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1. Introduction

In this paper we are concerned with a class of linear second order ultraparabolic
operators of the following type

L =
m∑

j=1

X2
j + X0 − ∂t in R

N+1, (1.1)

where the Xj ’ s are smooth vector fields on R
N , i.e. linear first order differential

operator in R
N with coefficients of class C∞. For our purposes it will be convenient

to also consider the Xj ’ s as vector fields on R
N+1. Throughout the paper we shall

denote by z = (x, t), x ∈ R
N , t ∈ R, the point of R

N+1, and by Y the vector field
in R

N+1

Y := X0 − ∂t.

Moreover, we shall denote by L0 the operator in R
N

L0 :=
m∑

j=1

X2
j + X0.

We assume the following conditions are satisfied.
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(H1) There exists a homogeneous Lie group in R
N+1,

L = (RN+1, ◦, dλ)

such that
(i) X1, . . . , Xm, Y are left translation invariant on L.
(ii) X1, . . . , Xm are dλ-homogeneous of degree one and Y is dλ-homogeneous

of degree two.
(H2) For every (x, t), (y, τ) ∈ R

N+1, t > τ , there exists an L-admissible path
η : [0, T ] −→ R

N+1 such that η(0) = (x, t), η(T ) = (y, τ). The curve η is
called L-admissible if it is absolutely continuous and satisfies

η′(s) =
m∑

j=1

λj(s)Xj(η(s)) + µ(s)Y (η(s)) a.e. in [0, T ]

for suitable piecewise constant real functions λ1, . . . , λm, and µ, µ ≥ 0.
Before proceeding we would like to list some easy consequences of conditions

(H1) and (H2). Their proofs are postponed to the Appendix, Subsection 10.1.

(i) L and L0 are hypoelliptic operators in R
N+1 and R

N , respectively (see Propo-
sition 10.1).

(ii) The composition law ◦ is euclidean in the “time” variable. More explicitly

(x, t) ◦ (y, τ) = (S(x, t, y, τ), t + τ)

for a suitable smooth function S (see Proposition 10.2).
(iii) The dilation dλ takes the following form

dλ(x, t) = (Dλ(x), λ2t)

and, denoting by Q the homogeneous dimension of L, one has Q ≥ 3 (see
Remark 10.3).

Throughout the paper, except for Section 2, we shall assume

Q ≥ 5

so that Q− 2, the homogeneous dimension of R
N with respect to Dλ, will be ≥ 3.

We shall denote by | · | a fixed dλ-homogeneous norm on L. Precisely, if the dilation
dλ takes the form

dλ(x, t) = dλ(x1, . . . , xN , t) = (λσ1x1, . . . , λ
σN xN , λ2t), (1.2)

then

|(x, t)| :=




N∑

j=1

(x2
j )

σ
σj + (t2)

σ
2





1
2σ

, (1.3)
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where σ = 2
∏N

j=1 σj .

For a point x = (x1, . . . , xN ) ∈ R
N we put

|x| :=




N∑

j=1

(x2
j )

σ
σj





1
2σ

. (1.4)

The aim of this paper is to prove an invariant Harnack inequality for the
nonnegative solutions to Lu = 0.

Parabolic Harnack inequalities have a long history which started with the
works by Hadamard [9] and Pini [18] on the heat equation.
For parabolic operators with variable coefficients the Harnack inequality was
proved by Moser [17], by using his celebrated iterative argument. Moser’ s work
has been followed by a huge amount of papers, dealing with linear and non linear
parabolic equations, see e.g. [1], [2], [12]; see also the interesting accounts given
in [19] and [21]. An elementary proof of the Harnack inequality for solutions to
linear parabolic equations with smooth coefficients is contained in [6]. The proof
in this paper uses a Mean Value Theorem for the solutions, and it is modelled
on the classical proof of the Harnack inequality for harmonic functions. This very
elementary approach also works for ultraparabolic equations, see [11] and [7], and
can be greatly simplified when the involved operators are invariant with respect to
suitable groups of translations and dilations, see [15]. In all these works, however,
the knowledge of an explicit fundamental solution, and very sharp estimates of
their derivatives, are heavily used. In the present paper we show that the Mean
Value Theorem technique works only assuming hypotheses (H1) and (H2). Our
main result, Theorem 7.1, extends to a wide class of ultraparabolic operators the
Harnack inequalities in [7] and [15] (Theorems 5.1-5.1’). Obviously, Theorem 7.1
also applies to the heat operators on Carnot groups, see [25] and the references
therein 1. We would also like to quote the recent paper [4] containing an elemen-
tary proof of the Harnack inequality for heat operators that uses Bony’s strong
maximum principle and basic facts from Abstract Potential Theory.

The present paper is organized as follows. In Section 2 we show the existence
of a global fundamental solution Γ for the operators L satisfying (H1) and (H2)
and we prove some of its basic properties. In Section 3 we show that integrating Γ
with respect to the t variable one obtains a fundamental solution γ with pole at
x = 0 of the operator L0. In Section 4 we briefly show how L0 acts on some kind
of radial functions. This result is used in Section 5 in order to obtain an upper
gaussian estimate of Γ from which, in Section 6, we obtain the integral identity

∫

RN

Γ(x, t) dx = 1 ∀t > 0.

Section 7 is devoted to the proof of our Harnack inequality. We shall follow the
procedure already used in [15] (Theorem 5.1). We stress that all the results of

1A very interesting account on the parabolic Harnack inequality in several different settings is

contained in the more recent monograph [22].
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Section 7 come from the properties of Γ proved in Sections 5 and 6. In Section 8 we
show a Harnack inequality for the stationary operator L0, easy consequence of the
Harnack inequality for L. By using this result we then show a one-side Liouville-
type Theorem for L0. Our theorem is strongly related to the one very recently
proved in [20] (for other related results, see [8], [16] and [3]). Finally, in Section
9, we show several examples of operators satisfying (H1)-(H2). In particular, we
first easily recognize that the H-conditions are satisfied by the Heat operators on
Carnot groups, Examples 9.1, 9.2. Then, Example 9.3, we prove (H1)-(H2) for the
Kolmogorov-type operators studied in [15]. Example 9.7 deals with a “new” class
of ultraparabolic operators L obtained by linking sub-Laplacians on Carnot groups
with Kolmogorov-type operators. This example rests on what we call link of groups,
that we shall introduce, and briefly study, in the Appendix. In the Example 9.7
we link Carnot groups G with Kolmogorov groups K, the first ones underlying the
sub-Laplacians and the second ones the Kolmogorov operators. The linked groups
G�K play the role of L in condition (H1) with respect to the new operators L.
In the Appendix, Section 10, we recall some basic notions on homogeneous Lie
groups in R

N (Subsection 10.1) and we introduce the definition of link of groups
(Subsection 10.2).

2. Fundamental solution for L
The aim of this section is to prove the existence of a global fundamental solution
for L, together with some of its basic properties.

We shall follow, with minor changes, the procedure first used in [13] (Theorem
1.1). The same approach was also used in [10] for a class of operators satisfying
hypotheses (H1) and (H2).

To begin with we state some well known maximum principles, also giving
short proofs of them for reading convenience.

Proposition 2.1. Let O ⊆ R
N+1 be a bounded set and suppose u ∈ C2(O) and such

that
Lu ≥ 0 in O, lim sup

z→ζ
u(z) ≤ 0 ∀ζ ∈ ∂O.

Then u ≤ 0.

Proof. The function w(x, t) = et satisfies

Lw < 0 in O and inf
O

w > 0.

Then, the assertion follows from the classical Picone’ s maximum principle. �

Proposition 2.2. Let O be a bounded open subset of R
N+1 and let z0 = (x0, t0) ∈ O.

Define

Oz0 := {z = (x, t) ∈ O : t < t0}, ∂z0O := {z = (x, t) ∈ ∂O : t ≤ t0}.
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Let u ∈ C2(O) be such that

Lu ≥ 0 e lim sup
z→ζ

u(z) ≤ 0 ∀ζ ∈ ∂z0O.

Then u ≤ 0 in Oz0 .

Proof. Let ε, δ > 0 be fixed and consider the function

uε(z) = u(z) − ε

(t0 − δ − t)
, z ∈ O(x0,t0−δ).

