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1. Introduction

This paper is to be situated in the framework of classical harmonic analysis,
a function theory focusing on the Laplace operator Δx =

∑
j ∂2

xj
acting on

scalar-valued functions f(x) on R
m. Null solutions for Δx in the polynomial

ring P(Rm,R) := R[x1, . . . , xm] are referred to as harmonic polynomials,
their restrictions to the sphere Sm−1 ⊂ R

m are spherical harmonics: these
are often indexed by a positive integer � ∈ Z

+ which then refers to the degree
of homogeneity of the harmonic polynomial it uniquely extends to. From a
purely algebraic point of view, the operator Δx arises naturally if one wants
to understand the behaviour of the space P(Rm,R) as a representation for the
(special) orthogonal group SO(m), under the regular action. It is well-known
that under this action, one has that

P(Rm,R) =
∞⊕

k=0

Pk(Rm,R) =
∞⊕

k=0

� k
2 �⊕

j=0

r2jHk−2j(Rm,R) (1.1)

where H = P∩ker Δx and r2 = x2
1+. . .+x2

m denotes the squared norm of the
vector x ∈ R

m. Here, the spaces Hk of k-homogeneous harmonic polynomials
define an irreducible module for SO(m) with highest weight (k, 0, . . . , 0).

A crucial observation which can be made here is that the Lie algebra
spanned by Δx and r2, seen as a subalgebra of the Weyl algebra W(Rm)
acting on the space P(Rm,R), is given by

sl(2) = Alg(X,Y,H) ∼= Alg
(

1
2r2,− 1

2Δx,Ex + m
2

)
(1.2)

with Ex =
∑

j xj∂xj
the so-called Euler operator (which acts as a constant

k on homogeneous polynomials of degree k). This had led to the celebrated
Howe duality theorem, which in this particular case allows to turn formula
(1.1) into a decomposition which is multiplicity-free (see for instance [6,8]).
There are several ways in which the theory of spherical harmonics can be
generalised, but the topic of this paper is based on the observation that the
function space P(Rm,R) can be seen as the homogeneous coordinate ring
for the projective space P

m−1 of lines through the origin in R
m. Since this

is merely the simplest example of a flag manifold, the extension to other
Grassmann varieties is an obvious generalisation. In the present paper, we
will therefore consider the (oriented) Grassmannian of 2-planes in R

m: this
(projective) variety also has a homogeneous coordinate ring, which defines
a module for a suitable action of GL(m) that can thus be decomposed into
irreducible representations for the (special) orthogonal group SO(m). Howe
and Lee observed that the summands in this decomposition can be defined in
terms of a differential operator which generalises the role of the operator Δx

in the classical case. This operator is sometimes referred to as the Cayley-
Laplace operator, and also appears for instance in the work of Khelako [10]
and Rubin [13].

In [9] the authors studied the (polynomial) solution spaces for this
Cayley–Laplace operator on spaces of k-planes in R

m, using the general lan-
guage of representation theory, and in [2] we focused on the special case
k = 2 to obtain a generalisation of the Howe duality mentioned above. It
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was observed that the Higgs algebra H3 (a polynomial deformation of the
Lie algebra su(2), see [7,15]) arises as a dual partner defined in terms of
the Cayley-Laplace operator. As an application, a Pizzetti formula for the
integral of a function over the Grassmannian Gr+(m, 2) was obtained.

In the present paper we will shift our attention to the reproducing ker-
nels for these spaces of wedge polynomials (the homogeneous subspaces of the
homogeneous coordinate ring mentioned above), and show how these kernels
will give rise to a special function which somehow generalises the role played
by the exponential function in classical harmonic analysis. This then leads to
so-called wedge binomial polynomials, which are related to a generalisation of
Pascal’s triangle known as the Narayana triangle, and a generating function
for the zonal solutions for the Cayley-Laplace operator.

2. The Cayley–Laplace Operator

The Cayley–Laplace operator (abbreviated as CL-operator from now on) is
defined on functions which satisfy a special symmetry requirement. In order
to explain what we mean by this, we first recall the fact that the homogeneous
coordinate ring of the oriented real Grassmannian Gr+(m, 2) can be identified
with a polynomial algebra (see for instance [4,14]):

R(Gr+(m, 2)) = P(Rm×2,R)SL(2) (2.1)

whereby the action of h ∈ SL(2) is defined as the (right) regular H-action on
polynomials in a matrix variable X := (x, u) ∈ R

m×2, given by

H(h)[P (x, u)] := P ((x, u)h) .

The invariance under SL(2), which is what the upper index notation refers
to in (2.1), can more conveniently be expressed in terms of the corresponding
derived action dH. This action gives then rise to a realisation of the Lie
algebra sl(2) in terms of the so-called ‘skew Euler operators’

〈x, ∂u〉 :=
m∑

j=1

xj∂uj
and 〈u, ∂x〉 :=

m∑

j=1

uj∂xj
(2.2)

defined as a contraction between a vector variable and a Dirac operator (or
a gradient operator). To be precise, one then has that

R(Gr+(m, 2)) =
{
P (X) ∈ P(Rm×2,R) : 〈x, ∂u〉P = 0 = 〈u, ∂x〉P}

(2.3)

whereby the notation X = (x, u) will sometimes be used in this paper to
denote the matrix variable in R

m×2. This means that that we are dealing with
polynomials depending on the components of the wedge variable x∧u, just like
a function f(x) depends on the scalar components xj . For a wedge variable,
these are the scalar variables Xab := xaub − xbua with 1 ≤ a < b ≤ m. Note
that these variables are not independent (which makes them different from
the classical case k = 1), since there are Plücker relations to be satisfied. In
other words, one can also say that

R(Gr+(m, 2)) = R[X12,X13, · · · ,Xm−1,m]/I
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with I the 2-sided ideal generated by XabXcd − XacXbd + XadXbc. Finally,
the CL-operator can then be defined as the orthogonally invariant operator
of order 4 acting on P (X) ∈ R(Gr+(m, 2)), and is explicitly given by

Δxu :=
∑

a<b

∂2
ab =

∑

a<b

(
∂xa

∂ub
− ∂xb

∂ua

)2 = ΔxΔu − 〈∂x, ∂u〉2 .

