(Ω).

Then the following holds:

1. IΦ, IΦ,+ ∈ C (LΦ(Ω); R) ;
2. IΦ, IΦ,+ are everywhere Gateaux-differentiable and

I ′Φ (u) (v) =
∫

Ω

ϕ (u) v dµ for u, v ∈ LΦ(Ω),

I ′Φ,+ (u) (v) =
∫

Ω

ϕ
(
u+

)
v dµ for u, v ∈ LΦ(Ω).

If moreover �∞ϕ > 1, then

3. IΦ, IΦ,+ ∈ C1 (LΦ(Ω); R) .

Proof. 1. This follows from Lemma A.5.i for IΦ. For IΦ,+ one uses that
∥
∥u+ − v+

∥
∥
LΦ(Ω)

≤ ‖u− v‖LΦ(Ω) .

2. Let u, v ∈ LΦ(Ω) and take t �= 0 with |t| ≤ 1. Then

1
t

(
IΦ (u+ tv) − IΦ (u)

)
−

∫

Ω

ϕ (u) v dµ =

=
∫

Ω

1
t

∫ t v(x)

0

(
ϕ (u (x) + s) − ϕ (u (x))

)
ds dµ

and for all x ∈ Ω :
∣
∣
∣
∣
∣

1
t

∫ t v(x)

0

(ϕ (u (x) + s) − ϕ (u (x))) ds

∣
∣
∣
∣
∣
≤

≤
(
ϕ (|u (x)| + |v (x)|) + ϕ (|u (x)|)

)
|v (x)| .
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The right hand side belongs to L1(Ω) and the left hand side tends to 0 for every
x ∈ Ω which proves claim ii for IΦ. For IΦ,+ one observes that

IΦ,+ (u) =
∫

Ω

∫ u+(x)

0

ϕ (s) ds dµ =
∫

Ω

∫ u(x)

0

ϕ+ (s) ds dµ,

where

ϕ+ (s) =
{
ϕ (s) if s > 0,
0 if s ≤ 0.

The proof is similar as for IΦ.
3. Since (u �→ ϕ (u)) , (u �→ ϕ+ (u)) ∈ C (LΦ(Ω);LΦ∗(Ω)) both IΦ, IΦ,+ are

continuously Fréchet differentiable. �

Appendix B. A Mountain Pass Theorem

Proposition B.1. (Ambrosetti, Rabinowitz, Ekeland) Let X be a real Banach space
and I ∈ C1 (X; R) with I (0) = 0. Suppose that for some r > 0 :

• There is α > 0 such that ‖u‖X = r implies I (u) ≥ α.
• There is e ∈ X such that ‖e‖X > r and I (e) ≤ 0.

Let Γ = {γ ∈ C ([0, 1] ;X) ; γ (0) = 0, γ (1) = e} and set

c = inf
γ∈Γ

max
0≤t≤1

I (γ (t)) .

Note that c ≥ α.
Then there exists a sequence {un}n∈N

⊂ X such that I (un) → c and I ′ (un) → 0
in X ′.

This particular version can be found in [9].

Appendix C. A zoo of growth conditions

Let us recall the following condition for Φ.

Definition C.1 (
2-condition). Suppose that Φ : R → R
+
0 is convex, even and such

that Φ (0) = 0. Then Φ is said to satisfy the 
2-condition on [R,∞) if for some
CΦ,R > 0 it holds that

Φ (2s) ≤ CΦ,R Φ (s) for all s > R. (C.1)

Remark C.2. If ϕ is admissible and Φ is as in this definition then

Φ(s) ≤ sϕ(s) ≤ CΦ,RΦ(s) for s > R.

Indeed Φ(s) ≤ Φ(s) + Φ∗ (ϕ(s)) = sϕ(s) for all s, and sϕ(s) ≤ ∫ 2s

s
ϕ(t)dt ≤ Φ(2s)

for all s > R.

The 
2-condition for Φ is related with superhomogeneity of Φ∗. In fact both
conditions give growth restrictions respectively from above and from below for Φ.
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Definition C.3 (superhomogeneous). Suppose that Φ : R → R
+
0 is convex, even

and such that Φ (0) = 0. Then Φ is said to be superhomogeneous of degree � > 1
on [R,∞) if it holds that

Φ (h s) ≥ h� Φ (s) for all h ∈ [1,∞) and s ∈ [R,∞) . (C.2)

In the first section we defined �ϕ, �
∞
ϕ , �̃ϕ, m̃ϕ,m

∞
ϕ and mϕ which all repre-

sented some growth rate of the nonlinearity involved. A technical lemma that
relates the different growth rates is the following.

