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Abstract. The aim of this article is to characterize the octonionic sub-
modules generated by one element, which is very complicated compared
with other normed division algebras. To this end, we introduce a novel
identity that elucidates the relationship between the commutator and
associator within an octonionic bimodule. Remarkably, the commuta-
tor can be expressed in terms of the linear combination of associators.
This phenomenon starkly contrasts with the quaternionic case, which
leads to a unique right octonionic scalar multiplication compatible with
the original left octonionic module structure in the sense of forming an
octonionic bimodule. With the help of this identity, we get a new expres-
sion of the real part and imaginary part of an element in an octonionic
bimodule. Ultimately, we obtain that the submodule generated by one
element x is O5x instead of Ox.
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1. Introduction

As is well known, there are only four kinds of normed algebras over the real
field. Following the old works of Hurwitz, the Cayley octonions, denoted by
O, form the largest normed division algebra over the real numbers and thus
represent a very special important case. Recently, the eight-dimensional non-
associative octonion algebra has attracted a lot of attentions of mathemati-
cians and physicists. For example, there are many significant developments in
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the function theory [2,12,13], functional analysis [5,6,8,9,15] and quantum
mechanics over octonions [3,7,20].

Central to these developments is the theory of octonionic spaces, or more
precisely, octonionic modules. Hence, gaining a profound comprehension of
the structure of octonionic modules is essential.

Due to the non-associativity, there are some new phenomena in the oc-
tonionic setting. Significantly different from other normed division algebras,
the submodules generated by one element is involved. For example, the sub-
module generated by x = (e1, e2, e3) in O

3 is the entire space O
3, instead of

the form of

Ox := {px | p ∈ O}.

Here e0 = 1, e1, . . . , e7 is a basis of O. This phenomenon has been observed
already in 1964 by Goldstine and Horwitz [5]. This starkly contrasts with
classical cases, presenting a substantial challenge in the advancement of oc-
tonionic analysis.

In this article, we aim to characterize the submodules generated by one
element on an octonionic bimodule. The key point is that we find a new
relation between the commutators and associators. This helps us to establish
the characterization of submodules generated by one element and leads to
a deeper understanding on the O-bimodule structure. Ultimately, we obtain
that the submodule generated by one element x is O

5x instead of Ox.
To obtain the key relation between the commutators and associators,

it is essential to utilize the real part structure of O-bimodules. Similar as in
quaternionic case [16], there also exists a real part structure on an octonionic
bimodule which can be expressed as

Re x =
5
12

x − 1
12

7∑

i=1

eixei

for any x in an O-bimodule M . Every element x can be decomposed as

x =
7∑

i=0

eixi,

where xi ∈ Re M for i = 0, . . . , 7. Utilizing this, we establish the key identity
connecting the commutators and associators.

Theorem 1.1. Let M be an O-bimodule. For any x ∈ M , we have

4[ei, x] =
7∑

j,k=1

εijk[ej , ek, x], i = 1, . . . , 7, (1.1)

where εijk are constants from the octonionic multiplication table:

eiej = εijkek − δij

for i, j = 1, . . . , 7.

This shows that the right multiplication of an octonionic bimodule is
uniquely determined by its left module structure. Hence the notion of left
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submodules coincides with the notion of sub-bimodules in an octonionic bi-
module. Furthermore, it is obtained that the number of right O-scalar multi-
plications defined on a left O-module M such that M becomes an O-bimodule
is 0 or 1.

As a contrast, we review the quaternionic setting. We confine ourselves
to Hilbert spaces. Let H be a Hilbert right H-module with the quaternionic
inner product 〈·, ·〉. Here H denotes the algebra of quaternions. There always
exist infinite left H-scalar multiplications such that H becomes a H-bimodule
[4]. More precisely, pick out a Hilbert basis N of H and define the left scalar
multiplication “·” of H induced by N as the map

H × H → H

(q, u) �→ q · u :=
∑

z∈N

zq 〈z, u〉 .

Moreover, H becomes a Hilbert H-bimodule with the initial right scalar mul-
tiplication and the above left scalar multiplication. This means that, every
Hilbert right quaternionic module can be endowed with infinite many left
scalar multiplications to make it become a Hilbert H-bimodule. However,
as shown by identity (1.1), the number of compatible left scalar multiplica-
tions in a Hilbert right O-module is 1 at most. Thus the octonionic setting
is completely different from the quaternionic case when considering Hilbert
spaces.

