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Abstract. This paper investigates centralizers and twisted centralizers in
degenerate and non-degenerate Clifford (geometric) algebras. We pro-
vide an explicit form of the centralizers and twisted centralizers of the
subspaces of fixed grades, subspaces determined by the grade involu-
tion and the reversion, and their direct sums. The results can be useful
for applications of Clifford algebras in computer science, physics, and
engineering.
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1. Introduction

In this work, we consider degenerate and non-degenerate real and complex
Clifford (geometric) algebras Gp,q,r of arbitrary dimension and signature (in
the case of any complex Clifford algebra, we can take q = 0). Degenerate Clif-
ford algebras have applications in physics [5], geometry [7,13,20], computer
vision and image processing [2], motion capture and robotics [23], neural
networks and machine learning [4,21,22], etc.

Several recent works on Clifford algebras use the notion of centraliz-
ers and twisted centralizers in Gp,q,r [9–12,14,21,24]. We call a centralizer
of a set in Gp,q,r a subset of all elements of Gp,q,r that commute with all
elements of this set. A twisted centralizer of a set in Gp,q,r is a subset of
such multivectors that their projections onto the even G(0)

p,q,r and odd G(1)
p,q,r

subspaces commute and anticommute respectively with all elements of this
set (see details in Sect. 3). Centralizers and twisted centralizers of some par-
ticular sets in Gp,q,r are used in literature for various purposes. For example,
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the recent paper [21] finds an explicit form of the twisted centralizer of the
grade-1 subspace in Gp,q,r and applies it in the construction of Clifford group
equivariant neural networks. The work [5] uses the explicit form of the same
twisted centralizer when considering degenerate spin groups. The book [12]
finds an explicit form of the centralizer of the even subspace in the case of
the non-degenerate Clifford algebra Gp,q,0. In the papers [9,24], the central-
izers and twisted centralizers of the even subspace and the grade-1 subspace
are employed in consideration of Lie groups preserving the even and odd
subspaces under the adjoint and twisted adjoint representations in the non-
degenerate Clifford algebras Gp,q,0. The works [10,11] find an explicit form of
these centralizers in the case of arbitrary Gp,q,r.

In light of appearance of centralizers and twisted centralizers in Gp,q,r

in the recent papers, we decided to investigate them in this note. We con-
centrate on the centralizers and twisted centralizers of the subspaces of fixed
grades Gk

p,q,r, k = 0, 1, . . . , n, the subspaces Gm
p,q,r, m = 0, 1, 2, 3, determined

by the grade involution and the reversion, and their direct sums. In partic-
ular, we consider the centralizers and twisted centralizers of the even G(0)

p,q,r

and odd G(1)
p,q,r subspaces. We find an explicit form of these centralizers and

twisted centralizers in the case of arbitrary k = 0, 1, . . . , n and m = 0, 1, 2, 3.
We study the relations between the considered centralizers and the twisted
centralizers. This paper also considers the centralizers and twisted centraliz-
ers in the particular cases of the non-degenerate Clifford algebra Gp,q,0 and
the Grassmann algebra G0,0,n. Theorems 3.6, 5.1, 5.2 and Lemmas 3.1, 3.2,
3.4 are new.

The paper is structured as follows. Section 2 introduces all the neces-
sary notation related to Gp,q,r. Section 3 provides an explicit form of the
centralizers and twisted centralizers of the subspaces Gk

p,q,r, k = 0, 1, . . . , n
and considers the relations between them. In Sect. 4, we write out all the con-
sidered centralizers and twisted centralizers in the particular cases Gp,q,0 and
G0,0,n and in the case of small k ≤ 4. Section 5 provides an explicit form of
the centralizers and twisted centralizers of the subspaces Gm

p,q,r, m = 0, 1, 2, 3,
and their direct sums, in particular, the even and odd subspaces. The con-
clusions follow in Sect. 6. In “Appendix A”, we describe the results related
to the twisted adjoint representation with different signs, which is important
for geometrical applications.

2. Degenerate and Non-degenerate Clifford Algebras Gp,q,r

Let us consider the Clifford (geometric) algebra [15,18,19] G(V ) = Gp,q,r,
p + q + r = n ≥ 1, over a vector space V with a symmetric bilinear form,
where V can be real R

p,q,r or complex C
p+q,0,r. We use F to denote the

field of real numbers R in the first case and the field of complex numbers
C in the second case. In this work, we consider both the case of the non-
degenerate Clifford algebras Gp,q,0 and the case of the degenerate Clifford
algebras Gp,q,r, r �= 0. We use Λr to denote the subalgebra G0,0,r, which is
the Grassmann (exterior) algebra [6,18]. The identity element is denoted by
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e, the generators are denoted by ea, a = 1, . . . , n. The generators satisfy the
following conditions:

eaeb + ebea = 2ηabe, ∀a, b = 1, . . . , n, (2.1)

where η = (ηab) is the diagonal matrix with p times +1, q times −1, and r
times 0 on the diagonal in the real case G(Rp,q,r) and p + q times +1 and r
times 0 on the diagonal in the complex case G(Cp+q,0,r).

Let us consider the subspaces Gk
p,q,r of fixed grades k = 0, . . . , n. Their

elements are linear combinations of the basis elements eA = ea1...ak
:=

ea1 · · · eak
, a1 < · · · < ak, labeled by ordered multi-indices A of length k,

where 0 ≤ k ≤ n. The multi-index with zero length k = 0 corresponds to the
identity element e. The grade-0 subspace is denoted by G0 without the lower
indices p, q, r, since it does not depend on the Clifford algebra’s signature.
We have Gk

p,q,r = {0} for k < 0 and k > n. Let us use the following notation:

G≥k
p,q,r := Gk

p,q,r ⊕ Gk+1
p,q,r ⊕ · · · ⊕ Gn

p,q,r, (2.2)

G≤k
p,q,r := G0 ⊕ G1

p,q,r ⊕ · · · ⊕ Gk
p,q,r (2.3)

for 0 ≤ k ≤ n. For example, G≥0
p,q,r = G≤n

p,q,r = Gp,q,r and G≥n
p,q,r = Gn

p,q,r.
Consider such conjugation operations as grade involution and reversion.

The grade involute of an element U ∈ Gp,q,r is denoted by ̂U and the reversion
is denoted by ˜U . These operations satisfy

̂UV = ̂U ̂V , ˜UV = ˜V ˜U, ∀U, V ∈ Gp,q,r. (2.4)

The grade involution defines the even G(0)
p,q,r and odd G(1)

p,q,r subspaces:

G(k)
p,q,r = {U ∈ Gp,q,r : ̂U = (−1)kU} =

⊕

j=k mod 2

Gj
p,q,r, k = 0, 1. (2.5)

We can represent any element U ∈ Gp,q,r as a sum

U = 〈U〉(0) + 〈U〉(1), 〈U〉(0) ∈ G(0)
p,q,r, 〈U〉(1) ∈ G(1)

p,q,r. (2.6)

We use the angle brackets 〈·〉(l) to denote the operation of projection of
multivectors onto the subspaces G(l)

p,q,r, l = 0, 1. For an arbitrary subset H ⊆
Gp,q,r, we have

〈H〉(0) := H ∩ G(0)
p,q,r, 〈H〉(1) := H ∩ G(1)

p,q,r. (2.7)

The grade involution and the reversion define four subspaces G0
p,q,r,

G1
p,q,r, G2

p,q,r, and G3
p,q,r (they are called the subspaces of quaternion types

0, 1, 2, and 3 respectively in the papers [26–28]):

Gk
p,q,r = {U ∈ Gp,q,r : ̂U = (−1)kU, ˜U = (−1)

k(k−1)
2 U}, k = 0, 1, 2, 3.