Put differently, this is a determinant operator in terms of all the possible
‘mixed Laplace operators’ obtained by contracting two Dirac operators (this
gives a standard Laplace operator when an operator is contracted with itself).
This operator Δxu was observed to realise a copy of the Higgs algebra in [2].
Note that we can refer to this operator as the invariant operator, since it is
unique in the following sense:

Lemma 2.1. The space span(Δx,Δu, 〈∂x, ∂u〉) of mixed Laplace operators on
R

m×2 realises the irreducible representation space Sym2(R2) for sl(2) in terms
of the skew Euler operators. Moreover, the CL-operator Δxu then realises the
unique trivial summand R inside the 2-fold tensor product of this irreducible
representation space with itself.

Proof. This statement follows from the Clebsch–Gordon rule for the tensor
decomposition of irreducible representations (irreps) for sl(2), hereby taking
into account that the space spanned by the mixed Laplace operators realises
the irrep V2 with highest weight 2 (a space of dimension 3). A straightforward
calculation indeed shows that the unique summand V0 ⊂ V2 ⊗ V2 is given
by the operator Δxu, up to a multiplicative constant. �

In a way, the symbols Xab and ∂ab generalise the role played by xi and ∂xj

in the classical case (for k = 1, i.e. classical harmonic analysis). However,
whereas the algebra generated by xi and ∂xj

is the Heisenberg algebra (with
the Weyl algebra as its universal enveloping algebra), we get a completely
different algebraic structure for wedge variables. In the following lemma we
specify this algebra:

Lemma 2.2. The Lie algebra generated by the skew variables Xab and their
corresponding derivatives ∂ab (with 1 ≤ a < b ≤ m) is a graded Lie algebra
g = g−2 ⊕ g0 ⊕ g+2 with

g+2 = span
(
Xab : 1 ≤ a < b ≤ m

) ∼= Λ2
R

m

g−2 = span
(
∂ab : 1 ≤ a < b ≤ m

) ∼= Λ2
R

m

two abelian subalgebras, for which [g−2, g+2] ⊂ g0. Here, the zero-graded part
is given by g0

∼= gl(m), which means that [g0, g±2] ⊂ g±2. Moreover, the
subalgebra g0 contains a copy of R which then serves as the centre of gl(m),
realised in terms of the grading element Z = Ex + Eu + m. Finally, defining
for all 1 ≤ a < b ≤ m the operator Eab := xa∂xa

+ xb∂xb
+ ua∂ua

+ ub∂ub
, we

also note that

Alg
(
Xab,−∂ab,Eab + 2

) ∼= sl(2).
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Proof. To prove this, one can start from an arbitrary Xab and ∂pq, for which
the commutator reduces to 1 of 3 possibilities depending on the size of the
set {a, b} ∩ {p, q}. When {a, b} = {p, q}, an easy calculation confirms that
we will indeed get a realisation for the Lie algebra sl(2). When {a, b} and
{p, q} have just one index in common (w.l.o.g. we can then put b = p), a
quick calculation reveals that [Xap, ∂pq] = xa∂xq

+ ua∂uq
, with a �= q. The

only thing left to verify is that the resulting operators give rise to a copy
of the Lie algebra gl(m), which is a matter of straight-forward calculations
(the operator xa∂xq

+ ua∂uq
hereby corresponds to the matrix with a single

entry on row a and column q in the classical matrix realisation). The central
grading element is (up to a scalar factor) equal to the sum of all the ‘diagonal’
elements Eab. �
The last statement in the previous lemma will come in handy later, since it
allows us to reduce calculations in the coordinate ring as algebraic identities
in the universal enveloping algebra U(sl(2)).

3. Reproducing Series Operators

In order to understand how one can generalise the role played by the standard
exponential function in classical harmonic analysis when switching to wedge
variables, we will start from the following well-known fact:

Definition 3.1. For all positive integers �, the reproducing kernel for the
vector space P�(Rm,R) of �-homogeneous polynomials in a vector variable
x ∈ R

m is given by Z�(x, y) = 1
�! 〈x, y〉�. This kernel acts as follows:

〈
Z�(x, y), P�(x)

〉
F

=
1
�!

〈y, ∂x〉�P�(x)
∣
∣
∣
∣
x=0

= P�(y) .

The notation 〈·, ·〉F hereby refers to the Fischer inner product (replacing
each variable xj by its corresponding partial derivative ∂xj

, and evaluating
the action of the resulting operator on P�(x) in x = 0).

If we were to add all these kernels (leading to a formal series), and get rid of
the ‘evaluation in zero’ which characterises the final step in the definition of
the Fischer inner product, we arrive at the following exponential function:

∞∑

�=0

Z�(x, y) =
∞∑

�=0

1
�!

〈x, y〉� = exp
(〈x, y〉) .

This operator has a few interesting properties, which will be listed here.

Theorem 3.2. The action of the operator exp(〈y, ∂x〉) on functions f(x) on
R

m intertwines the action of the Laplace operator:

Δy exp
(〈y, ∂x〉)f(x) = exp

(〈y, ∂x〉)Δxf(x) .

Proof. This can be shown by first expanding the exponential operator into a
formal series, and then letting the operator Δy act on the variable y ∈ R

m,
hereby using the fact that

Δy〈y, ∂x〉� = �(� − 1)〈y, ∂x〉�−2Δx .
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Relabeling the terms in the series then does the rest. �
What this theorem says, is that one can use the exponential operator to obtain
functions depending on two vector variables, in such a way that harmonics
will be sent to harmonics. Moreover, the result is symmetric in the following
sense:

Theorem 3.3. The action of exp
(〈y, ∂x〉) on a polynomial P�(x) ∈ P�(Rm,R)

is symmetric in x ↔ y, in the sense that

exp
(〈y, ∂x〉)P�(x) = Q�(x, y) = Q�(y, x) = exp

(〈x, ∂y〉)P�(y) .