From identity (1.1), we conclude a new expression of the real part and
imaginary part of an element in an O-bimodule. For any x in an O-bimodule
M , we have

Re x = x +
1
48

7∑

i,j,k=1

εijkei[ej , ek, x]. (1.2)

And the imaginary part can be expressed in terms of associators

Im x = − 1
48

7∑

i,j=1

[ei, ej , (eiej)x].

The identity (1.2) plays a key role in discussing the submodule generated by
one element. For any subset S of an O-bimodule, we denote by OS the set

{
n∑

i=1

pisi | n ∈ N, pi ∈ O, si ∈ S

}
.

We simply denote that

O
kx := O(Ok−1x).

Let 〈x〉
O

denote the submodule generated by x. The submodule generated by
one element in an O-bimodule can be characterized as follows.

Theorem 1.2. Let M be an O-bimodule. For any x =
∑7

i=0 eixi ∈ M , where
xi ∈ Re M for i = 0, . . . , 7, we have

〈x〉
O

= O
5x. (1.3)
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Let

{xi1 , . . . , xil}
be the maximal real linearly independent system of {x0, . . . , x7}. Then we
have

〈x〉
O

=
l⊕

k=1

Oxik . (1.4)

The structure of octonionic submodules shall play a pivotal role in the
exploration of octonionic functional analysis. For instance, in employing the
Hahn–Banach extension theorem, there often arises a necessity to devise a
functional defined on a submodule that is generated by one element. The
findings presented in this article empower us to construct such functionals.
Furthermore, these results bear significant potential for application in the
realm of octonionic function theory. This is because, as demonstrated in [2],
the octonionic Hardy space can be regarded as an octonionic Hilbert space.

2. Preliminaries

In this section, we review some basic properties of the algebra O of the
octonions and O-modules, and introduce some fundamental notations.

The algebra O is a non-associative, non-commutative, normed division
algebra over the real algebra R. Let e1, . . . , e7 be its natural basis throughout
this paper, i.e.,

eiej + ejei = −2δij , i, j = 1, . . . , 7.

For convenience, we denote e0 = 1.
In terms of the natural basis, an element in O can be written as

x = x0 +
7∑

i=1

xiei, xi ∈ R,

The conjugate octonion of x is defined by x := x0 − ∑7
i=1 xiei, and the

norm of x equals |x| :=
√

xx ∈ R, the real part of x is Re x := x0 = 1
2 (x+x).

The associator of three octonions is defined as

[x, y, z] := (xy)z − x(yz)

for any x, y, z ∈ O, which is alternative in its arguments and has no real
part. That is, O is an alternative algebra and hence it satisfies the so-called
R. Moufang identities [18]:

(xyx)z = x(y(xz)), z(xyx) = ((zx)y)x, x(yz)x = (xy)(zx).

The commutator is defined as

[x, y] := xy − yx.

The full multiplication table is conveniently encoded in the 7-point pro-
jective plane, which is often called the Fano mnemonic graph. In the Fano
mnemonic graph (see Fig. 1), the vertices are labeled by 1, . . . , 7 instead of
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Figure 1. Fano mnemonic graph

e1, . . . , e7. Each of the 7 oriented lines gives a quaternionic triple. The prod-
uct of any two imaginary units is given by the third unit on the unique line
connecting them, with the sign determined by the relative orientation.

It will be convenient to use an ε-notation that will now be introduced
(see [1]). This is the unique symbol that is skew-symmetric in either three or
four indices.

One way to think of this symbol is:

eiej = εijkek − δij ,(2.1)

[ei, ej , ek] = 2εijklel.(2.2)

The symbol ε satisfies various useful identities. For example (using the
summation convention),

εijkεijl = 6δkl,(2.3)

εijqεijkl = 4εqkl.(2.4)

We shall always use the Einstein summation convention when we compute in
terms of ε-notation.

We next recall the definition of O-modules. There are abundant results
on octonionic bimodules, or more generally, alternative bimodules. Already
in 1952, Schafer [17] gave the birepresentations of alternative algebras. Sub-
sequently, Jacobson [11] determined the irreducible representations for finite
dimensional semi-simple alternative algebras. A more general study for alter-
native bimodules is given in [19].