(2.8)

Note that the Clifford algebra Gp,q,r can be represented as a direct sum of the
subspaces Gk

p,q,r, k = 0, 1, 2, 3, and viewed as Z2 × Z2-graded algebra with
respect to the commutator and anticommutator [25]. To denote the direct
sum of different subspaces, we use the upper multi-index and omit the direct
sum sign. For instance, G(1)24

p,q,r := G(1)
p,q,r ⊕ G2

p,q,r ⊕ G4
p,q,r.
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3. Centralizers and Twisted Centralizers of the Subspaces of
Fixed Grades

Consider the subset Zm
p,q,r of all elements of Gp,q,r commuting with all ele-

ments of the grade-m subspace for some fixed m:

Zm
p,q,r := {X ∈ Gp,q,r : XV = V X, ∀V ∈ Gm

p,q,r}. (3.1)

Note that Zm
p,q,r = Gp,q,r for m < 0 and m > n. We call the subset Zm

p,q,r the
centralizer (see, for example, [12,17]) of the subspace Gm

p,q,r in Gp,q,r.
The center of the Clifford algebra Gp,q,r is also the centralizer but of

the entire Clifford algebra Gp,q,r. We denote the center of the degenerate and
non-degenerate Clifford algebra Gp,q,r by Zp,q,r. It is well known (see, for
example, [5]) that

Zp,q,r =

{

Λ(0)
r ⊕ Gn

p,q,r, n is odd,

Λ(0)
r , n is even.

(3.2)

Similarly, consider the set Žm
p,q,r:

Žm
p,q,r := {X ∈ Gp,q,r : ̂XV = V X, ∀V ∈ Gm

p,q,r}. (3.3)

Note that Žm
p,q,r = Gp,q,r for m < 0 and m > n. We call the set Žm

p,q,r the
twisted centralizer of the subspace Gm

p,q,r in Gp,q,r. The particular case Ž1
p,q,r

is considered in the papers [5,11,21].
Note that twisted centralizers can be defined in another way, which we

denote by Z̃m
p,q,r:

Z̃m
p,q,r := {X ∈ Gp,q,r : X〈V 〉(0) + ̂X〈V 〉(1) = V X, ∀V ∈ Gm

p,q,r}.

(3.4)

We write out an explicit form of these objects in “Appendix A”.
Note that the projections 〈Zm

p,q,r〉(0) and 〈Žm
p,q,r〉(0) of Zm

p,q,r and Žm
p,q,r

respectively onto the even subspace G(0)
p,q,r (2.7) coincide by definition:

〈Zm
p,q,r〉(0) = 〈Žm

p,q,r〉(0), ∀m = 0, 1, . . . , n. (3.5)

In the case m = 0, we have

Z0
p,q,r = Gp,q,r, Ž0

p,q,r = {X ∈ Gp,q,r : ̂X = X} = G(0)
p,q,r. (3.6)

In Theorem 3.6, we find explicit forms of the centralizers Zm
p,q,r and the

twisted centralizers Žm
p,q,r of the subspaces of fixed grades for an arbitrary

m = 1, . . . , n.
To prove Theorem 3.6, let us prove auxiliary Lemmas 3.1, 3.2, and 3.4.

In Lemmas 3.1 and 3.2, we use that any non-zero X ∈ Gp,q,r has the following
decomposition over a basis:

X = X1 + · · · + Xk, Xi = αieAi
, αi ∈ F

×, i = 1, . . . , k, (3.7)

where Ai is an ordered multi-index, Ai �= Aj for i �= j, and each Xi is
non-zero, i.e. αi �= 0.
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Lemma 3.1. For any even m, we have

〈Žm
p,q,r〉(1) ⊆ 〈Žm+1

p,q,r 〉(1). (3.8)

Proof. In the case of even m < 0 or m ≥ n, we have Žm
p,q,r = Žm+1

p,q,r = Gp,q,r.

For m = 0, we have 〈Ž0
p,q,r〉(1) = 〈G(0)

p,q,r〉(1) = {0}, where we use (3.6). Let us

consider the case 0 < m < n. Consider a non-zero element X ∈ Žm
p,q,r ∩G(1)

p,q,r,
where m is even, and its decomposition over a basis (3.7). For any fixed
ea1...am

∈ Gm
p,q,r, each summand Xi, i = 1, . . . , k, contains at least one such exi

that xi ∈ {a1, . . . , am}, because otherwise we have Xiea1...am
= ea1...am

Xi,
so ̂Xea1...am

�= ea1...am
X, and we get a contradiction. Therefore, for any

ea1...am+1 ∈ Gm+1
p,q,r ,

̂Xea1...am+1 = ±̂X1ea1...x̌1...am+1ex1 ± · · · ± ̂Xkea1...x̌k...am+1exk
, (3.9)

where Xi contains exi
, i = 1, . . . , k, the sign depends on the parity of the cor-

responding permutation, and the checkmarks indicate that the corresponding
indices are missing. From (3.9), we obtain

̂Xea1...am+1 = ±ea1...x̌1...am+1X1ex1 ± · · · ± ea1...x̌k...am+1Xkexk

(3.10)
= ±ea1...x̌1...am+1ex1X1 ± · · · ± ea1...x̌k...am+1exk

Xk = ea1...am+1X,

(3.11)

where all the signs preceding the terms remain the same in (3.9)–(3.11), since
Xi ∈ Žm

p,q,r∩G(1)
p,q,r and Xi contains exi

, i = 1, . . . , k. This completes the proof.
�

Lemma 3.2. For any odd m, we have

〈Zm
p,q,r〉(1) ⊆ 〈Zm+1

p,q,r 〉(1). (3.12)

Proof. In the case m < 0 or m ≥ n, we have Zm
p,q,r = Zm+1

p,q,r = Gp,q,r. Let us

consider the case 0 < m < n. Consider a non-zero X ∈ Zm
p,q,r∩G(1)

p,q,r, where m
is odd, and its decomposition (3.7). For any fixed ea1...am

∈ Gm
p,q,r, each sum-

mand Xi, i = 1, . . . , k, contains at least one such exi
that xi ∈ {a1, . . . am},

because otherwise Xiea1...am
= ea1...am

̂Xi, so Xea1...am
�= ea1...am

X, and we
get a contradiction. Hence, for any ea1...am+1 ∈ Gm+1

p,q,r , we have

Xea1...am+1 = ±X1ea1...x̌1...am+1ex1 ± · · · ± Xkea1...x̌k...am+1exk
, (3.13)

where Xi contains exi
, i = 1, . . . , k, the sign depends on the parity of the cor-

responding permutation, and the checkmarks indicate that the corresponding
indices are missing. From (3.13), we obtain

Xea1...am+1 = ±ea1...x̌1...am+1X1ex1 ± · · · ± ea1...x̌k...am+1Xkexk

(3.14)
= ±ea1...x̌1...am+1ex1X1 ± · · · ± ea1...x̌k...am+1exk

Xk = ea1...am+1X,

(3.15)
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where all the signs preceding the terms in (3.13)–(3.15) remain the same,
since Xi ∈ Zm

p,q,r ∩ G(1)
p,q,r and Xi contains exi

, i = 1, . . . , k. This completes
the proof. �
Remark 3.3. Note that the more general statement than (3.12) holds true:

Zm
p,q,r ⊆ Zm+1

p,q,r , m is odd, (3.16)

which follows from Theorem 3.6 below and is provided in the formula (3.41)
of Remark 3.7. Note that the statement (3.8) can not be generalized in a
similar way. For any even m, we have

〈Žm
p,q,r〉(0) ⊆ 〈Žm+1

p,q,r 〉(0), n is odd, (3.17)

(〈Žm
p,q,r〉(0) \ Gn

p,q,r) ⊆ 〈Žm+1
p,q,r 〉(0), n is even, (3.18)

which follows from Theorem 3.6 below as well.