We have

Luε(z) = Lu(z) +
ε

(t0 − δ − t)2
> 0 ∀z ∈ O(x0,t0−δ)

and
lim sup

z→ζ
uε(z) ≤ 0 ∀ζ ∈ ∂O(x0,t0−δ).

By the previous theorem we get uε(z) ≤ 0 in O(x0,t0−δ). Letting ε and δ go to zero
we obtain the assertion. �
Corollary 2.3. Let O be a bounded open subset of R

N+1 and let ϕ ∈ C∞
0 (O) be

such that

supp ϕ ⊆ R
N×] − λ0, λ0[, λ0 > 0.

If u ∈ C∞(O) satisfies





Lu = −ϕ in O

limz→ζ u(z) = 0 ∀ζ ∈ ∂O
,

then
sup
O

|u| ≤ 2λ0 sup
O

|ϕ|.

Proof. Let 0 < λ1 < λ0 be such that suppϕ ⊆ R
N×]−λ1, λ1[ and choose a smooth

function ψ : R −→ R such that 0 ≤ ψ ≤ 1, ψ′ ≥ 1
2λ0

in ] − λ1, λ1[. Then, if we
define

M = 2λ0 sup
O

|ϕ| and v(x, t) = u(x, t) − Mψ(t)

we have
Lv ≥ 0 in O and lim

z→ζ
v(z) ≤ 0 ∀ζ ∈ ∂O.

Therefore, by Theorem 2.1, v ≤ 0 in O. This means u ≤ Mψ. The same estimate
holds for −u. Thus, since 0 ≤ ψ ≤ 1, supO |u| ≤ M. �

Hypothesis (H2) immediately implies the following strong maximum principle

Proposition 2.4. Let u be a nonnegative smooth solution to Lu = 0 in the strip
R

N×]T1, T2[, T1 < T2.
Suppose u(x0, t0) = 0 for a suitable x0 ∈ R

N and T1 < t0 < T2. Then

u(x, t) = 0 ∀(x, t) ∈ R
N×]T1, t0[.
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Proof. It is enough to use hypothesis (H2) and Bony maximum principle ([5],
Theorem 3.1). �

By proceeding as in [4], pag.1161, we can prove the existence of an open
neighbourhood O1 of the origin in R

N+1 such that

(i) dλ(O1) ⊆ O1 for 0 < λ ≤ 1,
(ii)

⋃
λ>0 dλ(O1) = R

N+1.

Here dλ stands for the λ-dilation on L. Moreover, O1 can be choosen in such a
way that the following proposition holds.

Proposition 2.5. There exists a function G1 ∈ C∞({(z, ζ) ∈ O1 × O1|z 	= ζ}),
G1 ≥ 0 such that:

(i) for any fixed z ∈ O1, G1(z, ·) ∈ L1
loc(O1) ,

(ii) for any fixed ζ ∈ O1, G1(z, ζ) −→ 0 as z −→ z0, ∀z0 ∈ ∂O1,
(iii) G1(x, t, ξ, τ) = 0 if t ≤ τ.
(iv) For any f ∈ C∞

0 (O1) the function

u(z) = G1f(z) :=
∫

O1

G1(z, ζ)f(ζ)dζ, z ∈ O1

is smooth in O1 and solves the problem





Lu = −f in O1

limz→ζ u(z) = 0 ∀ζ ∈ ∂O1

.

We shall call G1 a Green function for L related to O1. A Green function for L∗

related to O1 is given by
G∗(z, ζ) := G(ζ, z).

L∗ denotes the formal adjoint of L.

Since the Xj ’s are dλ-homogeneous of degree one, then X∗
j = −Xj . It follows

that L∗ =
∑m

j=1 X2
j − X0 + ∂t. The proposition can be proved proceeding as in

[4], Theorem 3.2. We just explicitly mention that property (iii) is a consequence
of the “parabolic” maximum principle of Proposition 2.2.

For every λ > 0 let us now define Oλ := dλ(O1) and

Gλ(z, ζ) := λ−Q+2G1(dλ−1z, dλ−1ζ) (2.1)

where Q is the homogeneous dimension of L (see (H1)). We also put G∗
λ(z, ζ) =

Gλ(ζ, z). It is quite easy to recognize that Gλ(G∗
λ) is a Green function for L(L∗).

Next lemma will show that Gλ is increasing with respect to λ. It can be proved
exactly as Lemma 3.4 in [4].

Lemma 2.6. If 0 < λ1 ≤ λ2 then

Gλ1(z, ζ) ≤ Gλ2(z, ζ) ∀z, ζ ∈ Oλ1 , z 	= ζ.
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With Proposition 2.5 and Lemma 2.6 in hands we can define

Γ(z, ζ) := sup
λ>0

Gλ(z, ζ) = lim
λ→∞

Gλ(z, ζ) z, ζ ∈ R
N+1, z 	= ζ.

Theorem 2.7. Γ is a fundamental solution for L, smooth out of the diagonal,
nonnegative and with support in a halfspace. More precisely

(i) For any fixed z ∈ R
N+1, Γ(·, z) and Γ(z, ·) belong to L1

loc(R
N+1).

(ii) For every ϕ ∈ C∞
0 (RN+1) and z ∈ R

N+1,

L
∫

RN+1
Γ(z, ζ)ϕ(ζ) dζ =

∫

RN+1
Γ(z, ζ)Lϕ(ζ) dζ = −ϕ(z).

(iii) Γ ∈ C∞
(
{(z, ζ) ∈ R

N+1 × R
N+1 | z 	= ζ}

)
.

(iv) L(Γ(·, ζ)) = −δζ for every ζ ∈ R
N+1.

(v) Γ ≥ 0 and Γ(x, t, ξ, τ) > 0 if and only if t > τ .
(vi) If we define Γ∗(z, ζ) := Γ(ζ, z) then Γ∗ is a fundamental solution for L∗

satisfying the dual properties of (ii) and (iv).

Proof.

(i) For Corollary 2.3 we get

∫

Oλ

Gλ(z, ζ)ϕ(ζ) dζ ≤ 2λ2
0 sup |ϕ|. (2.2)

for every ϕ ∈ C∞
0 (RN × (−λ2

0, λ
2
0)) and λ > λ0. Letting λ go to infinity we

obtain ∫

RN+1
Γ(z, ζ)ϕ(ζ) dζ ≤ 2λ2

0 sup |ϕ|

which prove that Γ(z, ·) ∈ L1
loc(R

N+1). In a similar way, by using G∗
λ instead

of Gλ, we can prove that Γ(·, z) ∈ L1
loc(R

N+1).
(ii) For every fixed ϕ ∈ C∞

0 (RN+1) let us define

u(z) :=
∫

RN+1
Γ(z, ζ)ϕ(ζ) dζ, z ∈ R

N+1.

From inequality (2.2) it follows that u ∈ L∞(RN+1). Moreover, by the defi-
nition of Γ, for any ψ ∈ C∞

0 (RN+1), we have

< L(u), ψ > = < u,L∗ψ > = lim
λ→∞

< Gλϕ,L∗ψ >

= lim
λ→∞

< L(Gλϕ), ψ > = − < ϕ,ψ > .

Then Lu = −ϕ in the weak sense of distributions. The hypoellipticity of L
gives now that u ∈ C∞(RN+1). Finally

∫

RN+1
Γ(z, ζ)Lϕ(ζ) dζ = lim

λ→∞
Gλ(Lϕ)(z) = −ϕ(z).
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This completes the proof of (ii).
(iii) This property follows from the hypoellipticity of L by using a standard device

(see, e.g. [5], Theorem 6.1).
(iv) For every fixed ϕ ∈ C∞

0 (RN+1) and for any ζ ∈ R
N+1 we have

∫

RN+1
LΓ(z, ζ)ϕ(z) dz =

∫

RN+1
Γ(z, ζ)L∗ϕ(z) dz

= lim
λ→∞

∫

RN+1
Gλ(z, ζ)L∗ϕ(z) dz

= lim
λ→∞

∫

RN+1
G∗

λ(ζ, z)L∗ϕ(z) dz = −ϕ(ζ).

This proves (iv).
(v) Since Gλ((x, t), (ξ, τ)) ≥ 0, = 0 if t ≤ τ, then

Γ((x, t), (ξ, τ)) ≥ 0, = 0 if t ≤ τ.