Definition 2.1. An R-vector space M is called a left O-module, if there is an
R-linear map

L : O → EndRM

p �→ Lp

satisfying L1 = idM and

[p, q, x] = −[q, p, x]

for all p, q ∈ O and x ∈ M . Here

[p, q, x] := (pq)x − p(qx) = Lpq(x) − LpLq(x),
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called the left associator of M . The definition of right O-module is similar.
A left O-module M is called an O-bimodule if it is equipped with a right

O-scalar multiplication and the associator is alternative:

[p, q,m] = [m, p, q] = [q,m, p]

for all p, q ∈ O and all m ∈ M . Here the middle associator [q,m, p] is defined
by

[q,m, p] := (qm)p − q(mp),

and the right associator [p, q,m] is defined by

[p, q,m] := (pq)m − p(qm).

Remark 2.2. The definition of left, right and middle associators is actually
of the same form. Formally, we can define

[x, y, z] := (xy)z − x(yz),

where two elements of x, y, z are in O, the rest element is in M . It becomes
evident that the notation for associators in O aligns precisely with the no-
tation for associators in an octonionic bimodule, when considering O as an
octonionic bimodule.

One useful identity which holds in any left O-module M is

[p, q, r]m + p[q, r,m] = [pq, r,m] − [p, qr,m] + [p, q, rm]. (2.5)

Here m ∈ M is an arbitrary element and p, q, r ∈ O are arbitrary octonions.
One can check this identity directly.

We shall denote by A (M) the set

A (M) := {m ∈ M | [p, q,m] = 0 for all p, q ∈ O},

whose elements are called associative elements. And denote by Z (M) the
commutative center

Z (M) := {m ∈ M | pm = mp for all p ∈ O}.

We denote by RegO, or just O if there is no confusion, the regular
bimodule with the multiplication given by the product in O. Clearly, the
O-bimodule RegO is irreducible. Moreover, it is the only irreducible O-
bimodule; see the results by Schafer [17] and Jacobson [11]. We have

A (M) = Z (M)

for any O-bimodule M and

M =
7⊕

i=0

eiA (M).

We define the real part operator as the projective operator [10]

Re : M → A (M).

For any x ∈ M , there is a decomposition

x =
7∑

i=0

eixi.
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We have a concrete expression of the real part operator in terms of scalar
multiplications [10]

Re x =
5
12

x − 1
12

7∑

i=1

eixei. (2.6)

3. The main results

Let M be an O-bimodule in this section. It turns out that there is a succinct
relation between the commutators and associators.

Theorem 3.1. Let M be an O-bimodule. For any x ∈ M , we have

4[ei, x] =
7∑

j,k=1

εijk[ej , ek, x], i = 1, . . . , 7. (3.1)

Proof. For any given x ∈ M , let

x =
7∑

i=0

ejxj ,

where xj ∈ A (M), j = 0, 1, . . . , 7.
Using Einstein summation convention, we have

7∑

j,k=1

εijk[ej , ek, x] = εijk[ej , ek, emxm]

= εijk[ej , ek, em]xm

(2.2)
===== 2εijkεjkmnenxm

(2.4)
===== 8εimnenxm.

Note that xj ∈ A (M) = Z (M), j = 0, 1, . . . , 7. We thus have

4[ei, x] = 4

[
ei,

7∑

m=0

emxm

]

= 4
7∑

m=1

(ei(emxm) − (emxm)ei)

= 4
7∑

m=1

((eiem)xm − em(xmei))

= 4
7∑

m=1

(eiem − emei) xm

= 4(εimnen − εminen)xm

= 8εimnenxm.

This proves (3.1) as desired. �
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Remark 3.2. Identity (3.1) shows that the right multiplication of an octo-
nionic bimodule is uniquely determined by its left module structure. More
precisely, for any x ∈ M , the right multiplication is given by

xei = eix − 1
4

7∑

j,k=1

εijk[ej , ek, x], i = 1, . . . , 7. (3.2)

Hence the notion of left submodules of an octonionic bimodule coincides with
the notion of its sub-bimodules, which means that it is closed under both left
O-scalar multiplications and right O-scalar multiplications. The notion of left
O-homomorphisms coincides with the notion of O-bihomomorphisms, which
will be just referred to as O-homomorphisms or an O-linear maps in the
sequel. And it is no need to consider these notions separately as in [14,15].

We remark that this is a new phenomenon in contrast to the quater-
nionic case. Given a left Hilbert quaternionic module M , there always exist
infinite right quaternionic scalars such that M becomes a quaternionic bi-
module (see [4, section 3.1]).

We summarize the above discussion as the following corollary.

Corollary 3.3. Let M be a left O-module. The number of right O-scalar mul-
tiplications defined on M such that M becomes an O-bimodule is 0 or 1.

As a consequence, we express the real part of an element x into the left
octonionic scalars of x.

