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Abstract. This article has two purposes. After a short reminder of classi-
cal properties of meson algebras (also called Duffin-Kemmer algebras),
Sects. 4 to 7 present recent advances in the study of their algebraic
structure. Then Sects. 8 to 11 explain that each meson algebra contains
a Lipschitz monoid with properties quite similar to those of Lipschitz
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1. Introduction

Whereas Clifford algebras first interested mathematicians before drawing the
attention of physicists, meson algebras were first introduced by physicists
before interesting mathematicians. For the concerned physicists, meson alge-
bras should play the same role for some particles called mesons as Clifford
algebras for electrons. Therefore, it is sensible to predict that many ideas
involved in the study of Clifford algebras should be suitable also for meson
algebras, and the present work shall corroborate this prediction.

The present work has two purposes. Firstly, it presents the recent ad-
vances in the treatment of meson algebras. Some of the treatments that are
effective for Clifford algebras, are equally effective for meson algebras. The
mesonic versions of these treatments are presented in Sects. 4, 5, 6 and 7,
but I have not recalled their Cliffordian versions because I suppose that all
acquainted readers will guess them without any reminder being necessary.
Secondly, I recently published two works [5,6] about Lipschitz monoids in
Clifford algebras where I explained that Lipschitz monoids must play a capi-
tal role in the study of Clifford algebras; but among the arguments justifying
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my conviction, I could not recall that a similar treatment of Lipschitz monoids
was valid for meson algebras. Now I want to do it here, especially since this
treatment has recently been improved. Sections 8, 9, 10 and 11 are devoted
to Lipschitz monoids in meson algebras.

In all the present article, V is a vector space of finite dimension n over
a field K, and F : V ×V → K is a symmetric bilinear form on V . The meson
algebra B(V, F ) is the (unital and associative) algebra generated by V with
the relations uvu = F (u, v)u (for all u, v ∈ V ). The dimension of this algebra
is (2n+1

n ); it is 126 in the case n = 4 which especially concerns physicists.
Like every Clifford algebra, it is provided with a parity gradation B(V, F ) =
B0(V, F ) ⊕ B1(V, F ), with a grade automorphism σ, and with a reversion ρ
(the involutive anti-automorphism that extends the identity mapping 1V of
V ). But a new feature appears in Sect. 4: the even subalgebra is provided with
an involutive automorphism τ such that τ(uv) = F (u, v)−vu. When char(K)
(the characteristic of K) is not equal to 2, it determines a subparity gradation
of the even subalgebra: B0(V, F ) = B00(V, F ) ⊕ B01(V, F ). As far as I know,
the automorphism τ (which leads to interior multiplications and deformations
in Sects. 5, 6 and 7) is my contribution to the theory of meson algebras. When
char(K) �= 2, the orthogonal group O(V, F ) has two components which, in my
opinion, must be related to some parity gradation; but the odd component
B1(V, F ) (of dimension ( 2n

n−1)) contains no invertible elements; therefore, I
conjectured the presence of a subparity gradation in the even subalgebra
B0(V, F ) (of dimension (2n

n )); and eventually, my conjecture proved to be
correct. When the treatment of meson algebras imitates the treatment of
Clifford algebras, the role of the Cliffordian grade automorphism is played
sometimes by σ, but more often by τ .

Sections 2 and 3 are reminders: they recall already known things with-
out proofs, but with the necessary explanations. Proofs are given only when
advances are presented in the following sections. The missing proofs, together
with more detailed information, can be found in [2–4,7].

1.1. Quadratic Forms and Symmetric Bilinear Forms

With every quadratic form Q on V is associated the symmetric bilinear form
A defined by A(u, v) = Q(u+v) − Q(u) − Q(v), and with every symmetric
bilinear form F is associated the quadratic form v �−→ F (v, v). When both
operations are performed successively, the quadratic form Q becomes 2Q,
and the symmetric bilinear form F becomes 2F ; indeed, it is well known that
A(v, v) = 2Q(v), and that

F (u+v, u+v) = F (u, u) + F (v, v) + 2F (u, v). (1.1)

When char(K) �= 2, this fact confirms that a quadratic form gives the same
information as the associated symmetric bilinear form, and conversely. But
when char(K) = 2, quadratic forms do not give the same information as
symmetric bilinear forms. Fields of characteristic 2 let us realize that Clifford
algebras must be derived from quadratic forms, and meson algebras from
symmetric bilinear forms.
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Let us assume char(K) = 2. The space of all symmetric bilinear forms
on V contains the space of all alternating bilinear forms because the word
“symmetric” has the same meaning as “skew symmetric” when char(K) = 2.
We must also notice that the quadratic form associated with a symmetric
bilinear form F is an additive quadratic form: F (u+v, u+v) = F (u, u) +
F (v, v) because of (1.1). Consequently, the subset V0 of all v ∈ V such that
F (v, v) = 0 is a vector subspace of V ; it is the largest subspace on which
the restriction of F is alternating. The additive quadratic forms constitute a
subspace of dimension n whereas F has been chosen in a space of dimension
n(n+1)/2; therefore, a great part of the information given by F has been lost
by the quadratic form v �−→ F (v, v).

When F is not alternating, there are always orthogonal bases in V ; but
in Sect. 11 (where char(K) = 2), these orthogonal bases will not at all help
us to study the automorphisms of (V, F ). We shall use the above subspace
V0 and some results of symplectic geometry.

To emphasize the discrepancy between quadratic forms and symmetric
bilinear forms, I recall this theorem of Witt: if the quadratic form Q is non-
degenerate on V , and if U is a subspace of V , every injective linear mapping g :
U �−→ V such that Q(g(u)) = Q(u) for all u ∈ U extends to an automorphism
(an orthogonal transformation) of (V,Q). When char(K) = 2, this theorem is
not valid for a non-degenerate symmetric bilinear form F on V , and a injective
mapping g : U → V such that F (g(u), g(v)) = F (u, v) for all u, v ∈ U . For
instance, let us assume that there is a basis (e1, e2, e3) of V such that

F (λ1e1+λ2e2+λ3e3, μ1e1+μ2e2+μ3e3) = λ1μ1 + λ2μ3 + λ3μ2

for all λ1, λ2, λ3, μ1, μ2, μ3 ∈ K. In this example, F is alternating on the
subspace V0 spanned by (e2, e3), every automorphism of (V, F ) leaves V0

invariant and determines a symplectic transformation of V0. Consequently,
it leaves invariant the vector e1 orthogonal to V0. We obtain an orthogonal
basis (e′

1, e
′
2, e

′
3) if we set

e′
1 = e1 + e2 + e3, e′

2 = e1 + e2, e′
3 = e1 + e3.

If U is the line spanned by e′
1, and if g : U → V is the linear mapping

defined by g(e′
1) = e1, then F (g(u), g(v)) = F (u, v) for all u, v ∈ U because

F (e′
1, e

′
1) = F (e1, e1) = 1. But g does not extend to an automorphism of

(V, F ) although F is non-degenerate.
Although the core of the theory of Clifford algebras can be developed

independently of the characteristic of the field, the theory of meson alge-
bras cannot ignore the characteristic so extensively. As soon as automor-
phisms of (V, F ) are under consideration, we must distinguish two cases,
either char(K) �= 2, or char(K) = 2, and the latter case will be the more
toilsome. Nevertheless, I shall also consider the latter case because I want to
prove that my ideas about Lipschitz monoids remain relevant even in this
rather disconcerting case.
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1.2. Historical Information

Serious historical information can be found at the beginning of [7]; this in-
formation and the corresponding bibliography was collected by Artibano Mi-
cali. Moreover, he also acquainted me with meson algebras. Here, I just recall
some essential facts. Meson algebras are also called Duffin-Kemmer algebras.
The physicist Duffin imagined a wave equation for some particles which were
first conjectured, and later confirmed by experiments. The physicist Kemmer
studied the algebras that were involved in this wave equation. His work did
not always comply with strict mathematical rigor; for instance, he admit-
ted without proof that his algebras were semi-simple. Nevertheless, it was a
great achievement since he correctly listed all the irreducible representations
of his algebras. Rigorous mathematical studies came later. Littlewood [10]
began with the calculation of the centers of B0(V, F ) and B(V, F ), and con-
tinued with the determination of the ideals of B0(V, F ) and B(F ). In Sect. 3,
I propose the inverse procedure: first, the ideals, and afterwards, the centers.
Jacobson met the meson algebras because they were the associative hulls of
some Jordan algebras; he started his study with the injectivity of the algebra
homomorphism Δ : B(V, F ) → Cl(V, F̄ )⊗Cl(V, F̄ ) which is recalled in Sect.
2.1, and which exists only when char(K) �= 2.

In recent times, meson algebras seem not to have drawn much interest,
neither among physicists, nor among mathematicians.

2. Definition and First Properties

The meson algebra B(V, F ) can be defined when V is a module over a com-
mutative, associative and unital ring K, and F a symmetric bilinear form
V ×V → K: it is the quotient of the tensor algebra T(V ) by the ideal gen-
erated by all u⊗v⊗u − F (u, v)u with u, v ∈ V . This definition has the ad-
vantage of immediately proving the existence of B(V, F ) under very weak
hypotheses. But here, V shall be a vector space of finite and non-zero dimen-
sion n over a field K.

This definition implies that B(V, F ) is provided with a parity gradation.
An element x is said to be homogeneous if it is even or odd, and its degree
(or parity) is denoted by ∂x. The grade automorphism σ maps every homo-
geneous element x to (−1)∂xx. The homogeneous components B0(V, F ) and
B1(V, F ) are the eigenspaces of σ only when char(K) �= 2. The existence of
the reversion ρ is also an easy consequence of the above definition.

Let T+(V ) be the sum of all Tk(V ) with k > 0; it is an ideal of T(V )
which contains all elements u⊗v⊗u − F (u, v)u. Consequently, B(V, F ) is the
direct sum of K and the ideal B+(V, F ) generated by the image of V in this
quotient algebra. The projection B(V, F ) → K will be denoted by Scal; it is
an algebra homomorphism. Its presence in meson algebras is an important
discrepancy between meson algebras and Clifford algebras.

When F = 0, B(V, 0) is the quotient of T(V ) by the ideal generated
by the elements u⊗v⊗u of T3(V ). Thus, B(V, 0) inherits the Z-gradation of
T(V ): it is the direct sum of the Z-homogeneous components Bk(V, 0).
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The injectivity of the canonical mapping V → B(V, F ) can be proved
at once by means of suitable algebra homomorphisms defined on B(V, F ). It
will allow us to identify every element of V with its image in B(V, F ), and to
claim that the following relations hold in B(V, F ) for all u, v, w ∈ V :

uvu = F (u, v)u and uvw + wvu = F (u, v)w + F (w, v)u. (2.1)

2.1. Jacobson’s Homomorphism Δ : B(V, F ) → Cl(V, F̄ )⊗Cl(V, F̄ )
Here, F̄ is the quadratic form on V such that F̄ (v) = F (v, v) for all v ∈ V .
The relations v2 = F (v, v) and uv + vu = 2F (u, v) hold in the Clifford
algebra Cl(V, F̄ ). Nathan Jacobson concerned himself with meson algebras
when he studied Jordan algebras, and these algebras required char(K) �= 2.
He discovered the following relation in Cl(V, F̄ )⊗Cl(V, F̄ ) (an ordinary tensor
product of algebras, without twisting):

(u⊗1 + 1⊗u) (v⊗1 + 1⊗v) (u⊗1 + 1⊗u) = 4F (u, v) (u⊗1 + 1⊗u). (2.2)

This equality proves that the mapping v �−→ (v⊗1 + 1⊗v)/2 extends to an
algebra homomorphism Δ from B(V, F ) into Cl(V, F̄ )⊗Cl(V, F̄ ). Obviously,
Δ(v) �= 0 for every non-zero v ∈ V . Jacobson even proved the injectivity
of Δ when F was non-degenerate. But it immediately follows that Δ is still
injective when F is degenerate, because (V, F ) can always be embedded in a
larger space (V ′′, F ′′) where F ′′ is non-degenerate.

For the usual parity gradation of Cl(V, F̄ )⊗Cl(V, F̄ ), x⊗y is even if x
and y have the same parity in Cl(V, F̄ ), odd if they have different parities.
This parity gradation turns Δ into a graded algebra homomorphism.

Jacobson’s homomorphism will much help us to study mesonic Lipschitz
monoids. Unfortunately, it does not exist when char(K) = 2; and it is difficult
to determine the image of B(V, F ) in Cl(V, F̄ )⊗Cl(V, F̄ ). Yet it is clear that
this image is invariant under the automorphism that maps every x⊗y (with
x, y ∈ Cl(V, F̄ )) to y⊗x.

2.2. The Homomorphism B(V, F ) → End
(∧

(V )×∧
(V )

)

The bilinear form F allows every vector v of V to operate on the exterior
algebra

∧
(V ) as a twisted derivation on the left or right side. These operations

are announced by the symbols � and 	 (or �F and F 	 if more precision is
necessary), and they satisfy the following equalities (where u, v, w ∈ V ,
x, y, z ∈ ∧

(V ), y is homogeneous and ŷ = (−1)∂yy):

v�w = F (v, w), v �(y ∧ z) = (v�y) ∧ z + ŷ ∧ (v�z),

u	v = F (u, v), (x ∧ y)	 v = x ∧ (y	v) + (x	v) ∧ ŷ.

Since v�(v�y) = (y	v)	v) = 0 for all v ∈ V and all y ∈ ∧
(V ), we can

define the interior products x�y and y	z for all x, y, z ∈ ∧
(V ). The interior

multiplications comply with these properties of associativity:

(x∧y)�z = x�(y�z), (x�y)	z = x�(y	z), (x	y)	z = x	(y∧z).

Now we consider the vector space
∧

(V )×∧
(V ) provided with the fol-

lowing parity gradation:
∧

(V )×0 is the even component, and 0×∧
(V ) is the
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odd component. With every vector v of V , we associate the following operator
Θv on

∧
(V )×∧

(V ):

Θv(x, y) = (v ∧ y, v �x). (2.3)

It is an odd operator because it maps each homogeneous component of∧
(V )×∧

(V ) into the other one. A direct calculation proves that, for all
u, v ∈ V , and all x, y ∈ ∧

(V ),

Θu ◦ Θv ◦ Θu(x, y) = F (u, v)Θu(x, y).

Consequently, the mapping v �−→ Θv extends to a graded algebra homomor-
phism from B(V, F ) into End(

∧
(V )×∧

(V )). Since Θv(0, 1) = (v, 0), we have
Θv �= 0 if v �= 0. In Sect. 3, where F is non-degenerate, it is stated that it
is an isomorphism from B(V, F ) onto a subalgebra of dimension (2n+1

n ). Nev-
ertheless, this homomorphism cannot be injective for all symmetric bilinear
forms F since Θu ◦ Θv = 0 when F = 0. Let us also notice that Θv leaves
invariant each subspace

∧k(V )×∧k−1(V ) for k = 0, 1, . . . , n, n+1, and that
this subspace has dimension (n+1

k ).
Representations in spaces of dimension (n+1

k ) were already discovered
by Kemmer when F was non-degenerate. They were irreducible except when
2k−1 = n. His followers soon identified these spaces with

∧k(V )×∧k−1(V ).
But the above representation of B(V, F ) in

∧
(V )×∧

(V ) has the advantage
of giving more information than the collection of all representations in the
spaces

∧k(V )×∧k−1(V ).
Among the n+2 subspaces

∧k(V )×∧k−1(V ), the subspaces
∧0(V )×0

and 0×∧n(V ) (corresponding to k = 0 and k = n+1) have dimension 1.
They are annihilated by every Θv, therefore, by every element of B+(V, F ).
With the above parity gradation of

∧
(V )×∧

(V ), the former is totally even
and the latter is totally odd; they are not isomorphic as graded spaces.

After the proof of the injectivity of the mapping V → B(V, F ), the next
concern is the dimension of B(V, F ).

2.3. Let us Prove that dim(B(V, F )) �
(
2n+1

n

)

As an algebra generated by V , B(V, F ) is provided with an increasing fil-
tration by subspaces B�k(V, F ): B�k(V, F ) = 0 if k < 0, B�0(V, F ) = K,
B�1(V, F ) = K + V , and when k � 2, B�k(V, F ) is spanned by B<k(V, F )
and the products of k factors in V .

Let (e1, e2, . . . , en) and (e′
1, . . . , e

′
n) be two bases of V (which may be

equal). The even subalgebra B0(V, F ) (resp. the odd component B1(V, F )) is
spanned by 1 (resp. by (e1, . . . , en)) and by all products

ei1e
′
j1ei2e

′
j2 · · · eir

e′
jr

(
resp. ei1e

′
j1ei2e

′
j2 · · · eir

e′
jr

eir+1

)
(2.4)

where r is any positive integer. The relations (2.1) show that a permu-
tation in the sequence (i1, i2, . . .) or in the sequence (j1, j2, . . .) does not
modify the product under consideration modulo B�2r−2(V, F ) (resp. mod-
ulo B�2r−1(V, F )) and up to a factor ±1. Moreover, this product falls into
B�2r−2(V, F ) (resp. into B�2r−1(V, F )) if two indices are equal in the se-
quence (i1, i2, . . .) or (j1, j2, . . .). It follows (by induction on r) that every such
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product is a linear combination of similar products associated with strictly
increasing sequences of indices. In other words, B0(V, F ) (resp. B1(V, F )) is
spanned by 1 (resp. (e1, . . . , en)) and all products in (2.4) such that i1 <
i2 < · · · and j1 < j2 < · · · . All these elements (including 1 and the vectors
ei) will be called the regular products derived from the bases (e1, . . . , en) and
(e′

1, . . . , e
′
n); and when these bases are equal, they are the regular products

derived from (e1, . . . , en).
The number of the regular products that span B0(V, F ) is the sum of

all squares (n
r )2, and the number of the regular products that span B1(V, F )

is the sum of all products (n
r ) ( n

r+1). The notation (n
r ) is meaningful whenever

n � 0 and r ∈ Z: it is the number of subsets of cardinality r in a set of
cardinality n, and it means 0 if r < 0 or r > n. We have

∑

r∈Z

(n
r )2 =

(
2n
n

)
and

∑

r∈Z

(n
r )

(
n

r+1

)
=

(
2n

n−1

)
. (2.5)

Therefore, the dimensions of B0(V, F ), B1(V, F ) and B(V, F ) are not greater
than (2n

n ), ( 2n
n−1) and (2n+1

n ). In fact, they are always equal to these maximal
values. In other words, the regular products derived from a pair of bases are
always linearly independent. This assertion will be proved in this way: Sect. 3
shall recall that it is true when F is non-degenerate; besides, when (V, F ) is
embedded in a larger space (V ′′, F ′′), this assertion is true for (V, F ) if it is
true for (V ′′, F ′′) because every basis of V can be extended to a basis of V ′′;
since (V, F ) can be embedded in a space (V ′′, F ′′) where F ′′ is non-degenerate,
this assertion is true for (V, F ).

2.4. The Homomorphism B(V, 0) → ∧
(V )⊗∧

(V )
Let A be a (unital and associative) algebra provided with a parity gradation
A = A0 ⊕ A1, and let � be a graded involutive automorphism of A. Thus
the expression �d is meaningful when the exponent d is a parity. With the
�-twisted multiplication (a, b) �−→ a  b defined by

a  b = a�∂a(b) (when a is homogeneous),

A is still a unital and associative algebra. Indeed, (a  b)  c and a  (b  c)
are both equal to a�∂a(b)�∂a+∂b(c).

Here A is
∧

(V )⊗∧
(V ) provided with its usual parity gradation: x⊗y

is even if x and y have the same parity in
∧

(V ), odd if they have different
parities. And �(x⊗y) = y⊗x. For all u, v ∈ V , we can write the following
equalities in the �-twisted algebra

∧
(V )⊗∧

(V ):

(u⊗1)  (v⊗1)  (u⊗1) = (u⊗1) (1⊗v) (u⊗1) = (u ∧ u)⊗v = 0.

Therefore, the mapping v �−→ v⊗1 extends to a graded algebra homomor-
phism from the neutral meson algebra B(V, 0) into the �-twisted algebra∧

(V )⊗∧
(V ). Every even (resp. odd) product of vectors u1v1u2v2 · · · urvr

(resp. u1v1u2v2 · · · urvrur+1) is mapped to

(u1∧u2∧ · · · ∧ur)⊗(v1∧v2∧ · · · ∧vr)
(
resp. (u1∧ · · · ∧ur+1)⊗(v1∧ · · · ∧vr)

)
.