Note that Q�(x, y) is a polynomial in two vector variables which has a total
degree of homogeneity equal to �.

Proof. This result follows immediately from the fact that the exponential
operator exp(〈y, ∂x〉) generates translations. �
The main idea behind the paper is the following: one can look at the spaces
of �-homogeneous polynomials in a wedge variable Xab and construct the
corresponding reproducing kernel for the Fischer inner product. First of all,
we note the following:

Definition 3.4. For all positive integers �, we define the space PS
� (Rm×2,R)

as the space of �-homogeneous polynomials in the wedge variables Xab. Note
that � refers to the degree in both x and u ∈ R

m (or, put differently, the total
degree of this polynomial is equal to 2� when looking at the degree in xj and
uj separately), and that the superscript ‘S’ refers to the invariance for SL(2).

In view of the fact that PS
� (Rm×2,R) ⊂ P�(Rm,R)⊗P�(Rm,R), we can start

from two reproducing kernels Z�(x, y) and Z�(u, v) to construct a reproducing
kernel (for the Fischer inner product) for the space defined above.

Lemma 3.5. The reproducing kernel for PS
� (Rm×2,R) is given by

Z�(x ∧ u, y ∧ v) :=
〈x ∧ u, y ∧ v〉�

�!(� + 1)!
,

whereby the inner product between wedge products is defined as

〈x ∧ u, y ∧ v〉 =
∣
∣
∣
∣
〈x, y〉 〈x, v〉
〈u, y〉 〈u, v〉

∣
∣
∣
∣ .

Proof. First note that there are two natural realisations of the 2-dimensional
representation V1 for sl(2) at play here: the space spanned by 〈x, y〉 and
〈u, y〉 on the one hand, and the space spanned by 〈x, v〉 and 〈u, v〉 on the
other hand. To see why this is true, it suffices to recall the fact that 〈x, ∂u〉
and 〈u, ∂x〉 generate a copy of sl(2). This means that Z�(x, y) and Z�(u, v)
belong to the space V� (the irrep of dimension � + 1). Because we are letting
the product of these kernels act on polynomials of wedge variables, which
are invariant with respect to sl(2), it thus suffices to project Z�(x, y)Z�(u, v),
considered as an element of the representation space V� ⊗ V�, on the unique
summand V0 sitting inside this tensor product. This can be done using the
Clebsch–Gordon rules, or see Lemma 5 in [2] for a similar calculation. �
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Once this kernel has been found, we can again consider the (formal) series
obtained by summing these kernels over all indices � ∈ Z

+. This gives rise
to the generalised exponential operator in the setting of two-wedge variables.
Note that we can make use of the following:

Definition 3.6. The Bessel–Clifford function Ck(z) in a complex variable z ∈
C is defined through its power series as

Ck(z) =
∑∞

j=0
1

Γ(1+k+j)
zj

j! . (3.1)

Indeed, it is readily seen that in terms of this definition we have that
∞∑

�=0

Z�(x ∧ u, y ∧ v) =
∑∞

�=0

〈x∧u,y∧v〉�

�!(�+1)! = C1

(〈x ∧ u, y ∧ v〉). (3.2)

Remark 3.7. It is tempting to think that the classical exponential function
corresponds to the function C0(z), which would indicate a clear pattern here,
but this is not true. There is a more subtle pattern in play here, which
becomes important when considering wedge variables for the Grassmannian
Gr+(m, k), but this will be treated in an upcoming paper.

Note that our function becomes a generalised translation operator under the
following action (on functions which behave well, for instance R-analytic in
the scalar variables Xab):

f(x ∧ u) �→ g(x ∧ u; y ∧ v) := C1

(〈y ∧ v, ∂x ∧ ∂u〉)f(x ∧ u) .

It is however crucial to point out that this does not behave like a ‘standard
translation’, in the sense that for instance

X2
ab �→

(

1 +
1
2
Yab∂ab +

1
12

Y 2
ab∂

2
ab

)

X2
ab = X2

ab + 3XabYab + Y 2
ab ,

where the factor 3 may be surprising. Indeed, note we do not get (Xab +Yab)2

under the action of our Bessel-Clifford function, which may raise the question
why the term ‘generalised translation operator’ is appropriate here. This is
the reason why Theorems 3.2 and 3.3 were mentioned, since we can prove a
similar result with respect to the CL-operator Δxy.

Theorem 3.8. The action of the generalised exponential function on functions
f(x ∧ u) on R

m×2 intertwines the action of the Cayley–Laplace operator:

ΔyvC1

(〈y ∧ v, ∂x ∧ ∂u〉)f(x ∧ u) = C1

(〈y ∧ v, ∂x ∧ ∂u〉)Δxuf(x ∧ u) .

Proof. To see why this is true, we will invoke the invariance of inner products
under rotations. Writing these as conjugations (i.e. using an element s of the
spin group rather than a matrix M in the orthogonal group), we know that

〈y ∧ v, x ∧ u〉 = 〈s(y ∧ v)s, s(x ∧ u)s〉 = 〈sys ∧ svs, sxs ∧ sus〉 .

Note that we have switched to variables Xab instead of derivatives ∂ab here,
but this will not affect the argument (one merely has to switch to the Fourier
image so to speak). Because rotations act transitively on two-frames, we can
always find an element s such that s(x ∧ u)s = λe12. The invariance of the
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inner product then tells us that 〈x ∧ u, x ∧ u〉 = |x ∧ u|2 = λ2, with λ ∈ R. If
we now denote sys ∧ svs by means of y∗ ∧ v∗, we get:

Δyv〈y ∧ v, x ∧ u〉k = λkΔ∗
yv(y∗

1v∗
2 − y∗

2v∗
1)k

= [k(k + 1)][(k − 1)k]λk(y∗
1v∗

2 − y∗
2v∗

1)k−2 (3.3)

where we made use of the rotational invariance of the CL-operator (which
allows us to say that Δyv = Δ∗

yv) and the fact that

∂abX
j
ab = j(j + 1)Xj−1

ab .