Lemma 3.4. For any M ∈ Gm
p,q,r, K ∈ Gk

p,q,r, and L ∈ Λn−m
r , we have

(KL)M =

{

M(KL) if m, kare even;m, k, n are odd;

M (̂KL) if m is odd,k is even;m,n are even,k is odd.

Proof. Suppose m, k = 0 mod 2. We have

(KL)M = (LM)K = (ML)K = M(KL), (3.19)

where we use that LM ∈ Gn
p,q,r commutes with any even element, LM = ML,

and LK = KL, since m and k are even respectively. If m, k, n = 1 mod 2,
then we again have (3.19), since L is even and LM ∈ Gn

p,q,r ⊂ Zp,q,r is odd.
Consider the case m = 1 mod 2 and k = 0 mod 2. If n is odd, then L is

even. We get (3.19) again and obtain (KL)M = M (̂KL), since both K and
L are even. If n is even, then L is odd and

(KL)M = (LM)K = (M ̂L)K = M(K̂L) = M (̂KL). (3.20)

Finally, suppose m,n = 0 mod 2 and k = 1 mod 2. We obtain

(KL)M = (LM) ̂K = (ML) ̂K = M( ̂KL) = M (̂KL), (3.21)

since L is even, ML ∈ Gn
p,q,r is even, and it anticommutes with all odd

elements, including K. �
Remark 3.5. Note that

Λk
rGm

p,q,r ⊆ Gk+m
p,q,r , k ≥ 1; Λ0

rGm
p,q,r = Gm

p,q,r. (3.22)

Moreover, if at least one of k and m is even, then

XV = V X, ∀X ∈ Λk
r , ∀V ∈ Gm

p,q,r. (3.23)

If both k and m are odd, then
̂XV = V X, ∀X ∈ Λk

r , ∀V ∈ Gm
p,q,r. (3.24)

We use Remark 3.5 in the proof of Theorem 3.6. In Theorem 3.6, we
find the centralizers and twisted centralizers for any m = 1, . . . , n in the case
r �= n. The case of the Grassmann algebra G0,0,n is written out separately in
Remark 4.2 for the sake of brevity in the theorem statement.
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A few words about the notation in Theorem 3.6. The spaces Gk
p,q,0 and

Λk
r , k = 0, . . . , n, are regarded as subspaces of Gp,q,r. By {Gk

p,q,0Λ
l
r}, we denote

the subspace of Gp,q,r spanned by the elements of the form ab, where a ∈ Gk
p,q,0

and b ∈ Λl
r.

Theorem 3.6. Consider the case r �= n.

1. For an arbitrary even m, where n ≥ m ≥ 2, the centralizer has the form

Zm
p,q,r = Λ≤n−m−1

r ⊕
m−3
⊕

k=1 mod 2

{

Gk
p,q,0Λ

≥n−(m−1)
r

}

⊕
m−2
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−m
r

}⊕ Gn
p,q,r, (3.25)

and the twisted centralizer is equal to

Žm
p,q,r = 〈Λ≤n−m−1

r ⊕
m−3
⊕

k=1 mod 2

{

Gk
p,q,0Λ

≥n−(m−1)
r

}

⊕
m−2
⊕

k=0 mod 2

{

Gk
p,q,0Λ

≥n−m
r

}

⊕Gn
p,q,r〉(0)

⊕〈
m−2
⊕

k=0 mod 2

{

Gk
p,q,0Λ

≥n−(m−1)
r

}

⊕
m−1
⊕

k=1 mod 2

{

Gk
p,q,0Λ

≥n−m
r

}

〉(1). (3.26)

2. For an arbitrary odd m, where n ≥ m ≥ 1, we have

Žm
p,q,r = Λ≤n−m−1

r ⊕
m−2
⊕

k=1 mod 2

{

Gk
p,q,0Λ

≥n−(m−1)
r

}

⊕
m−1
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−m
r

}

(3.27)

and

Zm
p,q,r = 〈Λ≤n−m−1

r ⊕
m−2
⊕

k=1 mod 2

{

Gk
p,q,0Λ

≥n−(m−1)
r

}

⊕
m−1
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−m
r

}〉(0)

⊕〈
m−3
⊕

k=0 mod 2

{

Gk
p,q,0Λ

≥n−(m−1)
r

}

⊕
m−2
⊕

k=1 mod 2

{Gk
p,q,0Λ

≥n−m
r

} ⊕ Gn
p,q,r〉(1). (3.28)

Proof. Let us prove (3.25). Namely, we prove that for any X ∈ Gp,q,r and
even m, where n ≥ m ≥ 2, the condition Xea1...am

= ea1...am
X for any basis

element ea1...am
∈ Gm

p,q,r is equivalent to the condition

X ∈ Λ≤n−m−1
r ⊕

m−3
⊕

k=1 mod 2

{

Gk
p,q,0Λ

≥n−(m−1)
r

}

⊕
m−2
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−m
r

} ⊕ Gn
p,q,r.

For any fixed a1, . . . , am, we can always represent X as a sum of 2m sum-
mands:

X = Y + ea1Ya1 + · · · + eam
Yam

+ ea1a2Ya1a2 + · · · + ea1...am
Ya1...am

,

(3.29)

where Y , Ya1 , . . . , Ya1...am
∈ Gp,q,r do not contain ea1 , . . . , eam

. We get
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Xea1...am
= (Y + · · · + ea1...am

Ya1...am
)ea1...am

= ea1...am

(

m
∑

k=0 mod 2

eai1 ...aik
Yai1 ...aik

−
m−1
∑

k=1 mod 2

eai1 ...aik
Yai1 ...aik

)

,

where ai1 , . . . , aik ∈ {a1, . . . , am}, ai1 < · · · < aik , the elements eA and
YA with the multi-indices of zero length are the identity element e and Y

respectively, and the minus sign precedes summands with eai1 ...aik
∈ G(1)

p,q,r.
We get that the condition Xea1...am

= ea1...am
X is equivalent to

2ea1...am

(

m−1
∑

k=1 mod 2

eai1 ...aik
Yai1 ...aik

)

= 0. (3.30)

The Eq. (3.30) is equivalent to the system of 2m−1 equations:

(ea1)
2ea2...am

Ya1 = 0, . . . , (eam
)2ea1...am−1Yam

= 0,

(ea1)
2(ea2)

2(ea3)
2ea4...am

Ya1a2a3 = 0, . . . , (ea2)
2 · · · (eam

)2ea1Ya2...am
= 0.