Thus we know the images of the Z-homogeneous components of B(V, 0):
the image of B2r(V, 0) is

∧r(V )⊗∧r(V ), and the image of B2r+1(V, 0) is
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∧r+1(V )⊗∧r(V ). Because of (2.5), the image of B0(V, 0) in
∧

(V )⊗∧
(V ) is

a subalgebra of dimension (2n
n ), and the image of B1(V, 0) is a subspace of

dimension ( 2n
n−1). Thus, the image of B(V, 0) in

∧
(V )⊗∧

(V ) has dimension
(2n+1

n ), and the dimension of B(V, 0) is at least (2n+1
n ). Because of Sect. 2.3,

we can conclude that dim(B(V, 0)) = (2n+1
n ), and that the homomorphism

B(V, 0) → ∧
(V )⊗∧

(V ) induces an isomorphism from B(V, 0) onto a subal-
gebra of

∧
(V )⊗∧

(V ) that is well described.
The above �-twisting of

∧
(V )⊗∧

(V ) does not affect the subalgebra⊕
r

∧r(V )⊗∧r(V ) which is the image of B0(V, 0). The following properties
of B0(V, 0) can be deduced either from the relations (2.1), or from the isomor-
phism B0(V, 0) → ⊕

r

∧r(V )⊗∧r(V ). This algebra B0(V, 0) is commutative.
There is a linear bijection V ⊗V �−→ B2(V, 0) which maps every u⊗v to uv,
and for each product uv, we have (uv)2 = 0.

Every element of B2(V, 0) has an exponential in B0(V, 0) in the same
way as every element of

∧2(V ) has an exponential in
∧

0(V ). Every element
of B2(V, 0) can be written as a sum u1v1 +u2v2 + · · ·+ukvk with an arbitrary
number k of terms, and by definition,

exp

(
k∑

i=1

uivi

)

=
k∏

i=1

(1 + uivi). (2.6)

This definition implies that

∀η, θ ∈ B2(V, 0), exp(η + θ) = exp(η) exp(θ). (2.7)

But it is legitimate only after the following lemma has been proved.

Lemma 2.1. If
∑

i uivi = 0, then
∏

i(1 + uivi) = 1.

Proof. Let us carry the problem from B0(V, 0) into the isomorphic algebra⊕
r

∧r(V )⊗∧r(V ). We assume that
∑

i ui⊗vi = 0, and we must prove that
the product of all factors (1⊗1 + ui⊗vi) is equal to 1. Besides the ordinary
tensor product

∧
(V )⊗∧

(V ), there is the twisted tensor product
∧

(V )⊗̂∧
(V )

which is isomorphic to
∧

(V ×V ), and by this isomorphism, each ui⊗vi cor-
responds to an element of

∧2(V ×V ). Since
∑

i ui⊗vi = 0, the twisted prod-
uct of all (1⊗1 + ui⊗vi) in

∧
(V )⊗̂∧

(V ) is equal to 1. For each degree
r = 0, 1, . . . , n, the ordinary product of all (1⊗1 + ui⊗vi) and their twisted
product have the same component in

∧r(V )⊗∧r(V ) up to a factor ±1. There-
fore, their ordinary product is also equal to 1. �

3. The Structure of Non-degenerate Meson Algebras

We continue the study of the homomorphism presented in Sect. 2.2: with
every b ∈ B(V, F ) is associated an operator Θb on

∧
(V )×∧

(V ). For all the
proofs, I refer to [7].

When x and y belong to the same
∧r(V ) for some exponent r, both

interior products x�y and x	y belong to
∧0(V ) = K, and they are equal. If
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ω is a non-zero element of
∧n(V ), there is a basis (e1, . . . , en) of V such that

ω = e1∧e2∧ · · · ∧en, and we have

ω�ω = ω	ω = (−1)n(n−1)/2 det
(
F (ei, ej)

)
i,j ∈{1,2,...,n};

thus F is non-degenerate if and only if ω�ω �= 0. Besides, we consider
Ω = K×∧n(V ) (a graded subspace of

∧
(V )×∧

(V )) and we turn it into
a graded commutative, associative and unital algebra over K by setting (for
all λ, μ, λ′, μ′ ∈ K)

(λ, μω)(λ′, μ′ω) =
(
λλ′ + μμ′ ω�ω, (λμ′ + μλ′)ω

)
.

The odd component of Ω is 0×∧n(V ), whatever the parity of n may be.

Lemma 3.1. The algebra Ω operates on
∧

(V )×∧
(V ) in this way:

(λ, μω) (x, y) =
(
λx + μy�ω, λy + μx�ω)

,

and the operation Θb of every b ∈ B(V, F ) is Ω-linear.

Lemma 3.1 means that the following two equalities are true for all x, y ∈∧
(V ) and for all v ∈ V :

(
(x�ω)�ω, (y�ω)�ω)

=
(
(ω�ω)x, (ω�ω) y

)
,

(
v ∧ (x�ω), v � (y�ω)

)
=

(
(v �x)� ω, (v ∧ y)� ω

)
.

On another side, the action of (0, ω) maps every subspace
∧k(V )×0 into

0×∧n−k(V ), and every 0×∧k(V ) into
∧n−k(V )×0. Each of the n+2 sub-

spaces
∧k(V )×∧k−1(V ) is invariant under the action of B(V, F ), and (0, ω)

maps it into
∧n−k+1(V )×∧n−k(V ) which is also invariant under the action of

B(V, F ), but different from
∧k(V )×∧k−1(V ), except when n = 2k−1. When

n = 2k−1,
∧k(V )×∧k−1(V ) is invariant under the actions of Ω and B(V, F ),

and the notation EndΩ(
∧k(V )×∧k−1(V )) is meaningful.

3.1. The Structure of B(V, F ) when F is Non-degenerate

Up to the end of Sect. 3, we assume that F is non-degenerate.

Theorem 3.2. The mapping b �−→ Θb is a graded isomorphism from B(V, F )
onto the subalgebra of all elements of End(

∧
(V )×∧

(V )) satisfying these two
properties: they are Ω-linear, and they leave

∧k(V )×∧k−1(V ) invariant for
k = 0, 1, . . . , n+1.

Theorem 3.3. When n = 2r, the restrictions of the operators Θb to the direct
sum of the subspaces

∧k(V )×∧k−1(V ) with k = 0, 1, . . . , r give a graded
algebra isomorphism

B(V, F ) −→
r∏

k=0

End
(∧k

(V )×
∧k−1

(V )
)
.

When n = 2r−1, the restrictions of the operators Θb to the direct sum of the
subspaces

∧k(V )×∧k−1(V ) with k = 0, 1, . . . , r give a graded isomorphism

B(V, F ) −→ EndΩ

(∧r
(V )×

∧r−1
(V )

) ×
r−1∏

k=0

End
(∧k

(V )×
∧k−1

(V )
)
.
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Theorem 3.4. The restrictions of the even operators Θb to the even subspace∧
(V )×0 give an isomorphism

B0(V, F ) −→
n∏

k=0

End
(∧k

(V )
)
.

The linear mappings
∧

(V )×0 → 0×∧
(V ) induced by the odd operators Θb

give a linear bijection

B1(V, F ) −→
n∏

k=1

Hom
(∧k

(V ),
∧k−1

(V )
)
.

Theorem 3.4 shows that the dimension of B0(B;F ) is the sum of all
squares (n

k )2, which is (2n
n ), and that the dimension of B1(V, F ) is the sum

of all products (n
k ) ( n

k−1), which is ( 2n
n−1) (see (2.5)). Thus the dimension of

B(V, F ) is the maximal possible value (2n+1
n ).

Theorems 3.3 and 3.4 look like corollaries of Theorem 3.2, but in [7], the
argument begins with Theorem 3.4, continues with Theorem 3.2, and ends
with Theorem 3.3. As far as I know, Theorem 3.2 appeared in [7] for the first
time, but a great part of this theorem is a synthesis of the results of Kemmer
and his followers.

3.2. The Irreducible Graded Modules over B(V, F )
Let M be a graded left module over B(V, F ): thus M = M0 ⊕ M1, and
every even (resp. odd) element of B(V, F ) maps each component M0 and
M1 into itself (resp. into the other one). With M is associated a module
Ms with shifted gradation: the even (resp. odd) elements of Ms are the odd
(resp. even) elements of M . It may happen that M and Ms are isomorphic
as graded modules, but often they are not. The spinor spaces used by the
physicists are graded modules over Clifford algebras, and the homogeneous
spinors are called Weyl spinors, but the physicists do not say that Weyl
spinors may be even or odd, they say that they are left-hand or right-hand
spinors. I suppose that the physicists prefer chiralities rather than parities
because the gradation of a module is something different from the gradation
of an algebra: we may shift the gradation of a module, but not the gradation
of an algebra.

The n+2 graded modules
∧k(V )×∧k−1(V ) are all the irreducible graded

modules over B(V, F ) up to isomorphy. The odd element (0, ω) of Ω maps∧k(V )×∧k−1(V ) onto
∧n−k+1(V )×∧n−k(V ). If n �= 2k−1, we obtain a

pair of two non-isomorphic graded modules where each module is isomor-
phic to the other one with shifted gradation. But if n = 2k−1, we obtain
an irreducible graded module that is isomorphic to the module with shifted
gradation.

All these irreducible graded modules are still irreducible without their
gradation, except when n = 2k−1 and Ω is not a field (in other words, ω�ω
admits a square root in K). In this exceptional case, every non-trivial ideal
of Ω gives a non-trivial submodule of

∧k(V )×∧k−1(V ). If char(K) �= 2 and
Ω is not a field, then Ω is isomorphic to K×K. If char(K) = 2 and Ω is not
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a field, then Ω contains a non-zero element ε such that ε2 = 0. In Kemmer’s
work, K = C and Ω ∼= C×C.

3.3. The Center of B0(V, F )

According to Theorem 3.4, the center of B0(V, F ) has dimension n+1, and it
is spanned by n+1 primitive idempotents εp with p = 0, 1, . . . , n. The image
of εp in End(

∧
(V )×∧

(V )) projects
∧

(V )×0 onto
∧p(V )×0. The sum of all

idempotents εp is 1, and εpεq = 0 whenever p �= q.
Let (e1, e2, . . . , en) be a basis of V . Since F is non-degenerate, there

is a basis (e′
1, . . . , e

′
n) of V such that F (ei, e

′
i) = 1 for i = 1, 2, . . . , n, and

F (ei, e
′
j) = 0 whenever i �= j. The relations (2.1) show that the n prod-

ucts eie
′
i are pairwise commuting idempotents. For every subset P of N =

{1, 2, . . . , n}, let e∧
P be the product in

∧
(V ) of all ei such that i ∈ P , in the

increasing order of the indices i. The operation of eie
′
i on the even component∧

(V )×0 leaves (e∧
P , 0) invariant if i ∈ P , but maps it to 0 if i /∈ P . With P ,

we also associate the following idempotent in B0(V, F ):

ε(P ) =
∏

i∈P

eie
′
i

∏

j /∈P

(1 − eje
′
j). (3.1)

Since ε(P ) ε(Q) = 0 whenever P �= Q, the idempotents ε(P ) are the primitive
idempotents in the commutative subalgebra generated by all idempotents
eie

′
i. The operation of ε(P ) in

∧
(V )×0 leaves (e∧

P , 0) invariant, and maps
(e∧

Q, 0) to 0 if Q is another subset of N . Consequently, εp is the sum of all
idempotents ε(P ) such that P is a subset of cardinality p in N .

Of course, εp does not depend on the choice of the basis (e1, . . . , en). If
we replace this basis with (e′

1, . . . , e
′
n), the idempotents eie

′
i are replaced with

e′
iei, and since e′

iei = ρ(eie
′
i), we realize that the reversion ρ leaves invariant

every idempotent εp.
The following formulas deserve to be recalled: for all v ∈ V ,

v εp = εn−p+1 v and εp v = v εn−p+1. (3.2)

It suffice to prove them when v is one of the vectors ei, and to observe that

ei(e′
iei) = (eie

′
i)ei = ei , ei(1 − e′

iei) = (1 − eie
′
i)ei = 0,

ei(e′
jej) = (1 − eje

′
j)ei , ei(1 − e′jej) = (eje

′
j)ei if i �= j.

All idempotents εp are in the ideal B+(V, F ) except ε0. Moreover, when p = 0,
(3.2) means vε0 = ε0v = 0, because εn+1 means 0.

3.4. The Center of B(V, F )

As in Theorem 3.3, we must distinguish two cases according to the parity of
n, either n = 2r, or n = 2r−1 (with r � 1).

When n = 2r, the center of B(V, F ) has dimension r+1, and it is spanned
by r+1 primitive idempotents. From Theorem 3.2, or from the formulas (3.2),
we can deduce which are these idempotents:
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ε0, ε1 + εn, ε2 + εn−1, . . . , εr + εr+1.

The center of B(V, F ) is more complicated when n = 2r−1. It has an
even component of dimension r+1 which is spanned by the following primitive
idempotents:

ε0, ε1 + εn, ε2 + εn−1, . . . , εr−1 + εr+1, εr.

The center of B(V, F ) has also an odd component which is contained in
the ideal generated by εr; it is spanned by the element η that operates on∧r(V )×∧r−1(V ) in the same way as the element (0, ω) of Ω, and that maps
all the other submodules

∧k(V )×∧k−1(V ) to 0. To calculate η, we suppose
that (e1, . . . , en) is an orthogonal basis of (V, F ). Orthogonal bases always
exist except when char(K) = 2 and F is alternating, but this exception
never occurs when n is odd, and F non-degenerate. We suppose that ω =
e1∧e2∧ · · · ∧en, and consequently,

ω�ω = (−1)r−1 F (e1, e1)F (e2, e2) · · · F (en, en).

Let P be a subset of cardinality r in N = {1, 2, . . . , n}, let {i1, i2, . . . , ir}
be the list of its elements, and {j1, j2, . . . , jr−1) the list of the elements of
the complementary subset N−P . Moreover, let sgn(i1, j1, . . . , jr−1, ir) be the
signature of the permutation (i1, j1, i2, j2, . . . , ir−1, jr−1, ir) of N . With this
notation, let us set

η(P ) = sgn(i1, j1, . . . , jr−1, ir) ei1ej1ei2ej2 · · · eir−1ejr−1eir
. (3.3)

In [7], Sect. 7, it is proved that

ε(P ) η(P ) = η(P ) ε(P ) = η(P ) and η(P )2 = (ω�ω) ε(P ).

The wanted element η is the sum of all odd elements η(P ) associated with
the subsets of cardinality r in N . Moreover, ρ(η) = (−1)r−1η.

4. The Involutive Automorphism τ of B0(V, F )

As it is explained in Sect. 2.3, we have proved that the dimension of B(V, F )
is (2n+1

n ) (even if F is degenerate), and we can state the following theorem.

Theorem 4.1. Let (e1, . . . , en) and (e′
1, . . . , e

′
n) be two bases of V (which may

be equal). The regular products derived from these bases constitute a basis of
B(V, F ). They are the even (resp. odd) products

ei1e
′
j1ei2e

′
j2 · · · eir

e′
jr

(
resp. ei1e

′
j1ei2e

′
j2 · · · eir

e′
jr

eir+1

)

such that i1 < i2 < · · · and j1 < j2 < · · · . When r = 0, this product means
1 (resp. ei1).

A classical argument deduces from this theorem that every element x ∈
B(V, F ) has a support Sup(x) in V : it is the smallest subspace S of V such
that x belongs to the (unital) subalgebra B(S, F ) generated by S in B(V, F ).
As a matter of fact, every homogeneous element x has two partial supports
in V , and Sup(x) is the sum of the two partial supports as it is explained in
[3]; but here, this refinement may be forgotten.
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4.1. Elementary Properties of the Automorphism τ

Theorem 4.2. There is a unique automorphism τ of B(V, F ) that maps every
product uv (with u, v ∈ V ) to F (u, v) − vu, and it is involutive.

Proof. If τ exists, it is clear that it is unique. To prove its existence, I propose
a new proof where (V, F ) is embedded in a space (V ′, F ′) of dimension n+1,
spanned by V and a vector e0 orthogonal to V . Let (e1, . . . , en) be a basis
of V . By means of the basis (e0, e1, . . . , en) (resp. (e1, . . . , en, e0)), we deduce
from Theorem 4.1 the following assertion: if an element of B1(V ′, F ′) is equal
to e0x (resp. xe0) for some x ∈ B0(V, F ), this element x is unique. On another
side, the relations (2.1) allow us to write, for all u, v ∈ V ,

e0(uv) = (F (u, v) − vu)e0 and (uv)e0 = e0(F (u, v) − vu).

It follows that, for every x ∈ B0(V, F ), there is a unique τ(x) (resp. τ ′(x))
in B0(V, F ) such that e0x = τ(x) e0 (resp. xe0 = e0τ

′(x)), and that τ(x) and
τ ′(x) are equal; indeed, if x = u1v1u2v2 · · · ukvk, then

τ(x) = τ ′(x) = (F (u1, v1) − v1u1)(F (u2, v2) − v2u2) · · · (F (uk, vk) − vkuk).

The definitions of τ and τ ′ imply that they are algebra homomorphisms
from B0(V, F ) into itself, and that ττ ′ and τ ′τ are the identity mapping of
B0(V, F ). Since τ = τ ′, we conclude that τ is an involutive automorphism of
B0(V, F ). �

The relations (2.1) mean u τ(uv) = 0, τ(vu)u = 0, u τ(wv) = −wτ(uv)
and τ(vu)w = −τ(vw)u. It is easy to generalize these equalities.

Lemma 4.3. For all x1 ∈ B1(V, F ), and for all u, v ∈ V , we have

u τ(ux1) = 0, u τ(vx1) = −v τ(ux1),

τ(x1v) v = 0, τ(x1u) v = −τ(x1v)u.

The next lemma comes from [2], Sect. 6.

Lemma 4.4. Let X and Y be two subspaces of V that are orthogonal to each
other, and let x0, x1, y0 and y1 be elements of B0(X,F ), B1(X,F ), B0(Y, F )
and B1(Y, F ). We have:

y0x0 = x0y0 , y0x1 = x1 τ(y0),

y1x1 = −τ(x1y1), y1x0 = τ(x0) y1 .

When F = 0, we can apply Lemma 4.4 with X = Y = V ; it proves
again that the even subalgebra B0(V, 0) is commutative.

4.2. The Automorphism τ and the Homomorphisms of Sect. 2

By Jacobson’s homomorphism Δ, the image of B0(V, F ) is contained in the
even subalgebra of Cl(V, F̄ )⊗Cl(V, F̄ ), which is
(
Cl(V, F̄ )⊗Cl(V, F̄ )

)
0

=
(
Cl0(V, F̄ )⊗Cl0(V, F̄ )

) ⊕ (
Cl1(V, F̄ )⊗Cl1(V, F̄ )

)
.

This even subalgebra is provided with an automorphism τ̈ that maps y⊗z
to itself (resp. to −y⊗z) if y and z are both even (resp. odd). For every
x ∈ B0(V, F ), we have
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Δ(τ(x)) = τ̈(Δ(x)). (4.1)

Indeed, a direct calculation shows that

4Δ(uv) = (u⊗1 + 1⊗u) (v⊗1 + 1⊗v)
= uv⊗1 + 1⊗uv + u⊗v + v⊗u ,

4Δ(F (u, v)−vu) = (2F (u, v)−vu)⊗1 + 1⊗(2F (u, v)−vu) − u⊗v − v⊗u

= uv⊗1 + 1⊗uv − u⊗v − v⊗u .

On another side, let T be the element of End(
∧

(V )×∧
(V )) defined by

T (y, z) = (z, y). For every x ∈ B0(V, F ), we have:

Θτ(x) = T ◦ Θx ◦ T. (4.2)

Indeed, we have u�(v∧z) = F (u, v)z − v∧(u�z) and v�(u∧y) = F (u, v)y
− u∧(v�y) for all y, z ∈ ∧

(V ), and consequently,

Θu ◦ Θv(y, z) = (u∧(v�y), F (u, v)z − v∧(u�z)),

F (u, v)(z, y) − Θv ◦ Θu(z, y) = (F (u, v)z − v∧(u�z), u∧(v�y)).

4.3. The Dimension of the Subalgebra ker(τ − 1)
I believed that the dimension of the eigenspace ker(τ−1) was always the
half of dim(B0(V, F )) until the precise examination of the trivial case n = 1
made me realize my error. The proof of the next theorem uses the following
consequence of Theorem 7.5 (stated farther): if F and F ′ are two symmetric
bilinear forms on V , and if there is a bilinear form β on V such that

∀u, v ∈ V, F ′(u, v) = F (u, v) + β(u, v) + β(v, u), (4.3)

then the dimension of the eigenspace ker(τ−1) is the same in the algebra
B0(V, F ′) as in the algebra B0(V, F ). When char(K) �= 2, such a bilinear form
β always exists; for instance, β = (F ′−F )/2. But if char(K) = 2, it exits if
and only if F and F ′ give the same quadratic form on V : F ′(v, v) = F (v, v)
for all v ∈ V .

Theorem 4.5. When char(K) �= 2, the dimension of the subalgebra ker(τ−1)
is always (2n−1

n−1) (the half of dim(B0(V, F ))). When char(K) = 2, the same
is true if F is not alternating. But if F is alternating, then the dimension of
ker(τ−1) is (2n−1

n−1) + 2n−1.