Let us now prove that Γ((x, t), (ξ, τ)) > 0 if t > τ .
We argue by contradiction and suppose Γ((x0, t0), (ξ0, τ0)) = 0 for some
(x0, t0), (ξ0, τ0) ∈ R

N+1, t0 > τ0.
Define

u(z) = u(x, t) := −Γ((x, t), (ξ0, τ0)), x ∈ R
N , t > τ0.

By property (iv), Lu = 0 in R
N×]τ0,∞[. Moreover u ≤ 0 and u(x0, t0) = 0.

Then, by the strong maximum principle of Proposition 2.4, u(x, t) = 0 in the
strip R

N×]τ0, t0[. Thus, since Γ((x, t), (ξ0, τ0)) = 0 if t < τ0, we have
∫

RN+1
Γ(z, ζ0)ϕ(z) dz = 0 ∀ϕ ∈ C∞

0 (RN×] −∞, t0[).

This contradicts (iv), and completes the proof of (v).

(vi) This statement is quite obvious. �

Next Proposition will show some other important properties of Γ.

Proposition 2.8. The fundamental solution Γ has the following properties

(i) Γ(dλ(z), dλ(ζ)) = λ−Q+2Γ(z, ζ).
(ii) There exists C > 0 such that

0 ≤ Γ(z, ζ) ≤ C

|z|Q−2
if |z| ≥ 2|ζ| (2.3)

and

0 ≤ Γ(z, ζ) ≤ C

|ζ|Q−2
if |ζ| ≥ 2|z|. (2.4)
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Proof.

(i) From the definition of Gλ we obtain

Gn (dλz, dλζ) = n−Q+2G1

(
d λ

n
z, d λ

n
ζ
)

= λ−Q+2Gn
λ
(z, ζ).

The assertion follows letting n go to infinity.
(ii) Since | · | is a homogeneous norm on L, by the previous property we have

Γ(z, ζ) = |z|−Q+2Γ(d 1
|z|

z, d 1
|z|

ζ)

so that, if |z| > 2|ζ|,

0 ≤ Γ(z, ζ) ≤ 1
|z|Q−2

max
|z′|=1,|ζ′|≤ 1

2

Γ(z′, ζ ′) =: C|z|−Q+2.

From these inequalities assertion (2.3) follows. (2.4) can be proved as (2.3).

�

From this proposition we easily obtain the following important Corollary.

Corollary 2.9. Let Γ be the fundamental solution of L constructed above. Then

(i) Γ(z, ζ) = Γ(ζ−1 ◦ z) with

Γ(·) := Γ(·, 0).

(ii) lim supz→ζ Γ(z, ζ) = ∞ for every ζ ∈ R
N+1.

Proof.

(i) Let ζ ∈ R
N+1 be arbitrarily fixed and define

u(z) = Γ(ζ−1 ◦ z) − Γ(z, ζ), z ∈ R
N+1.

Since L is left translation invariant on L, by Theorem 2.7-(iv) we have: Lu =
−δζ + δζ = 0. Moreover, by Proposition 2.8-(ii), u(z) −→ 0 as z −→ ∞.
Then, by the maximum principle of Proposition 2.1, u ≡ 0 and (i) follows.

(ii) By the previous property,

lim sup
z−→ζ

Γ(z, ζ) = lim sup
z−→0

Γ(z).

On the other hand, since Γ is the dλ-homogeneous of degree −Q + 2, Propo-
sition 2.8-(i),

Γ(0, t) = t
2−Q

2 Γ(0, 1) for every t > 0.

Being Γ(0, 1) > 0 (see Theorem 2.7-(v)) and Q ≥ 3, this identity obviously
implies Γ(0, t) −→ ∞ as t → 0, and the assertion follows. �



60 A.E. Kogoj and E. Lanconelli Mediterr. j. math.

3. Fundamental solution for L0

In this section we show that the operator

L0 :=
m∑

j=1

X2
j − X0 (3.1)

has a fundamental solution γ with pole at x = 0 given by

γ(x) :=
∫ ∞

0

Γ(x, t) dt (3.2)

where Γ is the fundamental solution of L, with pole at (x, t) = (0, 0) found in
Section 2.

First of all we remark that the integral to the right hand side of (3.2) is
convergent for every x ∈ R

N\{0}. Indeed, it is enough to observe that, from
inequality (2.3),

Γ(x, t) = O
(
t−

Q−2
2

)
as t −→ +∞

and remind that Q − 2 ≥ 3.
It is easy to see that γ is Dλ-homogeneous of degree −Q + 4. Indeed for every
x 	= 0 we have

γ(Dλ(x)) =
∫ ∞

0

Γ (Dλ(x), t) dt

= λ−Q+2

∫ ∞

0

Γ(x, λ−2t) dt = λ−Q+4

∫ ∞

0

Γ(x, t) dt

= λ−Q+4γ(x).

A trivial application of Lebesgue Dominated Convergence Theorem shows that γ
is continuous out of the origin. Moreover, since Γ(x, t) > 0 for t > 0, γ(x) > 0 for
any x 	= 0.

From these properties of γ we immediately get the following estimates: there
exists a constant C > 0 such that

1
C
|x|4−Q ≤ γ(x) ≤ C|x|4−Q (3.3)

where | · | stands for the Dλ homogeneous norm (1.4).
From the bounds (3.3) it follows that γ ∈ L1

loc(R
N\{0}).

Proposition 3.1. In the weak sense of distributions we have

L0γ = −δ, δ := Dirac measure at x = 0.

Proof. Let ϕ ∈ C∞
0 (RN ) and define

φk(x, t) = ϕ(x)ψ
(

t

k

)
, k ∈ N,

where ψ ∈ C∞
0 (R), ψ(s) = 0 if |s| ≥ 2, ψ(s) = 1 if |s| ≤ 1.
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Since Γ(x, t) is the fundamental solution of L with pole at (x, t) = (0, 0), we
have

−ϕ(0) = −φk(0, 0) =
∫

RN+1
Γ(x, t)L∗φk(x, t) dxdt

so that, as k −→ ∞,

−ϕ(0) =
∫

RN+1
Γ(x, t)L∗

0ϕ(x) dxdt

=
∫ ∞

0

(∫

RN

Γ(x, t)dt

)
L∗

0ϕ(x) dx =
∫

RN

γ(x)L∗
0ϕ(x) dx.

�

Corollary 3.2. γ ∈ C∞(R\{0}).
Proof. It immediately follows from the previous proposition and the hypoellipticity
of L0. �

4. Radial solution to L0u = 0

Let γ be the fundamental solution of L0 found in the previous Section. Define

ρ(x) := (γ(x))−
1

Q−4 .

The results of Section 3 show that ρ is Dλ-homogeneous of degree one, continuous
in R

N , smooth and strictly positive in R
N\{0}. Moreover, for a suitable C > 0,

1
C

≤ ρ(x)
|x| ≤ C ∀x 	= 0.

We say that u : R
N\{0} −→ R is a radial function if there exists f :]0,∞[−→ R

such that u(x) = f(ρ(x)) for any x 	= 0.

Proposition 4.1. Let u = f(ρ) be a radial function. Then, if f is smooth,

L0u = |∇Lρ|2
(

Q − 3
ρ

f ′(ρ) + f ′′(ρ)
)

in R
N\{0}, (4.1)

where |∇Lρ|2 :=
∑m

j=1(Xjρ)2.

Proof. A direct easy computation shows that

L0u = f ′′(ρ)|∇Lρ|2 + f ′(ρ)L0ρ. (4.2)

On the other hand ρ4−Q = γ is L0-harmonic in R
N\{0}. Then, using (4.2) with

f(s) = s4−Q, we get

L0ρ = (Q − 3)
|∇Lρ|2

ρ
.

Replacing this in (4.2) we obtain (4.1). �
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5. A gaussian estimate for Γ

In this section we show the following upper estimate of Γ.