Corollary 3.4. Let M be an O-bimodule. For any x ∈ M , we have

Re x = x +
1
48

7∑

i,j,k=1

εijkei[ej , ek, x]. (3.3)

Proof. In view of identities (2.6) and (3.2), we have

Re x =
5
12

x − 1
12

7∑

i=1

eixei

=
5
12

x − 1
12

7∑

i=1

ei

⎛

⎝eix − 1
4

7∑

j,k=1

εijk[ej , ek, x]

⎞

⎠

= x +
1
48

7∑

i,j,k=1

εijkei[ej , ek, x].

This proves the formula (3.3). �

We define the imaginary part of an element x as

Im x := x − Re x.

It turns out that the imaginary part of an element can be expressed in terms
of the associators.
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Corollary 3.5. Let M be an O-bimodule. For any x ∈ M , we have

Im x = − 1
48

7∑

i,j=1

[ei, ej , (eiej)x]. (3.4)

Proof. In view of identity (3.3), we have

Im x = x − Re x

= − 1
48

7∑

i,j,k=1

εijkei[ej , ek, x]. (3.5)

It suffices to show that
7∑

i,j=1

[ei, ej , (eiej)x] =
7∑

i,j,k=1

εijkei[ej , ek, x].

For any i �= j, it follows from (2.5) that

[ei, ej , (eiej)x] = [ei, ej , eiej ]x + ei[ej , eiej , x] − [eiej , eiej , x] + [ei, ej(eiej), x]
= εijkei[ej , ek, x] − [ei, ej(ejei), x]
= εijkei[ej , ek, x].

Note that

[ei, ej , (eiej)x] = 0

for i = j. Hence we get
7∑

i,j=1

[ei, ej , (eiej)x] =
7∑

i,j,k=1

εijkei[ej , ek, x]

as desired. �

For any subset S of an O-bimodule M , we denote by OS the set
{

n∑

i=1

pisi | n ∈ N, pi ∈ O, si ∈ S

}
.

We simply write

O
kx := O(Ok−1x).

For example, we have

ei[ej , ek, x] ∈ O
3x.

Let 〈S〉
O

denote the submodule generated by S, and simply denote by 〈x〉
O

the submodule generated by x. We now come to characterize the submodules
generated by one element in an O-bimodule.

Theorem 3.6. Let M be an O-bimodule. For any x =
∑7

i=0 eixi ∈ M , where
xi ∈ Re M for i = 0, . . . , 7, we have

〈x〉
O

= O
5x. (3.6)

Let

{xi1 , . . . , xil}
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be the maximal real linearly independent system of {x0, . . . , x7}. Then we
have

〈x〉
O

=
l⊕

k=1

Oxik . (3.7)

Proof. By induction, it is easy to show that

O
kx ⊆ 〈x〉

O

for any number k. Hence we have

O
5x ⊆ 〈x〉

O
. (3.8)

Conversely, note that for each i = 0, . . . , 7,

xi = Re (eix).

In view of (3.3), we obtain

xi ∈ O
4x

for each i = 0, . . . , 7. Thus

O{x0, . . . , x7} ⊆ O
5x.

By definition, one can check that O{x0, . . . , x7} is an O-submodule and x ∈
O{x0, . . . , x7}. This implies that

〈x〉
O

⊆ O{x0, . . . , x7} ⊆ O
5x.

Combining with (3.8), we have

O
5x ⊆ 〈x〉

O
⊆ O

5x.

This prove (3.6).
Next we prove (3.7). Since {xi1 , . . . , xil} is the maximal linearly inde-

pendent system of {x0, . . . , x7}, it follows that

x =
7∑

i=0

eixi ∈
l⊕

k=1

Oxik .

Clearly,
⊕l

k=1 Oxik is an O-submodule. This implies that

〈x〉
O

⊆
l⊕

k=1

Oxik .

Conversely, since xi = Re (eix) for each i = 0, . . . , 7, we conclude from (3.3)
that xi ∈ 〈x〉

O
. Hence we obtain

l⊕

k=1

Oxik ⊆ 〈x〉
O

.

This proves the theorem. �
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Remark 3.7. For any x =
∑7

i=0 eixi ∈ M , with xi ∈ Re M for i = 0, . . . , 7,
let

{xi1 , . . . , xil}
be the maximal real linearly independent system of {x0, . . . , x7} as above.
We call l the length of x, denoted by lx. Then by Theorem 3.6, we have

〈x〉
O

∼= O
lx .

The length of an element in an octonionic module is an invariant which
reflects the complexity of the submodule generated by it.
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