Proof. When char(K) �= 2 and F �= 0, there is v ∈ V such that F (v, v) �= 0.
Let us set b = F (v, v) − 2v2. This element b belongs to the other eigenspace
ker(τ+1), and it is invertible because b2 = F (v, v)2. Since τ is an involutive
automorphism, the multiplication x �−→ bx permutes the two eigenspaces
ker(τ−1) and ker(τ+1). Therefore, these eigenspaces have the same dimen-
sion, and the conclusion follows. When F = 0, the direct calculation of the
image of τ−1 gives the same result, but it is easier to use the consequence of
Theorem 7.5 that is stated just above.

When char(K) = 2 and F is alternating, there is a bilinear form β on
V such that F (u, v) = β(u, v) + β(v, u) for all u, v ∈ V . Therefore, it suffices
to treat the case F = 0. Let (e1, . . . , en) be a basis of V . Let P and Q be
two subsets of the same cardinality in N = {1, 2, . . . , n}, let (i1, i2, . . . , ik)
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(resp. (j1, j2, . . . , jk)) be the increasing sequence of the elements of P (resp.
Q), and let us set

ePQ = ei1ej1ei2ej2 · · · eik
ejk

;

moreover, ePQ = 1 if P = Q = ∅. It is clear that τ(ePQ) = eQP . Therefore,
τ−1 maps ePP to 0 for every subset P of N . It follows that the dimension
of the image of τ−1 is the number of all sets {P,Q} where P �= Q and
Card(P ) = Card(Q), that is

n∑

k=0

1
2

(n

k

) ((n

k

) − 1
)

=
1
2

((2n

n

) − 2n
)

.

Now it is easy to calculate the dimension of ker(τ−1).
At last, we suppose that char(K) = 2 and that F is not alternating.

We may assume that F (e1, e1) �= 0. The dimension of ker(τ−1) remains the
same after every field extension of K. By adjoining suitable square roots
to the field K, we can reduce the problem to the case F (ei, ei) ∈ {0, 1}
for i = 1, 2, . . . , n. If F (ei, ei) = 1 for some i ∈ {2, 3, . . . , n}, we replace
ei with ei+e1 such that F (ei+e1, ei+e1) = 0. Thus we may assume that
F (e1, e1) = 1 and F (ei, ei) = 0 whenever i � 2. Finally, we introduce the
bilinear form β such that β(ei, ej) = 0 if i � j, and β(ei, ej) = F (ei, ej)
if i > j; it allows us to reduce the problem to the case F (e1, e1) = 1 and
F (ei, ej) = 0 whenever i+j � 3. We define ePQ as above; moreover, if P

contains 1, then P � = P−{1}, and if P does not, then P � = P∪{1}. In the
present case,

τ(ePQ) = eQP + eQ�P � if 1 ∈ P ∩ Q,

τ(ePQ) = eQP if 1 /∈ P ∩ Q.

The image of τ−1 contains all ePQ + eQP + eQ�P � such that 1 ∈ P ∩ Q,
and their number is the sum of all squares (n−1

k )2 which is (2n−2
n−1). It also

contains all ePQ+eQP such that 1 ∈ P and 1 /∈ Q, and their number is the
sum of all products (n−1

k−1) (n−1
k ) which is (2n−2

n−2). All these elements are linearly
independent, and all other elements that may still emerge are in the subspace
that they span. Indeed, if neither P nor Q contains 1, then ePQ+eQP is the
image by τ−1 of eP �Q� + eQ�P � . Finally, the dimension of the image of τ−1
is (2n−2

n−1) + (2n−2
n−2) = (2n−1

n−1). This is the half of dim(B0(V, F )), in agreement
with Theorem 4.5. �

5. Interior Multiplications by Vectors

The imitation of Cliffordian arguments has already begun in Sect. 4, and
shall become yet more demonstrative in the following sections.

5.1. First Properties

Theorem 5.1. Let ϕ : U×V → K and ψ : V ×W → K be two bilinear map-
pings. They allow every vector u ∈ U (resp. w ∈ W ) to operate on B(V, F )
on the left (resp. right) side by an interior multiplication denoted by � or
�ϕ (resp. 	 or ψ	). The interior multiplications by u and w are determined
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by the following six properties, valid for all v, v′ ∈ V , y0 ∈ B0(V, F ) and
y′ ∈ B(V, F ):

u�v = ϕ(u, v), u�(vv′) = ϕ(u, v) v′, v	w = ψ(v, w), (v′v)	w = v′ψ(v, w),

u�(y0y
′) = (u�y0) y′ + τ(y0)(u�y′), (y′y0)	w = y′(y0	w) + (y′	w) τ(y0).

The associativity property (u�y)	w = u�(y	w) holds for all y ∈ B(V, F ).

The equalities involving y0 and y′ imply u�1 = 1	w = 0 when y0 =
y′ = 1. Of course, if we need only interior multiplications on the left (resp.
right) side, we apply Theorem 5.1 with W = 0 (resp. U = 0). I will propose
a new proof of Theorem 5.1 which requires that it be proved together with
the following two lemmas.

Lemma 5.2. The interior multiplications presented in Theorem 5.1 also sat-
isfy the following properties for all u ∈ U , v ∈ V , w ∈ W , y0 ∈ B0(V, F ),
y1 ∈ B1(V, F ) and y ∈ B(V, F ):

u�(y0v) = (u�y0) v + ϕ(u, v) τ(y0), (vy0)	w = v (y0	w) + ψ(v, w) τ(y0),

u�(y1v) = (u�y1) v, (vy1)	w = v (y1	w),

Sup(u�y) ⊂ Sup(y), Sup(y	w) ⊂ Sup(y).

I rely on the readers for understanding that the six properties required in
Theorem 5.1 determine the interior multiplications in a unique way, and that
they imply the six properties stated in Lemma 5.2. The properties involving
supports justify the word “interior”: if an interior multiplication is inflicted
on y, it operates inside the (unital) subalgebra generated by the support of
y in V . The proof shall begin after the second lemma (where U = V = W
and ϕ = ψ = F ).

Lemma 5.3. The interior multiplications determined by F itself satisfy the
following properties for all v ∈ V , y0 ∈ B0(V, F ) and y1 ∈ B1(V, F ):

v� y0 = v y0 − τ(y0) v, y0 	v = y0 v − v τ(y0),

v� y1 = v y1 + τ(y1 v), y1 	v = y1 v + τ(v y1).

Proof. Let us begin with Lemma 5.3. Let us take the properties stated in
Lemma 5.3 as the definition of the interior multiplications determined by F ,
and let us verify that this definition implies all the properties mentioned in
Theorem 5.1. It suffices to consider interior multiplications on the left side
since interior multiplications on the right side involve symmetric calculations.
It is clear that, for all u, v, v′ ∈ V ,

u�v = uv + τ(vu) = F (u, v) and u�(vv′) = uvv′ − τ(vv′)u = F (u, v) v′

because of the relations (2.1). Then we must distinguish two cases: y′ may
be an even element y′

0 or an odd element y′
1; in both cases, the verification is

obvious:

u y0y
′
0 − τ(y0y

′
0)u = (uy0 − τ(y0)u) y′

0 + τ(y0)(uy′
0 − τ(y′

0)u),

u y0y
′
1 + τ(y0y

′
1u) = (uy0 − τ(y0)u) y′

1 + τ(y0)(uy′
1 + τ(y′

1u)).
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If y = v1v2v3 · · · vr, then u�y is the sum of all products

τ(v1 · · · v2k)F (u, v2k+1) v2k+2 · · · vr where 0 � 2k � r−1;

of course, v1 · · · v2k means 1 if k = 0, and v2k+2 · · · vr means 1 if 2k = r−1.
Thus it is clear that, for every y ∈ B(V, F ), the support of y in V contains
the support of u�y. Now let us prove the associativity property. For every
y0 ∈ B0(V, F ), (u�y0)	w and u�(y0	w) are both equal to

uy0w + τ(w τ(y0)u) + F (u,w) τ(y0) − τ(y0)uw − uw τ(y0).

And for every y1 ∈ B1(V, F ), (u�y1)	w and u�(y1	w) are both equal to

uy1w − wy1u + τ(y1u)w + u τ(wy1) (see Lemma 4.3).

The equalities u�y1	u = 0 and u�y1	w = −w�y1	u are certainly worth a
notice, but here they will never serve.

The general case is an easy consequence of this particular case: it suffices
to embed (V, F ) in the larger space (V ′′, F ′′) where V ′′ = U×V ×W , and

F ′′((u, v, w), (u′, v′, w′)) = ϕ(u, v′)+ϕ(u′, v) + F (v, v′) + ψ(v, w′)+ψ(v′, w).

The mapping v �−→ (0, v, 0) extends to a homomorphism J from B(V, F ) into
B(V ′′, F ′′), and J is injective because of Theorem 4.1. It maps B(V, F ) onto
the (unital) subalgebra of B(V ′′, F ′′) generated by 0×V ×0. To construct the
interior product u�y (determined by ϕ), we let the vector (u, 0, 0) operate on
J(y); since their interior product has a support contained in 0×V ×0, it is
the image by J of some element of B(V, F ) which is u�y. And y	w is defined
in the same way. The interior multiplications determined by F ′′ satisfy all
wanted properties, and the homomorphism J allows us to validate them for
the interior multiplications determined by ϕ and ψ. �

In Sect. 6, it shall be proved that the interior multiplications by vectors
of U (resp. W ) extends to an action of the neutral algebra B(U, 0) (resp.
B(W, 0)) on the left (resp. right) side. In other words, x�y and y	z shall be
defined for all x ∈ B(U, 0), y ∈ B(V, F ) and z ∈ B(W, 0).

5.2. Properties Involving Jacobson’s Homomorphism Δ
When char(K) �= 2, Jacobson’s homomorphism (Sect. 2.1) has a nice behavior
with respect to the interior multiplications, and later it will much help us in
the study of mesonic Lipschitz monoids. The bilinear mapping ϕ (resp. ψ)
allows the exterior algebra

∧
(U) (resp.

∧
(W )) to operate on Cl(V, F̄ ) on the

left (resp. right) side; the operations of the vectors of U (resp. W ) satisfy
these properties: u�v = ϕ(u, v), v	w = ψ(v, w) and for all y, y′ ∈ Cl(V, F̄ ),

u�(yy′) = (u�y)y′ + ŷ (u�y′) and (y′y)	w = y′(y	w) + (y′	w) ŷ

if ŷ means y or −y according as y is even or odd. Consequently, the algebras∧
(U)⊗∧

(U) and
∧

(W )⊗∧
(W ) (tensor products without twisting) operate

on Cl(V, F̄ )⊗Cl(V, F̄ ):

(x⊗x′)�(y⊗y′) = (x�y)⊗(x′�y′) and (y⊗y′)	(z⊗z′) = (y	z)⊗(y′	z′)

for all x, x′ ∈ ∧
(U), y, y′ ∈ Cl(V, F̄ ) and z, z′ ∈ ∧

(W ).
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Lemma 5.4. For all u ∈ U , w ∈ W and y ∈ B(B,F ), we have

Δ(u�y) = (u⊗1 + 1⊗u) � Δ(y),

Δ(y	w) = Δ(y) 	 (w⊗1 + 1⊗w).

Proof. Since Lemma 5.4 follows form [2], Sect. 11, a sketch of proof is now
sufficient. The above equalities are obviously true when y is a vector v of V ,
and a direct calculation shows that they are still true when y = vv′. Then we
need the automorphism τ̈ of the even subalgebra of Cl(V, F̄ )⊗Cl(V, F̄ ) (see
Sect. 4.2): it maps y1⊗y2 to itself or to −y1⊗y2 according as y1 and y2 are
both even or both odd in Cl(V, F̄ ). It suffices to prove that the interior mul-
tiplications by u⊗1 and 1⊗u are τ̈ -twisted derivations of Cl(V, F̄ )⊗Cl(V, F̄ )
in the same way as the interior multiplication by u is a τ -twisted derivation
of B(V, F ). It is clear that

(u⊗1) � (
(y1⊗y2) (y′

1⊗y′
2)

)
=

(
(u⊗1) � (y1⊗y2)

)
(y′

1⊗y′
2)

± (y1⊗y2)
(
(u⊗1) � (y′

1⊗y′
2)

)

where ± means + or − according as y1 is even or odd. If y1 and y2 have the
same parity in Cl(V, F̄ ), we obtain the same ± when u⊗1 is replaced with
1⊗u. A symmetric argument works for w⊗1 and 1⊗w. �

5.3. Other Properties

From the information presented in [2], I recall only what is indispensable in
the present study.

Lemma 5.5. Let ψo be the mapping W×V → K defined by ψo(w, v) = ψ(v, w).
For all w ∈ W , y0 ∈ B0(V, F ) and y1 ∈ B1(V, F ), we have

y0 ψ	w = −w �ψo τ(y0), y1 ψ	w = τ
(
w �ψo y1

)
.

Proof. When V = W and ψ = ψo = F , this lemma is an easy consequence of
Lemma 5.3. For the general case, we embed (V, F ) into the space (V ′′, F ′′)
where V ′′ = V ×W ∼= W×V , and F ′′ is defined in an obvious way. �

If V ∗ is the dual space of V , every � ∈ V ∗ operates on B(V, F ) on both
sides: ��v = v	� = �(v).

Lemma 5.6. The following three assertions (a), (b) and (c) are equivalent for
all y0 ∈ B0(V, F ) and all � ∈ V ∗:

(a) Sup(y0) ⊂ ker(�). (b) �� y0 = y0 	� = 0. (c) y0 	� = τ(y0) 	� = 0.

Proof. The equivalence of (b) and (c) follows from Lemma 5.5, and we may
assume � �= 0. Let (e1, . . . , en) be a basis of V such that �(e1) = 1 and �(ei) =
0 when i � 2. Let us apply Theorem 4.1 with the two bases (e1, e2, . . . , en)
and (e2, . . . , en, e1): in the (unital) subalgebra generated by ker(�), there are
elements y, y′, y′′ and y′′′ such that

y0 = e1ye1 + e1y
′ + y′′e1 + y′′′,

whence �� y0 = ye1 + y′ and y0 	� = e1y + y′′.

Both assertions (a) and (b) are equivalent to y = y′ = y′′ = 0. �



Recent Advances for Meson Algebras... Page 19 of 53    48 

Exponentials of elements of B2(V, 0) have been presented in Sect. 2.4.
For every η ∈ B2(V, 0), we have τ(exp(η) = exp(τ(η)). Because of Lemma 4.4,
exp(η) v = v τ(exp(η)) for every v ∈ V . Besides, u�η and η	w are in V for all
u ∈ U and w ∈ W .

Lemma 5.7. For all u ∈ U , w ∈ W and η ∈ B2(V, 0), we have:

u� exp(η) = (u�η) exp(η) and exp(η)	w = exp(η) (η	w).

Proof. These equalities are obvious if η = vv′. If they are true for η and θ,
they are also true for η + θ. Indeed, because of (2.7),

u� exp(η+θ) =
(
u� exp(η)

)
exp(θ) + τ

(
exp(η)

) (
u� exp(θ)

)

= (u�η) exp(η) exp(θ) + τ(exp(η)) (u�θ) exp(θ)

= (u�η) exp(η) exp(θ) + (u�θ) exp(η) exp(θ)

=
(
u�(η+θ)

)
exp(η+θ),

and the same with exp(η+θ)	w. �

6. A Theorem Involving a Totally Isotropic Subspace

6.1. Statement of the Theorem

Let U be a subspace of V . The (unital) subalgebra generated by U in B(V, F )
will be denoted by B(U,F ); it is isomorphic to the meson algebra of the
restriction of F to U . Let us suppose that V contains a totally isotropic
subspace T complementary to U : V = U ⊕T and F (u, v) = 0 for all u, v ∈ T .
As it happens with Clifford algebras, T determines a left ideal complementary
to B(U,F ) in B(V, F ); it turns B(U,F ) into a left module over B(V, F ) because
there is a linear bijection from B(U,F ) onto the quotient of B(V, F ) by this
left ideal. It also determines a right ideal complementary to B(U,F ) which
turns B(U,F ) into a right module. These assertions shall now be explained
and proved in detail.

Let us set m = dim(U), and let (e1, . . . , en) be a basis of V such that
(e1, . . . , em) is a basis of U , and (em+1, . . . , en) a basis of T . Since T is totally
isotropic, the subalgebra B(T, F ) (isomorphic to the neutral algebra B(T, 0))
is provided with a Z-gradation: the component Bk(T, F ) of degree k is not
reduced to 0 for k = 0, 1, . . . , 2(n−m), and we are especially interested in the
subspace B2(n−m)(T, F ) of dimension 1. Let ω be an element that spans this
subspace, for instance

ω = e2
m+1 e2

m+2 · · · e2
n. (6.1)

Since B0(T, 0) is a commutative algebra, the squares written in the right side
of (6.1) are pairwise commuting. Consequently, tω = ωt = 0 for every t ∈ T ;
indeed, it suffices to prove this when t = ei with m < i � n, and to recall
that e3

i = 0 because of (2.1). Moreover, τ(x1t)ω = ω τ(tx1) = 0 for all t ∈ T
and all x1 ∈ B1(V, F ); it suffices to prove this when t = ei with m < i � n,
and to recall Lemma 4.3.



   48 Page 20 of 53 J. Helmstetter Adv. Appl. Clifford Algebras

Theorem 6.1. Let us assume that V = U ⊕T with a totally isotropic subspace
T (as above). The left ideal of all x ∈ B(V, F ) such that xω = 0 is the left ideal
generated by all t ∈ T and all τ(vt) with t ∈ T and v ∈ V . It is complementary
to the subalgebra B(U,F ). Similarly, the right ideal of all x ∈ B(V, F ) such
that ωx = 0 is the right ideal generated by all t ∈ T and all τ(tv) with t ∈ T
and v ∈ V . It is also complementary to B(U,F ).

Proof. Let J be the left ideal of all x such that xω = 0, and J ′ the left ideal
generated by all t ∈ T and all τ(vt). If we manage to prove that

J ′ ⊂ J , J ∩ B(U,F ) = 0 and B(V, F ) = J ′ + B(U,F ),

it follows immediately that J = J ′ and that B(V, F ) is the direct sum of
J and B(U,F ). Firstly, it has been explained just above that J contains
all t ∈ T and all τ(vt). Secondly, xω �= 0 for every non-zero x ∈ B(U,F )
because Theorem 4.1 proves that the multiplication x �−→ xω is injective
from B(U,F ) into B(V, F ). Thirdly, let us prove by induction on k that every
element of B�k(V, F ) is in J ′ +B(U,F ). This is true for B�1(V, F ) = K ⊕V .
Because of Theorem 4.1, every element of B�k(V, F ) is a sum of terms of
the following three kinds: either an element of B�k(U,F ), or a product yt
with y ∈ B�k−1(V, F ) and t ∈ T , or a product ytu with y ∈ B�k−2(V, F ),
t ∈ T and u ∈ U . Only ytu raises a problem, but it is an easy problem: ytu is
the sum of −y τ(ut) and F (t, u) y which falls into J ′ + B(U,F ) because the
induction hypothesis may be used for y ∈ B�k−2(V, F ). Now Theorem 6.1
has been proved for the left ideal. For the right ideal, we may use either the
basis (em+1, . . . , en, e1, . . . , em), or the reversion ρ in B(V, F ). �

Theorem 6.1 lets the algebra B(V, F ) act on the space B(U,F ) on the left
side and on the right side: with every y ∈ B(V, F ) is associated and operator
Ly such that (yx−Ly(x))ω = 0 for all x ∈ B(U,F ), and an operator Ry such
that ω (xy − Ry(x)) = 0 for all x ∈ B(U,F ).

Corollary 6.2. When B(V, F ) acts on B(U,F ) on the left (resp. right) side,
the elements of U operate by ordinary multiplication on the left (resp. right)
side, and the elements of T operate by interior multiplications on the left
(resp. right) side. These interior multiplications are determined by the bilin-
ear mappings T×U → K and U×T → K induced by F .