Lemma C.4. Suppose that Φ is an N-function with Φ (s) =
∫ s
0
ϕ (σ) dσ and with ϕ

admissible and let Φ∗ be the complementary function as in (2.1). Let � ∈ (1,∞)
with �∗ defined by 1

� + 1
�∗ = 1. and suppose that R ∈ [0,∞) .

• Then the following four statements are equivalent:

i. Φ (s) ≤ s φ (s)
�

for all s ∈ [R,∞);

ii. Φ (h s) ≥ h�Φ (s) for all h ∈ [1,∞) and s ∈ [R,∞);

iii. Φ∗ (t) ≥ t φ−1 (t)
�∗

for all t ∈ [ϕ (R) ,∞);

iv. Φ∗ (h t) ≤ h�
∗
Φ∗ (t) for all h ∈ [1,∞) and t ∈ [ϕ (R) ,∞).

• Moreover each of the above conditions implies that:

v. Φ∗ satisfies the 
2-condition on [ϕ (R) ,∞) with constant CΦ∗ = 2�
∗
;

vi. for some c1 > 0 it holds that ϕ−1 (t) ≤ c1 t
�∗−1 for t ≥ ϕ (R);

vii. for some c2 > 0 it holds that ϕ (s) ≥ c2 s
�−1 for s ≥ R.

• Each of the above conditions is implied by:

viii. Φ∗ satisfies the 
2-condition on [ϕ (R) ,∞) with constant CΦ∗ = �∗ + 1.

Remark C.5. Results as above can be found in [14, Chapter I. §4].

Proof. For the sake of easy reference we will give a complete proof.

i⇒ ii. If Φ (s) ≤ s φ (s)
�

for all s ∈ [R,∞), then for h ∈ [1,∞)

log (Φ (hs)) − log (Φ (s)) =
∫ hs

s

ϕ (σ)
Φ (σ)

dσ ≥
∫ hs

s

�

σ
dσ = log h�. (C.3)

ii⇒ i. If Φ (h s) − h�Φ (s) ≥ 0 for all h ∈ [1,∞) and s ∈ [R,∞) then

s ϕ (s) − �Φ (s) =
∂

∂h

(
Φ (h s) − h� Φ (s)

)

h=1
≥ 0. (C.4)

i⇔ iii. With (2.2) one finds for s ≥ R that

Φ∗ (ϕ (s)) = s ϕ (s) − Φ (s) ≥ s ϕ (s) − s φ (s)
�

=
s φ (s)
�∗

and hence iii for t ≥ ϕ (R) and vice versa.
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iii ⇔ iv. As before in (C.3) and (C.4) but now with reversed inequality signs:

log (Φ∗ (ht)) − log (Φ∗ (s)) =
∫ ht

t

ϕ−1 (τ )
Φ∗ (τ )

dτ ≤
∫ ht

t

�∗

τ
dτ = log h�

∗
,

and

t ϕ−1 (t) − �∗ Φ∗ (t) =
∂

∂h

(
Φ∗ (h t) − h�

∗
Φ (t)

)

h=1
≥ 0.

iv⇒ v. This comes straightforwardly by using h = 2.
iii & iv⇒ vii. One finds for t ≥ ϕ(R) that

ϕ−1 (t) ≤ �∗ Φ∗ (t)
t

≤ �∗
(

t

ϕ (R)

)�∗ Φ∗ (ϕ (R))
t

=
�∗ Φ∗ (ϕ (R))

ϕ (R)�
∗ t�

∗−1. (C.5)

vii⇒ vi. Taking t = ϕ (s) the result follows from (C.5).
viii ⇒ iii. By assumption and since ϕ−1 is increasing one finds

�∗ Φ∗ (t) ≥ Φ∗ (2t) − Φ∗ (t) =
∫ 2t

t

ϕ−1 (τ ) dτ ≥ t ϕ−1 (t) . �

Lemma C.6. Suppose that ϕ is admissible and let �̃ϕ, m̃ϕ, �̃ϕ−1 , m̃ϕ−1 be defined as
in Definition 2.3. Then

1
�̃ϕ

+
1

m̃ϕ−1
= 1 =

1
�̃ϕ−1

+
1
m̃ϕ

. (C.6)

Proof. Since ϕ is admissible Φ and Φ∗ are strictly increasing on [0,∞) and are
hence invertible. Since t s ≤ Φ (t) + Φ∗ (s) for all s, t ≥ 0 we have