This last relation either follows from direct calculations or from the fact that
∂ab and Xab realise a copy of the Lie algebra sl(2) which means that one
can make use of commutator identities in the universal enveloping algebra
for sl(2). It then suffices to ‘rotate back’, which means that

λk(y∗
1v∗

2 − y∗
2v∗

1)k−2 = λ2〈sys ∧ svs, λe12〉k−1

= |x ∧ u|2〈y ∧ v, x ∧ u〉k−2 .

Finally, the constant appearing in formula (3.3) allows us to reorder the
summation index in the series representation for the Bessel–Clifford function,
which concludes the proof. �

This thus means that the generalised translation operator maps solutions
for Δxy to functions in the kernel of both Δyv and Δxu. This already hints
towards the fact that the function becomes symmetric under the operation
(x, u) ↔ (y, v), and one can show that this is indeed the case.

Theorem 3.9. The action of the operator C1

(〈y∧v, ∂x ∧∂u〉) on a polynomial
P�(x ∧ u) ∈ PS

� (Rm×2,R) is symmetric in (x, u) ↔ (y, v), in the sense that

C1

(〈y ∧ v, ∂x ∧ ∂u〉)P�(x ∧ u) = Q�(x ∧ u, y ∧ v) = Q�(y ∧ v, x ∧ u) .

Note that Q�(x ∧ u, y ∧ v) is a polynomial in two wedge variables (i.e. four
standard vector variables in R

m×4) which has a total degree of homogeneity
equal to � in the wedge variables.

Proof. To see why this is true, we will show that
k∑

j=0

〈x ∧ u, ∂y ∧ ∂v〉j

j!(j + 1)!
Pk(y ∧ v) =

k∑

j=0

〈y ∧ v, ∂x ∧ ∂u〉j

j!(j + 1)!
Pk(x ∧ u). (3.4)

Now, in view of the fact that

Pk(x ∧ u) =
〈x ∧ u, ∂y ∧ ∂v〉k

k!(k + 1)!
Pk(y ∧ v)

we can rewrite Eq. (3.4) as a difference of two operators which should act
trivially on an arbitrary Pk(y ∧ v). Temporarily denoting 〈x ∧ u, ∂y ∧ ∂v〉 as
Dyv (similarly for Dxu), we must thus have that

(
Dj

yv

j!(j + 1)!
− Dk−j

xu

(k − j)!(1 + k − j)!
Dk

yv

k!(k + 1)!

)

Pk(y ∧ v) = 0
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for all 0 ≤ j ≤ k. For this to be true, it is sufficient to show that

DxuDk−a
yv Pk(y ∧ v) = (1 + a)(2 + a)(k − a)(1 + k − a)Dk−a−1

yv Pk(y ∧ v) ,

for all 0 ≤ a ≤ k, as this will lead to the desired result. To do so, we will use
the fact that

Dxu = 〈y ∧ v, ∂x ∧ ∂u〉 = 〈y, ∂x〉〈v, ∂u〉 − 〈v, ∂x〉〈y, ∂u〉 ,

and carefully calculate the action of both terms on Dk−a
yv Pk(y ∧v). Note that

it is crucial to take into account that everything is acting on an element of
PS

k (Rm×2,R), since Euler operators will appear which then act as a constant
depending on the parameters k and a. First of all, we get that

〈y, ∂x〉Dk−a
yv Pk = (k − a)

(
Ey〈u, ∂v〉 − 〈y, ∂v〉〈u, ∂y〉)Dk−a−1

yv Pk

= (k − a)〈u, ∂v〉(1 + Ey)Dk−a−1
yv Pk

= (k − a)(a + 2)〈u, ∂v〉Dk−a−1
yv Pk ,

where we made use of the fact that 〈y, ∂v〉Pk(y ∧ v) = 0. Acting with the
operator 〈v, ∂u〉 on this result then leads to

(k − a)(a + 2)
(
Ev − Eu + 〈u, ∂v〉〈v, ∂u〉)Dk−a−1

yv Pk

= − (k − a)(a + 2)(k − 2a − 2)Dk−a−1
yv Pk

+ (a + 2)(a + 3)(k − a)(k − a − 1)Dk−a−2
yv 〈u, ∂v〉〈x, ∂y〉Pk .

Acting with the second term, i.e. the operator 〈v, ∂x〉〈y, ∂u〉, and subtracting
the result (obtained using completely similar calculations) from the previous
leads to Dk−a−1

yv Pk times the constant

− 2(k − a)(k − 2 − 2a)(a + 2) + (a + 2)(a + 3)(k − a)(k − a − 1)

=(a + 1)(a + 2)(k − a)(k − a + 1) ,

as was to be shown. �

Our generalised translation operator clearly bears some similarities with the
classical exponential translation operator, hence the name, which means that
one can use this resemblance to look for similar properties. One of the most
important properties that the exponential function satisfies is the fact that it
gives rise to a group morphism between (R,+) and (R+

0 , ·), with eset = es+t.
Before we can investigate what a decent analogue would be in the framework
of wedge variables, we first mention the following property, which generalises
the fact that exp(〈y, ∂x〉) exp(〈x, z〉) = exp(〈y, z〉) exp(〈x, z〉):

Theorem 3.10. The Bessel–Clifford operator satisfies the following relation:

C1

(〈y ∧ v, ∂x ∧ ∂u〉)C1

(〈x ∧ u, z ∧ w〉) = C1

(〈y ∧ v, z ∧ w〉)C1

(〈x ∧ u, z ∧ w〉).

Proof. First of all, because the identity above deals with operators expressed
in terms of inner products, we can pick up an element s in the spin group such
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that s(z ∧ w)s = λe12 and all other vector variables are mapped to ‘starred
variables’ such as y∗ = sys, which means that we are left with calculating

∞∑

j=0

(y∗
1v∗

2 − y∗
2v∗

1)j∂j
12

j!(j + 1)!

∞∑

�=0

λ�X�
12

�!(� + 1)!
.

Given a fixed index j ∈ Z
+, we have that

(y∗
1v∗

2 − y∗
2v∗

1)j∂j
12

j!(j + 1)!