Proof. When y is in B(U,F ) it is clear that Ly(x) = yx and Ry(x) = xy for
all x ∈ B(U,F ). When y is a vector t of T , Lemma 5.3 shows that

tx0 − t�x0 = τ(x0) t, x0t − x0	t = t τ(x0),

tx1 − t�x1 = −τ(x1t), x1t − x1	t = −τ(tx1)

for all x0 ∈ B0(U,F ) and all x1 ∈ B1(U,F ). Therefore, Lt(x) = t�x and
Rt(x) = x	t for all x ∈ B(U,F ). �

Yet B(U,F ) is not a bimodule over B(V, F ) because the operations on
the left side do not always commute with the operations on the right side.
Indeed, Lemma 5.2 shows that t�(x0u) = (t�x0)u+F (t, u)τ(x0) for all t ∈ T ,
u ∈ U and x0 ∈ B0(U,F ).
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Besides, the left or right ideal mentioned in Theorem 6.1 is a graded
subspace of B(V, F ), and τ leaves invariant its even component. Consequently,
for all x ∈ B0(U,F ) and all y ∈ B0(V, F ), we have

Lτ(y)(τ(x)) = τ(Ly(x)) and Rτ(y)(τ(x)) = τ(Ry(x)). (6.2)

6.2. Consequences for Interior Multiplications

As in Sect. 5, we consider two bilinear mappings ϕ : U×V → K and ψ :
V ×W → K. A decisive step was achieved when (V, F ) was embedded in a
larger space (V ′′, F ′′) with V ′′ = U×V ×W ; but this space was only necessary
to prove the associativity property. At all other places, it was possible to reach
the wanted result with V ′′ = U×V or with V ′′ = V ×W . When V ′′ = U×V
and

F ′′((u, v), (u′, v′)) = ϕ(u, v′) + ϕ(u′, v) + F (v, v′),

V ′′ is the direct sum of 0×V and the totally isotropic subspace U×0, and
because of Theorem 6.1, B(V ′′, F ′′) acts on B(V, F ) on the left side. When
V ′′ = V ×W and

F ′′((v, w), (v′, w′)) = F (v, v′) + ψ(v, w′) + ψ(v′, w),

V ′′ is the direct sum of V ×0 and the totally isotropic subspace 0×W , and
B(V ′′, F ′′) acts on B(V, F ) on the right side. In both cases, the action of
B(V ′′, F ′′) is described by Corollary 6.2, and thus we realize that the following
equalities hold for all u, u′ ∈ U , all v ∈ V , all w, w′ ∈ W and all y ∈ B(V, F ):

u�(u′�(u�y)) = 0, ((y	w)	w′)	w = 0, (6.3)
u�(v (u�y)) = ϕ(u, v)u�y, ((y	w) v)	w = ψ(v, w) y	w, (6.4)
v (u�(vy)) = ϕ(u, v) vy, ((yv)	w) v = ψ(v, w) yv. (6.5)

Because of (6.3), the neutral algebras B(U, 0) and B(W, 0) act on B(V, F )
and turn it into a bimodule:

x�(x′�y) = (xx′)�y, (x�y)	z = x�(y	z), (y	z)	z′ = y	(zz′) (6.6)

for all x, x′ ∈ B(U, 0), all y ∈ B(V, F ) and all z, z′ ∈ B(W, 0). The sec-
ond equality in (6.6) follows from the associativity property in Theorem 5.1
without any new intervention of U×V ×W .

The bilinear mapping ϕ : U×V → K allows every vector v of V to act on
the neutral algebra B(U, 0) on the right side, and the mapping ψ : V ×W → K
allows v to act on B(W, 0) on the left side. These interior multiplications by
v appear in the next lemma.

Lemma 6.3. For all x0 ∈ B0(U, 0), y ∈ B(V, F ), z0 ∈ B0(W, 0) and v ∈ V ,

x0�(vy) − v (τ(x0)� y) = (x0	v)� y and (yv)	z0 − (y 	τ(z0)) v = y 	(v�z0).

Proof. For the first equality, we use V ′′ = U×V and the homomorphism
J : B(U,F ) → B(V ′′, F ′′) that extends u �−→ (u, 0). The left side of the
equality is the operation of J(x0) (0, v) − (0, v)J(τ(x0)) on y. Because of
Lemma 5.3, this element is equal to J(x0) F ′′	(0, v) which is the same thing
as J(x0 ϕ	v). A symmetric argument proves the second equality. �
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All results presented in Sect. 6.2 appeared already in [2], but since [2]
ignored Theorem 6.1, all proofs were based on Theorem 5.1. Thus many pages
of calculations were necessary, with many inductions on filtering degrees.
Theorem 6.1 achieves an amazing simplification of the proofs. Theorem 6.1
is yet more wonderful than the Cliffordian theorem that it imitates.

6.3. An Important Particular Case

Section 7 shall use the space V ⊕ = V ∗ ⊕V . The notation �+v (where � ∈ V ∗

and v ∈ V ) will be used for the elements of V ⊕, so that V and V ∗ may be
identified with subspaces of V ⊕. Let F⊕ be the symmetric bilinear form on
V ⊕ defined in this way (for all �, �′ ∈ V ∗ and all v, v′ ∈ V ):

F⊕(� + v, �′ + v′) = �(v′) + �′(v) + F (v, v′). (6.7)

The algebra B(V ⊕, F⊕) acts on B(V, F ) on the left side and on the right
side. Since F⊕ is non-degenerate, B(V ⊕, F⊕) is a semi-simple algebra; it
is the direct sum of n+1 ideals of dimensions (2n+1

k )2 with 0 � k � n
(see Theorem 3.3). Since the dimension of the largest ideal is the square
of dim(B(V, F )), the next theorem is not a surprise.

Theorem 6.4. When B(V ⊕, F⊕) acts on B(V, F ) on the left or right side,
only the largest ideal has a non-trivial action, and it is mapped bijectively
onto End(B(V, F )).

Proof. Let us prove Theorem 6.4 for the action on the left side. Following
Sect. 3.3, we use too bases (f1, . . . , f2n) and (f ′

1, . . . , f
′
2n) of V ⊕ such that

F⊕(fi, f
′
i) = 1 for all i, and F⊕(fi, f

′
j) = 0 if i �= j. If (e1, . . . , en) is a basis

of V , and (e∗
1, . . . , e

∗
n) the dual basis of V ∗, we can choose

fi = e∗
i , fn+i = ei for i = 1, 2, . . . , n,

f ′
i = −�i + ei, f ′

n+i = e∗
i ,

where each �i is defined by �i(v) = F (ei, v). The operation of the idempotents
fif

′
i and fn+if

′
n+i in B(V, F ) map 1 respectively to 1 and to 0. Let us set

ε =
∏

1�i�n

fif
′
i (1 − fn+if

′
n+i).

This idempotent ε belongs to the largest ideal of B(V ⊕, F⊕), and its operation
maps 1 to itself. Therefore, there is a submodule of B(V, F ) on which this
largest ideal does not act trivially, whereas all other ideals act trivially, and
its dimension is at least (2n+1

n ). This submodule must be equal to B(V, F ).
�

7. Deformations

Let β be a bilinear form V ×V → K, and βo the bilinear form defined by
βo(u, v) = β(v, u). Besides the given symmetric bilinear form F on V , we will
also use the symmetric bilinear form F ′ = F + β + βo. This relation between
F and F ′ is equivalent to (4.3). Moreover, βu and βo

u are the linear forms
such that βu(v) = β(u, v) and βo

u(v) = β(v, u) for all v ∈ V . The spaces
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(V ⊕, F⊕) and (V ⊕, F ′⊕) have been defined in Sect. 6.3. For all �, �′ ∈ V ∗

and all v, v‘ ∈ V , we have:

F⊕(� + βv + v, �′ + βv′ + v′) = F ′⊕(� + v, �′ + v′),

F⊕(� + βo
v + v, �′ + βo

v′ + v′) = F ′⊕(� + v, �′ + v′).

Therefore, β determines two isomorphisms Φ and Ψ from B(V ⊕, F ′⊕) onto
B(V ⊕, F⊕); the former maps every � + v to � + βv + v, and the latter maps
every � + v to � + βo

v + v.
The neutral algebra B(V ∗, 0) may be identified with a subalgebra of

B(V ⊕, F⊕) and with a subalgebra of B(V ⊕, F ′⊕). Let ω be a non-zero ele-
ment of B2n(V ∗, 0); it belongs to B(V ⊕, F⊕) and to B(V ⊕, F ′⊕), and Φ(ω) =
Ψ(ω) = ω. Let Jl (resp. J ′

l ) be the left ideal of all elements z of B(V ⊕, F⊕)
(resp. B(V ⊕, F ′⊕)) such that zω = 0, and let Jr (resp. J ′

r) be the right
ideal of all elements z of B(V ⊕, F⊕) (resp. B(V ⊕, F ′⊕)) such that ωz = 0.
It is clear that Φ(J ′

l ) = Jl and Ψ(J ′
r) = Jr. In the algebra B(V ⊕, F⊕),

both subalgebras B(V, F ) and Φ(B(V, F ′)) are complementary to Jl; there-
fore, there is a natural linear bijection Φ(B(V, F ′)) → B(V, F ) (the par-
allel projection with respect to Jl), and finally a linear bijection Jl from
B(V, F ′) onto B(V, F ). Similarly, both subalgebras B(V, F ) and Ψ(B(V, F ′))
are complementary to Jr in B(V ⊕, F⊕), and this results in a linear bijection
Jr : B(V, F ′) → B(V, F ). Fortunately, we shall soon realize that Jl = Jr This
bijection J = Jl = Jr allows us to carry the multiplication of B(V, F ′) onto
the space B(V, F ):

∀x, y ∈ B(V, F ), x � y = J(J−1(x)J−1(y)). (7.1)

The deformation B(V, F ;β) is the space B(V, F ) provided with the �-
multiplication defined by (7.1). Let us now detail this construction.

7.1. Preliminary Lemmas

The algebra B(V ⊕, F⊕) acts on the space B(V, F ) on both sides. As it is
explained in Sect. 6.1, every y ∈ B(V ⊕, F⊕) determines an operation Ly on
the left side and an operation Ry on the right side; for every x ∈ B(V, F ),
Ly(x) (resp. Ry(x)) is the parallel projection of yx (resp. xy) onto B(V, F )
with respect to Jl (resp. Jr); and we have Lyz = Ly ◦ Lz and Ryz = Rz ◦ Ry

for all y, z ∈ B(V ⊕, F⊕). From the definition of Ly (resp. Ry), it follows
that Ly(1) (resp. Ry(1)) is the projection of y onto B(V, F ) with respect to
Jl (resp. Jr). Consequently, for all z ∈ B(V, F ′), LΦ(z)(1) and RΨ(z)(1) are
the elements of B(V, F ) that have been called Jl(z) and Jr(z) just above. On
another side, Corollary 6.2 shows that, for all v ∈ V and all x ∈ B(V, F ), we
have

LΦ(v)(x) = vx + v �β x and RΨ(v)(x) = xv + xβ	 v. (7.2)
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Lemma 7.1. For all y, z ∈ B(V, F ′), LΦ(y) and RΨ(z) commute.

Proof. It suffices to prove that LΦ(v) and RΨ(w) commute for all v, w ∈ V ;
in other words, for all x ∈ B(V, F ),

v(xw + x	w) + v�(xw + x	w) = (vx + v�x)w + (vx + v�x)	w
if � and 	 mean �β and β	. When x is an even element x0 (resp. an odd
element x1), Lemma 5.2 shows that both sides are equal to

vx0w + v�x0	w + v(x0	w) + (v�x0)w + β(v, w) τ(x0)
(
resp. vx1w + v�x1	w + v(x1	w) + (v�x1)w

)
.

The conclusion follows. �

Lemma 7.2. For every z ∈ B(V, F ′), LΦ(z)(1) = RΨ(z)(1).

Proof. This is true if z = 1, and if z is in V (recall (7.2)). Let us suppose
that LΦ(y)(1) = RΨ(y)(1) and LΦ(z)(1) = RΨ(z)(1); then,

LΦ(yz)(1) = LΦ(y) ◦ LΦ(z)(1) = LΦ(y) ◦ RΨ(z)(1)

= RΨ(z) ◦ LΦ(y)(1) = RΨ(z) ◦ RΨ(y)(1) = RΨ(yz)(1).

Since the algebra B(V, F ′) is generated by V , the conclusion follows. �

If we set J(z) = LΦ(z)(1) = RΨ(z)(1) for every z ∈ B(V, F ′), then J is a
linear bijection B(V, F ′) → B(V, F ) as it has been explained above. We have
J(1) = 1, and for all u, v, w ∈ V ,

J(v) = v, J(uv) = uv + β(u, v), J(uvw) = uvw + β(u, v)w + β(v, w)u.

Now the definition (7.1) of x � y is meaningful.

Lemma 7.3. If x and y are two elements of B(V, F ), and if x′ and y′ are their
images in B(V, F ′) by J−1, then

x � y = LΦ(x′)(y) = RΨ(y′)(x).

Proof. Let us begin (for instance) with the second equality:

x � y = J(x′y′) = RΨ(x′y′)(1) = RΨ(y′) ◦ RΨ(x′)(1)

= RΨ(y′)(J(x′)) = RΨ(y′)(x).

A symmetric calculation gives the first equality. �

Because of Lemma 7.3, we have for all v ∈ V and all x ∈ B(V, F ),

1 � x = x, v � x = vx + v �β x, (7.3)
x � 1 = x, x � v = xv + xβ	 v. (7.4)
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7.2. The Main Theorems

Theorem 7.4 is an immediate consequence of the preliminary lemmas.

Theorem 7.4. There is a unique associative �-multiplication on the space
B(V, F ) such that (7.3) holds for all v ∈ V and all x ∈ B(V, F ). It is also
the unique associative �-multiplication such that (7.4) holds for all v and x.
With this �-multiplication, the space B(V, F ) becomes an associative and uni-
tal algebra B(V, F ;β), and the identity mapping of V extends to an algebra
isomorphism J from B(V, F ′) onto B(V, F ;β).

For all u, v, w ∈ V , we have

u � v = uv + β(u, v), u � v � w = uvw + β(u, v)w + β(v, w)u.

This confirms that u � v � u = F ′(u, v)u. On another side, the deformation
B(V, F ;β) has the same parity gradation as B(V, F ). Thus it is sensible to
ask what the automorphism τβ of the even subalgebra B0(V, F ;β) may be.
The following calculation allows us to guess the answer:

τβ(uv) = τβ(u � v − β(u, v)) = F ′(u, v) − v � u − β(u, v)

= F ′(u, v) − vu − β(v, u) − β(u, v) = F (u, v) − vu = τ(uv).

Theorem 7.5. The automorphism τβ of B0(V, F ;β) is the same as the auto-
morphism τ of B0(V, F ).

Proof. Let us denote by τ ′ and τ the automorphisms of the even subalgebras
B0(V ⊕, F ′⊕) and B0(V ⊕, F⊕). We must prove that J(τ ′(x)) = τ(J(x)) for
every x ∈ B0(V, F ′). It is clear that Φ(τ ′(x)) = τ(Φ(x)). Since J(τ ′(x))
= LΦ(τ ′(x))(1), the conclusion follows from (6.2). �

Theorem 7.5 was already involved in the proof of Theorem 4.5. Now we
suppose that two mappings ϕ : U×V → K and ψ : V ×W → K allow the
neutral algebras B(U, 0) and B(W, 0) to act on the space B(V, F ) by interior
multiplications (see Sect. 6.2).

Theorem 7.6. When B(U, 0) and B(W, 0) act on B(V, F ) by interior multi-
plications, the interior products x�y and y	z (where x ∈ B(U, 0), y ∈ B(V, F )
and z ∈ B(W, 0)) are the same in the algebra B(V, F ;β) as in the algebra
B(V, F ). In other words, the linear bijection J : B(V, F ′) → B(V, F ) is an
isomorphism of bimodules over the algebras B(U, 0) and B(W, 0).

Proof. It suffices to prove that u�y and y	w (where u ∈ U and w ∈ W ) are
the same in B(V, F ;β) as in B(V, F ). Yet u�y = ϕu�y and y	w = y	ψo

w if ϕu

and ψo
w are the linear forms v �−→ ϕ(u, v) and v �−→ ψ(v, w). Therefore, it

suffices to prove the following assertion:

∀� ∈ V ∗, ∀y ∈ B(V, F ′), J(��y) = ��J(y) and J(y	�) = J(y)	� (7.5)

if ��y and y	� are calculated in B(V, F ′) while ��J(y) and J(y)	� are calculated
in B(V, F ). In B(V ⊕, F ′⊕), we have ��y ≡ �y modulo the left ideal J ′

l , and
consequently, Φ(��y) ≡ Φ(�y) modulo Jl in B(V ⊕, F⊕). Moreover, Φ(�y)
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= �Φ(y). We also have ��J(y) ≡ � J(y) modulo Jl, and Φ(z) ≡ J(z) for all
z ∈ B(V, F ′). Consequently,

J(��y) ≡ Φ(��y) ≡ Φ(�y) ≡ �Φ(y) ≡ � J(y) ≡ ��J(y) modulo Ji.

Since J(��y) and ��J(y) are two elements of B(V, F ) such that J(��y)
≡ ��J(y), they are equal. A symmetric argument brings J(y	�) = J(y)	�.
�

As it happens for Clifford algebras, a corollary immediately follows.

Corollary 7.7. Let β and γ be two bilinear forms on V . The deformation of
B(V, F ;β) by means of γ is equal to the deformation B(V, F ; β+γ).

Therefore, B(V, F ) is the deformation of B(V, F ;β) by means of −β.

7.3. Isomorphic Deformations

There is a bijection from V ∗⊗V ∗ onto the space of all bilinear forms on V
which maps every �⊗�′ to the bilinear form (u, v) �−→ �′(u) �(v). There is also
a bijection �⊗�′ �−→ ��′ from V ∗⊗V ∗ onto B2(V ∗, 0) (see Sect. 2.4). These
bijections lead to the next lemma.

Lemma 7.8. There is a bijection from B2(V ∗, 0) onto the space of bilinear
forms on V which maps every δ ∈ B2(V ∗, 0) to the bilinear form α such
that α(u, v) = δ�uv for all u, v ∈ V . It maps τ(δ) to the bilinear form
(u, v) �−→ −α(v, u). If αu and αo

u are the linear forms v �−→ α(u, v) and
v �−→ α(v, u), then αu = δ	u and αo

u = u�δ.
Proof. If δ = ��′ (with �, �′ ∈ V ∗), then δ�(uv) = ��(�′�uv) = �′(u) �(v).
Besides, τ(δ) = −�′�. These facts prove the first assertions in Lemma 7.8. If
α is the bilinear form defined by α(u, v) = �′(u) �(v) (for all u, v ∈ V ), then
αu = �′(u) � and αo

u = �(u) �′. Since (��′)	u = �′(u) � and u�(��′) = �(u) �′,
the last assertion is also proved. �

If β and γ are bilinear forms on V such that

β + βo = γ + γo, (7.6)

then B(V, F ;β) and B(V, F ; γ) are isomorphic to the same algebra B(V, F ′).
Consequently, the identity mapping of V extends to an isomorphism from
B(V, F ;β) onto B(V, F ; γ). The next theorem reveals it; it involves an expo-
nential which is defined as it is explained in Sect. 2.4.

Theorem 7.9. Let β and γ be two bilinear forms on V , and let δ be the element
of B2(V ∗, 0) such that

∀u, v ∈ V, δ�uv = γ(u, v) − β(u, v).

If β and γ satisfy (7.6), then τ(δ) = δ, and the mapping x �−→ exp(δ) � x is
the isomorphism B(V, F ;β) → B(V, F ; γ) that extends 1V .

Proof. The relation (7.6) means that γ − β is skew symmetric, and implies
τ(δ) = δ. Consequently, τ(exp(δ)) = exp(δ). The definition of δ also implies
that δ	v = γv − βv for all v ∈ V . Since exp(δ) − 1 belongs to B�2(V ∗, 0), the
interior multiplication by exp(δ) leaves invariant every element of B�1(V, F ).
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Thus it suffices to prove that the mapping x �−→ exp(δ)�x behaves correctly
on a product v � x where the first factor v is in V :

exp(δ) � vx + exp(δ) � (v�γ x) = v (exp(δ)�x) + v�β (exp(δ)�x). (7.7)

Since τ(exp(δ)) = exp(δ), Lemmas 6.3 and 5.7 allow us to write

exp(δ) � (vx) − v (exp(δ)�x) =
(
exp(δ)	v) � x

=
(
exp(δ) (δ	v)

) � x

=
(
exp(δ) (γv − βv)

) � x.

On another side, we may replace v�γ and v�β with γv� and βv� in (7.7).
Because of (6.6), we have

exp(δ) � (v�γ x) =
(
exp(δ) γv

) � x,

v�β (exp(δ)�x) =
(
βv exp(δ)

) � x

=
(
exp(δ)βv

) � x
(
see Lemma 4.4

)
.

All this calculation proves (7.7). �

Unlike the automorphism τ of B0(V, F ), the reversion ρ is not invariant
under deformation (see [2], Section 10). Let δ be the element of B2(V ∗, 0)
such that δ�uv = β(u, v)−β(v, u) for all u, v ∈ V (whence τ(δ) = δ). Since ρ
is an anti-isomorphism from B(V, F ;β) onto B(V, F ;βo), Theorem 7.9 allows
us to calculate the reversion ρβ in B(V,B;β):

∀x ∈ B(V, F ), ρβ(x) = exp(δ) � ρ(x) = ρ
(
exp(−δ) � x

)
. (7.8)

7.4. A Theorem Involving Jacobson’s Homomorphism

The next theorem involves the deformation Cl(V, F̄ ; 2β) of the Clifford al-
gebra Cl(V, F̄ ) when char(K) �= 2. It is the space Cl(V, F̄ ) provided with
the associative �-multiplication that admits the same unit element, and that
satisfies the following properties for all v ∈ V and all z ∈ Cl(V, F̄ ):

v � z = vz + 2 v�β z and z � v = zv + 2 zβ	v.