Γ(x, t) ≤ C

t
Q−2

2

exp
(
−ρ2(x)

Ct

)
∀x ∈ R

N , ∀t > 0, (5.1)

being C a positive constant.
Following an idea in [4], let us put

A := {x ∈ R
N | ρ(x) ≥ 1} and B = A×]0, 1[

and define
w(x, t) := exp(−σ(1 − t)ρ2(x)),

where σ > 0 will be fixed later.
Using Proposition 4.1 we obtain

Lw = (L0 − ∂t)w
= w|∇Lρ|2(−2(Q − 3)σ(1 − t) + 4(σρ(1 − t))2 − 2σ(1 − t)) − wσρ2,

so that, in B,

Lw ≤ ρ2wσ(−1 + 4σ|∇Lρ|2). (5.2)

On the other hand, since |∇Lρ| is Dλ-homogeneous of degree zero and continuous
in R

N\{0},
sup

RN\{0}
|∇Lρ|2 = sup

|x|=1

|∇Lρ(x)|2 =: C0 < ∞.

Then, if we choose 0 < σ < 1
4C0

, from (5.2) we get

Lw ≤ 0 in B.

Let us now put

C1 := sup
{

Γ(x, t)
w(x, t)

∣∣∣ ρ(x) = 1, 0 ≤ t ≤ 1
}

Then L(Γ − C1w) ≥ 0 in B, Γ − C1w ≤ 0 on ∂B and Γ − Cw goes to zero as
z −→ ∞ in B. From the parabolic maximum principle of Proposition 2.2, we thus
obtain Γ ≤ C1w in B. In particular,

Γ
(

x,
1
2

)
≤ C1 exp

(
−σ

ρ2(x)
2

)
if ρ(x) ≥ 1,

so that, by the dλ-homogeneity of Γ,

Γ(x, t) = (2t)−
Q−2

2 Γ
(

D 1√
2t

(x),
1
2

)

≤ C2t
−Q−2

2 exp
(
−σ

ρ2(x)
4t

)
if

ρ(x)√
2t

≥ 1.
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On the other hand for a suitable constant C3 > 0 the inequality

Γ(x, t) ≤ C3t
−Q−2

2 exp
(
−σ

ρ2(x)
4t

)

trivially holds if ρ(x)√
2t

≤ 1, due to the dλ-homogeneity of Γ. This complete the proof
of (5.1).

6. An integral identity for Γ

The aim of this section is to prove the identity
∫

RN

Γ(x, t, ξ, τ) dξ = 1 ∀x ∈ R
N , ∀t > τ. (6.1)

We first remark that∫

RN

Γ(x, t, ξ, τ) dξ ≤ 1 ∀x ∈ R
N , ∀t > τ. (6.2)

This inequality can be proved just proceeding as in the proof of Lemma 4.1 and
Lemma 4.2 in [13], and by using the gaussian upper estimate of Γ found in the
previous section.

Next lemma, together with (6.2), is crucial to show (6.1).

Lemma 6.1. For every (x0, t0) ∈ R
N and t1 < t0 we have

∫ t0

t1

(∫

RN

Γ(x0, t0, ξ, τ) dξ

)
dτ = t0 − t1 (6.3)

Proof. Let φ ∈ C∞
0 (RN ) be such that φ(ξ) = 1 if |ξ| ≤ 1 and φ(ξ) = 0 if |ξ| ≥ 2.

Moreover let (ψk)k∈N be a sequence of smooth functions in C∞
0 (R) such that

0 ≤ ψk ≤ 1, ψk(s) = 0 if s ≤ t1, ψk(t0) = 1, ψk(s) = 0 if s ≥ 2t0, |ψ′
k(s)| ≤ 2 and

ψ′
k(s) −→ 1

t0 − t1
as k −→ ∞, if t1 < s < t0.

Then, since Γ is a fundamental solution of L,

φ
(x0

k

)
ψk(t0) = −

∫ +∞

−∞

∫

RN

Γ(x0, t0, ξ, τ)L
(

φ

(
ξ

k

)
ψk(τ)

)
dξ dτ

= −
∫ t0

t1

(∫

k≤|ξ|≤2k

Γ(x0, t0, ξ, τ)L0

(
φ

(
ξ

k

))
ψk(τ) dξ

)
dτ

+
∫ t0

t1

(∫

RN

Γ(x0, t0, ξ, τ)φ
(

ξ

k

)
ψ′

k(τ) dξ

)
dτ.

Letting k go to infinity, and using again the gaussian estimate of Section 5, we
easily obtain

1 =
∫ t0

t1

∫

RN

Γ(x0, t0, ξ, τ)
1

t0 − t1
dξ dτ
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Thus, (6.3) holds.
The identity (6.3) clearly implies

∫ t

t1

(
1 −

∫

RN

Γ(x, t, ξ, τ) dξ

)
dτ = 0

for every t, t1 ∈ R, t1 < t, so that, by (6.2),

1 =
∫

RN

Γ(x, t, ξ, τ) dξ for a.e. τ < t.

Then, the assertion follows by the continuity of the right hand side with respect
to τ . �

7. Harnack inequality for L
In this section we shall prove a Harnack inequality for the nonnegative solutions
to Lu = 0. Our result extends the Harnack inequality proved in [10]. To begin
with we introduce the notation needed to state the inequality.

For r > 0 and z0 ∈ R
N+1 we define

Cr(z0) := z0 ◦ dr(C1) and Sr(z0) = z0 ◦ dr(S1)

where

C1 =
{
z ∈ R

N+1 : |z| ≤ 1
}

and S1 =
{

z ∈ C1 :
1
4
≤ −t ≤ 3

4

}
.

Then, the following theorem holds.

Theorem 7.1. Let O be an open set of R
N+1 containing Cr(z0) for some z0 ∈ R

N+1

and r > 0. Then, there exist two positive constants θ = θ(L) and C = C(L),
0 < θ < 1, such that

sup
Sθr(z0)

u ≤ Cu(z0) (7.1)

for every u ≥ 0 solution to Lu = 0 in O.

We shall prove this theorem by using a mean value property of the L-harmonic
functions.

Given z0 ∈ R
N+1 and r > 0 we define the L-ball of center z0 and radius r as

follows

Ωr(z0) :=

{
z ∈ R

N+1 : Γ(z−1 ◦ z0) >

(
1
r

)Q−2
}

.

Obviously

Ωr(z0) = z0 ◦ Ωr where Ωr := Ωr(0).
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From Proposition 2.8 and Corollary 2.9 it follows that Ωr(z0) is bounded and non
empty for every z0 ∈ R

N+1 and r > 0. Then Ω1 ⊆ CR0 where

R0 = max
z∈Ω1

|z|.

Thus

Ω r
R0

(z0) ⊆ Cr(z0) ∀z0 ∈ R
N+1, ∀r > 0. (7.2)

We also note that
⋃

r>0

Ωr = R
N×] −∞, 0[. (7.3)

Indeed, if z = (x, t) ∈ Ωr then Γ((x, t)−1) > ( 1
r )Q−2. On the other hand (x, t)−1 =

(y,−t) for a suitable y ∈ R
N . It follows that Γ(y,−t) > ( 1

r )Q−2, hence −t > 0 so
that z = (x, t) ∈ R

N×] −∞, 0[.
Viceversa, given z = (x, t) ∈ R

N×] − ∞, 0[, for a suitable y ∈ R
N , we have

Γ((x, t)−1) = Γ(y,−t) > 0. This implies Γ((x, t)−1) > ( 1
r )Q−2 for a suitable r > 0,

hence (x, t) ∈ Ωr. This completes the proof of (7.3).
Then, since S1 is a compact subset of R

N×]−∞, 0[, there exists R1 > 0 such
that S1 ⊆ ΩR1 . As a consequence

Sr ⊆ ΩrR1 ∀r > 0.

This inclusion, together with (7.2), gives

Sθr(z0) ⊆ Ω r
R0

(z0) ⊆ Cr(z0) ∀r > 0. (7.4)

where θ = 1
R0R1

. The properties of Γ showed in the previous sections imply the
following Mean Value Theorem for L-harmonic functions.

Proposition 7.2. Let u be a (smooth) solution to Lu = 0 in the open set O ∈ R
N+1.

Then, for every L-ball Ωr(z0) with closure contained in O, we have

u(z0) =
(

1
r

)Q−2 ∫

Ωr(z0)

u(ζ)K(z0, ζ) dζ, (7.5)

where

K(z, ζ) =
|∇LΓ(z, ζ)|2

Γ2(z, ζ)
, ∇L = (X1, . . . , Xm).

Here ∇L acts on the variable ζ.

Proof. Let us write the Xj ’ s as follows:

Xj =
N∑

k=1

a
(k)
j ∂xk

, j = 0, 1, . . . ,m.