Φ−1 (t) Φ∗,−1 (t) ≤ Φ
(
Φ−1 (t)

)
+ Φ∗ (

Φ∗,−1 (t)
)

= 2t for all t ≥ 0. (C.7)

Since Φ (t) ≤ t ϕ (t) and Φ∗ (s) ≤ s ϕ−1 (s) it follows that

Φ∗
(

Φ (t)
t

)

≤ Φ (t)
t

ϕ−1

(
Φ (t)
t

)

≤ Φ (t)
t

ϕ−1 (ϕ (t)) = Φ (t) for all t ≥ 0

and hence, setting s = Φ (t):

Φ∗
(

s

Φ−1 (s)

)

≤ Φ
(
Φ−1 (s)

)
= s for all s ≥ 0,

which implies
s

Φ−1 (s)
≤ Φ∗,−1 (s) for all s ≥ 0. (C.8)

Combining (C.8) and (C.7) one finds (see also [1, p. 230]) that

t ≤ Φ−1 (t) Φ∗,−1 (t) ≤ 2t for all t ≥ 0.

Consequently log (t) ≤ log
(
Φ−1 (t) Φ∗,−1 (t)

) ≤ log (2t) and

1 ≤ log
(
Φ−1 (t)

)

log (t)
+

log
(
Φ∗,−1 (t)

)

log (t)
≤ log 2

log (t)
+ 1 for all t > 1.
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Hence we obtain

lim sup
t→∞

log
(
Φ−1 (t)

)

log (t)
= 1 − lim inf

t→∞
log

(
Φ∗,−1 (t)

)

log (t)
,

lim inf
t→∞

log
(
Φ−1 (t)

)

log (t)
= 1 − lim sup

t→∞

log
(
Φ∗,−1 (t)

)

log (t)
,

and since

lim sup
t→∞

log
(
Φ−1 (t)

)

log (t)
=

(

lim inf
s→∞

log (Φ (s))
log (s)

)−1

,

the claim follows. �

Corollary C.7. For an admissible ϕ it holds that

1.
1
mϕ

+
1

�ϕ−1
= 1,

1
m∞
ϕ

+
1

�∞ϕ−1

= 1 and
1
m̃ϕ

+
1

�̃ϕ−1

= 1;

2. �ϕ ≤ �∞ϕ ≤ �̃ϕ ≤ m̃ϕ ≤ m∞
ϕ ≤ mϕ.

Proof. The first three identities follow by Lemma C.4 respectively Lemma C.6.
For the inequalities the only ones which are not immediate from the definition

are m̃ϕ ≤ m∞
ϕ and the dual �∞ϕ ≤ �̃ϕ. Since for all ε > 0 and t > t1 large enough

log (Φ (t)) − log (Φ (t1)) =
∫ t

t1

ϕ (s)
Φ (s)

ds ≤
∫ t

t1

m∞
ϕ + ε

s
ds ≤ (

m∞
ϕ + ε

)
log (t)

one finds m̃ϕ = lim supt→∞
log(Φ(t))

log t ≤ m∞
ϕ + ε. Similarly �∞ϕ ≤ �̃ϕ. �

Lemma C.8. Suppose ϕ is admissible.

1. m∞
ϕ <∞ if and only if Φ satisfies the 
2-condition for large numbers.

2. �∞ϕ > 1 if and only if Φ∗ satisfies the 
2-condition for large numbers.

Proof. Lemma C.4 states that Φ satisfies the 
2-condition for large numbers if
and only if there is m <∞ such that

t ϕ (t) < mΦ (t) for large t.

Moreover, if m∞
ϕ <∞ then there is R <∞ such that t ϕ (t) <

(
m∞
ϕ + 1

)
Φ (t) for

t > R. Conversely, if t ϕ (t) < mΦ (t) for large t, then m∞
ϕ ≤ m <∞.