Instead of v�β z and zβ	v, we can write βv�z and z	βo
v .

Theorem 7.10. Jacobson’s homomorphism B(V, F ) → Cl(V, F̄ )⊗Cl(V, F̄ ) is
also an algebra homomorphism B(V, F ;β) → Cl(V, F̄ ; 2β) ⊗ Cl(V, F̄ ; 2β).

Proof. It suffices to verify that Δ(v � x) = Δ(v) � Δ(x) for all v ∈ V and all
x ∈ B(V, F ). Because of Lemma 5.4, this means that

1
2
(v⊗1 + 1⊗v)Δ(x) + (βv⊗1 + 1⊗βv) � Δ(x) =

1
2
(v⊗1 + 1⊗v) � Δ(x).

It suffices to prove that, for all v ∈ V and all y, z ∈ Cl(V, F̄ ),

(v⊗1 + 1⊗v) (y⊗z) + 2 (βv⊗1 + 1⊗βv) � (y⊗z) = (v⊗1 + 1⊗v) � (y⊗z).

This last equality is true because vy + 2βv�y = v � y, and the same with z at
the place of y. �
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Sometimes, it is useful to use a deformation B(V, F ;−β) that is isomor-
phic to a neutral algebra; this happens if F = β + βo. When char(K) �= 2,
there is a canonical choice (the only symmetric choice): β = F/2. Because
of (7.8), this choice leaves the reversion ρ invariant. Jacobson’s homomor-
phism is also a homomorphism from B(V, F ;−F/2) into Cl(V, F̄ ;−F ) ⊗
Cl(V, F̄ ;−F ), which is isomorphic to

∧
(V )⊗∧

(V ).

8. Generalities about Lipschitz Monoids

Section 8 introduces the second part of this work which is devoted to Lip-
schitz monoids. Obviously, many methods employed in Sects. 4, 5, 6 and 7
were imitations of methods that give good results with Clifford algebras. The
present study of meson algebras made a selection among the many methods
that have been imagined for Clifford algebras, according as they could be
adapted to meson algebras. Nevertheless, the imitations were never faithful
copies, and the particular features of meson algebras left their mark on the
imitations. Lipschitz monoids are an efficient tool in the study of Clifford
algebras, and the next purpose is the research for an imitation in the frame
of meson algebras.

The wanted Lipschitz monoid (or semi-group) Lip(V, F ) must be a mul-
tiplicative monoid in the algebra B(V, F ). Its elements will be called the Lip-
schitzian elements, and the group of its invertible elements will be denoted by
GLip(V, F ). The automorphisms of (V, F ) (which I would call “autometries”
if this word were accepted by everybody) are the linear transformations g of
V such that F (g(u), g(v)) = F (u, v) for all u, v ∈ V . Every automorphism g
of (V, F ) extends to an automorphism B(g) of the algebra B(V, F ). The au-
tomorphisms of (V, F ) constitute a group Aut(V, F ), and the wanted theory
must bring a group homomorphism GLip(V, F ) → Aut(V, F ).

8.1. Twisted Inner Automorphisms

The wanted homomorphism GLip(V, f) → Aut(V, F ) requires the prelimi-
nary definition of the twisted inner automorphisms of B(V, F ). The odd com-
ponent B1(V, F ) contains no invertible elements because it is contained in the
ideal B+(V, F ) (the kernel of the algebra homomorphism Scal : B(V, F ) → K
defined in Sect. 2). Therefore, the twisted inner automorphisms shall be de-
termined by elements of B0(V, F ) that are eigenvectors of τ , and the monoid
Lip(V, F ) shall contain only eigenvectors of τ . The following definition, which
involves the grade automorphism σ (defined in Sect. 2), will prove to be the
good one: when a is an invertible element of B0(V, f) such that τ(a) = ±a,
the twisted inner automorphism determined by a is x �−→ axa−1 if τ(a) = a,
x �−→ a σ(x) a−1 if τ(a) = −a. Equivalently, every even x is mapped to
axa−1, and every odd x is mapped to a x τ(a)−1.

Theorem 8.1. Let a be an invertible element of B0(V, F ) such that τ(a) = ±a,
and such that ava−1 ∈ V for all v ∈ V . If we set Ga(v) = a v τ(a)−1, then
Ga is an automorphism of (V, F ), and the kernel of Ga − 1 is Sup(a)⊥ (the
subspace orthogonal to the support of a with respect to F ). Moreover, the
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image of Ga−1 is contained in Sup(a), and the equality im(Ga−1) = Sup(a)
holds when F is non-degenerate.

Proof. Since τ(a) = ±a, we have, for all u, v ∈ V ,

(a u τ(a)−1) (a v τ(a)−1) (a u τ(a)−1) = a (uvu) τ(a)−1.

Consequently, F (Ga(u), Ga(v))Ga(u) = F (u, v)Ga(u). Thus we have proved
that F (Ga(u), Ga(v)) = F (u, v) if u �= 0, and this is sufficient to claim that
Ga ∈ Aut(V, F ). Now let us realize that, for all v ∈ V ,

Ga(v) − v = (aF 	v) τ(a)−1. (8.1)

Indeed, Lemma 5.3 allows us to write

av τ(a)−1 − v = (av − v τ(a)) τ(a)−1 = (aF 	v) τ(a)−1.

Thus the equality Ga(v) = v is equivalent to aF 	v = 0. Since τ(a) = ±a,
Lemma 5.6 proves that Ga(v) = v if and only if Sup(a) is in the kernel of
the linear form u �−→ F (u, v). In other words, ker(Ga−1) = Sup(a)⊥. From
(8.1) we can also deduce that Ga(v)− v belongs to Sup(a) because aF 	v and
τ(a)−1 belong to the subalgebra B(Sup(a), F ); since this subalgebra has a
finite dimension, it contains the inverses of all its invertible elements. Thus
im(Ga−1) ⊂ Sup(a). When F is non-degenerate, we have

n = dim(Sup(a)) + dim(Sup(a)⊥) = dim(im(Ga−1)) + dim(ker(Ga−1));

consequently, im(Ga − 1) = Sup(a). �

The above definition of the twisted inner automorphisms of B(V, F )
shall be accepted as relevant only if every automorphism of (V, F ) extends to
a twisted inner automorphism of B(V, F ) when F is non-degenerate. When F
is degenerate, and when g is an automorphism of (V, F ), Theorem 8.1 shows
that B(g) cannot be a twisted inner automorphism of B(V, F ) if ker(g − 1)
does not contain V ⊥ = ker(F ).

Every invertible Lipschitzian element a must determine a twisted inner
automorphism of B(V, F ) that leaves V invariant and induces an automor-
phism Ga of (V, F ). It is sensible to hope that this requirement will be satisfied
because every Lipschitzian element satisfies the following property (where ρ
is the reversion defined in Sect. 1):

∀a ∈ Lip(V, F ), ρ(a) ∈ Lip(V, F ), a ρ(a) = ρ(a) a ∈ K,

and ∀v ∈ V, av ρ(a) ∈ V. (8.2)

The homomorphism GLip(V, F ) → Aut(V, F ) will follow from (8.2). It shall
be accepted as relevant only if the following property is true: every automor-
phism g of (V, F ) that extends to a twisted inner automorphism of B(V, F )
is equal to Ga for some a ∈ GLip(V, F ). Even if g = Gb for some b that is not
Lipschitzian, we may forget this b and replace it by a Lipschitzian a, because
a satisfies many advantageous properties (for instance (8.2)) which are not
always valid for b. Such inopportune elements b may exist when F is degen-
erate. For instance, when F = 0, we have 1V = Gb for every b ∈ B0(V, 0)
such that τ(b) = b and Scal(b) �= 0.
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Let us notice that ρ and τ commute on B0(V, F ); indeed, the mapping
ρ ◦ τ ◦ ρ (defined on B0(V, F )) is equal to τ because it is an automorphism of
B0(V, F ) that maps every uv to F (u, v) − vu.

8.2. Orthogonal Transformations

An automorphism g of (V, F ) is called an orthogonal transformation if B(g)
is a twisted inner automorphism of B(V, F ), and the group of all orthogonal
transformations is the orthogonal group O(V, F ). Just above in Sect. 8.1,
the presented concepts were accepted as relevant only if they complied with
two requirements, and here, the two required properties can be stated in this
way: O(V, F ) is the image of the homomorphism GLip(V, F ) → Aut(V, F ),
and Aut(V, F ) = O(V, F ) whenever F is non-degenerate.

Some authors prefer to give the name “orthogonal transformation” to all
automorphisms of (V, F ), for which, anyway, I prefer the name “autometry”.
The purpose of new definitions is to state new theorems, but there is little to
say about the “autometries” of (V, F ). Almost all theorems about “autome-
tries” are particular cases of more general theorems about “homometries”.
We need a special terminology only for the “autometries” g such that B(g)
is a twisted inner automorphism.

The group O(V, F ) shall be described in Sects. 9, 10 and 11. When
char(K) �= 2, it is the group of all g ∈ Aut(V, F ) such that ker(g − 1) ⊃
V ⊥. The same is true when char(K) = 2 and F is alternating. But when
char(K) = 2 and F is not alternating, the subspace V0 of all v ∈ V such that
F (v, v) = 0 (see Sect. 1.1) shall play a capital role because O(V, F ) is the
group of all g ∈ Aut(V, F ) such that ker(g − 1) contains V ⊥

0 (the subspace
orthogonal to V0). In Sect. 11 (where char(K) = 2), the following lemma will
help us to prove that g(v) = v for all v ∈ V ⊥

0 and all g ∈ O(V, F ); in this
lemma, V0 = V ⊥, whence V ⊥

0 = V , and we must prove that O(V, F ) = {1V }.

Lemma 8.2. When char(K) = 2, dim(V ) = 2 and dim(V ⊥) = 1, the only
orthogonal transformation of (V, F ) is the identity transformation.

Proof. Let (u, v) be a basis of V such that u spans the line V ⊥. There is an
invertible f ∈ K such that

∀ ξ, ζ, ξ′, ζ ′ ∈ K, F (ξu + ζv, ξ′u + ζ ′v) = f ζζ ′. (8.3)

Therefore, V0 = V ⊥. Let a be an element of B0(V, F ):

a = κ + λu2 + λ′v2 + μuv + μ′vu + κ′u2v2 with κ, κ′, λ, λ′, μ, μ′ ∈ K,

τ(a) = (κ + fλ′) + (λ + fκ′)u2 + λ′v2 + μ′uv + μvu + κ′u2v2.

We have τ(a) = a if and only if κ′ = λ′ = 0 and μ = μ′. If a is invertible, then
κ �= 0 because κ = Scal(a). If the twisted inner automorphism determined
by a induces an orthogonal transformation Ga of (V, F ), then Ga(u) = u and
G(v) = v + γu for some γ ∈ K. Consequently,

(v + γu) (κ + λu2 + μ(uv + vu)) = (κ + λu2 + μ(uv + vu)) v.
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A direct calculation (using u3 = uvu = vuv = 0, v3 = fv, vu2 = u2v and
v2u = uv2 + fu) deduces from this equality that

(γκ + fμ)u = γμu2v, whence γκ + fμ = γμ = 0.

Since κ and f are invertible, we have γ = μ = 0 and Ga = 1V .
A similar but longer argument can prove this stronger assertion: if g is

an element of Aut(V, F ) other than 1V , there is no a ∈ B(V, F ) such that
g(u) a = au, g(v) a = av and Scal(a) �= 0. �

When char(K) �= 2, the bilinear form F defined by (8.3) gives a quite
different orthogonal group: if we set a = f − 2(v + θu)2 for some θ ∈ K,
then τ(a) = −a, a is invertible because a2 = f2, and a commutes with
v + θu; consequently, Ga(v + θu) = −v − θu; and since Ga(u) = u, we have
Ga(v) = −v−2θu. The group O(V, F ) contains all transformations such that
u �−→ u and v �−→ ±(v + γu) for some γ ∈ K.

8.3. The Generators of Lip(V, F )
For a first approach, it is sensible to define the monoid Lip(V, F ) by means
of a family of generators. These generators must be eigenvectors of τ , they
must satisfy (8.2), and there must be enough generators to give a surjective
homomorphism GLip(V, F ) → O(V, F ).

In a Clifford algebra Cl(V,Q), the Lipschitz monoid Lip(V,Q) is gener-
ated by the scalars, the vectors, and the elements 1 + uv where u and v span
a totally isotropic plane P in V ; since the subalgebra Cl(P,Q) is isomorphic
to

∧
(P ), we can write 1 + uv = exp(uv). Similarly, for the Lipschitz monoid

Lip(V, F ) in B(V, F ), we will also obtain a satisfying result with the following
three types of generators:

the scalars (the elements of K),
the elements a ∈ B0(V, F ) such that dim(Sup(a)) = 1 and τ(a) = −a,
the elements exp(η) such that Sup(η) is a totally isotropic plane P in

V , η ∈ B2(P, F ) and τ(η) = η. See Sect. 2.4 for the definition of exp.
For a precise description of the generators of the second and third types,

we must distinguish two cases, according to the characteristic of K.
Let us first assume that char(K) �= 2. If u is a non-zero vector in V , an

easy calculation shows that the elements a ∈ B0(V, F ) such that Sup(a) =
Ku and τ(a) = −a are the non-zero elements colinear to F (u, u) − 2u2.
If we choose a = F (u, u) − 2u2, then ρ(a) = a, a ρ(a) = a2 = F (u, u)2,
au = ua = −F (u, u)u, and for all v ∈ V ,

av ρ(a) = (va − τ(a) v) a − va2 = (v �F a) a − va2

= −2F (v, u)ua − va2 = F (u, u) (2F (v, u)u − F (u, u) v).

Thus the property (8.2) holds true. If this generator a is invertible, in other
words, if F (u, u) �= 0, the orthogonal transformation Ga is the reflection with
respect to the hyperplane orthogonal to u; indeed, for all v ∈ V ,

Ga(v) = −ava−1 = v − 2F (v, u)
F (u, u)

u. (8.4)
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Each generator of the third type is associated with a totally isotropic
plane P . If η ∈ B2(P, F ) and τ(η) = η, then there is a basis (u, u′) of P such
that η = uu′ − u′u. If we set a = exp(η), then we have

a = exp(uu′ − u′u) = (1 + uu′) (1 − u′u) = 1 + uu′ − u′u + u2u′2.

Since ρ(η) = u′u − uu′ = −η, we have ρ(a) = exp(−η) = a−1. For all v ∈ V ,

av ρ(a) = −(va − τ(a) v) ρ(a) + va ρ(a) = −(v �F a) ρ(a) + va ρ(a)

= −(v �F η) a ρ(a) + va ρ(a) (see Lemma 5.7)

= −v �F η + v since a ρ(a) = 1.

Thus (8.2) holds true. The associated orthogonal transformation Ga maps
every v ∈ V to v − v �F η = v − F (v, u)u′ + F (v, u′)u.

Section 9 shall prove that we have got enough generators. When F �= 0,
it shall also prove that every generator of the third type is a product of 4
generators of the second type and a scalar.

Now let us assume that char(K) = 2. If u is a non-zero vector in V , the
elements a ∈ B0(V, F ) such that Sup(a) = Ku are the elements a = κ + λu2

with κ, λ ∈ K and λ �= 0. Therefore, ρ(a) = a. Since τ(a) = a + λF (u, u),
the condition τ(a) = −a (now equivalent to τ(a) = a) means F (u, u) = 0.
In other words, u must belong to the subspace V0 of all v ∈ V such that
F (v, v) = 0. If F (u, u) = 0, then a ρ(a) = a2 = κ2, and for all v ∈ V ,

av ρ(a) = (va − τ(a)v) a + va2 = (v�F a) a + κ2v

= λF (v, u)ua + κ2v = κ (λF (v, u)u + κv).

Once again, (8.2) holds true. All invertible generators of the second type are
colinear to 1 + λu2 for some non-zero u ∈ V0 and some non-zero λ ∈ K.
We can write 1 + λu2 = exp(λu2). Here is the orthogonal transformation
determined by a = 1 + λu2:

Ga(v) = ava−1 = v + λF (v, u)u. (8.5)

This transformation is called the transvection determined by (u, λ).
To study the generators of the third type, we consider a totally isotropic

plane P in V , and an element η ∈ B2(P, F ) such that τ(η) = η. If (u, u′) is a
basis of P , there are κ, λ, μ ∈ K such that

η = κu2 + λu′2 + μ(uu′ + u′u)

= (κ + μ)u2 + (λ + μ)u′2 + μ (u + u′)2.

In the commutative subalgebra B0(P, F ) (isomorphic to B0(P, 0)), we have

exp(η) = exp((κ+μ)u2) exp((λ+μ)u′2) exp(μ(u+u′)2);

consequently, exp(η) is the product of three generators of the second type.
The generators of the third type are superfluous when char(K) = 2.

Sections 10 and 11 shall prove that we have got enough generators.
Although the list of Lipschitzian generators did not mention the charac-

teristic of K, the result of this list is quite different according as char(K) �= 2
or char(K) = 2. But in all cases, all generators satisfy (8.2); consequently, all
Lipschitzian elements satisfy (8.2), and all invertible Lipschitzian elements
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determine an orthogonal transformation of (V, F ). Because of Theorem 8.1,
the equality Ga = 1V is equivalent to Sup(a) ⊂ V ⊥.

Theorem 8.3. Every Lipschitzian element satisfies (8.2), and every invertible
Lipschitzian element a determines an orthogonal transformation Ga: v �−→
av τ(a)−1. The mapping a �−→ Ga is a homomorphism from the Lipschitz
group GLip(V, F ) into the orthogonal group O(V, F ). Its kernel is the subgroup
of all a ∈ GLip(V, F ) such that Sup(a) ⊂ V ⊥. When F is non-degenerate,
this kernel contains only scalars.

It remains to prove that the homomorphism GLip(V, F ) → O(V, F ) is
surjective, and that O(V, F ) = Aut(V, F ) when F is non-degenerate.

8.4. About the Center of B0(V, F ) when F is Non-degenerate

I imagine that a contradictor might reproach me with having imprudently
required that all Lipschitzian elements be eigenvectors of τ . What would
happen if we accepted all invertible a ∈ B0(V, F ) such that ava−1 ∈ V for all
v ∈ V ? Let us suppose that F is non-degenerate, and let us search for such
elements a in the center of B0(V, F ). From Sect. 3.3, we know that such an
element a can be written

a = λ0ε0 + λ1ε1 + · · · + λnεn with invertible λ0, λ1, . . . , λn ∈ K.

If a determines an orthogonal transformation, it is in the center of O(V, F ),
and in most cases, this implies that it is ±1V . Therefore, it is sensible to
restrict the research by imposing the condition av = va or av = −va for all
v ∈ V . The equalities (3.2) show that the first condition means λp = λn−p+1

for p = 1, 2, . . . , n, and that the second condition means λp = −λn−p+1.
These conditions are not drastic enough to prevent the irruption of a lot of
unpleasant elements a in the resulting group. The idempotents εp have been
calculated in Sect. 3.3, and they look rather daunting; if plenty of invertible
combinations of these idempotents were accepted in the resulting group, this
group would become terrifying.

The calculation of the idempotents εp shows that,

for p = 0, 1, . . . , n, τ(εp) = εn−p. (8.6)

It is easy to find all invertible elements a in the center of B0(V, F ) such that
τ(a) = ±a and av = va or av = −va for all v ∈ V . If char(K) = 2, such an
element is a scalar. But if char(K) �= 2, such an element may be either in K,
or in the line spanned by the element

c =
n∑

p=0

(−1)pεp such that c2 = 1, τ(c) = (−1)nc and cv = (−1)n+1vc.

These properties of c imply that Gc = −1V . The bases (e1, . . . , en) and
(e′

1, . . . , e
′
n) used in Sect. 3.3 allow us to calculate c:

c =
n∏

i=1

(1 − 2 eie
′
i). (8.7)
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Indeed, the operation of 1−2eie
′
i on the even component

∧
(V )×0 multiplies

(e∧
P , 0) by −1 or +1 according as i ∈ P or i /∈ P , in agreement with the fact

that Θc multiplies it by (−1)p if p is the cardinality of P . When the basis
(e1, . . . , en) is orthogonal and e′

i = ei/F (ei, ei) for i = 1, . . . , p, the equality
(8.7) proves that c is Lipschitzian.

8.5. The Special Lipschitz Group

The algebra homomorphism Scal : B(V, F ) → K (which maps V to 0)
arouses an important discrepancy between meson algebras and Clifford al-
gebras. When a is Lipschitzian, (8.2) shows that a ρ(a) = Scal(a)2 because
Scal(ρ(a)) = Scal(a). Consequently, the invertible Lipschitzian elements are
the elements a ∈ Lip(V, F ) such that Scal(a) �= 0. The mapping a �−→ Scal(a)
is a surjective homomorphism from the group GLip(V, F ) onto the group of
invertible scalars, and it would be clumsy to emphasize the homomorphism
a �−→ a ρ(a) because this homomorphism is the only available homomorphism
when we deal with Lipschitz groups in Clifford algebras.

