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Abstract. Building from ideas of hypercomplex analysis on the quater-
nionic unit ball, we introduce Hermitian, Riemannian and Kähler-like
structures on the latter. These are built from the so-called regular Möbius
transformations. Such geometric structures are shown to be natural gen-
eralizations of those from the complex setup. Our structures can be
considered as more natural, from the hypercomplex viewpoint, than
the usual quaternionic hyperbolic geometry. Furthermore, our construc-
tions provide solutions to problems not achieved by hyper-Kähler and
quaternion-Kähler geometries when applied to the quaternionic unit
ball. We prove that the Riemannian metric obtained in this work yields
the same tensor previously computed by Arcozzi–Sarfatti. However, our
approach is completely geometric as opposed to the function theoretic
methods of Arcozzi–Sarfatti.
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1. Introduction

The hyperbolic spaces lie at the core of geometry and provide some of the
most fundamental objects. Among them, the lower dimensional ones are par-
ticularly interesting. The 2-dimensional real hyperbolic space yield the 1-
dimensional complex hyperbolic space, and the 4-dimensional real hyperbolic
space coincides with the 1-dimensional quaternionic hyperbolic space. It is
well known that these occurrences are a consequence of some algebraic facts.

∗Corresponding author.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-024-01343-w&domain=pdf
http://orcid.org/0000-0002-6742-7530


41 Page 2 of 24 R. Quiroga-Barranco Adv. Appl. Clifford Algebras

They come from the properties of the complex numbers C and the quater-
nionic numbers H. They are also related to the local isomorphisms of Lie
groups SO(2, 1) � SU(1, 1) and SO(4, 1) � Sp(1, 1).

The fact that the 2-dimensional real hyperbolic geometry is essentially
the 1-dimensional complex hyperbolic geometry is very much related to the
holomorphic function theory associated to the complex plane. For exam-
ple, the holomorphic isometries of the latter are precisely the orientation-
preserving isometries of the former. The use of holomorphic functions also
bring into play the notion of a Kähler form and the corresponding symplectic
geometry.

One might expect that the coincidence between the 4-dimensional real
and 1-dimensional quaternionic hyperbolic geometries can also be related to
a suitable function theory supported by the quaternions H. However, it is well
known that a naive straightforward generalization of holomorphicity from C

to H does not yield the desired results, mainly due to the non-commutativity
of H. Nevertheless, it has also been shown that the introduction of appro-
priate notions of regularity or “hyperholomorphicity” produce very useful
function theories on H. In this work we will focus on the notion of slice or
Cullen regularity deeply studied in [13] (see also [11,12]). Besides allowing
to generalize many of the classical complex theorems, slice regularity has a
natural characterization: on unit balls centered at the origin, slice regular
functions are precisely those with a power series expansion with right coef-
ficients. Furthermore, the current literature shows that a mature and very
well developed so-called hypercomplex analysis is readily available through
the use of slice regularity and their extensions. As an example, we refer to
[9,11] for corresponding extensions in the case of Clifford algebras. It is also
important to mention [5], where results for self-maps of the complex unit disc
are extended to the quaternionic unit ball. This kind of developments are at
the heart of this work.

On the other hand, the isometries of the 1-dimensional quaternionic
hyperbolic geometry are given by suitable linear fractional transformations
of H, which turn out to be, in general, non-regular. Related to this fact, it was
proved in [4] that the geometry on the quaternionic unit ball is not isometric
to the Kobayashi geometry on the complex 2-dimensional unit ball in C

2.
In other words, there is a marked incompatibility between the quaternionic
hyperbolic geometry with 2-dimensional complex geometries as well.