(3.31)

Using (ea1)
2ea2...am

Ya1 = 0 (3.31), we get that if (ea1)
2 �= 0, i.e. a1 ∈

{1, . . . , p + q}, then Ya1 = 0, since Ya1 does not contain ea2 , . . . , eam
. On the

other hand, if each summand of X either contains only the non-invertible gen-
erators, or contains at least 1 invertible generator and at the same time does
not contain less than m−1 generators, then the equation (ea1)

2ea2...am
Ya1 = 0

is satisfied. Therefore, (ea1)
2ea2...am

Ya1 = 0 is satisfied if and only if X has
no summands containing at least 1 invertible generator and at the same
time not containing m − 1 or more of any generators. Similarly, for any
other odd k < m, using (ea1)

2(ea2)
2 . . . (eak

)2eak+1...am
Ya1a2...ak

= 0 (3.31),
we get Ya1a2...ak

= 0 if a1, . . . , ak ∈ {1, . . . , p + q}. Moreover, the equation
(ea1)

2(ea2)
2 . . . (eak

)2eak+1...am
Ya1a2...ak

= 0 is satisfied if and only if X has
no summands containing at least k invertible generators and at the same
time not containing m − k or more of any generators for any odd k ≤ m.
This implies that for

X ∈ Gp,q,r = Λr ⊕ {G1
p,q,0Λr} ⊕ · · · ⊕ {Gp+q

p,q,0Λr}, (3.32)

we finally obtain

X ∈ Λr ⊕ {G1
p,q,0Λ

≥n−(m−1)
r } ⊕ {G2

p,q,0Λ
≥n−m
r } ⊕ {G3

p,q,0Λ
≥n−(m−1)
r }

⊕ · · · ⊕ {Gm−3
p,q,0 Λ≥n−(m−1)

r } ⊕ {Gm−2
p,q,0 Λ≥n−m

r } ⊕ Gn
p,q,r, (3.33)

since for any fixed odd k and even k+1, we have the following condition on d
for the subspaces {Gk

p,q,0Λ
d
r} and {Gk+1

p,q,0Λ
d
r} respectively: the number of not

contained generators should be less than m − k, i.e. n − (k + d) < m − k, so
d ≥ n − (m − 1) for {Gk

p,q,0Λ
d
r}, and n − (k + 1 + d) < m − k, thus, d ≥ n − m

for {Gk+1
p,q,0Λ

d
r}. This completes the proof.

Let us prove (3.27). Namely, let us prove that for any X ∈ Gp,q,r and
odd m, where n ≥ m ≥ 1, the condition ̂Xea1...am

= ea1...am
X for any basis

element ea1...am
∈ Gm

p,q,r is equivalent to the condition
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X ∈ Λ≤n−m−1
r ⊕

m−2
⊕

k=1 mod 2

{Gk
p,q,0Λ

≥n−(m−1)
r } ⊕

m−1
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−m
r }.

(3.34)

For any fixed a1, . . . , am, we can represent X as a sum of 2m summands
(3.29), where Y, . . . , Ya1...am

∈ Gp,q,r do not contain ea1 , . . . , eam
. We obtain

̂Xea1...am
=

(〈X〉(0) − 〈X〉(1)
)

ea1...am

= ea1...am

(

m−1
∑

k=0 mod 2

eai1 ...aik
Yai1 ...aik

−
m

∑

k=1 mod 2

eai1 ...aik
Yai1 ...aik

)

,

where ai1 , . . . , aik ∈ {a1, . . . , am}, ai1 < · · · < aik , the elements eA and
YA with the multi-indices of zero length are the identity element e and Y

respectively, and the minus sign precedes summands with eai1 ...aik
∈ G(1)

p,q,r.
We get that the equality ̂Xea1...am

= ea1...am
X is equivalent to the formula

2ea1...am

(

m
∑

k=1 mod 2

eai1 ...aik
Yai1 ...aik

)

= 0. (3.35)

Similar to how it is done for the formula (3.30) above, from the formula
(3.35), we get that it is equivalent to the condition that X has no summands
containing at least k invertible generators and at the same time not containing
m − k or more of any generators for any odd k ≤ m. So, for X ∈ Λr ⊕
{G1

p,q,0Λr} ⊕ · · · ⊕ {Gp+q
p,q,0Λr}, we get

X ∈ Λr ⊕ {G1
p,q,0Λ

≥n−(m−1)
r } ⊕ {G2

p,q,0Λ
≥n−m
r } ⊕ {G3

p,q,0Λ
≥n−(m−1)
r }

⊕ · · · ⊕ {Gm−2
p,q,0 Λ≥n−(m−1)

r } ⊕ {Gm−1
p,q,0 Λ≥n−m

r }, (3.36)

since, similarly to the proof of (3.25) above, for any odd k, for {Gk
p,q,0Λ

d
r}, we

have the condition n − (k + d) < m − k, i.e. d ≥ n − (m − 1), and for any
{Gk+1

p,q,0Λ
d
r}, we get n − (k + 1 + d) < m − k, thus, d ≥ n − m. This completes

the proof.
Now we prove (3.26). Suppose m is even and n ≥ m ≥ 2. Since

〈Žm
p,q,r〉(0) = 〈Zm

p,q,r〉(0) (3.5), we only need to prove

〈

Žm
p,q,r

〉

(1)
=

〈

m−2
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−(m−1)
r } ⊕

m−1
⊕

k=1 mod 2

{Gk
p,q,0Λ

≥n−m
r }

〉

(1)

.

(3.37)

First, we prove that the right set is a subset of the left one in (3.37). We
have {Gk

p,q,0Λ
n−m
r } ⊆ Žm

p,q,r for any odd k, where m − 1 ≥ k ≥ 1, and even

n by Lemma 3.4. Let us prove {Gk
p,q,0Λ

≥n−(m−1)
r } ⊆ Zm

p,q,r for any even k =

0, . . . , m−2. Note that n− (m−1) ≥ 1; hence, we have {Λ≥n−(m−1)
r Gm

p,q,r} ⊆
G≥n−(m−1)+m
p,q,r = Gn+1

p,q,r = {0} and, similarly, {Gm
p,q,rΛ

≥n−(m−1)
r } = {0} by

Remark 3.5. Therefore, for any k = 0, . . . , n,
{

Gk
p,q,0Λ

≥n−(m−1)
r

}

Gm
p,q,r = Gm

p,q,r

{

Gk
p,q,0Λ

≥n−(m−1)
r

}

= {0}. (3.38)
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Thus, {Gk
p,q,0Λ

≥n−(m−1)
r } ⊆ Žm

p,q,r. Let us prove that the left set is a subset
of the right one in (3.37). Using 〈Žm

p,q,r〉(1) ⊆ 〈Žm+1
p,q,r 〉(1) for any even m by

Lemma 3.1 and applying (3.27) proved above, we get

〈

Žm
p,q,r

〉

(1)
⊆〈

Λ≤n−(m+1)
r ⊕

m
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−(m+1)
r }⊕

m−1
⊕

k=1 mod 2

{Gk
p,q,0Λ

≥n−m
r }〉

(1)
.

Now let us show that the inclusion above implies the inclusion of the left
set in the right one in (3.37). The projection of 〈Žm

p,q,r〉(1) onto the subspace

〈Λ≤n−(m+1)
r 〉(1) equals zero, since for any odd basis element X ∈ Λ≤n−(m+1)

r

there exists such an even basis element V ∈ Gm
p,q,r that XV �= 0 and XV =

V X. For example, in the case n = r = 4 and m = 2, for X = e1, we
have V = e23, and e1e23 = e23e1 �= e23ê1. The projection of 〈Žm

p,q,r〉(1) onto
〈{Gk

p,q,0Λ
n−m
r }〉(1) equals zero for any even k, m and odd n by Lemma 3.4.