If an orthogonal transformation is equal to Ga for some Lipschitzian
element a, it is also equal to Gb if b = a/Scal(a), and b is a Lipschitzian
element such that Scal(b) = 1. Therefore, it may be advantageous to re-
place the homomorphism GLip(V, F ) → O(V, F ) with the homomorphism
SLip(V, F ) → O(V, F ) where SLip(V, F ) (the special Lipschitz group) is the
group of all b ∈ Lip(V, F ) such that Scal(b) = 1. The latter homomorphism
has the same image in O(V, F ) as the former, but its kernel is smaller. When
F is non-degenerate, the latter is injective.

However advantageous the special group SLip(V, F ) may be, it may not
challenge the leading role of the monoid Lip(V, F ) because of the wonderful
properties of Lip(V, F ), for instance, the two properties that shall now be
disclosed.

8.6. Two Wonderful Properties of Lipschitz Monoids

Sections 9, 10 and 11 have two purposes: firstly, they prove the statements
that have not yet been proved in Sect. 8; secondly, they prove two wonder-
ful properties of Lipschitz monoids. These two properties are valid for the
monoids, not for the groups, and they are faithful imitations of two proper-
ties of Lipschitz monoids in Clifford algebras. When I discovered these two
properties in Clifford algebras, I realized that Lipschitz monoids had to play
a leading role in the study of Clifford algebras, and I devoted much time and
energy to the research for other wonderful properties.

The first wonderful property is the invariance under deformation. Let
B(V, F ;β) be the deformation of B(V, F ) by a bilinear form β on V (see
Sect. 7); since B(V, F ;β) is naturally isomorphic to a meson algebra B(V, F ′),
the definition of the Lipschitz monoid Lip(V, F ;β) is obvious, and the invari-
ance theorem states that Lip(V, F ) and Lip(V, F ;β) are equal as subsets of
the space B(V, F ).

As it happens for Clifford algebras, the invariance theorem has two
important corollaries. Firstly, let U be a subspace of V ; since B(U,F ) (the
subalgebra of B(V, F ) generated by U and 1) is isomorphic to the meson
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algebra of the restriction of F to U , the definition of Lip(U,F ) is obvious.
For every subspace U , we have

Lip(U,F ) = Lip(V, F ) ∩ B(U,F ). (8.8)

Secondly, every field extension K → K ′ allows us to define a K ′-extension
K ′⊗(V, F ) of (V, F ), the algebra B(V, F ) can be identified with a K-subalgebra
of the K ′-algebra B(K ′⊗(V, F )), and we have

Lip(V, F ) = Lip(K ′⊗(V, F )) ∩ B(V, F ). (8.9)

The proof of (8.8) and (8.9) is the same for meson algebras as for Clifford
algebras: a good knowledge of the neutral monoid Lip(V, 0) settles the neu-
tral case F = 0, and a deformation reduces the general case to the neu-
tral case. With (8.8), we can precisely describe the kernel of the homomor-
phism GLip(V, F ) → O(V, F ) when F is degenerate: it is the neutral group
GLip(V ⊥, F ).

The second wonderful property involves the space (V ⊕, F⊕) already
defined in Sect. 6.3. An algebra homomorphism z �−→ Lz (defined in Sect. 7)
turns the space B(V, F ) into a module over the algebra B(V ⊕, F⊕), and it is
remarkable that Lc(a) belongs to Lip(V, F ) for all c ∈ Lip(V ⊕, F⊕) and all
a ∈ Lip(V, F ). In this way, the group GLip(V ⊕, F⊕) acts in a transitive way
on the set of all non-zero elements of Lip(V, F ).

9. Lipschitz Monoids when char(K) �= 2

The Lipschitz monoid Lip(V, F ) is generated by the scalars, the elements
F (u, u)−2u2 (where u ∈ V ) and the elements (1+uu′)(1−u′u) where u and
u′ span a totally isotropic plane in V . The special group SLip(V, F ) (defined
in Sect. 8.5) is generated by all 1 − 2u2/F (u, u) such that F (u, u) �= 0, and
by all (1 + uu′)(1 − u′u) such that Ku + Ku′ is a totally isotropic plane.
Thus Lip(V, P ) is generated by SLip(V, F ), all scalars and all u2 such that
F (u, u) = 0.

9.1. The Homomorphism GLip(V, F ) → O(V, F )
When F is non-degenerate, it is well known that the group Aut(V, F ) is
generated by the reflections (see [1], Chapter III, Section 10). Because of
(8.4), this implies the equality O(V, F ) = Aut(V, F ), which was considered
as indispensable (in Sect. 8.2) for the relevance of the wanted theory.

When F is degenerate, we must prove that the image of GLip(V, F ) in
Aut(V, F ) is O(V, F ). This is trivial when F = 0 because O(V, 0) = {1V }.
When F �= 0, it suffices to prove that every orthogonal transformation of
(V, F ) is a product of reflections. To prove it, we consider the following exact
sequence of groups where V1 is any subspace complementary to V ⊥ in V :

{0} → Hom(V1, V
⊥) → Aut(V, F ) → Aut(V1, F ) × GL(V ⊥) → {1}. (9.1)

Hom(V1, V
⊥) is the additive group of all linear mappings f : V1 → V ⊥,

and the image of f in Aut(V, F ) maps every v1 ∈ V1 to v1 + f(v1), and
every v0 ∈ V ⊥ to v0. The third arrow in (9.1) maps every g ∈ Aut(V, F ) to
the pair (g1, g0) where g1(v1) is the parallel projection of g(v1) in V1 with
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respect to V ⊥, and g0 is the restriction of g to V ⊥. This third arrow is
surjective because of the homomorphism Aut(V1, F )×GL(V ⊥) → Aut(V, F )
which maps every (g1, g0) to the transformation v1+v0 �−→ g1(v1) + g0(v0).
If g is an orthogonal transformation of (V, F ), Theorem 8.1 shows that the
image of g in GL(V ⊥) is the identity mapping. Therefore, we consider an
element g of Aut(V, F ) that has a trivial image in GL(V ⊥), and we prove
that g is a product of reflections. Since F is non-degenerate on V1, this is true
when g is the image of an element of Aut(V1, F ). To complete the proof, it
suffices to prove that the same is true when g is the image of an element f of
Hom(V1, V

⊥). It suffices to consider a linear mapping f of rank 1; then there
is (u1, u0) ∈ V1×V ⊥ such that f(v1) = F (v1, u1)u0 for all v1 ∈ V1. Since
V1 is spanned by the non-isotropic vectors, we may require F (u1, u1) �= 0.
A direct calculation shows that the automorphism of (V, F ) determined by
f is the product of the reflections determined by the two vectors u1 and
u1 − F (u1, u1)u0/2 :

v �−→ v − 2F (v, u1)
F (u1, u1)

(
u1 − F (u1, u1)

2
u0

)
�−→ v + F (v, u1)u0.

Theorem 9.1. When char(K) �= 2, the orthogonal group O(V, F ) is the sub-
group of all g ∈ Aut(V, F ) such that g(v) = v for all v ∈ V ⊥. It is generated
by the reflections, and it is equal to Aut(V, F ) when F is non-degenerate. The
homomorphism GLip(V, F ) → O(V, F ) is always surjective.

9.2. Jacobson’s Homomorphism and the Wonderful Properties

Jacobson’s homomorphism Δ (see Sect. 2.1) brings a theorem that involves
the Lipschitz monoid Lip(V, F ) in B(V, F ) and the Lipschitz monoid Lip(V, F̄ )
in Cl(V, F̄ ). For every u ∈ V , a direct calculation gives

Δ(F (u, u) − 2u2) = −u ⊗ u (9.2)

If u and u′ span a totally isotropic plane in V , another calculation gives

Δ ((1 + uu′)(1 − u′u)) =
(

1 +
1
2
uu′

)
⊗ (

1 +
1
2
uu′) (9.3)

because the relations u2 = u′2 = 0 and u′u = −uu′ are true in Cl(V, F̄ ). Recall
that the scalars, the vectors u and the elements 1 + uu′/2 (with Ku ⊕ Ku′

totally isotropic) are the generators of Lip(V, F̄ ). The resulting theorem will
turn the study of Lip(V, F ) much easier.

Theorem 9.2. An element a ∈ B0(V, F ) is Lipschitzian if and only if there
is a Lipschitzian b ∈ Lip(V, F̄ ) such that Δ(a) = κ b ⊗ b for some κ ∈ K.
Moreover, for every b ∈ Lip(V, F̄ ), there is a ∈ Lip(V, F ) such that Δ(a)
= κ b ⊗ b for some κ ∈ K.

Theorem 9.2 affords an easy proof of the following lemma.

Lemma 9.3. If F �= 0, every generator (1+uu′)(1−u′u) of the third type is
the product of 4 generators of the second type and a scalar.
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Proof. The same statement is valid for a generator of the third type in every
Clifford algebra Cl(V,Q) where Q �= 0, provided that the field K contains
more than two elements. A generator of the third type in Lip(V,Q) is equal
to 1 + uu′ with two vectors u and u′ that span a totally isotropic plane
in V . Let w be a vector such that Q(w) �= 0, and let A be the bilinear
form associated with Q (see Sect. 1.1). First we reduce the problem of the
factorization of 1+uu′ to the case A(w, u) = 0: for this purpose, if A(w, u) �= 0
and A(w, u′) = 0, we replace (u, u′) with (u′,−u); and if A(w, u)A(w, u′) �=
0, we replace (u, u′) with (u − κu′, u′) where κ = A(w, u)/A(w, u′). When
A(w, u) = 0, the equality

(w+λu−μu′)w (w−λu)(w−μu′) = λ
(
λ−A(w, u′)

)
μ2 (1 + uu′)

holds whenever λμ = Q(w). It brings a factorization of 1+uu′ into a product
of 4 vectors if we choose λ different from 0 and A(w, u′), and μ = Q(w)/λ.
This procedure fails if A(w, u′) �= 0 and K ∼= Z/2Z, and sometimes no such
factorization exists. But since here we assume char(K) �= 2, this failure never
occurs in the present context. �

Lemma 9.3 shows that the generators of the third type are indispensable
only when F = 0. If a contradictor retorts that neither are they indispensable
when F = 0 because O(V, 0) = {1V }, I shall explain that the purposes of the
Lipschitz monoid Lip(V, F ) are not limited to the construction of a surjective
homomorphism GLip(V, F ) → O(V, F ). The wonderful properties mentioned
in Sect. 8.6 are also included in the main purposes. These properties require
the presence of all the generators mentioned in Sect. 8.3 (even the generators
u2 where F (u, u) = 0). Besides, the neutral monoid Lip(V, 0) often plays a
capital role (see Sect. 9.3) despite the ludicrous triviality of the group O(V, 0).

Theorem 9.2 enables us to prove that the wonderful properties are true
for Lip(V, F ) because they are true for Lip(V, F̄ ).

Theorem 9.4. In case of a deformation of B(V, F ) by a bilinear form β,
Lip(V, F ) and Lip(V,B;β) are equal as subsets of the space B(V, F ).

Proof. Theorem 7.10 states that Δ is also a homomorphism from B(V, F ;β)
into Cl(V, F̄ ; 2β)⊗Cl(V, F̄ ; 2β). An element a ∈ B(V, F ) is in Lip(V, F ) (resp.
Lip(V, F ;β)) if and only if there is b in Lip(V, F̄ ) (resp. Lip(V, F̄ ; 2β)) such
that Δ(a) = κ b ⊗ b for some κ ∈ K. The conclusion follows from the fact
that Lip(V, F̄ ) and Lip(V, F̄ ; 2β) are equal as subsets of Cl(V, F̄ ). �

Theorem 9.5. Let the algebra B(V ⊕, F⊕) act on the space B(V, F ) by the
homomorphism z �−→ Lz defined in Sect. 7. We have Lc(a) ∈ Lip(V, F ) for
all c ∈ Lip(V ⊕, F⊕) and all a ∈ Lip(V, F ), and the group GLip(V ⊕, F⊕) acts
transitively on the set of all non-zero elements of Lip(V, F ).

Proof. Let us recall that L
+u(x) = ��x + ux for all x ∈ B(V, F ), all u ∈ V
and all � ∈ V ∗; this formula describes the operation of an element �+u ∈ V ⊕

on the space B(V, F ). On another side, the quadratic form F̄ on V gives a
quadratic form F̄⊕ on V ⊕, and F̄⊕(�+u) = �(u) + F̄ (u). Consequently,

F⊕(�+u, �+u) = 2 �(u) + F (u, u) = F̄⊕(2�+u). (9.4)
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The Clifford algebra Cl(V ⊕, F̄⊕) acts on the space Cl(V, F̄ ) through an al-
gebra isomorphism z �−→ Lz from Cl(V ⊕, Q⊕) onto End(Cl(V,Q)), and we
have L
+u(x) = ��x + ux for all x ∈ Cl(V,Q). Therefore, the algebra

Cl(V ⊕, F̄⊕) ⊗ Cl(V ⊕, F̄⊕) acts on Cl(V, F̄ ) ⊗ Cl(V, F̄ ),

and the operation of y⊗z (with y, z ∈ Cl(V ⊕, F̄⊕)) is Ly⊗z = Ly⊗Lz.
Now let us introduce Jacobson’s homomorphism. Lemma 5.4 (together with
Δ(u) = (u⊗1 + 1⊗u)/2) shows that, for all x ∈ B(V, F ),

Δ
(
L
+u(x)) =

1
2

L(2
+u)⊗1 + 1⊗(2
+u)

(
Δ(x)

)
. (9.5)

Both (9.4) and (9.5) show that the element �+u of (V ⊕, F⊕) must be as-
sociated with the element 2�+u of (V ⊕, F̄⊕). Let us consider a generator
F⊕(�+u, �+u) − 2(�+u)2 of Lip(V ⊕, F⊕). We have

Δ
(
LF ⊕(
+u,
+u)−2(
+u)2(x)

)
= −L(2
+u)⊗(2
+u)

(
Δ(x)

)
(9.6)

for all x ∈ B(V, F ). Indeed, (9.5) proves the existence of an element Z ∈
Cl(V ⊕, F̄⊕)⊗Cl(V ⊕, F̄⊕) such that the left hand side of (9.6) is equal to
LZ(Δ(x)), and because of (9.4) and (9.5), we have

Z = F̄⊕(2�+u)⊗1 − 1
2
(
(2�+u)⊗1 + 1⊗(2�+u)

)2

= −(2�+u) ⊗ (2�+u) because (2�+u)2 = F̄⊕(2�+u).

This proves (9.6). Since Lip(V ⊕, F⊕) is generated by the scalars and all
elements F⊕(�+u, �+u) − 2(�+u)2, it follows from (9.6) that, for every c ∈
Lip(V ⊕, F⊕), there is some d ∈ Lip(V ⊕, F̄⊕) such that

Δ(Lc(x)) = λLd⊗d(Δ(x)) for some λ ∈ K. (9.7)

For every a ∈ Lip(V, F ), we can write Δ(a) = κb⊗b for some b ∈ Lip(V, F̄ )
and some κ ∈ K; consequently,

Δ(Lc(a)) = κλ Ld(b) ⊗ Ld(b). (9.8)

Since Ld(b) is Lipschitzian in Cl(V, F̄ ) (see [5], Section 11.5), Theorem 9.2
proves that Lc(a) is Lipschitzian in B(V, F ). If a �= 0, then b �= 0, and there
is an invertible d in Lip(V ⊕, F̄⊕) such that Ld(b) = 1 (again [5]). Because of
(9.6), there is c ∈ GLip(V ⊕, F⊕) such that (9.7) is true. Therefore, (9.8) is
true, and since κλ is in the group GLip(V ⊕, F⊕), there is an element of this
group that carries a to 1. Therefore, this group acts transitively in the set of
all non-zero elements of Lip(V, F ). �

9.3. The Neutral Monoid Lip(V, 0)
The following argument is based on calculations in the commutative alge-
bra B0(V, 0) which can be justified either by a systematic and clever use
of the relations uvu = 0 and uvw = −wvu (see (2.1)), or by the isomor-
phism B0(V, 0) → ⊕

k

∧k(V )⊗∧k(V ) (see Sect. 2.4). A non-zero element
a ∈ Lip(V, 0) is the product of a scalar κ, of some squares of vectors u2

1, . . . ,
u2

k and of some exponential exp(θ) with θ ∈ B2(V, 0) and τ(θ) = θ:

a = κu2
1 u2

2 · · · u2
k exp(θ).
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Of course, κ �= 0, and the sequence (u1, u2, . . . , uk) is linearly independent,
so that a �= 0. Moreover, a is invertible if and only if k = 0 (in which
case u2

1u
2
2 · · · u2

k means 1). Let V ′ be a subspace of V complementary to the
subspace spanned by (u1, u2, . . . , uk); for every z ∈ B0(V, 0), there is a unique
z′ ∈ B0(V ′, 0) such that u2

1 · · · u2
k z = u2

1 · · · u2
k z′, and z′ is the image of z by

the homomorphism B(V, 0) → B(V ′, 0) that extends the projector V → V ′.
Therefore, we may require that θ belongs to B2(V ′, 0). Since τ(θ) = θ, the
image of θ in V ′⊗V ′ is a skew symmetric tensor, and there is a linearly
independent family (v1, v2, . . . , v2r) of vectors of V ′ such that

θ = (v1v2 − v2v1) + (v3v4 − v4v3) + · · · + (v2r−1v2r − v2rv2r−1).

Finally, there is a linearly independent sequence (u1, . . . , uk, v1, . . . , v2r) such
that k � 0, r � 0 and

a = κu2
1 · · · u2

k (1 + v1v2)(1 − v2v1) · · · (1 + v2r−1v2r)(1 − v2rv2r−1). (9.9)

This sequence (u1, . . . , v2r) spans the support of a, which has dimension s
= k+2r, and we have τ(a) = a if s is even, but τ(a) = −a if s is odd. More-
over, a has a non-zero component in B2s(V, 0), which is the (commutative)
product of κ, all squares u2

1, . . .u2
k, and all squares v2

1 , . . . v2
2r. It is also worth

noticing that the subspace spanned by (u1, . . . , uk) is the subspace Ker(a) of
all u ∈ V such that ua = 0.

As it happens with Clifford algebras, all this information allows us easily
to prove that the properties (8.8) and (8.9) are true when F = 0. But when
F �= 0, a deformation B(V, F ;−β) such that F = β + βo allows us to prove
that (8.8) and (8.9) are also true for B(V, F ) because B(V, F ;−β) ∼= B(V, 0)
and Lip(V, F ) = Lip(V, F ;−β) (recall Theorem 9.4).

In the description (9.9) of a, there are yet other properties that are
invariant under deformation. Although the algebra B(V, F ) is not Z-graded
if F �= 0, its filtration (recalled in Sect. 2.3) allows us to define a component of
highest degree for every non-zero x ∈ B(V, F ). If x belongs to B�k(V, F ) but
not to B<k(V, F ), its component of highest degree is the element of Bk(V, 0)
that follows from Lemma 9.6. This lemma is also valid for Sects. 10 and 11
where char(K) = 2.

Lemma 9.6. For k = 0, 1, . . . , 2n, there is a linear mapping B�k(V, F ) →
Bk(V, 0) that maps every product v1v2 · · · vk in B(V, F ) to the neutral product
v1v2 · · · vk in Bk(V, 0), and that maps B<k(V, F ) to 0.

Proof. The filtration of B(V, F ) leads to a Z-graded algebra Gr(B(V, F ))
where the component Grk(B(V, F ) of degree k (for each k ∈ Z) is the quotient
B�k(V, F )/B<k(V, F ). If x and y are in B�j(V, F ) and B�k(V, F ), the product
of their images x′ and y′ in Grj(B(V, F )) and Grk(B(V, F )) is the image of
xy in Grj+k(B(V, F )). If u and v are in V , the relation uvu = F (u, v)u gives
the relation u′v′u′ = 0 for their images u′ and v′ in Gr1(B(V, F )). Therefore,
the mapping v �−→ v′ extends to an algebra homomorphism from B(V, 0) into
Gr(B(V, F )). It is a Z-graded and surjective homomorphism. Since the two
algebras have the same dimension, it is bijective. The mappings described in
Lemma 9.6 follow from the inverse bijections Grk(B(V, F )) → Bk(V, 0). �
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In meson algebras, as in Clifford algebras, the support of an element
and its component of highest degree are invariant by deformation. Thus we
obtain the next theorem, which is a consequence of (9.9) like (8.8) and (8.9).
Theorem 9.4 allows us to deduce all these properties from (9.9), and this
procedure explains the capital importance of the neutral monoid Lip(V, 0)
despite the ludicrous triviality of the orthogonal group O(V, 0).

Theorem 9.7. Let a be a non-zero element of Lip(V, F ) and let s be the integer
such that a belongs to B�2s(V, F ) but not to B<2s(V, F ).

(a) We have dim(Sup(a)) = s.
(b) If a† is the image of a in B2s(V, 0), then Sup(a) = Sup(a†).
(c) We have τ(a) = a or τ(a) = −a according as s is even or odd.