Similarly �∞ϕ > 1 holds, which is equivalent to m∞
ϕ−1 <∞, if and only if Φ∗ satisfies

the 
2-condition for large numbers. �

Lemma C.9. Suppose that Φ is an N-function with Φ (s) =
∫ s
σ=0

ϕ (σ) dσ and with
ϕ admissible and that Φ∗ is the complementary function. If for some � > 1

Φ (s) ≤ s ϕ (s)
�

for all s ∈ R,
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then, with 1
� + 1

�∗ = 1:
∫

Ω

Φ (u (x)) dx ≤ ‖u‖�LΦ
for all u ∈ LΦ(Ω) with ‖u‖LΦ

< 1, (C.9)
∫

Ω

Φ (u (x)) dx ≥ ‖u‖�LΦ
for all u ∈ LΦ(Ω) with ‖u‖LΦ

> 1, (C.10)
∫

Ω

Φ∗ (u (x)) dx ≥ ‖u‖�∗LΦ∗ for all u ∈ LΦ∗(Ω) with ‖u‖LΦ∗ < 1, (C.11)
∫

Ω

Φ∗ (u (x)) dx ≤ ‖u‖�∗LΦ∗ for all u ∈ LΦ∗ (Ω) with ‖u‖LΦ∗ > 1. (C.12)

Proof. Assuming that ‖u‖LΦ
< 1 we may take β ∈ (‖u‖LΦ

, 1
)

and find that for
any such β by Lemma C.4-ii respectively the definition of the Luxemburg-norm
that

∫

Ω

Φ (u (x)) dx ≤ β�
∫

Ω

Φ
(
u (x)
β

)

dx ≤ β�.

The estimate in (C.9) follows letting β ↓ ‖u‖LΦ
.

Assuming that ‖u‖LΦ
> 1 we may take β ∈ (

1, ‖u‖LΦ

)
and find that for any

such β by Lemma C.4-iv respectively the definition of the Luxemburg-norm that
∫

Ω

Φ (u (x)) dx ≥ β�
∫

Ω

Φ
(
u (x)
β

)

dx ≥ β�.

The estimate in (C.10) follows letting β ↑ ‖u‖LΦ
.

For (C.11), assuming that ‖u‖LΦ∗ < 1, we take β such that β ↑ ‖u‖LΦ∗ . By
Lemma C.4-iv for any β ≤ 1

∫

Ω

Φ∗ (u (x)) dx ≥ β�
∗
∫

Ω

Φ∗
(
u (x)
β

)

dx.

Since
∫

Ω
Φ∗

(
u(x)
β

)
dx ≥ 1 for such β the estimate in (C.11) follows.

For (C.12), assuming that ‖u‖LΦ∗ > 1, we again let β ↓ ‖u‖LΦ∗ in order to
find by Lemma C.4-ii

∫

Ω

Φ∗ (u (x)) dx ≤ β�
∗
∫

Ω

Φ∗
(
u (x)
β

)

dx ≤ β�
∗
. �

Appendix D. Orlicz and Lp-spaces

Let Ω be a bounded domain in R
n. The Boyd exponents for LΦ(Ω), defined in (2.4-

2.5), have the following property. If for any p ∈ [
1, pLΦ(Ω)

)
and q ∈ (

qLΦ(Ω),∞
)

a
linear operator T : Lp(Ω)+Lq(Ω) → Lp(Ω)+Lq(Ω) is such that both T : Lp(Ω) →
Lp(Ω) and T : Lq(Ω) → Lq(Ω) are bounded, then so is T : LΦ(Ω) → LΦ(Ω). See
[4] or [15, Th. 2.b.11].
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Lemma D.1. Let ϕ be admissible, let �ϕ, �̃ϕ, mϕ and m̃ϕ be as in Definition 2.3
and suppose that Ω is bounded. Then

�∞ϕ ≤ pLΦ(Ω) ≤ �̃ϕ ≤ m̃ϕ ≤ qLΦ(Ω) ≤ m∞
ϕ .

Proof. Let m > m∞
ϕ . Then there is Km ≥ 1 such that

tϕ (t)
Φ (t)

≤ m for all t ≥ Km.

By Lemma C.4 one finds

Φ (h t) ≤ hmΦ (t) for all t ≥ Km, h ≥ 1,

and hence

sup
h,t≥1

Φ (t h)
Φ (t)hm

= max





sup
h≥1

1≤t≤Km

Φ (t h)
Φ (t)hm

, sup
h≥1
t≥Km

Φ (t h)
Φ (t)hm





≤

≤ max
{

sup
h≥1

Φ (Km h)
Φ (1)hm

, 1
}

= max
{

Φ (Km)
Φ (1)

, 1
}

=
Φ (Km)
Φ (1)

.

By definition qLΦ(Ω) ≤ m and since m > m∞
ϕ is arbitrary, it follows that

qLΦ(Ω) ≤ m∞
ϕ .