Since these vector fields are dλ-homogeneous of a strictly positive degree, the
coefficient a

(k)
j is independent of xk, k ∈ {1, . . . , N}, j ∈ {0, 1, . . . ,m}. Then,
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the Xj ’s are divergence free, i.e. divXj ≡ 0 in R
N for every j ∈ {0, 1, . . . ,m}.

As a consequence, for a suitable N×N matrix A, the operator L takes the following
form

L = div(A∇) + Y, ∇ = (∂x1 , . . . , ∂xN
), (7.6)

and Y is divergence free in R
N+1. Moreover

< A(x)ξ, ξ >=
m∑

j=1

< Xj(x), ξ >2 for every x, ξ ∈ R
N .

Then, in order to prove identity (7.5) it is now enough to proceed exactly as in [14],
pages 308-313, by using the properties of Γ showed in Sections 5 and 6, together
with inequality (5.1) and identity (6.1) . �

For the proof of Harnack inequality, we need the following lemma

Lemma 7.3. Let z = (x, t) ∈ R
N+1 be fixed. Then the set

Σ := {ζ = (ξ, τ) ∈ R
N+1 | τ < t, K(z, ζ) = 0}

does not contain interior points.

Proof. By contradiction, assume K(z, ζ) = 0 for every ζ ∈ U , with U an open
subset of R

N×] − ∞, t[. Then XjΓ(z, ·) ≡ 0 in U for any j = 1, . . . , m, hence∑m
j=1 X2

j (Γ(z, ·)) ≡ 0 in the same open set. Since L∗Γ(z, ·) ≡ 0 in R
N×] −∞, t[,

this implies
(X0 − ∂t)Γ(z, ·) ≡ 0 in U.

As a consequence, by the rank condition, the euclidean gradient of Γ(z, ·) is iden-
tically zero in U . Then Γ(ζ−1 ◦ z) = C0 for any ζ ∈ U . The change of variable
ζ−1 ◦ z = z′ gives Γ(z′) = C0 for any z′ ∈ U ′ = U−1 ◦ z. Writing z′ = (x′, t′)
and reminding that the composition law in L restricted to the time axis is the
euclidean one, we have t′ > 0 (the time component of ζ−1 ◦ z is t − τ and τ < t).
Therefore C0 > 0. This is absurd because Γ is dλ-homogeneous of degree −Q + 2
and −Q + 2 	= 0. �

We now state a convergence theorem, easy consequence of a weak Harnack
inequality due to Bony.

Proposition 7.4. Let (un) be a sequence of L-harmonic functions in a open set
O ⊆ R

N . Suppose (un) monotone increasing and such that

u := sup
n∈N

un < ∞

in a dense subset T of O. Then u < ∞ everywhere, u ∈ C∞(O) and satisfies
L(u) = 0 in O.
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Proof. By Theorem 7.1 in [5], for every fixed compact set K ⊆ O, there exist
x1, . . . , xp ∈ T and a constant C > 0 such that

sup
K

(un − um) ≤ C

p∑

j=1

(un (xj) − um (xj)) ∀n ≥ m.

Then, since (un − um)(xj) −→ 0 as n,m −→ ∞, for any j ∈ {1, . . . , p}, the
sequence (un) is locally uniformly convergent in O, so that u is finite everywhere.
Moreover, since Lun = 0 for any n ∈ N, it follows that Lu = 0 in O in the
weak sense of distributions. The hypoellipticity of L implies that u ∈ C∞(O) and
satisfies the equation in the classical sense. �

Proof of Theorem 7.1. Since L is left translation invariant on L and dλ-homoge-
neous (of degree two), it is enough to prove inequality (7.1) for z0 = 0 and r = 1.
We argue by contradiction and assume that (7.1), with z0 = 0 and r = 1, is false.
Then, for every n ∈ N there exists un ∈ C∞(O), u ≥ 0, such that Lun = 0 and

sup
Sθ(z0)

un > 4nun(z0). (7.7)

Let us now use the second inclusion in (7.4) and the mean value property of
Proposition 7.2 to state that

un(z0) =
(

1
ρ

)Q−2 ∫

Ωρ(z0)

K(z0, ζ)un(ζ) dζ, ρ =
1

R0
.

Since K is nonnegative and strictly positive in a dense open subset of Ωρ(z0), see
Lemma 7.3, this identity and inequality (7.7) imply un(z0) > 0.
Let us now define

wn =
un

un(z0)
and w =

∞∑

n=1

wn

2n
.

Then w(z0) = 1 and

1 = w(z0) =
(

1
ρ

)Q−2 ∫

Ωρ(z0)

K(z0, ζ)w(ζ) dζ.

As a consequence, by the positivity property of K (Lemma 7.3), we get w < ∞
in a dense subset of Ωρ(z0). By Proposition 7.4, w ∈ C∞(Ωρ(z0)) and Lw = 0
in Ωρ(z0). In particular, since Sθ(z0) is a compact subset of Ωρ(z0) (see (7.4)) we
have

sup
Sθ(z0)

w < ∞. (7.8)

On the other hand, by inequality (7.7)

sup
Sθ(z0)

w ≥ sup
Sθ(z0)

wn

2n
≥ 2n for any n ∈ N.

This contradicts (7.8) and completes the proof. �
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8. A Harnack inequality for L0

In this Section we show a kind of Harnack inequality for nonnegative solutions to
L0u = 0. For r > 0 we shall denote by Br the ball

Br := {x ∈ R
N : |x| < r}.

Our result reads as follows.

Theorem 8.1. There exist two positive constants C and λ > 0 such that

sup
Br

u ≤ C inf
Br

u (8.1)

for every nonnegative (smooth) solution to L0u = 0 in an open set O ⊇ Bλr.

In order to prove this theorem we need the following lemma, in which we
shall use the notations of the previous section.

Lemma 8.2. There exists R > 0 such that

(x, 0) ∈ SR

((
y,

R2

2

))
(8.2)

for every x, y ∈ R
N such that |x|, |y| ≤ 1.

Proof. The inclusion (8.2) is equivalent to the following one

(x, 0) ◦
(

y,
R2

2

)−1

= dR(ξ, τ) (8.3)

for some (ξ, τ) ∈ R
N+1 satisfying |ξ| ≤ 1 and 1

4 ≤ −τ ≤ 3
4 .

Since dR(ξ, τ) = (CR(ξ), R2τ) and dR is an automorphism of L, identity (8.3)
means

(
C 1

R
(x), 0

)
◦

(
C 1

R
(y),

1
2

)−1

= (ξ, τ) (8.4)

Now, as R −→ ∞ the left hand side of (8.4) converges to

(0, 0) ◦
(

0,
1
2

)−1

=
(

0,−1
2

)

uniformly with respect to x, y ∈ {(x, y) : |x|, |y| ≤ 1}. Then the assertion follows.
�

Proof. (of Theorem 8.1) Since L0 is Dλ-homogeneous it is enough to prove (8.1)
for r = 1.

Let x, y ∈ R
N be such that |x|, |y| ≤ 1. By the previous lemma there exists

R > 0 such that

{(x, 0) : |x| ≤ 1} ⊆ SR

((
y,

R2

2

))
.

Now, let u be a nonnegative solution to L0u = 0 in O.
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Since U(x, t) := u(x) is independent of t, we have

LU = 0 in O × R.

Let us denote by λ a real positive constant such that
⋃

|y|≤1

CR
θ

((
y,

R2

2

))
⊆ Bλ × R.

Here θ denotes the constant appearing in Theorem 7.1.
Then, if O ⊇ Bλ, it follows that CR

θ

((
y, R2

2

))
⊆ Bλ × R ⊆ O × R for every

y ∈ R
N , |y| ≤ 1. Thus, by Theorem 7.1, denoting by z the point

(
y, R2

2

)
, we have

u(x) = U(x, 0) ≤ sup
SR(z)

U ≤ CU(z) = Cu(y).

Hence
u(x) ≤ Cu(y) ∀x, y ∈ R

N , |x|, |y| ≤ 1.

This completes the proof. �

From Theorem 8.1 a one-side Liouville-type theorem easily follows.

Corollary 8.3. Let u be a (smooth) nonnegative solution to

L0u = 0 in R
N .