10. When char(K) = 2 and F is Alternating

When char(K) = 2 and F is alternating, the monoid Lip(V, F ) is generated
by all κ + λu2 with κ, λ ∈ K and u ∈ V . The group SLip(V, F ) (defined
in Sect. 8.5) is generated by all 1 + λu2. Thus Lip(V, F ) is generated by
SLip(V, F ), all scalars κ and all squares u2.

10.1. The Homomorphism GLip(V, F ) → O(V, F )

When F is alternating and non-degenerate, the group Aut(V, F ), which is
now a symplectic group, is generated by the transvections (see [1], Chapter
II, Section 6). Each transvection v �−→ v + λF (v, u)u is determined by a
pair (u, λ) ∈ V ×K; it is equal to G1+λu2 (see (8.5)). Thus the indispensable
equality Aut(V, F ) = O(V, F ) is ensured.

When F is degenerate, we must prove the surjectivity of the homomor-
phism GLip(V, F ) → O(V, F ). We may suppose F �= 0 because O(V, 0) =
{1V }. As in Sect. 9.1, we choose a subspace V1 complementary to V ⊥, the
exact sequence (9.1) is still valid, and as it happened in Sect. 9.1, the ar-
gument ends with the proof of this fact: if an element g ∈ Aut(V, F ) is the
image of an element f ∈ Hom(V1, V

⊥), then g is a product of transvections.
It suffices to consider a linear mapping f of rank 1, determined by some
(u1, u0) ∈ V1×V ⊥: f(v1) = F (v1, u1)u0 for all v1 ∈ V1. A direct calculation
shows that g is now the product of the transvections determined by 1 + u2

1

and 1 + (u1+u0)2:

v �−→ v + F (v, u1)(u1+u0) �−→ v + F (v, u1)u0.

Theorem 10.1. When char(K) = 2 and F is alternating, the group O(V, F )
is the subgroup of all g ∈ Aut(V, F ) such that g(v) = v for all v ∈ V ⊥.
It is generated by the transvections, and it is equal to Aut(V, F ) when F is
non-degenerate. The homomorphism GLip(V, F ) → O(V, F ) is surjective.
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10.2. Preliminary Calculations

Since we can no longer use Jacobson’s homomorphism to prove the wonderful
properties of Lip(V, F ), we shall imitate a method that has been successful
for Lipschitz monoids in Clifford algebras. This imitation will give a more
complicated argument, but the starting point is the same: we start with the
neutral case F = 0, and we let the algebra B(V ⊕, 0⊕) act on the space B(V, 0).
The bilinear form 0⊕ on V ⊕ = V ∗ ⊕ V is alternating: 0⊕(�+u, �′+u′) =
�(u′)+ �′(u). The operation of an element �+u ∈ V ⊕ on B(V, 0) is described
by the formula L
+u(x) = ��x + ux (for all x ∈ B(V, 0)).

Let a be a non-zero element of Lip(V, 0):

a = κu2
1 u2

2 · · · u2
k exp(θ). (10.1)

As in Sect. 9.3, κ is a scalar, the vectors u1, . . . , uk are linearly independent,
the product u2

1u
2
2 · · · u2

k means 1 if k = 0, and θ is an element of B2(V, 0) such
that τ(θ) = θ. The subspace spanned by (u1, . . . , uk) is the subspace Ker(a)
of all u ∈ V such that ua = 0. If V ′ is any subspace complementary to Ker(a),
we may require that θ belongs to B2(V ′, 0). Since char(K) = 2, the equality
τ(θ) = θ means that the image of θ in V ′⊗V ′ is a symmetric tensor which
determines a symmetric bilinear form on the dual space V ′∗. If this bilinear
form is alternating, there is a linearly independent family (v1, . . . , v2r) in V ′

such that

θ = (v1v2 + v2v1) + (v3v4 + v4v3) + · · · + (v2r−1v2r + v2rv2r−1);

as in Sect. 9.3, this implies that the dimension of Sup(a) is s = k+2r, and
that a has a non-zero component in B2s(V, 0). But if this bilinear form on
V ′∗ is not alternating, it admits orthogonal bases in V ′∗, and from each such
basis we can derive a linearly independent family (v1, . . . , vr) in V ′, and a
sequence (κ1, . . . , κr) of non-zero scalars, such that

θ = κ1v
2
1 + κ2v

2
2 + · · · + κrv

2
r ;

now the dimension of Sup(a) is s = k+r, and it is still true that a has a
non-zero component in B2s(V, 0).

The precise description of the elements of Lip(V, 0) proves that (8.8)
and (8.9) are true when F = 0.

Let us study the operation of a Lipschitzian generator

c = λ + μ(� + w)2 (with λ, μ ∈ K, μ �= 0, � ∈ V ∗ and w ∈ V ) (10.2)

on the above Lipschitzian element a. During the calculation of Lc(a), we
must recall that all squares u2

1, . . . , u
2
k are in the center of the algebra B(V, 0)

because of Lemma 4.4; and θ and exp(θ) are also in the center because τ(θ) =
θ. Because of Lemma 5.7, we have

� � exp(θ) = (��θ) exp(θ) = exp(θ) (��θ).
Now we must distinguish two cases.

First case: Ker(a) ⊂ ker(�).
When k = 0, or when �(ui) = 0 for i = 1, 2, . . . , k, the calculation of Lc(a) is
rather easy, and brings the vector w + ��θ ∈ V :

Lc(a) = a
(
λ + μ �(w + ��θ) + μ (w + ��θ)2). (10.3)
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Obviously, Lc(a) is Lipschitzian too.
Second case: � does not vanish everywhere on Ker(a).

In the subalgebra B(Ker(a), 0), the component of highest degree 2k has di-
mension 1. If (u′

1, . . . , u
′
k) is another basis of Ker(a), the product u′2

1 · · · u′2
k is

colinear to u2
1 · · · u2

k. Thus we can reduce the problem to the case

�(u1) = 1 but �(u2) = · · · = �(uk) = 0. (10.4)

We continue the calculation under the assumption (10.4), and we set

ã = κu2
2 · · · u2

k exp(θ). (10.5)

A direct calculation gives

L
+w(a) = ã
(
u1 + u2

1 (w+��θ)) ,

L(
+w)2(a) = ã
(
1 + �(w+��θ))u2

1 + u1(w+��θ) + (w+��θ)u1 + u2
1(w+��θ)2).

Since u3
1 = 0, we come to the equality

Lc(a) = μã exp
(

(
λμ−1+�(w+��θ))u2

1 + u1(w+��θ) + (w+��θ)u1

)
(10.6)

under the assumptions (10.1), (10.2), (10.4) and (10.5). Again, we recognize
that Lc(a) is Lipschitzian.

The equalities (10.3) and (10.6) prove that the monoid Lip(V ⊕, 0⊕) acts
on the set Lip(V, 0). They even prove that the group GLip(V ⊕, 0⊕) acts in
a transitive way on the set of all non-zero elements of Lip(V, 0). In other
words, every non-zero a ∈ Lip(V, 0) is mapped to 1 by some element of
GLip(V ⊕, 0⊕). This is obvious if a is invertible, therefore in GLip(V ⊕, 0⊕).
If a is not invertible, the equality (10.6) shows there is c ∈ GLip(V ⊕, 0⊕)
such that the dimension of Ker(Lc(a)) is strictly smaller than the dimen-
sion of Ker(a), and by repeating this process, we shall find an element of
GLip(V ⊕, 0⊕) that maps a to an invertible element of Lip(V, 0).

10.3. The Invariance of Lip(V, F ) under Deformation

The deformation B(V, F ;β) (presented in Sect. 7) is isomorphic to B(V, F ′)
if F ′ = F+β+βo. Since F is alternating, F ′ is alternating too.

Theorem 10.2. In case of a deformation of B(V, F ) by a bilinear form β,
Lip(V, F ) and Lip(V, F ;β) are equal as subsets of B(V, F ).

Proof. The proof shall be achieved in three steps.
First step: we reduce the problem to the case F = 0. Since F is alter-

nating, there is a bilinear form γ such that F = γ+γo. Thus B(V, F ;−γ) is
isomorphic to B(V, 0). Because of Corollary 7.7, B(V, F ) is the deformation
of the neutral algebra B(V, F ;−γ) by means of γ, and B(V, F ;β) is the de-
formation of B(V, F ;−γ) by means of β+γ. If we prove that Theorem 10.2
is true when F = 0, we may claim that Lip(V, F ) = Lip(V, F ;−γ) and
Lip(V, F ;β) = Lip(V, F ;−γ); therefore, Lip(V, F ;β) = Lip(V, F ).

Second step: we prove that Lip(V, 0;β) ⊂ Lip(V, 0) when F = 0. As in
Sect. 7, there is an algebra isomorphism Φ from B(V ⊕, F ′⊕) onto B(V ⊕, 0⊕),
such that Φ(�+v) = �+βv+v, and there is a bijection J : B(V, F ′) →
B(V, 0) such that J(z) = LΦ(z)(1). Since J is the isomorphism B(V, F ′) →



Recent Advances for Meson Algebras... Page 43 of 53    48 

B(V, 0;β) extending 1V , the monoid Lip(V, 0;β) is the set of all J(z) with
z ∈ Lip(V, F ′). Every such element z is in Lip(V ⊕, F ′⊕), and the isomor-
phism Φ maps it into Lip(V ⊕, 0⊕). In Sect. 10.2, it has been proved that
Lc(a) ∈ Lip(V, 0) for all c ∈ Lip(V ⊕, 0⊕) and all a ∈ Lip(V, 0); consequently,
J(z) = LΦ(z)(1) ∈ Lip(V, 0).

Third step: we prove that Lip(V, 0) ⊂ Lip(V, 0;β). As above, F ′ =
β+βo. Since char(K) = 2, the word “symmetric” has the same meaning as
“skew symmetric”. If β is symmetric, then F ′ = 0, and since B(V, 0) is the
deformation of the neutral algebra B(V, 0;β) by means of −β, the result of
the second step gives Lip(V, 0) ⊂ Lip(V, 0;β). Besides, if there is a symmetric
bilinear form γ such that β(v, v) = γ(v, v) for all v ∈ V , then β is symmetric
too:

β(u, v) + β(v, u) = β(u+v, u+v) − β(u, u) − β(v, v)

= γ(u+v, u+v) − γ(u, u) − γ(v, v) = γ(u, v) + γ(v, u) = 0.

Now let us consider the non-zero element a ∈ Lip(V, 0) defined by (10.1).
If the restriction of β to Sup(a) is symmetric, then a ∈ Lip(V, 0;β). In-
deed, a is in Lip(Sup(a), 0) because (8.8) is true when F = 0; and we have
Lip(Sup(a), 0) ⊂ Lip(Sup(a), 0;β) ⊂ Lip(V, 0;β).

If β is not symmetric on Sup(a), we prove by induction on the dimension
s of Sup(a) that this element a ∈ Lip(V, 0) belongs to Lip(V, 0;β). The cases
s � 1 are trivial since v2� = v2 + β(v, v) for all v ∈ V . Therefore, we suppose
s � 2. To prove that a is in Lip(V, 0;β), it suffices to prove that the �-
product of a and some element of GLip(V, 0;β) belongs to Lip(V, 0;β). This
procedure allows us to reduce the problem to the case Ker(a) = 0. Indeed,
let us consider an invertible generator x = λ + μw2� of GLip(V, 0;β) such
that w ∈ Sup(a); we have

x � a = Lλ+μ(βw+w)2(a).

If there is u ∈ Ker(a) such that β(w, u) �= 0, we can apply (10.6), which shows
that the dimension of Ker(x � a) is strictly smaller than dim(Ker(a)), while
Sup(x � a) ⊂ Sup(a). By iteration, we can reach the case Ker(a) = 0 without
increasing the support. If there is no u ∈ Ker(a) such that β(w, u) �= 0 for
some w ∈ Sup(a), the remedy is yet easier because

a = κ exp(θ)u2
1 u2

2 · · · u2
k = κ exp(θ) � u2�

1 � u2�
2 � · · · � u2�

k ;

the induction hypothesis ensures that exp(θ) is in Lip(V, 0;β), and a too.
We continue with the hypothesis Ker(a) = 0, which allows us to use

the easy formula (10.3) instead of (10.6). We know that 2s is the smallest
integer such that a has a non-zero component in B2s(V, 0). Let us search for
an element x = λ + μw2� (with λμ �= 0 and w ∈ Sup(a)) such that x � a
has a null component in B2s(V, 0); if such an element x exists, Sup(x � a) is
strictly smaller than Sup(a) and the induction hypothesis implies that a is
in Lip(V, 0;β). The equality (10.3) shows that

x � a = a
(
λ + μ (β(w,w) + w2�β θ) + μ (w + w�βθ)2

)
.
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Since the subspace B2s(Sup(a), 0) has dimension 1, for all v and v′ in Sup(a),
the component of vv′a in B2s(V, 0) is colinear to the component of a; the
former is the product of the latter by some scalar δ(v, v′), and δ is a bilinear
form on Sup(a). The component of x � a in B2 s(V, F ) vanishes if and only if

λ + μ
(
β(w,w) + w2�β θ

)
+ μ δ

(
w + w�βθ, w + w�βθ

)
= 0.

A suitable factor x exists when the quadratic form w �−→ β(w,w) is not equal
to the quadratic form w �−→ w2�θ+δ(w+w�θ, w+w�θ) on Sup(a). But when
these quadratic forms are equal on Sup(a), the bilinear form β is symmetric
on Sup(a), and we already know that a is in Lip(V, 0;β). Indeed, the equality
τ(θ) = θ implies that the bilinear form (v, v′) �−→ vv′�θ is symmetric. Since τ
leaves invariant every element of B2s(Sup(a), 0), the bilinear form (v, v′) �−→
δ(v, v′) is also symmetric on Sup(a). Thus, if the above quadratic forms are
equal, there is a symmetric bilinear form γ on Sup(a) such that β(w,w) =
γ(w,w) for all w ∈ Sup(a), and this fact implies that β is symmetric on
Sup(a). �

10.4. Consequences of the Invariance Property

The alternating bilinear forms F on V are the bilinear forms such that
F = β+βo for some bilinear form β on V . Therefore, the study of the cor-
responding meson algebras is equivalent to the study of the deformations
B(V, 0;β) of the neutral algebra B(V, 0). It may be advantageous to study
B(V, 0;β) because the invariance property (Theorem 10.2) enables us to de-
duce properties of Lip(V, 0;β) from properties of the easier monoid Lip(V, 0).
This fact explains the great importance of the neutral monoid Lip(V, 0) de-
spite the ludicrous triviality of the group O(V, 0). This argument shows that
the properties (8.8) and (8.9) are true for all the meson algebras which we
deal with in the present section, and the same for the next theorem, which
is a partial repetition of Theorem 9.7.

Theorem 10.3. Let a be a non-zero element of Lip(V, F ), and let s be the
smallest integer such that a belongs to B�2s(V, F ). We have dim(Sup(a)) = s,
and Sup(a) is also the support of the image of a in B2s(V, 0).

Theorem 10.4 is the other wonderful property announced in Sect. 8.6.

Theorem 10.4. Let the algebra B(V ⊕, V ⊕) act on the space B(V, F ) by the
homomorphism z �−→ Lz defined in Sect. 7. We have Lc(a) ∈ Lip(V, F ) for
all c ∈ Lip(V ⊕, F⊕) and all a ∈ Lip(V, F ), and the group GLip(V ⊕, F⊕) acts
transitively on the set of all non-zero elements of Lip(V, F ).

Proof. With the same notation as in Sect. 7, let us consider an algebra
B(V, F ), a deformation B(V, F ;β), and the two algebra isomorphisms

Φ : B(V ⊕, F ′⊕) → B(V ⊕, F⊕) and J : B(V, F ′) → B(V, F ;β).

Because of (7.1) and (7.5), for all x′ ∈ B(V, F ′), v ∈ V and � ∈ V ∗, we have

J(vx′) = v � J(x′) = v J(x′) + βv�J(x′) and J(��x′) = ��J(x′).
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Let the algebra B(V ⊕, F ′⊕) act on B(V, F ′) on the left side, and for each
z′ ∈ B(V ⊕, F ′⊕), let L′

z′ be its operation on B(V, F ′). We have

J(L′

+v(x′)) = L
+βv+v(J(x′)) = LΦ(
+v)(J(x′)).

Consequently, for all z′ ∈ B(V ⊕, F ′,⊕) and all x′ ∈ B(V, F ′), we have

J(L′
z′(x′)) = LΦ(z′)(J(x′)). (10.7)

Now, let us consider these three assertions:
(a) J(Lip(V, F ′)) = Lip(V, F ) (or equivalently, Lip(V, F ;β) = Lip(V, F )).
(b) Lc(a) ∈ Lip(V, F ) for all c ∈ Lip(V ⊕, F⊕) and a ∈ Lip(V, F ), and

GLip(V ⊕, F⊕) acts transitively in the set of all non-zero a ∈ Lip(V, F ).
(c) The same assertion as (b) is true for F ′ instead of F (and subse-

quently, L′, c′ and a′ instead of L, c and a).
The assertions (a) and (b) imply (c) because of (10.7), and because Φ induces
an isomorphism from Lip(V ⊕, F ′⊕) onto Lip(V ⊕, F⊕). As it is explained at
the end of Sect. 10.2, the assertion (b) is true when F = 0; consequently, it
is true for all alternating bilinear forms F on V . �

In the above proof (which never uses the hypothesis char(K) = 2),
it is worth noticing that the assertions (b) and (c) imply (a). Therefore, if
Theorem 10.4 can be proved independently of Theorem 10.2, Theorem 10.2
becomes a consequence of Theorem 10.4. Up to now, I have given the pri-
ority to Theorem 10.2 over Theorem 10.4 because I happened to discover
Theorem 10.2 before Theorem 10.4. But it is not absurd to imagine that an
inversion of priority might be advantageous. I know how to achieve this inver-
sion of priority in the easier study of Lipschitz monoids in Clifford algebras.

11. When char(K) = 2 and F is not Alternating

When char(K) = 2 and F is not alternating, we need the subspace V0 of all
v ∈ V such that F (v, v) = 0 because

Lip(V, F ) = Lip(V0, F ) and SLip(V, F ) = SLip(V0, F ).

The main purpose of Sect. 11 is the following theorem.

Theorem 11.1. When char(K) = 2 and F is not alternating, O(V, F ) is the
subgroup of all g ∈ Aut(V, F ) such that g(v) = v for all v ∈ V ⊥

0 . It is
generated by the transvections, and it is equal to Aut(V, F ) when F is non-
degenerate. The homomorphism GLip(V, F ) → O(V, F ) is surjective.

11.1. The Wonderful Properties of Lip(V, F )
From the equality Lip(V, F ) = Lip(V0, F ), it follows that Lip(V, F ) inherits all
the wonderful properties of Lip(V0, F ) that have been established in Sect. 10:
Theorems 10.2, 10.3 and 10.4 are still true when F is not alternating, and
the properties (8.8) and (8.9) too.

When Theorem 10.2 involves the deformation of B(V, F ) by a bilinear
form β, the subspace V0 is the same for F as for the new symmetric bilin-
ear form F+β+βo, and the equality Lip(V, F ;β) = Lip(V, F ) occurs in the
subalgebra B(V0;F ).
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When Theorem 10.4 involves (V ⊕, F⊕), the largest subspace of V ⊕ on
which F⊕ is alternating is V ∗⊕V0, and there is a canonical “homometry”

(V ∗⊕V0, F⊕) → (V ⊕
0 , F⊕), � + v �−→ �0 + v

where �0 is the restriction of � to V0, and v must remain in V0. It extends to
an algebra homomorphism between the corresponding meson algebras, and
determines a surjective monoid morphism

Lip(V ⊕, F⊕) → Lip(V ⊕
0 , F⊕).

If c is an element of Lip(V ⊕, F⊕), its operation on B(V, F ) leaves the sub-
algebra B(V0, F ) invariant, and the operation of c on B(V0, F ) is also the
operation of the image of c in Lip(V ⊕

0 , F⊕).
Since the wonderful properties are obviously valid, we may forget them

up to the end of Sect. 11, and focus our attention on Theorem 11.1.

11.2. The Decomposition V = V ⊥ ⊕ P1 ⊕ P2 ⊕ P3 ⊕ P4

If U is a subspace of V containing V ⊥, the bilinear mapping U×V → K
determined by F induces a duality between the quotients U/V ⊥ and V/U⊥.
Let us consider U = V0 ∩V ⊥

0 and U⊥ = V0+V ⊥
0 , and let us choose subspaces

P1 and P4 such that

V0 ∩ V ⊥
0 = V ⊥ ⊕ P1 and V = (V0+V ⊥

0 ) ⊕ P4;

now F induces a duality between P1 and P4. Let us also choose subspaces P2

and P3 such that

V0 ∩ P⊥
4 = V ⊥ ⊕ P2 and V ⊥

0 ∩ P⊥
4 = V ⊥ ⊕ P3;

since F induces a duality between P4 and P1, we have

V0 = V ⊥ ⊕ P1 ⊕ P2, V ⊥
0 = V ⊥ ⊕ P1 ⊕ P3,

and V = V ⊥ ⊕ P1 ⊕ P2 ⊕ P3 ⊕ P4.
With respect to this decomposition, F can be described in this way:

F V ⊥ P1 P2 P3 P4

V ⊥ 0 0 0 0 0
P1 0 0 0 0 F14

P2 0 0 F22 0 0
P3 0 0 0 F33 0
P4 0 F41 0 0 F44

(F14, F41) is a duality,
F22 is symplectic,
F33⊕F44 is anisotropic.