The projection of 〈Žm
p,q,r〉(1) onto 〈{Gk

p,q,0Λ
n−m−1
r }〉(1) equals zero for any

even k, where m ≥ k > 0, since for any basis elements K = ea1...ak
∈ Gk

p,q,0 ⊂
G(0)
p,q,r and L ∈ Λn−m−1

r ⊆ G(1)
p,q,r, there exists such an even grade-m element

M ∈ ea1...ak
Gm−k
p,q,r that LM �= 0, LM = ML, and KM = MK, so we get

(KL)M = M(KL) �= M (̂KL), where we use Remark 3.5. For example, if
n = 6, p = k = 2, and r = m = 4, for K = e12 ∈ G2

2,0,0 and L = e3 ∈ Λ1
4,

there exists M = e1245 ∈ e12G2
2,0,4, such that (e12e3)e1245 = e1245(e12e3) �=

e1245
̂(e12e3). Finally, the projection of Žm

p,q,r onto {Gm
p,q,0Λ

≥n−(m−1)
r } = {0}

equals zero as well. Thus, we obtain (3.26), and the proof is completed.
Finally, let us prove (3.28). Suppose m is odd and n ≥ m ≥ 1. We have

〈Zm
p,q,r〉(0) = 〈Žm

p,q,r〉(0) (3.5), so we only need to prove

〈Zm
p,q,r〉(1) =

〈

m−3
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−(m−1)
r } ⊕

m−2
⊕

k=1 mod 2

{Gk
p,q,0Λ

≥n−m
r } ⊕ Gn

p,q,r

〉

(1)
.

(3.39)

We obtain that the right set is a subset of the left one in (3.39), using
{Gm

p,q,rΛ
≥n−(m−1)
r } = {0}, Lemma 3.4, and 〈Gn

p,q,r〉(1) ⊂ Zp,q,r. Let us prove
that the left set is a subset of the right one in (3.39). Using 〈Zm

p,q,r〉(1) ⊆
〈Zm+1

p,q,r 〉(1) by Lemma 3.2 and applying (3.25) proved above, we get

〈Zm
p,q,r〉(1) ⊆ 〈Λ≤n−m−2

r ⊕
m−1
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−m−1
r }

⊕
m−2
⊕

k=1 mod 2

{Gk
p,q,0Λ

≥n−m
r } ⊕ Gn

p,q,r〉(1).

The projection of 〈Zm
p,q,r〉(1) onto the subspace 〈Λ≤n−m−2

r 〉(1) equals zero
because for any odd X ∈ Λ≤n−m−2

r there exists such an odd V ∈ Gm
p,q,r

that XV �= 0 and XV = −V X. For example, if n = r = 4 and m = 1, for
X = e1, we have V = e2, and e1e2 = −e2e1. The projection of 〈Zm

p,q,r〉(1) onto
{Gk

p,q,0Λ
n−m
r } for any even k and odd m, n is zero by Lemma 3.4. The pro-

jection of 〈Zm
p,q,r〉(1) onto 〈{Gk

p,q,0Λ
n−m−1
r }〉(1) for any even k ≤ m − 1 equals



A Note on Centralizers and Twisted Centralizers Page 11 of 22    50 

zero because for any basis elements K = ea1...ak
∈ Gk

p,q,0 ⊆ G(0)
p,q,r and L ∈

Λn−m−1
r ⊆ G(1)

p,q,r, there exists such an odd grade-m element M ∈ ea1...ak
Gm−k
p,q,r

that LM �= 0, LM = M ̂L, and KM = MK, therefore, (KL)M = KM ̂L =
M(K̂L) �= M(KL). For example, if n = 5, p = k = 2, and r = m = 3, for
K = e12 ∈ G2

2,0,0 and L = e3 ∈ Λ1
3, we can take M = e124 ∈ e12G1

2,0,3 and

get (e12e3)e124 = −e124(e12e3). Finally, {Gm−1
p,q,0 Λ≥n−(m−1)

r } = Gn
p,q,r. Thus,

we obtain (3.28), and the proof is completed. �

Remark 3.7. Note that Theorem 3.6 implies

Zm
p,q,r ⊆ Zm+2

p,q,r , Žm
p,q,r ⊆ Žm+2

p,q,r , m = 1, . . . , n − 2; (3.40)

Žm
p,q,r ⊆ Zm+1

p,q,r , Zm
p,q,r ⊆ Zm+1

p,q,r , m is odd; (3.41)

Žm
p,q,r ⊆ Zm+2

p,q,r , mis even. (3.42)

Using (3.40)–(3.42), we get

Zm
p,q,r ⊆ Z4

p,q,r, Žm
p,q,r ⊆ Z4

p,q,r, m = 1, 2, 3. (3.43)

If r ≤ n − (m + 1), then

Zm
p,q,r = Z1

p,q,r, Žm
p,q,r = Ž1

p,q,r, m is odd; (3.44)

Zm
p,q,r = Z2

p,q,r, Žm
p,q,r = Ž2

p,q,r, m is even, m �= 0. (3.45)

We use these relations to prove Theorems 5.1 and 5.2.

4. Particular Cases of Centralizers and Twisted Centralizers

In this section, we consider the centralizers and twisted centralizers in the
particular cases that are important for applications. In Remarks 4.1 and 4.2
below, we explicitly write out Zm

p,q,r and Žm
p,q,r, m = 0, 1, . . . , n, in the cases of

the non-degenerate Clifford algebra Gp,q,0 and the Grassmann algebra G0,0,n

respectively. Note that in these special cases, the centralizers and twisted
centralizers have a much simpler form than in the general case of arbitrary
Gp,q,r (Theorem 3.6).

Remark 4.1. In the particular case of the non-degenerate algebra Gp,q,0, we
get from Theorem 3.6

Zm
p,q,0 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Gp,q,0, m = 0; m = n and m,n = 1 mod 2;
G(0)
p,q,0, m = n and m,n = 0 mod 2;

G0n
p,q,0, m �= 0, n and m = 0 mod 2

or m �= n and m,n = 1 mod 2;
G0, m = 1 mod 2 and n = 0 mod 2;

and

Žm
p,q,0 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Gp,q,0, m = n, m, n = 0 mod 2;
G(0)
p,q,0, m = 0; m = n and m,n = 1 mod 2;

G0n
p,q,0, m �= 0, n and m,n = 0 mod 2;

G0, m �= n and m = 1 mod 2
or m �= 0, m = 0 mod 2, and n = 1 mod 2.
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Remark 4.2. In the particular case of the Grassmann algebra G0,0,n = Λn,
we obtain from Theorem 3.6

Z0
0,0,n = Λn, Ž0

0,0,n = Λ(0)
n ;

Zm
0,0,n = Λn, Žm

0,0,n = Λ(0)
n ⊕ 〈Λ≥n−m+1

n 〉(1), m = 0 mod 2, m �= 0;

Zm
0,0,n = Λ(0)

n ⊕ 〈Λ≥n−m+1
n 〉(1), Žm

0,0,n = Λn, m = 1 mod 2.

In Remark 4.3 below, we explicitly write out the particular cases of
Theorem 3.6 and Remark 4.2 in the case of small k ≤ 4. We use these
centralizers and twisted centralizers in Theorems 5.1 and 5.2. Note that some
of these centralizers and twisted centralizers are considered, for instance, in
the papers [5,9–11,21]. The cases Z2

p,q,r (4.2) and Ž1
p,q,r (4.4) are proved in

detail, for example, in [11]. The other cases are presented for the first time.