Then u ≡ const.

Proof. Let m := infRN u and put v := u − m. Then v ≥ 0 and L0(v) = 0 in R
N .

From Theorem 8.1 we get

0 ≤ sup
Br

u ≤ C inf
Br

u ∀r > 0.

As r −→ ∞ we obtain

0 ≤ sup
RN

u ≤ C inf
RN

u = 0

so that v ≡ 0, i.e. u ≡ m. �

9. Examples

Example 9.1 (Heat operators on Carnot groups).

Let (RN , ◦) be a Lie group in R
N . Assume that R

N can be split as follows

R
N = R

N1 × . . . × R
Nm

and that the dilations

Dλ : R
N −→ R

N , Dλ(x) = Dλ(x(N1), . . . , x(Nm))

:= (λx(N1), . . . , λmx(Nm))

x(Ni) ∈ R
Ni , i = 1, . . . , m, λ > 0,
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are automorphisms of (RN , ◦).
We also assume

rank Lie{X1, . . . , XN1}(x) = N ∀x ∈ R
N (9.1)

where the Xj ’s are left invariant on (RN , ◦) and

Xj(0) =
∂

∂x
(N1)
j

, j = 1, . . . , N1.

Then G = (RN , ◦, δλ) is said to be a Carnot group whose homogeneous di-
mension Q0 is the natural number

Q0 : = N1 + 2N2 + · · · + mNm.

The vector fields X1, . . . , XN1 are the generators of G,

∆G :=
N1∑

j=1

X2
j

is the canonical sub-Laplacian on G and the parabolic operator

L = ∆G − ∂t in R
N+1 (9.2)

is called the canonical heat operator on G. Obviously L is an operator of the type
(1.1) with X0 = 0.
If we define

L = (RN+1, ◦, dλ)

with dλ(x, t) = (Dλ(x), λ2t) and the composition law ◦ given by

(x, t) ◦ (x′, t′) = (x ◦ x′, t + t′)

then L is a homogeneous group, and the operator L in (9.2) satisfies condition
(H1) in the Introduction. We explicitly remark that the homogeneous dimension
of L is Q := Q0 + 2.
Let us now show that L also satisfies (H2). Let (x, t), (y, τ) ∈ R

N+1 be such that
τ < t. By the rank condition (9.1) we can apply Chow’ s Theorem to state the
existence of a piecewise regular path η : [0, T ] −→ R

N , whose regular components
are integral curves of a vector fields in the family {±X1, . . . ,±Xm}, such that
η(0) = x, η(T ) = y. Then, the path η̂ : [0, T + t − τ ] −→ R

N+1,

η̂(s) =






(η(s), t) if 0 ≤ s ≤ T

(y, t + T − s) if T ≤ s ≤ T + t − τ
,

is an L-admissible curve connecting (x, t) and (y, τ).
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Example 9.2 (“Parabolic” operators on Carnot group).

Let G = (RN , ◦,Dλ) be a Carnot group with generators

X1, . . . , XN1 .

Assume N1 < N and choose a vector field X0 in the second layer of the Lie algebra
of G. More clearly,

X0 ∈ span{[Xj ,Xk] : j, k = 1, . . . , N1}.
Then

L =
N1∑

j=1

X2
j + X0 − ∂t

is an operator of the type (1.1) trivially satisfying condition (H1) with respect to
the homogeneous group

L = (RN+1, ◦, dλ)

of the previous example.
Let us now show that L also satisfies (H2). Let (x, t), (y, τ) ∈ R

N , τ < t, be
arbitrarily given. Let η̃ = η̃(s) = (η(s), s + τ), s ≥ 0, be the integral curve of
−X0 + ∂t such that η̃(0) = (y, τ). η̃ is defined for every s ≥ 0. Denote by z the
point

z := η̃(t − τ) = (η(t − τ), t)

Since rank Lie{X1, . . . , XN1}(x) = N for every x ∈ R
N , by Chow’ s Theorem there

exists a piecewise regular path η̂ : [0, T̂ ] −→ R
N , whose regular components are

integral curve of a vector field in {±X1, . . . ,±XN1}, such that η̂(0) = x, η̂(1) = x.
Define

η̄ : [0, T̂ ] −→ R
N , η̄(s) = (η̂(s), t).

Then η̄ + (−η̃) is an L-admissible path connecting (x, t) and (y, τ). This shows
that conditions (H2) is satisfied.

Example 9.3 (Kolmogorov operators).

Let us split R
N as follows

R
N = R

p × R
r

and denote by x = (x(p), x(r)) its points. Let B a N × N real matrix taking the
following block form

B =





0 0 0 . . . 0
B1 0 0 . . . 0
0 B2 . . . . . . . . .
...

...
. . .

...
...

0 0 0 Bk 0




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where Bj is a rj × rj−1 matrix with rank rj , and r0 = p ≥ r1 ≥ . . . ≥ rk ≥ 1,
r0 + r1 + . . . + rk = N. Denote

E(t) = exp(−tB)

and introduce in R
N+1 the following composition law

(x, t) ◦ (y, τ) := (y + E(−τ)x, t + τ). (9.3)

In [15] it is proved that
K = (RN+1, ◦, dλ)

is a homogeneous Lie group with respect to the dilations

dλ(x, t) = dλ(x(p), x(r1), . . . , x(rk), t)

= (λx(p), λ3x(r1), . . . , λ2k+1x(rk), λ2t)

The homogeneous dimension of K is

Q = p + 3r1 + . . . + (2k + 1)rk + 2.

We call K a Kolmogorov-type group.
Let us now consider the operator

K = ∆Rp
+ < Bx,D > −∂t,

where ∆Rp
denotes the usual Laplace operator in R

p, <,> is the inner product
in R

N and D = (∂x1 , . . . , ∂xN
). It is easy to see that K can be written as in (1.1)

with m = p, Xj = ∂xj
, 1 ≤ j ≤ p, and X0 =< Bx,D > . The first order partial

differential operator
Y =< Bx,D > −∂t

will be called the total derivative operator on K. By Proposition 2.2 in [15], Y is
dλ-homogeneous of degree two. Moreover, the operator K satisfies condition (H1)
with L replaced by the group K.

Let us now prove that K also satisfies (H2). Let (x0, t0) ∈ R
N+1 be arbitrarily

fixed and define

F = {(x, t) ∈ R
N+1 | there exists a K-admissible path

η : [0, T ] −→ R
N+1 : η(0) = (x0, t0), η(T ) = (x, t)}.

The following claim will show (H2).

Claim 9.4. F = R
N×] −∞, t0[.

Proof. We split the proof of this claim in two steps.
Step 1. Since Xj = ∂xj

, j ∈ {1, . . . , p}, it is quite obvious that

(x(p), x(r), t) ∈ F ∀x(p) ∈ R
p (9.4)

if (x(p), x(r), t) ∈ F for some x(p) ∈ R
p. In particular

(x(p), x0
(r), t0) ∈ F ∀x(p) ∈ R

p (9.5)
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Step 2. Let us now use the integral curve of Y . By the sake of simplicity we assume
that B is as follows

B =




0 0 0

B1 0 0
0 B2 0





where Bi is a ri×ri−1 matrix with rank ri, i = 1, 2, r0 = p ≥ r1 ≥ r2, r1 +r2 = r.
The proof in the general case uses the same argument we are going to use. The
integral curves of Y are given by

x(p) = α(p), x(r1) = α(r1) + sB1α
(p)

x(r2) = α(r2) + sB2α
(r1) +

s2

2
B2B1α

(p),

t = τ − s,

with (α(p), α(r1), α(r2), τ) ∈ R
n × R

p × R
r × R . Then, also using what proved in

Step 1,

(y(p), y
(r1)
0 , y

(r2)
0 , t0 − s) ∈ F, ∀y(p) ∈ R

p, ∀s > 0, (9.6)

and

y
(r1)
0 = x

(r1)
0 + sB1x

(p) , y
(r2)
0 = x

(r2)
0 + sB2x

(r1)
0 +

s2

2
B2B1x

(p)

being x(p) ∈ R
p, arbitrarily fixed.