It is clear that the restriction F22 of F to P2×P2 is alternating and
non-degenerate. The quadratic form v �−→ F (v, v) is a homomorphism of
additive groups V → K; since P3 ⊕ P4 is complementary to its kernel V0, its
restriction to P3 ⊕ P4 is injective, therefore, anisotropic.

Let g be an automorphism of (V, F ), and let (gij) be the family of its
components Pj → V → V → Pi with i, j ∈ {0, 1, 2, 3, 4} (if we identify P0
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with V ⊥). Let us prove that

g =

⎡

⎢
⎢
⎢
⎢
⎣

g00 g01 g02 g03 g04

0 1 g12 0 g14

0 0 g22 0 g24

0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

(11.1)

Proof. It is clear that g leaves V ⊥, V0 and V ⊥
0 invariant. Moreover, g(v)−v ∈

V0 for every v ∈ V because F (g(v), g(v)) = F (v, v). These obvious facts
prove the vanishing of g10, g20, g30, g40, g21, g31, g41, g32, g42, g23, g43 and
g34; they also prove that g33 = 1 and g44 = 1. It remains to prove that
g11 = 1 and g13 = 0. The equality g11 = 1 follows from g44 = 1 because F
determines a duality between P1 and P4. For all v3 ∈ P3 and v4 ∈ P4, we
have F (g(v3), g(v4)) = F (v3, v4) = 0, therefore, F (g13(v3), v4) = 0, and the
duality between P1 and P4 implies g13(v3) = 0. �

Let g be a linear transformation like (11.1). Under which (necessary and
sufficient) conditions is it an automorphism of (V, F )? A direct calculation
brings the following three conditions:

∀u, v ∈ P2, F22(g22(u), g22(v)) = F22(u, v), (11.2)
∀u ∈ P2, ∀v ∈ P4, F22(g22(u), g24(v)) = F14(g12(u), v), (11.3)
∀u, v ∈ P4, F22(g24(u), g24(v)) = F14(g14(u), v)

+F41(u, g14(v)). (11.4)

If Theorem 11.1 is true, the above automorphism g of (V, F ) is an or-
thogonal transformation if and only if g00 = 1, g01 = 0 and g03 = 0. These
equalities are trivially true when F is non-degenerate.

In the field K, the squares constitute a subfield Ksq, and the mapping
κ �−→ κ2 is a field isomorphism from K onto its subfield Ksq. When the
dimension of K over Ksq is finite, the dimension of P3 ⊕ P4 over K cannot
be greater than the dimension of K over Ksq. Indeed, the quadratic form
v �−→ F (v, v) maps P3 ⊕ P4 bijectively onto a Ksq-subspace of K, and the
dimension of the latter over Ksq is the dimension of the former over K.

Let (e1, . . . , en) be a basis of V such that F (e1, e1) �= 0. The dimen-
sion of V0 reaches the maximal possible value n−1 if and only if each scalar
F (e1, e1)F (ei, ei) (for i = 2, 3, . . . , n) has a square root ri in K (so that
F (e1, e1)ei + rie1 ∈ V0). When dim(V0) = n−1, the dimension of P3 ⊕ P4

must be 1, and since dim(P2) is even, we meet two cases: if dim(V/V ⊥) is
even, then P3 = 0 and dim(P1) = dim(P4) = 1; but if dim(V/V ⊥) is odd,
then P1 = P4 = 0 and dim(P3) = 1.

The field K is said to be perfect if Ksq = K. Every finite field is perfect.
When K is perfect, it is clear that V0 is a hyperplane of V . When K is
not perfect, a finite field extension K → K ′ suffices to bring an extension
K ′⊗(V, F ) where the bilinear form is alternating on a hyperplane of K ′⊗V ;
it suffices to adjoin to K some square roots of elements of K, the number of
which is smaller than n.
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11.3. The Subgroup O†(V, F ) Generated by the Transvections

Lemma 11.2. The group O†(V, F ) of all g ∈ Aut(V ;F ) such that ker(g−1) ⊃
V ⊥

0 is also the subgroup of O(V, F ) generated by the transvections.

Proof. Every transvection v �−→ v + λF (v, u)u is equal to G1+λu2 for some
(u, λ) ∈ V0×K. It is an element of O(V, F ) which leaves invariant every ele-
ment of V ⊥

0 . Conversely, every element of O†(V, F ) is a product of transvec-
tions; this assertion shall be proved in two steps.

First step: HomS(P4, P1⊕V ⊥) and the mapping h �−→ h†. Let us con-
sider the space Hom(P4, P1⊕V ⊥) of all linear mappings h : P4 → P1⊕V ⊥. In
the matrix (11.1), the pair (g14, g04) represents an element of this space. Ev-
ery element h of this space determines a bilinear form on P4 which maps every
(v, v′) to F (h(v), v′), and h is said to be symmetric if this bilinear form is sym-
metric; the subspace of symmetric elements is denoted by HomS(P4, P1⊕V ⊥);
thus, by definition,

h ∈ HomS(P4, P1⊕V ⊥) ⇐⇒ ∀v, v′ ∈ P4, F (h(v), v′) = F (v, h(v′)).

Every element of Hom(P4, P1⊕V ⊥) has a component in Hom(P4, P1) and a
component in Hom(P4, V

⊥); only the former is involved in the symmetry
condition; thus we may write

HomS(P4, P1⊕V ⊥) = HomS(P4, P1) ⊕ Hom(P4, V
⊥).

Since F determines a duality between P4 and P1, there is a linear bijection
P1⊗P1 → Hom(P4, P1) which maps every u⊗u′ to v �−→ F (v, u′)u, and by
this bijection, the subspace HomS(P4, P1) is the image of the subspace of
symmetric tensors. There is also a bijection V ⊥⊗P1 → Hom(P4, V

⊥) which
maps every u0⊗u1 to v �−→ F (v, u1)u0. Nevertheless, we are rather concerned
with the surjective mapping

(P1⊕V ⊥)⊗(P1⊕V ⊥) → Hom(P4, P1⊕V ⊥), u⊗u′ �−→ (
v �−→ F (v, u′)u

)
.

This mapping maps (P1⊕V ⊥)⊗V ⊥ to 0, and it maps the subspace of sym-
metric tensors onto HomS(P4, P1⊕V ⊥). Indeed, the element of Hom(P4, V

⊥)
which is the image of u0⊗u1 (for some u0 ∈ V ⊥ and u1 ∈ P1), is also the
image of the symmetric tensor u0⊗u1 + u1⊗u0.

With every h ∈ HomS(P4, P1⊕V ⊥)) is associated the element h† of
O†(V, F ) that maps every vector in V0+V ⊥

0 to itself, and every vector v ∈ P4

to v+h(v). Indeed, the conditions (11.2), (11.3) and (11.4) are satisfied when
g22 = 1, g12 = 0, g24 = 0 and g14 is the component of h in HomS(P4, P1).

It is clear that (h + h′)† = h† ◦ h′† for all h, h′ ∈ HomS(P4, P1⊕V ⊥).
Second step: the exact sequence

{0} → HomS(P4, P1⊕V ⊥) → O†(V, F ) → O(V0, F ) → {1}. (11.5)

The second arrow in (11.5) is the mapping h �−→ h†. The third arrow maps
every transformation to its restriction to V0; this restriction is an element
of Aut(V0, F ) which belongs to O(V0, F ) because it leaves invariant every
element of V0 ∩ V ⊥

0 . The third arrow is surjective because every element of
O(V0, F ) is a product of transvections, and every transvection of (V0, F ) ex-
tends naturally to a transvection of (V, F ). We must also prove that g = h† for
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some h ∈ Homs(P4, P1⊕V ⊥) if g leaves invariant every vector in V0. Let us
come back to the matrix (11.1), and suppose that g22 = 1 and g12 = 0.
Since F22 is non-degenerate, the equality (11.3) implies g24 = 0. Conse-
quently, (11.4) implies g14 ∈ HomS(P4, P1), and g = h† if h is the element of
Hom(P4, P1⊕V ⊥) determined by (g14, g04).

Since every element of O(V0, F ) is a product of transvections, which
naturally extend to transvections of (V, F ), the proof of Lemma 11.2 is now
reduced to the proof of the following assertion: every transformation h† is
a product of transvections. Every h ∈ HomS(P4, P1⊕V ⊥) is the image of a
symmetric tensor in (P1⊕V ⊥)⊗(P1⊕V ⊥), and every symmetric tensor is a
sum of terms like λu⊗u with u ∈ P1⊕V ⊥ and λ ∈ K. Therefore, it suffices
to consider the transformation that maps every element of V0+V ⊥

0 to itself,
and every v ∈ P4 to v + λF (v, u)u. Actually, this transformation is exactly
the transvection determined by (u, λ). �
11.4. The Group O(V, F ) is Equal to O†(V, F )
Lemma 11.3 shall complete the proof of Theorem 11.1.

Lemma 11.3. If a is an invertible element of B0(V, F ) such that τ(a) = a and
ava−1 ∈ V for all v ∈ V , then Sup(a) ⊂ V0 and ker(Ga−1) ⊃ V ⊥

0 .

Proof. Since ker(Ga−1) = Sup(a)⊥ and V0 ⊃ V ⊥, the inclusions Sup(a) ⊂
V0 and ker(Ga−1) ⊃ V ⊥

0 are equivalent to each other. We also know that
Ga(v) − v ∈ V ⊥ for all v ∈ V ⊥

0 (recall (11.1)). Therefore, Lemma 11.3 is
obvious when F is non-degenerate, and we may assume that V ⊥ �= 0. The
proof of Lemma 11.3 shall be achieved in four steps.

First step: reduction to the case dim(V ⊥) = 1. Let us suppose that
dim(V ⊥) � 2, and let H be a hyperplane of V ⊥. The quotient V ′ = V/H
may be identified with the direct sum of V ⊥/H and P1⊕P2⊕P3⊕P4, and
F induces a symmetric bilinear form F ′ on V ′. Since Ga(v) = v for all
v ∈ V ⊥ (recall Theorem 8.1), Ga induces an automorphism of (V ′, F ′). If
this automorphism of (V ′, F ′) leaves invariant all elements of P1⊕P3, then
Ga(v)−v ∈ H for all v ∈ P1⊕P3. If this is true for every hyperplane H of V ⊥,
it follows that Ga(v) = v for all v ∈ V ⊥

0 . Moreover, the quotient mapping
π : V → V/H extends to an algebra homomorphism B(π) from B(V, F ) onto
B(V ′, F ′). If a′ = B(π)(a), then the above automorphism of (V ′, F ′) is the
orthogonal transformation Ga′ . Consequently, it suffices to prove Lemma 11.3
when dim(V ⊥) = 1.

Second step: reduction to the case dim(V0) = n−1. We must prove that
F (v, v) = 0 for every v ∈ Sup(a). After a field extension K → K ′, the support
of a in K ′⊗V is equal to K ′⊗Sup(a). Therefore, it suffices to prove that the
support of a in K ′⊗V is contained in (K ′⊗V )0. This subspace (K ′⊗V )0 may
be much larger than K ′⊗V0. At the end of Sect. 11.2, it is explained that,
after a suitable field extension K → K ′, we may obtain a bilinear form K ′⊗F
that is alternating on a hyperplane of K ′⊗V . Therefore, it suffices to treat
the case dim(V0) = n−1.

In the third and fourth steps of the proof, we suppose that dim(V ⊥) = 1,
and that dim(V0) = n−1, or equivalently, dim(P3⊕P4) = 1, which implies
either P3 = 0 or P4 = 0.
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Third step: we suppose that P4 = 0, and consequently, P1 = 0. Now V ⊥

is spanned by a vector u0 and P3 by a vector u3. We can describe F and Ga

in this way:

F V ⊥ P2 P3

V ⊥ 0 0 0
P2 0 F22 0
P3 0 0 F33

Ga =

⎡

⎣
1 g02 g03

0 g22 0
0 0 1

⎤

⎦

The component g03 is determined by the scalar λ such that Ga(u3) =
λu0, and we must prove that λ = 0. Let g′ be the automorphism of (V, F )
that is represented by the same matrix as Ga but for one exception: g′

03 = 0
(but g′

22 = g22 and g′
02 = g02). Since ker(g′−1) ⊃ V ⊥

0 , Lemma 11.2 allows us
to claim that g′ = Gb for some b ∈ GLip(V, F ). Now let us consider G−1

a Gb:
this transformation leaves invariant every vector in V ⊥⊕P2, but maps u3 to
u3 − λu0. Because of Theorem 8.1, Sup(a−1b) is contained in the subspace
orthogonal to V ⊥⊕P2, which is the plane V ⊥⊕P3. Thus a−1b induces an
orthogonal transformation of this plane. But because of Lemma 8.2, this
orthogonal transformation is the identity, and we conclude that λ = 0.

Fourth step: we suppose that P3 = 0. We can describe F and Ga in this
way:

F V ⊥ P1 P2 P4

V ⊥ 0 0 0 0
P1 0 0 0 F14

P2 0 0 F22 0
P4 0 F41 0 F44

Ga =

⎡

⎢
⎢
⎣

1 g01 g02 g04

0 1 g12 g14

0 0 g22 g24

0 0 0 1

⎤

⎥
⎥
⎦

Now V ⊥, P1 and P4 are lines spanned by vectors u0, u1 and u4, and
F44 and F14 are determined by the non-zero scalars F (u4, u4) and F (u1, u4).
There is a scalar λ such that g01(u1) = λu0, and we must prove that λ = 0.
Let g′ be the automorphism of (V, F ) that has the same matrix as Ga but
for one exception, which is g′

01 = 0. Since ker(g′−1) ⊃ V ⊥
0 , we have g′ =

Gb for some b ∈ GLip(V, F ). Thus G−1
a Gb leaves invariant every vector in

V ⊥⊕P2⊕P4, but maps u1 to u1 −λu0. It follows that Sup(a−1b) is contained
in the subspace orthogonal to V ⊥⊕P2⊕P4, which is the plane spanned by
u0 and w = F (u4, u4)u1 − F (u1, u4)u4. Consequently, a−1b determines an
orthogonal transformation of this plane. Because of Lemma 8.2, it is the
identity, and since G−1

a Gb(w) = w − λF (u4, u4)u0, we conclude that λ = 0.
�

It may be sensible to question whether the case char(K) = 2 deserves
the amount of efforts displayed in Sects. 10 and 11. The research about Lip-
schitz monoids in Clifford algebras has not yet reached a general agreement,
and the research about meson algebras does not concern many people at
present. Thus there may be severe disagreements about the conventions that
lead these researches. The definitions are the most important part of these
conventions. The relevance of a set of conventions much depends on its effi-
ciency in the conception and in the proof of non-trivial new theorems. In the



Recent Advances for Meson Algebras... Page 51 of 53    48 

present domain of research, its relevance also depends on its compatibility
with fields of characteristic 2. Since there is still a great uncertainty in the
choice of the conventions, the confrontation with the characteristic 2 may
help us to make the good decisions.

12. Final Comments

The present work confirms that it is advantageous to imitate the treatment
of Clifford algebras when meson algebras are under consideration. Since the
mesonic grade automorphism σ could not be a sufficient counterpart of the
Cliffordian grade automorphism, the automorphism τ of B0(V, F ) came to
light. Then it became possible to imagine mesonic counterparts of the inte-
rior multiplications and of the deformations, which are efficient tools in the
study of Clifford algebras. The concept of Lipschitz monoid, which is still
under discussion in the study of Clifford algebras, could be easily adapted
to meson algebras, and Jacobson’s homomorphism much helped to discover
the mesonic adaptation (see Sect. 9.2). In my opinion, the existence of a
mesonic adaptation strongly supports the relevance of this concept of Lip-
schitz monoid.

Nevertheless, there is a very important property of Clifford algebras for
which there is no mesonic counterpart: if a space V provided with a quadratic
form Q is the orthogonal direct sum of two subspaces U and U ′, there is an
isomorphism Cl(V,Q) → Cl(U,Q)⊗̂Cl(U ′, Q) which maps every u+u′ (with
u ∈ U and u′ ∈ U ′) to u⊗1+1⊗u′. Although no mesonic counterpart has come
to light, it is sensible to ask what may be said when (V, F ) is the orthogonal
direct sum of two subspaces U and U ′. There is an answer in [4], where it is
explained that B(V, F ) admits a gradation over the group D = Z × (Z/2Z)
provided with the following non-commutative ∗-multiplication:

∀k, l ∈ Z, ∀p, q ∈ Z/2Z, (k, p) ∗ (l, q) = (k + (−1)pl, p + q),

and that this gradation attributes the degree (1, 1) to all elements of U ,
and the degree (0, 1) to all elements of U ′. If Bk,p(V, F ) is the component of
D-degree (k, p), it is clear that Bk,p(V, F ) ⊂ Bp(V, F ).

Lemma 4.4 implies that B(V, F ) is spanned by the products

xu′
1u1u

′
2u2 · · · u′

kuk x′ where x ∈ B(U,F ), u1, . . . , uk ∈ U,

x′ ∈ B(U ′, F ), u′
1, . . . , u

′
k ∈ U ′.

Of course, u′
1u1 · · · u′

kuk means 1 if k = 0, and we may require x and x′

to be even or odd. The D-degree of such a product depends on the parities
∂x and ∂x′. When (∂x, ∂x′) is equal to (0, 0), resp. (0, 1), resp. (1, 0), resp.
(1, 1), the D-degree of this product is (−k, 0), resp. (−k, 1), resp. (k+1, 1),
resp. (k+1, 0). Therefore, the image B(U,F )B(U ′, F ) of the injective linear
mapping

B(U,F ) ⊗ B(U ′, F ) → B(V, F ), x ⊗ x′ �−→ xx′,

is the direct sum of the four components of D-degrees (0, 0), (0, 1), (1, 1)
and (1, 0). Thus this D-gradation affords a projector from B(V, F ) onto
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this subspace B(U,F )B(U ′, F ). For instance, for u, v ∈ U and u′, v′ ∈ U ′,
this projector annihilates u′u, uu′v and u′uv′ because these elements are
D-homogeneous of degrees (−1, 0), (2, 1) and (−1, 1); but it leaves u′uv
and u′v′u invariant because their D-degrees are (0, 1) and (1, 1). In fact,
Lemma 4.4 reveals that u′uv = τ(uv)u′ and u′v′u = u τ(u′v′).

When V is provided with symmetric bilinear forms F and F ′, a comul-
tiplication B(V, F+F ′) → B(V, F )⊗B(V, F ′) can be defined in this way:

B(V, F+F ′) → B(V ×V, F⊥F ′) → B(V ×0, F⊥F ′)B(0×V, F⊥F ′)

→ B(V, F ) ⊗ B(V, F ′) ;

F⊥F ′ is defined by (F⊥F ′)((u, u′), (v, v′)) = F (u, v) + F ′(u′, v′) for all
u, u′, v, v′ ∈ V ; the first arrow is the algebra homomorphism that extends
the mapping v �−→ (v, v); the second arrow is a projector defined as it is
explained just above; the third arrow is a natural bijection.

The comultiplication B(V, 0) → B(V, 0)⊗B(V, 0) turns B(V, 0) into a
coalgebra. It is not a bialgebra because the comultiplication is not an algebra
homomorphism. Anyway, the dual space B∗(V, 0) of B(V, 0) is now an algebra,
and the natural mapping V ∗ → B∗(V, 0) extends to an algebra isomorphism
B(V ∗, 0) → B∗(V, 0).

The comultiplication B(V, F ) → B(V, 0)⊗B(V, F ) brings a new (and
equivalent) definition of the interior products η�x where η ∈ B(V ∗, 0) and
x ∈ B(V, F ). This definition refers to the mapping

B(V ∗, 0) ⊗ B(V, F ) → B∗(V, 0) ⊗ B(V, 0) ⊗ B(V, F ) → B(V, F );

the first arrow involves the isomorphism B(V ∗, 0) → B∗(V, 0) and the comul-
tiplication; the second arrow involves the mapping B∗(V, 0)⊗B(V, 0) → K.

Similarly, the comultiplication B(V, F ) → B(V, F )⊗B(V, 0) brings a new
definition of the interior products x	η.

It is true that the properties of meson algebras presented here (from
Sects. 2 to 12) are not as easy and practical as the corresponding proper-
ties of Clifford algebras, but they are remarkable enough to catch attention.
Although meson algebras are not of interest to many people at the present
time, it is sensible to predict that their remarkable properties will make them
become topical again in the future.
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