Remark 4.3. We have:

Z1
p,q,r = Zp,q,r =

{

Λ(0)
r ⊕ Gn

p,q,r, n is odd,

Λ(0)
r , n is even,

(4.1)

Z2
p,q,r =

{

Λr ⊕ Gn
p,q,r, r �= n,

Λr, r = n,
(4.2)

Z3
p,q,r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Λ(0)
r ⊕Λn−2

r ⊕ {G1
p,q,0(Λ

n−3
r ⊕ Λn−2

r )}
⊕{G2

p,q,0Λ
n−3
r } ⊕ Gn

p,q,r, n is odd,

Λ(0)
r ⊕Λn−1

r ⊕ {G1
p,q,0Λ

≥n−2
r } ⊕ {G2

p,q,0Λ
n−2
r }, n is even,

Z4
p,q,r =

⎧

⎪

⎨

⎪

⎩

Λr⊕{G1
p,q,0(Λ

n−3
r ⊕Λn−2

r )}
⊕{G2

p,q,0(Λ
n−4
r ⊕Λn−3

r )}⊕Gn
p,q,r, r �= n,

Λr, r = n,

(4.3)

and:

Ž1
p,q,r = Λr, (4.4)

Ž2
p,q,r =

⎧

⎪

⎨

⎪

⎩

Λ(0)
r ⊕ Λn

r ⊕ {G1
p,q,0Λ

n−1
r }, n is odd,

Λ(0)
r ⊕ Λn−1

r ⊕ {G1
p,q,0Λ

n−2
r } ⊕ Gn

p,q,r, n is even, r �= n,

Λ(0)
r ⊕ Λn−1

r , n is even, r = n,

(4.5)

Ž3
p,q,r = Λr ⊕ {G1

p,q,0Λ
≥n−2
r } ⊕ {G2

p,q,0Λ
≥n−3
r }, (4.6)

Ž4
p,q,r =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Λ(0)
r ⊕ Λn−2

r ⊕ Λn
r ⊕ {G1

p,q,0Λ
≥n−3
r }

⊕{G2
p,q,0Λ

≥n−3
r } ⊕ {G3

p,q,0Λ
n−3
r }, n is odd,

Λ(0)
r ⊕ Λn−3

r ⊕ Λn−1
r ⊕ {G3

p,q,0Λ
n−4
r }

⊕{G2
p,q,0(Λ

n−4
r ⊕ Λn−3

r )} ⊕ Gn
p,q,r

⊕{G1
p,q,0(Λ

n−4
r ⊕ Λn−3

r ⊕ Λn−2
r )}, n is even, r �= n,

Λ(0)
r ⊕ Λn−3

r ⊕ Λn−1
r , n is even, r = n.

(4.7)
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In Remark 4.4, we consider how the centralizers and the twisted cen-
tralizers are related to the kernels of the adjoint and twisted adjoint repre-
sentations.

Remark 4.4. Note that

Z1×
p,q,r = ker(ad), Ž1×

p,q,r = ker(ãd) (4.8)

and

ker(ad) ⊆ Zm×
p,q,r, ker(ǎd) = Λ(0)×

r ⊆ Žm×
p,q,r, m = 0, . . . , n, (4.9)

where ker(ad), ker(ǎd), and ker(ãd) are the kernels of the adjoint represen-
tation ad and the twisted adjoint representations ǎd and ãd respectively.
The adjoint representation ad : G×

p,q,r → Aut(Gp,q,r) acts on the group of all
invertible elements as T �→ adT , where

adT (U) = TUT−1, U ∈ Gp,q,r, T ∈ G×
p,q,r. (4.10)

The twisted adjoint representation ǎd has been introduced in a particular
case by Atiyah, Bott, and Shapiro in [1]. The representation ǎd : G×

p,q,r →
Aut(Gp,q,r) acts on G×

p,q,r as T �→ ǎdT with

ǎdT (U) = ̂TUT−1, U ∈ Gp,q,r, T ∈ G×
p,q,r. (4.11)

The representation ãd : G×
p,q,r → Aut(Gp,q,r) acts on G×

p,q,r as T �→ ãdT with

ãdT (U) = T 〈U〉(0)T−1 + ̂T 〈U〉(1)T−1, ∀U ∈ Gp,q,r, T ∈ G×
p,q,r.

(4.12)

See the details about ad, ǎd, ãd, and their kernels, for example, in [11].

5. Centralizers and Twisted Centralizers of the Subspaces
Determined by the Grade Involution and the Reversion

This section finds explicit forms of the centralizers and twisted centralizers
of the subspaces Gm

p,q,r (2.8), m = 0, 1, 2, 3, determined by the grade invo-
lution and the reversion and their direct sums. In particular, we consider
the centralizers and twisted centralizers of the even G(0)

p,q,r = G02
p,q,r and odd

G(1)
p,q,r = G13

p,q,r subspaces.
Let us consider the centralizers Zm

p,q,r and twisted centralizers Žm
p,q,r of

the subspaces Gm
p,q,r (2.8), m = 0, 1, 2, 3, in Gp,q,r:

Zm
p,q,r := {X ∈ Gp,q,r : XV = V X, ∀V ∈ Gm

p,q,r}, m = 0, 1, 2, 3, (5.1)

Žm
p,q,r := {X ∈ Gp,q,r : ̂XV = V X, ∀V ∈ Gm

p,q,r}, m = 0, 1, 2, 3. (5.2)

In Theorem 5.1, we prove that Zm
p,q,r and Žm

p,q,r coincide with some of the
centralizers Zm

p,q,r and the twisted centralizers Žm
p,q,r of the subspaces of fixed

grades, which are considered in Sects. 3 and 4.
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Theorem 5.1. We have

Zm
p,q,r = Zm

p,q,r, Žm
p,q,r = Žm

p,q,r, m = 1, 2, 3; (5.3)

Z0
p,q,r = Z4

p,q,r, Ž0
p,q,r = 〈Z4

p,q,r〉(0). (5.4)

The centralizers Zm
p,q,r and twisted centralizers Žm

p,q,r, m = 1, 2, 3, 4,
are written out explicitly in Remark 4.3 for the readers’ convenience. In the
formula (5.4), we have

〈Z4
p,q,r〉(0) =

{

Λ(0)
r ⊕ {G1

p,q,0Λ
n−2
r } ⊕ {G2

p,q,0Λ
n−3
r }, n is odd or r = n,

Λ(0)
r ⊕ {G1

p,q,0Λ
n−3
r } ⊕ {G2

p,q,0Λ
n−4
r } ⊕ Gn

p,q,r,n is even,r �= n.

Proof. The inclusions Zm
p,q,r ⊆ Zm

p,q,r, Žm
p,q,r ⊆ Žm

p,q,r, m = 1, 2, 3, and Z0
p,q,r ⊆

Z4
p,q,r follow from Gk

p,q,r ⊆ Gk
p,q,r, k = 1, 2, 3, and G4

p,q,r ⊂ G0
p,q,r respectively.