Starting from the point (9.6), again with integral curves of Y , we obtain

(z(p), z
(r1)
0 , z

(r2)
0 , t0 − 2s) ∈ F, ∀z(p) ∈ R

p, ∀s > 0 (9.7)

and

z
(r1)
0 = y

(r1)
0 + sB1y

(p) = x
(r1)
0 + sB1(x(p) + y(p)),

z
(r2)
0 = y

(r2)
0 + sB2y

(r1)
0 +

s2

2
B2B1y

(p)

= x
(r2)
0 + sB2x

(r1)
0 +

s2

2
B2B1x

(p)

+ sB2(x
(r1)
0 + sB1(x(p)) +

s2

2
B2B1y

(p)

= x
(r2)
0 + 2sB2x

(r1)
0 +

s2

2
B2B1(3x(p) + y(p)),

being x(p), y(p) ∈ R
p arbitrarily fixed. Given t < t0 let us now choose s = t0−t

2 , so
that

t0 − 2s = t.

Moreover, for every fixed (x(r1), x(r2)) ∈ R
r1 × R

r2 , let v, w ∈ R
p be such that

sB1v = x(r1) − x
(r1)
0

s2

2
B2B1w = x(r2) − (x(r2)

0 + 2sB2x
(r1)
0 ).
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We explicitly remark that these linear equations are solvable since B1 and B2B1

are r1 × p and r2 × p matrices with rank r1 and r2, respectively.
Then, if x(p), y(p) ∈ R

p satisfy

x(p) + y(p) = v 3x(p) + y(p) = w,

from (9.7) we obtain
(z(p), x(r1), x(r2), t) ∈ F

for every (z(p), x(r1), x(r2), t) ∈ R
N×]0, t0[.

This proves the Claim. �

Remark 9.5. The matrix E(t) in (9.3) takes the following triangular form

E(t) =
(

Ip 0
E1(t) Ir

)

where Ip and Ir are the identity matrix in R
p and R

r, respectively. Then, the
composition law in K has the following structure:

(x(p), x(r), t) ◦ (y(p), y(r), τ) = (x(p) + y(p), x(r) + y(r) + E1(τ)x(p), t + τ)

Remark 9.6. For what we need in the sequel it is crucial to note that, for any fixed
(x, t) ∈ R

N+1,

∂τ ((x, t) ◦ (y, τ)) |(y,τ)=(0,0) = −Y.

Example 9.7 (Sub-Kolmogorov operators).

Let G = (Rp×R
q, ◦, d(1)

λ ) be a Carnot group with first layer R
p (see Example

9.1). Moreover, let K = (Rp×R
r×R, ◦, d(2)

λ ) be a Kolmogorov group (see Example
9.2). Finally, let L = (RN+1, ◦, dλ), N = p + q + r,

L = G�K,

be the link of G and K (see Appendix, Subsection 10.2).
Consider the operator

L = ∆G + Y,

where

∆G =
p∑

j=1

X2
j and Y

are, respectively, the canonical sub-laplacian on G and the total derivative operator
on K. We call L a sub-Kolmogorov operator.

Due to the structure of the composition law in K (see Remark 9.5) and
thank to the Proposition 10.4 in the Appendix, the vector fields X1,X2, . . . , Xp

are left translation invariant on L and dλ homogeneous of degree one. On the other
hand, due to the Remark 9.6 and the Proposition 10.5 in the Appendix, Y is left
translation invariant on L and dλ homogeneous of degree two. Then, L satisfies
condition (H1).
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By following the same lines of the proof of Claim 9.4 in Example 9.3, it can
be proved that L also satisfies condition (H2). We only need to remark that in the
first step of the proof we have to use the rank condition

rank Lie{X1, . . . , Xp}(x(p,q)) = p + q ∀x(p,q) ∈ R
(p,q)

in order to state the {X1, . . . , Xp} connectivity of R
(p,q).

10. Appendix

10.1. Homogeneous Lie groups in R
N : some reminds

We say that a Lie group G = (RN , ◦) is a homogeneous group if there exists an
N -tuple of natural numbers σ = (σ1, . . . , σN ), σ1 = 1, such that the dilation

dλ : R
N −→ R

N , dλ(x1, . . . , xN ) = (λσ1x1, . . . , λ
σN xN )

is an automorphism of G for every λ > 0. One usually assumes σ1 ≤ σ2 ≤ . . . ≤ σN .
In what follows, we shall denote by g the Lie algebra of a homogeneous Lie

group G. As usual, we agree to identify the vector field X =
∑N

j=1 aj∂xj
with the

vector value function (a1, . . . , aN ).
It is quite easy to recognize that the coefficients of any vector field X ∈ g are

polynomial functions. Moreover if X1, . . . , Xm ∈ g , then

dim (span{X1(x), . . . , Xm(x)})
is independent of x ∈ R

N . This last remark, together with Frobenius Theorem,
immediately gives the following Proposition.

Proposition 10.1. Let X = {X1, . . . , Xm} ⊆ g. Assume R
N is X-connected, i.e.:

for every x, y ∈ R
N there exists an absolutely continuous path η : [0, T ] −→ R

N

such that η(0) = x, η(T ) = y and

η′(s) =
m∑

j=1

λj(s)Xj(η(s)) a.e. in [0, T ],

where the λj’ s are piecewise constant real functions. Then

rank Lie{X1, . . . , Xm}(x) = N ∀x ∈ R
N . (10.1)

Proof. By contradiction, assume there exists x0 ∈ R
N such that

rank Lie{X1, . . . , Xm}(x0) = k < N.

Then, by what previously noticed,

rank Lie{X1, . . . , Xm}(x) = k ∀x ∈ R
N ,

so that, by Frobenius Integrability Theorem, R
N is foliated in disjoint k-dimension-

al leafs (see [23], Vol. I, pag. 264; see also [24]). This contradicts our connectivity
assumption. �
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Given X ∈ g we denote by exp(sX)(x), x ∈ R
N and s ∈ R, the solution to

the Cauchy problem
η′ = X(η), η(0) = x.

The map (s, x) �−→ exp(sX)(x) is everywhere defined and smooth in R×R
N . We

know that
Exp : g −→ G, Exp(X) = exp(X)(0)

is a global diffeomorphism whose inverse is denote by Log. Moreover, for every
x, y ∈ R

N ,

x ◦ y = exp(Log(y))(x). (10.2)

From this result we immediately get the following proposition.

Proposition 10.2. Let us denote by π the projection

π : R
N −→ R, π(x1, . . . , xN ) = xN .

Assume that the N -th component of every X ∈ g is a constant function i.e.
π(X) =const., for any X ∈ g. Then,

π(x ◦ y) = π(x) + π(y). (10.3)

Proof. Due to the hypothesis,

π(exp(X)(z)) = π(z) + π(X). (10.4)

Then
π(Exp(X)) = π(X) ∀X ∈ g ,

so that,

π(Log(y)) = π(y) ∀y ∈ R
N . (10.5)

Thus, by (10.2), (10.4) and (10.5)

π(x ◦ y) = π(exp(Log(y))(x)) = π(x) + π(Log(y))
= π(x) + π(y).

�

Remark 10.3. Let L = (RN+1, ◦, dλ) be the homogeneous Lie group of condition
(H1) in the Introduction. For suitable natural numbers σ1, . . . , σN , σN+1 we have

dλ(x, t) = dλ(x1, . . . , xN , t) = (λσ1 , . . . , λσN , λσN+1t)

Since Y = X0 − ∂t is supposed to be dλ-homogeneous of degree two, for every
smooth function u = u(t) only dependent on the variable t we have

L(u(λσN+1t)) = λ2(Lu)(λσN+1t),

so that
∂t(u(λσN+1t)) = λ2(∂tu)(λσN+1t).