∞∑

�=j

λ�X�
12

�!(� + 1)!
=

(y∗
1v∗

2 − y∗
2v∗

1)j

j!(j + 1)!

∞∑

�=j

λ�X�−j
12

(� − j)!(1 + � − j)!

=
(y∗

1v∗
2 − y∗

2v∗
1)jλj

j!(j + 1)!
C(λX12) .

It then suffices to sum all these terms over the index j ∈ Z
+, and to use the

inverse rotation to prove the statement. �

Before we can formulate the algebraic structure underlying the symmetry
transformations expressed in terms of the Bessel-Clifford function, we first
need to introduce the equivalent of the binomial polynomials and coefficients.

4. Bessel–Clifford Binomial Polynomials

In the classical case, there exists an intimate connection between the binomial
coefficients and the exponential function (via the translation operator):

exp
(

y
d

dx

)

xk = (x + y)k =
k∑

j=0

(
k

j

)

xk−jyj .

In view of the fact that we now have a generalised translation operator in
the setting of wedge variables at our disposal, we can also expect a similar
property here.

Definition 4.1. For a fixed wedge product Z = z∧w, we define the polynomial

Bk(X,Y ;Z) := C1

(〈y ∧ v, ∂x ∧ ∂u〉)〈x ∧ u, z ∧ w〉k ,

where k ∈ Z
+ is an arbitrary positive integer. The capital letters X,Y and

Z hereby refer to the wedge variables x ∧ u and so on.

Note that the role of Z = z ∧ w is not important here, it merely generalises
the fact that the classical situation can be seen as the action of a translation
operator on powers of the variable x = 〈x, e1〉. As a matter of fact, a quite
natural choice would be to take Z = eab a constant (considered as a wedge
product of two basis vectors in an orthonormal frame for Rm). A calculation
based on the rule ∂abX

j
ab = j(j + 1)Xj−1

ab then leads to the following:

Definition 4.2. The generalised two-wedge binomial polynomials (or Bessel–
Clifford binomial polynomials) are defined as

Bk(X,Y ; eab) =
k∑

j=0

cj(k)Xk−j
ab Y j

ab =
k∑

j=0

(
k

j

)(
k + 1
j + 1

)
Xk−j

ab Y j
ab

1 + k − j
.
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Note that cj(k) = ck−j(k) for all 0 ≤ j ≤ k, as was to be expected.

These polynomials can then be used to formulate the following property:

Theorem 4.3. For all λ ∈ C one has that

C1

(〈y ∧ v, ∂x ∧ ∂u〉)C1

(
λ〈x ∧ u, z ∧ w〉) =

∞∑

k=0

Bk(X,Y ;Z)
k!(k + 1)!

λk .

Proof. To see why this is true we can actually take z ∧ w, which leads to

C1(Yab∂ab)C1(λXab) =
∞∑

k=0

λk

k!(k + 1)!
C1(Yab∂ab)Xk

ab

=
∞∑

k=0

λk

k!(k + 1)!
Bk(X,Y ; eab)

where we have made use of Definition 4.2. �

Since we have introduced wedge binomial polynomials Bk(X,Y ; eab), we can
expect a generalised Pascal-like triangle to show up. The first few numbers
in this triangle look as follows:

0 1
1 1 1
2 1 3 1
3 1 6 6 1
4 1 10 20 10 1
5 1 15 50 50 15 1
6 1 21 105 175 105 21 1

The sum of all the numbers in a fixed row of our generalised Pascal triangle
may be recognised as the first few Catalan numbers: 1, 2, 5, 14, 42 and so on.
This is not a coincidence, because it turns out that the triangle above is
known as the so-called Narayana triangle (see e.g. [1,11,12]) which appears
naturally in the setting of Catalan numbers. Note that we have enumerated
the rows in our triangle above in a slightly different manner though, as k
refers to the degree of the polynomial Bk(X,Y ;Z) in our case. As a matter
of fact, the numbers cj(k) appearing in the wedge binomial polynomials are
known in the literature as follows:

Definition 4.4. The Nayarana numbers are defined for all integers k ≥ 0 and
0 ≤ j ≤ k by means of

[
k
j

]

=
1

1 + k − j

(
k

j

)(
k + 1
j + 1

)

=
1

k + 1

(
k + 1

j

)(
k + 1
j + 1

)

.

Remark 4.5. Note that some authors refer to these Nayarana numbers as
the ‘tribinomial coefficients’, since they can also be defined as the analogue
of binomial coefficients whereby the standard natural numbers are replaced
by triangular numbers:

[
k
j

]

=
tktk−2tk−2 · · · t2t1

(tjtj−1 · · · t2t1)(tn−jtn−j−1 · · · t2t1) ,
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with tj = 1
2j(j + 1). In other words, each factorial in the classical binomial

constant is thus replaced by a product of consecutive triangular numbers.
This connection becomes even more apparent if one rescales the operator ∂ab

by a factor 1
2 . One the one hand, the relation 1

2∂abXab mimics the classical
relation ∂xj

xj = 1 (which then comes closer to the philosophy of considering
Xab as a ‘variable’ in the homogeneous coordinate ring of the Grassmann
manifold), on the other hand we get that 1

2∂abX
k
ab = tkXk−1

ab . This relation
becomes intuitively clear if one looks at this relation from a combinatorial
point of view: whereas there are k ways to eat away a single exponent in the
classical case, there are indeed tk ways to eat away a single exponent in the
two-wedge case. One can eat away both indices a and b from a single variable
(k choices), or combine two different variabels to eat away these indices (with
tk−1 ways to do so). Together we arrive at the number tk = k + tk−1.

One of the main properties of these numbers is the following:

Theorem 4.6. The sum of all the numbers on the kth row of the generalised
Pascal triangle is given by:

k∑

j=0

cj(k) =
k∑

j=0

1
1 + k − j

(
k

j

)(
k + 1
j + 1

)

= Ck+1 ,

whereby Cp = 1
p+1

(
2p
p

)
denotes the pth Catalan number.