Next we take q > qLΦ(Ω). Then there exists Kq such that

sup
h,t≥1

Φ (t h)
Φ (t)hq

≤ Kq

and hence Φ (t) ≤ KqΦ (1) tq for t ≥ 1, which implies that

log (Φ (t))
log t

≤ log (KqΦ (1))
log t

+ q for t ≥ 2.

It follows that

m̃ϕ = lim sup
t→∞

log (Φ (t))
log t

≤ q,

and, again since q > qLΦ(Ω) is arbitrary, m̃ϕ ≤ qLΦ(Ω). For the other estimates one
may proceed similarly. �

Lemma D.2. Let ϕ be admissible and let �̃ϕ and m̃ϕ be as in Definition 2.3. Sup-

pose that µ(Ω) < ∞. Then for any p ∈
(
1, �̃ϕ

)
and q ∈ (m̃ϕ,∞) the following

continuous imbeddings exist:

Lq(Ω) ⊂ LΦ(Ω) ⊂ Lp(Ω).

Remark D.3. This result implies that pLΦ(Ω) ≤ �̃ϕ and m̃ϕ ≤ qLΦ(Ω) where pLΦ(Ω)

and qLΦ(Ω) are the Boyd exponents for LΦ(Ω). Both inequalities can be strict (see
[15, Prop. 2.b.3. and Remark 3 page 134]).
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Proof. By [1, Theorem 8.12] one finds that for |Ω| < ∞ the imbedding LΦ1(Ω) ⊂
LΦ2(Ω) holds if Φ1 dominates Φ2 near infinity, that is, for some c, t0 > 0

Φ2 (t) ≤ Φ1 (c t) for all t ≥ t0.

Since lim inf
t→∞

log(Φ(t))
log t = �̃ϕ implies that for any ε > 0 (take ε = �̃ϕ − p) there is a

number tε with
Φ (t) ≥ t�̃ϕ−ε for t > tε,

one finds Lp(Ω) ⊂ LΦ(Ω). A similar argument with reversed inequality signs yields
Lq(Ω) ⊂ LΦ(Ω). �

Corollary D.4. Let ϕ and ψ be admissible and let 1 < �̃ψ−1 and m̃ϕ <∞ be as in
Definition 2.3. Suppose that Ω has the cone property and µ(Ω) <∞. If

1
�̃ψ−1

− 1
n
<

1
m̃ϕ

(D.1)

then there exists p ∈ (m̃ϕ,∞) and q ∈
(
1, �̃ψ−1

)
such that the following continuous

imbedding exists:

W 1,Ψ∗
(Ω) ⊂W 1,q(Ω) � Lp(Ω) ⊂ LΦ(Ω). (D.2)

The one denoted by � is compact.

Proof. Since the inequality is strict we may take p ∈ (m̃ϕ,∞) and q ∈
(
1, �̃ψ−1

)

such that
1
m̃ϕ

>
1
p
>

1
q
− 1
n
>

1
�̃ψ−1

− 1
n
. (D.3)

Since Ω is bounded Lemma D.2 implies the continuity of W 1,Ψ∗
(Ω) ⊂ W 1,q(Ω)

and of Lp(Ω) ⊂ LΦ(Ω). By (D.3) it follows that
nq

n− q
=

1
1
q − 1

n

> p

and we find by Rellich-Kondrachov (see [1, Theorem 6.2]) that W 1,q(Ω) � Lp(Ω).
�

Corollary D.5. Let ϕ and ψ be admissible and let 1 < �̃ψ−1 and m̃ϕ <∞ be as in
Definition 2.3. Suppose that Ω has the cone property and that µ(Ω) <∞. If

1
�̃ψ−1

− 2
n
<

1
m̃ϕ

(D.4)

then there exists p ∈ (m̃ϕ,∞) and q ∈
(
1, �̃ψ−1

)
such that the following continuous

imbedding exists:

W 2,Ψ∗
(Ω) ⊂W 2,q(Ω) � Lp(Ω) ⊂ LΦ(Ω). (D.5)

The one denoted by � is compact.
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Proof. Similar as for the previous Corollary with p ∈ (m̃ϕ,∞) and q ∈
(
1, �̃ψ−1

)

such that
1
m̃ϕ

>
1
p
>

1
q
− 2
n
>

1
�̃ψ−1

− 2
n
. (D.6)

�

The last two corollaries are sharp when considering general �̃ψ and m̃ϕ. How-
ever, for some specific N -functions Φ and Ψ the imbeddings before could be com-
pact even with an equality sign in (D.1) or (D.4).
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