This obviously implies σN+1 = 2. As a consequence

Q := σ1 + . . . + σN + σN+1 ≥ σ1 + σN+1 ≥ 1 + 2 = 3.
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10.2. Link of groups

In this section we split R
N , N ≥ 3, as follows

R
N = R

p × R
q × R

r

and denote its points by
x = (x(p), x(q), x(r)),

where x(p) ∈ R
p, x(q) ∈ R

q and x(r) ∈ R
r. We shall also use the notation

x(p,q) := (x(p), x(q)) and x(p,r) := (x(p), x(r))

Accordingly, for consistency of notations, we shall write R
(p,q) and R

(p,r) instead
of R

p × R
q and R

p × R
r, respectively. Let

G1 = (R(p,q), ◦, d(1)
λ ) and G2 = (R(p,r), ◦, d(2)

λ )

be homogeneous Lie groups.2 Assume the composition laws in G1 and G2 have the
following structure

x(p,q) ◦ y(p,q) = (x(p), x(q)) ◦ (y(p), y(q)) := (x(p) + y(p), Q(x(p,q), y(p,q))) (10.6)

x(p,r) ◦ y(p,r) = (x(p), x(r)) ◦ (y(p), y(r)) := (x(p) + y(p), R(x(p,r), y(p,r))) (10.7)

where Q and R take their values in R
q and R

r, respectively. We also assume that
the dilations d

(1)
λ and d

(2)
λ take the following form

d
(1)
λ (x(p), x(q)) = (λx(p), ρ

(1)
λ (x(q)))

d
(2)
λ (x(p), x(r)) = (λx(p), ρ

(2)
λ (x(r)))

We define the link of G1 and G2 as follows. Given x(p,q) ∈ R
(p,q) and x(p,r) ∈ R

(p,r)

we put
(x(p), x(q)) � (x(p), x(r)) := (x(p), x(q), x(r))

and define in R
N the following composition law

x ◦ y = (x(p), x(q), x(r)) ◦ (y(p), y(q), y(r))

:= (x(p,q) ◦ y(p,q)) � (x(p,r) ◦ y(p,r))

≡ (x(p) + y(p), Q(x(p,q), y(p,q)), R(x(p,r), y(p,r))).

We also define a family of dilations dλ by

dλ : R
N −→ R

N , dλ(x) = dλ(x(p), x(q), x(r))

:= d
(1)
λ (x(p,q)) � d

(2)
λ (x(p,r))

≡ (λx(p), ρ
(1)
λ (x(q)), ρ(2)

λ (x(r))).

It is quite easy to recognize that

G := (RN , ◦, dλ)

2We use the same notation ◦ to denote the composition law in in G1 and in G2. The contest will
avoid confusion.
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is a homogeneous group, that we call the link of G1 and G2. In the sequel we shall
use the following

Agreement. Given a vector field in R
(p,q):

X =
p∑

i=1

a
(p)
i ∂

x
(p)
i

+
q∑

i=1

a
(q)
i ∂

x
(q)
i

where the coefficients a
(p)
i and a

(q)
i are smooth functions of the variable x(p,q), we

consider X as a vector field in R
N . Analogously, every vector field in R

(p,r),

Y =
p∑

i=1

b
(p)
i ∂

x
(p)
i

+
r∑

i=1

a
(r)
i ∂

x
(r)
i

will be also viewed as a vector field in R
N .

The following proposition is crucial for our purposes.

Proposition 10.4. Assume the function R in (10.7) is independent of y
(p)
i for some

i ∈ {1, . . . , p}. Then the vector fields

X
(
x(p,q)

)
:=

∂

∂y
(p)
i

τx(p,q)(y(p,q))|y(p,q)=0, x(p,q) ∈ R
(p,q) (10.8)

is left translation invariant on G, and dλ-homogeneous of degree one.

Note. Hereafter τx(p,q) denotes the left translation on G1

y(p,q) �−→ τx(p,q)

(
y(p,q)

)
:= x(p,q) ◦ y(p,q)

We shall use similar notation for the left translations on G2 and G. From the
general theory of Lie groups and taking into account (10.6), the vector field X in
(10.8) is left translation invariant on G1 and d

(1)
λ -homogeneous of degree one.

Proof. We first prove the left translation invariance of X on G.
Given x = (x(p), x(q), x(r)) ∈ R

N , we have
∂

∂y
(p)
i

τx(y) =
∂

∂y
(p)
i

(x(p) + y(p), Q(x(p,q), y(p,q)), R(x(p,r), y(p,r)))

=
∂

∂y
(p)
i

(x(p) + y(p), Q(x(p,q), y(p,q)), 0(r))

where 0(r) denotes the null vector of R
r.

Then, by (10.8) and the previous Agreement on the vector fields,
∂

∂y
(p)
i

τx(y)|y=0 = X(x(p,q)) (10.9)

This identity shows that X is left translation invariant on G. The same identity
also shows the remaining part of the Proposition, since, from the general theory of
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homogeneous Lie groups the left-hand side of (10.9) is d
(1)
λ homogeneous of degree

one. �

The previous proof can be trivially adapted to prove the following Proposi-
tion.

Proposition 10.5. Let

Y
(
x(p,r)

)
:=

∂

∂y
(r)
i

τx(p,r)(y(p,r))|y(p,r)=0

for some i ∈ {1, . . . , r}.
Then Y is left translation invariant on G. Moreover, if Y is d

(2)
λ homogeneous of

degree n, then it also is dλ-homogeneous of the same degree.
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Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, Grenoble 19
(1969), 277–304.

[6] N. Garofalo and E. Lanconelli, Asymptotic behavior of fundamental solutions and
potential theory of parabolic operators with variable coefficients, Math. Ann. 283
(1989), 211–239.

[7] N. Garofalo and E. Lanconelli, Level sets of fundamental solution and Harnack in-
equality for degenerate equations of Kolmogorov type, Trans. Amer. Math. Soc. 321
(1990), 775–792.

[8] D. Geller, Liouville’ s Theorem for homogeneous groups, Comm. in Partial Diff. Eq.
8 (1983), 1665–1677.

[9] J. Hadamard, Extension à l’ equation de la chaleur d’ une theórèm de A. Harnack,
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Tesi di Dottorato, Università degli Studi di Bologna (2003).

[11] L.P. Kupcov, On parabolic means, Dokl. Akad. Nank, SSSR 252 (1980), 296–301.
English transl. Soviet Math. Dokl. 21 (1980), 741–746.

[12] O.A. Ladyzhenskaya, V.A. Solonnikov and N.W. Ural’tseva, Linear and quasi-linear
equations of parabolic type, Amer. Math. Soc., Providence, R.I. (1968).



80 A.E. Kogoj and E. Lanconelli Mediterr. j. math.

[13] E. Lanconelli and A. Pascucci, On the fundamental solution for hypoelliptic second
order partial differential equations with non-negative characteristic form, Ricerche di
matematica 43 (1999), 81–106.

[14] E. Lanconelli and A. Pascucci, Superparabolic Functions Related to Second Order
Hypoelliptic Operators, Potential Analysis 11 (1999), 303–323.

[15] E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend.
Sem. Mat. Univ. Pol. Torino 52 (1994), Partial Diff. Eqs., 29–63.

[16] Luo Xuebo, Liouville’ s Theorem for homogeneous differential operators, Comm. in
Partial Diff. Eq. 22 (1997), 1837–1848.

[17] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure
Appl. Math. Soc. 73 (1967), 231–236.

[18] B. Pini, Sulla soluzione generalizzata di Wiener per il primo problema di valori al
contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova 23 (1954), 422-434.

[19] F. Porper and S. Eidel’man, Two sides estimates of fundamental solutions of second
order equations and some applications, Russian Math. Surveys 39 (1984), 119–178.

[20] E. Priola and J. Zabczyk, Liouville theorems in finite and infinite dimensions,
Preprints di Matematica 9, Scuola Norm. Sup. (2003).

[21] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order par-
abolic differential operators, Potential Analysis 4 (1995), 429–467.

[22] L. Saloff-Coste, Aspects of Sobolev-type inequalities, London Math Soc. Lecture Note
Series 289 (2002), Cambridge University Press.

[23] M. Spivak, A comprehensive Introduction to Differential Geometry, Publish or Per-
ish, Inc., Berkeley (1979).

[24] H.J. Sussmann, Orbits of families of vector fields and integrability of distributions,
Trans. of the Am. Math. Soc. 180 (1973), 171–188.

[25] N.T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups,
Cambridge Tracts in Mathematics 100, Cambridge University Press (1992), Cam-
bridge.

Acknowledgment

We would like to thank Enrico Priola for raising a question that led us to the
results in Section 8.

Alessia Elisabetta Kogoj and Ermanno Lanconelli
Dipartimento di Matematica
Università di Bologna
Piazza di Porta San Donato, 5
IT-40126 Bologna
Italy
e-mail: lanconel@dm.unibo.it

kogoj@dm.unibo.it

Received: November 5, 2003

Revised: December 9, 2003