Proof. This follows from direct calculations. �

An obvious question is whether there exists a formula relating the numbers in
this triangle (an analogue of Pascal’s identity). For that purpose it is useful to
note that one can use the exponential translation operator to prove Pascal’s
identity, noting that

exp
(

y
d

dx

)

xn+1 =
(

x exp
(

y
d

dx

)

+
[

exp
(

y
d

dx

)

, x

])

xn

= (x + y) exp
(

y
d

dx

)

xn .

The main thing to observe here is that the commutator does the main piece
of work here, because this allows us to prove the classical statement (note
that this proof is different from the standard induction argument). In the
wedge variable case we still have a commutator identity, but as we can see in
the lemma below it is more complicated:

Lemma 4.7. The generalised translation operator C1(Yab∂ab), with a and b
fixed but arbitrary indices, satisfies the following property:

C1(Yab∂ab)Xab =
(
Xab + Yab

)C1(Yab∂ab) + YabEab

∞∑

j=0

Y j
ab∂

j
ab

j!(j + 2)!
.

Note that Xab has to be seen as a multiplication operator here (i.e. the formula
above is an operator identity acting on functions of wedge variables).
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Proof. Using the series expansion of the generalised translation operator, we
get the following:

[C1(Yab∂ab),Xab] =
∞∑

j=1

Y j
ab

j!(j + 1)!
[∂j

ab,Xab]

=
∞∑

j=1

Y j
ab

j!(j + 1)!
j(Eab + j + 1)∂j−1

ab ,

where we have made use of the fact that Xab and ∂ab generate the Lie algebra
sl(2), see also Lemma 2.2, to calculate the commutator. A rearrangement of
the terms then proves the statement. �
What this lemma essentially says is that the coefficients of our wedge binomial
polynomials can be expressed in terms of a ‘classical relation’ (a proper Pascal
identity) plus an additional term which comes from the second function at
the right-hand side in the lemma above.

Theorem 4.8. The wedge binomial coefficients cj(k) with 1 ≤ j ≤ k+1 satisfy
the following relation:

cj(k + 1) = cj(k) + cj−1(k) +
2(1 + k − j)

j(j + 1)

(
k

j − 1

)(
k + 1
j − 1

)

,

whereby the third term at the right-hand side is the deformation term which
makes this situation different from the Pascal identity.

Proof. Using the previous lemma (and temporarily suppressing the indices a
and b), we have that

C1(Y ∂X)Xk+1 = (X + Y )C1(Y ∂X)Xk + Y E

k−1∑

j=0

Y j∂j
X

j!(j + 2)!
Xk .

Note that the summation runs from j = 0 to k − 1 (and not to k, which is
what one would naively expect), because E∂kXk = 0. In order to arrive at
our identity for cj+1(k+1), it then suffices to pick up the numerical coefficient
of the term Xk−jY 1+j . �
As a result, we have the following relation between Narayana numbers (which,
to the best of our knowledge, seems to be a new result):

Theorem 4.9. For all positive integers k and 0 < j ≤ k we have that
[

k + 1
j

]

=
k + j + 2
k − j + 2

[
k
j

]

+
[

k
j − 1

]

.

Proof. It suffices to note that the ‘deformation term’ in the previous theorem
(coming from the commutator) can be rewritten as follows:

2(1 + k − j)
j(j + 1)

(
k

j − 1

)(
k + 1
j − 1

)

=
2j

(k + 1)(k + 2 − j)

(
k + 1

j

)(
k + 1
j + 1

)

=
2j

k + 2 − j

[
k
j

]

.

It then suffices to add this term to the term cj(k) to arrive at the result. �
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Remark 4.10. Note that the factor k+j+2
k−j+2 is not always an integer, but the

product with the Nayarana number cj(k) will be (for all indices k and j).

If we interpret C1

(〈y∧v, ∂x∧∂u〉) as a symmetry for the CL-operator, it makes
sense to investigate whether we can undo this operation (the generalised
translation). In sharp contrast to the classical exponential function, where the
aforementioned connection with one-parameter subgroups allows us to invert
a translation using the exponential of the opposite of the original argument
(i.e. −τ instead of τ), we will need a different approach here. Let us try to
fix the coefficients γj in such a way that

∞∑

j=0

γjY
j∂jC1(Y ∂X) =

∞∑

j=0

γjY
j∂j

∞∑

k=0

Y k∂k

k!(k + 1)!
= 1 ,

which means that the first series expansion (involving the unknow coefficients
γj) can be interpreted as the inverse symmetry (note that we have switched
to the notation Y and ∂X here, for the sake of notational ease). Since Y
and ∂X commute, this can be written as a recursive system of equations.
Indeed, using the shorthand notation ck for the coefficients appearing in the
Bessel-Clifford function, we get:

1 = c0

(
γ0 + γ1Y ∂X + γ2Y

2∂2
X + γ3Y

3∂3
X + · · · )+

c1

(
γ0Y ∂X + γ1Y

2∂2
X + γ2Y

3∂3
X + · · · )+

c2

(
γ0Y

2∂2
X + γ1Y

3∂3
X + · · · ) + · · ·

In other words, the coefficients γj are fixed via the recursive relation

γj = −
j∑

k=1

ckγj−k (j > 0) (4.1)

where it is easily seen that γ0 = 1. It is interesting to point out that one
can do this for the exponential function too (which amounts to saying that
cj becomes a coefficient in the series expansion for ex), and this will then
(obviously) give γj = (−1)jcj . In the present framework, the situation is
more complicated though:

Theorem 4.11. The solution for the recursive relation (4.1) is given by

γj =
νj

j!(j + 1)!
,

whereby the numbers νj (with j ≥ 1) appear as matrix entries of the inverse
of the Narayana triangle.