We get Ž0
p,q,r ⊆ Ž4

p,q,r ∩ Ž0
p,q,r = Z4

p,q,r ∩ G(0)
p,q,r, using G04

p,q,r ⊆ G0
p,q,r and

Ž0
p,q,r = G(0)

p,q,r (3.6).
Let us prove Zm

p,q,r ⊆ Zm
p,q,r and Žm

p,q,r ⊆ Žm
p,q,r, m = 1, 2, 3. Any basis

element of Gk
p,q,r, k = 1, 2, 3, can be represented as a product of one basis

element of Gk
p,q,r and basis elements of G4

p,q,r. Since Zm
p,q,r ⊆ Z4

p,q,r and Žm
p,q,r ⊆

Z4
p,q,r by the statement (3.43) of Remark 3.7, we get Zm

p,q,r ⊆ Zm
p,q,r and

Žm
p,q,r ⊆ Žm

p,q,r.

We obtain Z4
p,q,r ⊆ Z0

p,q,r and Z4
p,q,r ∩ G(0)

p,q,r ⊆ Ž0
p,q,r because Z4

p,q,r ⊆
Z0
p,q,r and Z4

p,q,r ∩ G(0)
p,q,r ⊆ G(0)

p,q,r = Ž0
p,q,r (3.6) respectively and any basis

element of G0
p,q,r\G0 can be represented as a product of basis elements of

G4
p,q,r. �

Let us denote by Zkm
p,q,r and Žkm

p,q,r, k,m = 0, 1, 2, 3, the centralizers
and the twisted centralizers respectively of the direct sums of the subspaces
Gm
p,q,r (2.8) in Gp,q,r:

Zkm
p,q,r := Zk

p,q,r ∩ Zm
p,q,r = {X ∈ Gp,q,r : XV = V X, ∀V ∈ Gkm

p,q,r},

Žkm
p,q,r := Žk

p,q,r ∩ Žm
p,q,r = {X ∈ Gp,q,r : ̂XV = V X, ∀V ∈ Gkm

p,q,r}.

Note that Z02
p,q,r, Ž02

p,q,r, Z13
p,q,r, and Ž13

p,q,r are the centralizers and the twisted

centralizers of the even G(0)
p,q,r and odd G(1)

p,q,r subspaces respectively. In The-
orem 5.2, we find explicit forms of Zkm

p,q,r and Žkm
p,q,r, k,m = 0, 1, 2, 3.

Theorem 5.2. We have

Z01
p,q,r = Z12

p,q,r = Z13
p,q,r = Zp,q,r, Z23

p,q,r = Z2
p,q,r ∩ Z3

p,q,r, (5.5)

Z02
p,q,r = Z2

p,q,r, Z03
p,q,r = Z3

p,q,r, (5.6)

Ž12
p,q,r = Ž1

p,q,r ∩ Ž2
p,q,r, Ž23

p,q,r = Ž2
p,q,r ∩ Ž3

p,q,r, Ž13
p,q,r = Ž1

p,q,r, (5.7)

Ž01
p,q,r = 〈Z1

p,q,r〉(0), Ž02
p,q,r = 〈Z2

p,q,r〉(0), Ž03
p,q,r = 〈Z3

p,q,r〉(0). (5.8)
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The centralizers Z2
p,q,r, Z3

p,q,r, Zp,q,r = Z1
p,q,r and the twisted centralizer

Ž1
p,q,r are written out explicitly in Remark 4.3. In the formulas (5.5)–(5.8),

we have

Z2
p,q,r ∩ Z3

p,q,r =

{

Λ(0)
r ⊕ Λn−2

r ⊕ Gn
p,q,r, n is odd;

Λ(0)
r ⊕ Λn−1

r ⊕ {G1
p,q,0Λ

n−1
r } ⊕ {G2

p,q,0Λ
n−2
r }, n is even;

Ž1
p,q,r ∩ Ž2

p,q,r =

{

Λ(0)
r ⊕ Λn

r , n is odd;
Λ(0)
r ⊕ Λn−1

r , n is even;

Ž2
p,q,r∩ Ž3

p,q,r =

{

Λ(0)
r ⊕Λn

r ⊕{G1
p,q,0Λ

n−1
r }, n is odd;

Λ(0)
r ⊕Λn−1

r ⊕{G1
p,q,0Λ

≥n−2
r }⊕{G2

p,q,0Λ
n−2
r },n is even;

〈Z1
p,q,r〉(0) = Λ(0)

r , 〈Z2
p,q,r〉(0) =

{

Λ(0)
r , n is odd; n is even, r = n;

Λ(0)
r ⊕ Gn

p,q,r, n is even, r �= n;

〈Z3
p,q,r〉(0) =

{

Λ(0)
r ⊕ {G1

p,q,0Λ
n−2
r } ⊕ {G2

p,q,0Λ
n−3
r }, n is odd;

Λ(0)
r ⊕ {G1

p,q,0Λ
n−1
r } ⊕ {G2

p,q,0Λ
n−2
r }, n is even.

Proof. First, let us prove (5.5) and (5.6). We get

Z23
p,q,r = Z2

p,q,r ∩ Z3
p,q,r = Z2

p,q,r ∩ Z3
p,q,r (5.9)

by Theorem 5.1. For k = 1, 2, 3, we obtain

Z0k
p,q,r = Z0

p,q,r ∩ Zk
p,q,r = Z4

p,q,r ∩ Zk
p,q,r = Zk

p,q,r, (5.10)

using Zk
p,q,r = Zk

p,q,r, Z0
p,q,r = Z4

p,q,r by Theorem 5.1 and Zk
p,q,r ⊆ Z4

p,q,r by
Remark 3.7. Since Z1

p,q,r = Zp,q,r by Remark 4.3, we get Z01
p,q,r = Zp,q,r.

Similarly, for l = 2, 3, we obtain

Z1l
p,q,r = Z1

p,q,r ∩ Zl
p,q,r = Z1

p,q,r ∩ Zl
p,q,r = Zp,q,r ∩ Zl

p,q,r = Zp,q,r, (5.11)

where we use Zp,q,r ⊆ Z2
p,q,r and Zp,q,r ⊆ Z3

p,q,r by the formula (3.40) of
Remark 3.7.

Let us prove (5.7). We get

Ž12
p,q,r =Ž1

p,q,r∩Ž2
p,q,r =Ž1

p,q,r∩Ž2
p,q,r, Ž23

p,q,r =Ž2
p,q,r∩Ž3

p,q,r =Ž2
p,q,r∩Ž3

p,q,r,

and Ž13
p,q,r = Ž1

p,q,r ∩ Ž3
p,q,r = Ž1

p,q,r ∩ Ž3
p,q,r = Ž1

p,q,r, using Theorem 5.1 and
Ž1
p,q,r ⊆ Ž3

p,q,r by Remark 3.7. Now we prove (5.8). For k = 1, 2, 3, we get

Ž0k
p,q,r = Ž0

p,q,r ∩ Žk
p,q,r = Z4

p,q,r ∩ G(0)
p,q,r ∩ Žk

p,q,r

= Žk
p,q,r ∩ G(0)

p,q,r = Zk
p,q,r ∩ G(0)

p,q,r = 〈Zk
p,q,r〉(0),

using Theorem 5.1, Žk
p,q,r ⊆ Z4

p,q,r by Remark 3.7, and (3.5). �

In Table 1, we present a comprehensive list of the centralizers and
twisted centralizers of the subspaces determined by the grade involution and
the reversion Gk

p,q,r and their direct sums Gkl
p,q,r, k, l = 0, 1, 2, 3. The first

column indicates different centralizers Zk
p,q,r and twisted centralizers Zkl

p,q,r,
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k, l = 0, 1, 2, 3. The second column contains the corresponding (see Theo-
rems 5.1 and 5.2) centralizers Zm

p,q,r and twisted centralizers Žm
p,q,r of the sub-

spaces of fixed grades Gm
p,q,r, while the third column contains their explicit

forms.