Proof. To see why this is true, we will rewrite the recursion relation (4.1) in
terms of the rescaled parameters νj . For example, the constant ν3 is fixed by
the following relation:

ν3

3!4!
+

ν2

2!3!
1

1!2!
+

ν1

1!2!
1

2!3!
+

ν0

3!4!
= 0 .
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If we now rewrite the second and third term we arrive at the relation
1

3!4!
(
ν3 + 6ν2 + 6ν1 + ν0

)
= 0 ,

where one can indeed see the entries 1, 6, 6, 1 from the Nayarana triangle. This
idea generalises to arbitrary indices k > 0 and therefore hinges on a numerical
relation between the products k!(k + 1)! and the Nayarana numbers. The
general recursion relation can be written as

νk

k!(k + 1)!
+

νk−1

(k − 1)!k!
1

1!2!
+ · · · +

ν1

1!2!
1

k!(k + 1)!
+ ν0

1
k!(k + 1)!

= 0(4.2)

which means that we are left with proving that
1

j!(j + 1)!
1

(k − j)!(k − j + 1)!
=

1
k!(k + 1)!

[
k
j

]

.

This is easily done, since
k!(k + 1)!

j!(j + 1)!(k − j)!(k − j + 1)!
=

1
1 + k − j

(
k

j

)(
k + 1
j + 1

)

,

which is the definition for the Nayarana number. Together with the fact that
ν0 = 1, we can thus read the relation (4.2) as the product of a row (in
the Nayarana triangle) with a column (in the inverse of this matrix), which
defines ν)j for all j > 0. �

Remark 4.12. Note that the numbers νj appear in the OEIS as A103365, and
they are given by (starting with ν1) −1, 2,−7, 39,−321, 3681,−56197, · · · and
so on. There one can also find general facts about the generating function,
which seem to imply the result proven in the theorem above, but we decided
to include an independent proof for the sake of completeness.

Let us define R
∞[α, β, . . .] as the (real) polynomial ring in uncountably many

variables (Greek letters for now, but we will soon replace these by our wedge
variables Xab). Note that having access to an infinite amount of variables is
not required here (so everything always stays well-defined), but this allows
us to not specify the number of variables at the start. We will then work with
functions

Φ : N → R
∞[α, β, . . .] : n �→ Φ[n] ∈ R

∞
n [α, β, . . .]

which means that the input n fixes the total degree of homogeneity of the
polynomial (we essentially get a sequence of polynomials indexed by degree).
The maps Φ will now be built in terms of two basic ingredients: ‘pure variable
maps’ Φα mapping n ∈ N �→ Φα[n] := αn and (binary) combinations of such
maps involving the ‘combinator map’ given by

B(Φ1,Φ2) : N → R
∞[α, β, . . .]

: n �→ B(Φ1,Φ2)[n] :=
n∑

j=0

[
k
j

]

Φ1[j]Φ2[k − j]. (4.3)

From this definition, it should be (inductively) clear that if Φj acting on
nj ∈ N gives a polynomial in kj variables, then the map B(Φ1,Φ2) will send
positive integers to polynomials in (at most) k1 + k2 variables (note that
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variables could be repeated). Note that this map is commutative, since we
will always end up with a polynomial in commuting variables α, β and so on.
To see this this map is also associative, we must show that

B
(
B(Φ1,Φ2),Φ3

)
[n] = B

(
Φ1, B(Φ2,Φ3)

)
[n]

holds for all n ∈ N. This is equivalent to saying that
n∑

j=0

j∑

i=0

[
n
j

] [
j
i

]

Φi
1Φ

j−i
2 Φn−j

3 =
n∑

j=0

j∑

i=0

[
n
j

] [
n − j

i

]

Φj
1Φ

i
2Φ

n−j−i
3 .

To see that this is indeed equal, we first note that
[

n
k + i

] [
k + i

i

]

=
[

n
n − i

] [
n − i

k

]

where 0 ≤ i ≤ n and 0 ≤ k ≤ n − i, a useful relation which follows from
simple calculations involving the definition of the Nayarana numbers. It then
suffices to note that we can reorder the summation over j and i as

n∑

j=0

j∑

i=0

=
n∑

i=0

n∑

j=i

=
n∑

i=0

n−i∑

k=0

where we have defined k = n − j. We thus get that
n∑

j=0

j∑

i=0

[
n
j

] [
j
i

]

Φi
1Φ

j−i
2 Φn−j

3 =
n∑

i=0

n−i∑

k=0

[
n

k + i

] [
k + i

i

]

Φi
1Φ

k
2Φn−i−k

3

=
n∑

i=0

n−i∑

k=0

[
n

n − i

] [
n − i

k

]

Φi
1Φ

k
2Φn−i−k

3

=
n∑

i=0

n−i∑

k=0

[
n
i

] [
n − i

k

]

Φi
1Φ

k
2Φn−i−k

3

where we have made use of the symmetry i ↔ n− i in the last line. Together
with the base case B(Φα, 0)[n] = αn we now have everything at our disposal
to reformulate theorem 4.3 in the following way:

Theorem 4.13. For two variables α and β, the Bessel-Clifford function C1(·)
satisfies the relation C1(Φα)C1(Φβ) = C1(B(Φα,Φβ)). Nested expressions like

C1(Φ1)C1(Φ2)C1(Φ3) = C1

(

B
(
Φ1, B(Φ2,Φ3)

)
)

and so on are also well-defined, since the combinator map is associative.

Proof. This can be shown by expanding both Taylor series, using properties
of the Nayarana numbers and the previous lemma. �
Remark 4.14. We can now contrast this situation with the classical case, for
the exponential function. There, one would have a different ‘combinator map’
S sending ‘pure variable maps’ to S(Φα,Φβ) := Φα+β . This means that

S(Φα,Φβ)[n] =
n∑

j=0

(
n

j

)

Φα[n − j]Φβ [j] =
n∑

j=0

(
n

j

)

αn−jβj = (α + β)n.(4.4)



The Bessel–Clifford Function. . . Page 17 of 20    47 

Note that we could again have defined the action of S(·, ·) via the (classical)
binomial polynomials, but this is not really necessary in view of the binomial
theorem. From this point of view, one can see the combinator map B(·, ·)
for the Bessel–Clifford function as the generalisation of the sum operation
from the classical case. There is a subtle difference though: in the classical
case, the product eαeβ becomes eα+β , which means that we can evaluate our
exponential function in a ‘single new argument’ (the sum of two variables).
In the present case, we cannot do such a thing: when evaluating C1(B(α, β)),
one cannot see this as the value of our function C1 in a ‘single new argument’.
In a sense, this is due to the fact that (special) functions are defined in terms
of power series, which happen to satisfy the relation (4.4) from above.

Finally, this means that we can slightly reformulate Theorem 4.3 in the
present language:

C1

(〈y ∧ v, ∂x ∧ ∂u〉)C1

(
λ〈x ∧ u, z ∧ w〉) = C1

(
λB(X,Y ;Z)

)
,

where B is now to be seen as the combinator map from above (i.e. the degree
of our generalised binomial polynomial is selected by the action of B on
the running index k in the summation of the power series expansion for the
Bessel-Clifford function).

5. Series Expansions via Kelvin Inversions

In classical harmonic analysis (for m ≥ 3), there is a fundamental solution
(Green’s function in some circles) which satisfies the following identity in
distributional sense: Δx|x|2−m = δ(x). Together with Theorem 3.2 this tells
us that as long as we stay away from the singularities we can conclude that

Δx|x|2−m = 0 ⇒ Δy

(
e〈y,∂x〉|x|2−m

)
= Δy|x + y|2−m = 0 .

This relation is the starting point for the so-called series expansion of the
Newtonian potential.

Remark 5.1. Note that this is often expressed in terms of the difference |x−y|,
but this is not essential here: it suffices to replace y by its opposed vector in
the formulas.

To see how the series expansion for the potential arises here it is useful
to relate the fundamental solution (in its ‘unperturbed version’, i.e. with a
singularity at the origin) to the Kelvin inversion:

Definition 5.2. The action of the Kelvin inversion Ix on a function of x ∈ R
m

with m ≥ 3 is defined as

Ix[f(x)] = |x|2−mf

(
x

|x|2
)

.

This is a generalised symmetry for the Laplace operator, i.e. it maps harmonic
functions to harmonic functions.
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Recognising the fundamental solution for Δx as the inversion of the constant
function 1 on R

m and invoking the fact that the Kelvin inversion acts as an
involution, we can say that

e〈y,∂x〉Ix[1] = I2
xe〈y,∂x〉Ix[1] = Ix

∞∑

k=0

(

Ix

〈y, ∂x〉k

k!
Ix[1]

)

(5.1)

where we have thus expanded the exponential translation operator in a formal
series. The important thing to note here is that the terms between the big
brackets at the right-hand side are k-homogeneous polynomial solutions for
the operators Δx and Δy. The former follows from the fact that the Kelvin
inversion defines a generalised symmetry for Δx, the latter follows from the
intertwining relation. Said polynomials are the ‘Gegenbauer harmonics’, also
known as ‘zonal solutions’ for the subgroup SO(m − 1) in SO(m) which fixes
the vector y. The more classical formulation of identity (5.1) is the following:

1
|x − y|m−2

=
∞∑

k=0

|y|k
|x|k+m−2

C
m
2 −1

k

( 〈x, y〉
|x| |y|

)

. (5.2)

Note that we have switched to −y here, and that this is only valid for |x| > |y|.
In view of the fact that we have constructed an analogue of the exponential
translation operator in this paper, we can also formulate an analogue for this
expansion. This hinges upon the following crucial fact:

Definition 5.3. The action of the Kelvin inversion Ixu on a function of x ∧ u
in R

m×2 is defined as

Ixu[f(x ∧ u)] = |x ∧ u|3−mf

(
x ∧ u

|x ∧ u|2
)

.

This is a (generalised) symmetry for the CL-operator Δxu, i.e. it also maps
solutions (for Δxu) to solutions.

This definition is based on a result which can be found in e.g. [5], or one can
varify that this ‘inversion’ satisfies the requirements using straight-forward
(albeit elaborate) calculations. In particular, we can again consider the action
on the constant function 1 as this leads to the fundamental solution for the
CL-operator Δxu (when m ≥ 4). Together with Theorem 3.8 we thus get the
following (away from the singularities, i.e. for x ∧ u non-zero):

Δxu|x ∧ u|3−m = 0 ⇒ Δyv

(

C1

(〈y ∧ v, ∂x ∧ ∂u〉)|x ∧ u|3−m

)

= 0 .

Because Ixu acts as an involution, we can arrive at a series expansion using
a similar argument as before:

C1

(〈y ∧ v, ∂x ∧ ∂u〉)Ixu[1] = Ixu

∞∑

k=0

(

Ixu

〈y ∧ v, ∂x ∧ ∂u〉k

k!(k + 1)!
Ixu[1]

)

. (5.3)

The terms between brackets at the right-hand side are again special, in that
these are k-homogeneous solutions for the CL-operators Δxu and Δyv which
are symmetric in (x, u) ↔ (y, v). They are also ‘zonal’, as they can be defined
(up to a multiplicative factor) as the unique solutions for both CL-operators
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which are invariant under the subgroup SO(m − 2) in SO(m) which fixes the
two-frame y ∧ v. These polynomials first appeared in [3], the formula above
can thus be seen as the series expansion for these polynomials obtained from
a suitable symmetry acting on the fundamental solution.

Remark 5.4. Up to this point, it is not clear to the author whether one can
rewrite the left-hand side of identity (5.3) in terms of a simple manipulation
of the argument, so that it looks like |φ(x∧u, y ∧v)|3−m with φ the unknown
function (in the classical case, the function φ(x, y) would just be x + y).

6. Conclusion

In this paper we have shown how the exponential function and its role as a
translation operator in classical harmonic analysis generalises to the Bessel-
Clifford function in the setting of wedge variables (for the specific case of
two-wedges x ∧ u). This then allows the construction of ‘new’ binomial poly-
nomials, expressed in terms of Nayarana numbers, which also appear in the
algebraic interpretation of the symmetry algebra. In what follows we will look
at further generalisations of this procedure, hereby focusing our attention on
general Grassmann manifolds.
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