Remark 5.3. The equalities for the centralizer Z02
p,q,r and the twisted central-

izer Ž02
p,q,r of the even subspace presented in the formulas (5.6) and (5.8) are

proved in Lemma 3.2 [11] in the case of the degenerate and non-degenerate
algebras Gp,q,r. In the non-degenerate case Gp,q,0, the set Z02

p,q,0 is considered,
for example, in [12,14,24] and the set Ž02

p,q,0 is considered in [9]. The other
equalities in the formulas (5.5)–(5.8) are presented for the first time.

In “Appendix A”, we consider the twisted centralizers Z̃m
p,q,r and Z̃km

p,q,r

defined as

Z̃m
p,q,r := {X ∈ Gp,q,r : X〈V 〉(0) + ̂X〈V 〉(1) = V X, ∀V ∈ Gm

p,q,r},

Z̃km
p,q,r :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Zk
p,q,r ∩ Žm

p,q,r k is even, m is odd;

Zk
p,q,r ∩ Zm

p,q,r = Zkm
p,q,r, k = 0, m = 2;

Žk
p,q,r ∩ Žm

p,q,r = Žkm
p,q,r, k = 1, m = 3;

and write out their explicit forms.

6. Conclusions

In this work, we consider the centralizers and twisted centralizers in degen-
erate and non-degenerate Clifford algebras Gp,q,r. In Theorems 3.6, 5.1, and
5.2, we find an explicit form of the centralizers and the twisted centralizers

Zk
p,q,r, Zm

p,q,r, Zml
p,q,r, Žk

p,q,r, Žm
p,q,r, Žml

p,q,r

of the subspaces of fixed grades Gk
p,q,r, k = 0, 1, . . . , n, the subspaces Gm

p,q,r,
m = 0, 1, 2, 3, determined by the grade involution and the reversion, and
their direct sums Gml

p,q,r, m, l = 0, 1, 2, 3. In particular, we consider the cen-

tralizers and twisted centralizers of the even G(0)
p,q,r and odd G(1)

p,q,r subspaces.
The relations between Zk

p,q,r and Žk
p,q,r for different k are considered in Re-

mark 3.7. We also consider the relation between their projections 〈Zk
p,q,r〉(1)

and 〈Žk
p,q,r〉(1) onto the odd subspace G(1)

p,q,r in Lemmas 3.1, 3.2 and Remark
3.3.

In the particular cases of the non-degenerate Clifford algebras Gp,q,0 and
the Grassmann algebras G0,0,n, the considered centralizers and the twisted
centralizers have a simpler form than in the general case of arbitrary Gp,q,r

(see Remarks 4.1 and 4.2 respectively). In the particular case of small k, the
centralizers Zk

p,q,r and the twisted centralizers Žk
p,q,r have simple form as well

and are written out in Remark 4.3 for k ≤ 4.
In the further research, we are going to use the explicit forms of the

centralizers and the twisted centralizers presented in Theorems 3.6, 5.1, and
5.2 to define and study several families of Lie groups in Gp,q,r. These groups
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preserve the subspaces Gm
p,q,r and their direct sums under the adjoint and

twisted adjoint representations. These Lie groups can be considered as gen-
eralizations of Clifford and Lipschitz groups and are important for the theory
of spin groups. We hope that the explicit forms of centralizers and twisted cen-
tralizers can be useful for applications of Clifford algebras in physics [6,8,15],
computer science, in particular, for neural networks and machine learning
[3,4,16,21,22], image processing [2,8], and in other areas.
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Appendix A. Twisted centralizers Z̃m
p,q,r , Z̃

m
p,q,r , and Z̃km

p,q,r

This paper considers the twisted centralizers Žm
p,q,r, m = 0, . . . , n, defined as

(3.3). As recommended by one of the respected reviewers, we consider the
other twisted centralizers of the fixed grade subspaces defined as

Z̃m
p,q,r := {X ∈ Gp,q,r : X〈V 〉(0) + ̂X〈V 〉(1) = V X, ∀V ∈ Gm

p,q,r}.(A.1)

This definition corresponds to the twisted adjoint representation ãd (see the
formula (4.12) in Sect. 4). We have

Z̃m
p,q,r =

{

Zm
p,q,r, m is even,

Žm
p,q,r, m is odd.

(A.2)
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In the case m = 0, we have by (3.6)

Z̃0
p,q,r = Gp,q,r. (A.3)

Using Theorem 3.6, we get an explicit form (A.4)–(A.5) of Z̃m
p,q,r, m =

1, . . . , n. For an arbitrary even m, where n ≥ m ≥ 2, the twisted central-
izer has the form

Z̃m
p,q,r=Λ≤n−m−1

r ⊕
m−3
⊕

k=1 mod 2

{Gk
p,q,0Λ

≥n−(m−1)
r }

⊕
m−2
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−m
r }⊕ Gn

p,q,r.

(A.4)

For an arbitrary odd m, where n ≥ m ≥ 1, we have

Z̃m
p,q,r = Λ≤n−m−1

r ⊕
m−2
⊕

k=1 mod 2

{Gk
p,q,0Λ

≥n−(m−1)
r } ⊕

m−1
⊕

k=0 mod 2

{Gk
p,q,0Λ

≥n−m
r }.

(A.5)

Consider the twisted centralizers of the subspaces Gm
p,q,r,

m = 0, 1, 2, 3:

Z̃m
p,q,r := {X ∈ Gp,q,r : X〈V 〉(0) + ̂X〈V 〉(1) = V X, ∀V ∈ Gm

p,q,r}.

(A.6)

Note that

Z̃m
p,q,r =

{

Zm
p,q,r, m is even,

Žm
p,q,r, m is odd.

(A.7)

We have

Z̃0
p,q,r = Z4

p,q,r; Z̃k
p,q,r = Žk

p,q,r, k = 1, 3; Z̃2
p,q,r = Z2

p,q,r. (A.8)

Consider the twisted centralizers of the direct sums Gkm
p,q,r, k,m = 0, 1, 2, 3:

Z̃km
p,q,r :=

⎧

⎪

⎨

⎪

⎩

Zk
p,q,r ∩ Žm

p,q,r k is even, m is odd;
Zk
p,q,r ∩ Zm

p,q,r = Zkm
p,q,r, k = 0, m = 2;

Žk
p,q,r ∩ Žm

p,q,r = Žkm
p,q,r, k = 1, m = 3.

(A.9)

We have

Z̃02
p,q,r = Z02

p,q,r = Z2
p,q,r =

{

Λr ⊕ Gn
p,q,r, r �= n,

Λr, r = n,
(A.10)

Z̃13
p,q,r = Ž13

p,q,r = Z̃01
p,q,r = Z̃12

p,q,r = Λr, (A.11)

Z̃03
p,q,r =

{

Λr ⊕ {G1
p,q,0Λ

≥n−2
r } ⊕ {G2

p,q,0Λ
≥n−3
r }, r �= n,

Λr, r = n,
(A.12)

Z̃23
p,q,r =

{

Λr ⊕ {G1
p,q,0Λ

n−1
r } ⊕ {G2

p,q,0Λ
n−2
r }, r �= n,

Λr, r = n.
(A.13)
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