Nevertheless, using the natural so-called regular product, [16] developed
the notion of regular linear fractional transformations, also referred as regu-
lar Möbius transformations. These are the natural ones to consider from the
viewpoint of hypercomplex analysis. Hence, on the unit ball B of H centered
at the origin we have two sorts of Möbius transformations, regular and non-
regular, while B carries the metric realizing both the 4-dimensional real and
1-dimensional quaternionic hyperbolic geometries. The non-regular Möbius
transformations preserve such hyperbolic geometry (see [3,7,8]) but does not
relate properly to hypercomplex analysis. The regular Möbius transforma-
tions do relate nicely to the latter but, as shown in [6], regular Möbius trans-
formations do not preserve the hyperbolic geometry. We thus arrive to the
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seemingly impossibility of studying a hypercomplex hyperbolic function the-
ory. However, [6] proposed the problem of a further study of regular Möbius
transformations and the geometry of B. As a matter of fact, it would be inter-
esting to study as well the Clifford algebra case considered in [10]. However,
our focus will lie in the quaternionic unit ball.

We note that [1] has already introduced a Riemannian metric that re-
lates to regular functions. The corresponding geometry was constructed by
considering a quaternionic Hardy space, its corresponding reproducing ker-
nel and a pseudo-hyperbolic distance; the latter mirrors the complex case.
Finally, it is proved in [1] that such distance yields indeed a Riemannian
metric. Furthermore, several non-trivial and interesting geometric properties
for this geometry are obtained. On the other hand, the problem of building
symplectic and/or Hermitian geometries for B are not considered in [1].

The goal of this work is to present a solution to the problems formu-
lated so far on the analysis and geometry of B. We introduce in Sect. 5 what
we call slice geometric structures on B, which include Hermitian, Riemannian
and Kähler-like geometries of a truly quaternionic nature (see Definition 5.6).
These are constructed out of regular Möbius transformations in a similar way
as the corresponding structures on the unit disk on the complex plane are
obtained from (complex holomorphic) Möbius transformations. Our slice geo-
metric structures are computed explicitly and some fundamental properties
are obtained in Sect. 6, see Theorems 5.7, 6.1 and 6.7, thus verifying that
they satisfy their claimed nature.

It is important to note some relevant facts on our methods. We prove
in Theorem 5.1 that the non-regular Möbius transformations leave invariant
(essentially) only the 1-dimensional quaternionic hyperbolic metric, which we
denote by ̂G, and that there are no Hermitian or Kähler-like structures on
B invariant under such non-regular maps. This is one of the reasons for our
approach: to consider regular Möbius transformations and replace the metric
̂G with some other geometric structures related to slice regularity. We have
effectively used hypercomplex analysis as the guiding light to determine the
most adequate geometry on B.

We believe our approach leads to very reasonable alternative structures
on B. For example, Theorem 6.1 shows that our slice Riemannian metric G

can be seen as a perturbation of the hyperbolic Riemannian metric ̂G. We
have also shown in Corollary 6.2 and Theorem 6.7 that both our slice Rie-
mannian and slice Kähler structures restrict to their usual classical complex
counterparts on the slices of B through the origin, which are unit disks in
corresponding complex planes.

Another important feature appears in our development: the Riemann-
ian metric from [1] and our slice Riemannian metric turn out to be the same
exact tensor, as it is proved in Theorem 6.4. As noted above, the results from
[1] make strong use of function space theoretic methods (see Sect. 6 for some
details). Our approach is almost exclusively based on transformations that
mirror the group theoretic methods of the complex case. For the quaternionic
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unit ball B the regular Möbius transformations is not a group, but we by-
pass the difficulties involved by taking advantage of the known fundamental
properties of such transformations (see [11,12]).

The fact that the Riemannian metrics constructed in [1] and in this
work are the same reveals a fundamental property: both the function space
theoretic and the geometric/group-like methods yield the same Riemannian
geometry on B. One can argue in favor of the latter method since it turns out
to be more straightforward computation-wise. Another contribution of this
work is the construction of a Kähler-like structure on B nicely related to the
Riemannian metric that we have discussed.

On the other hand, an important feature of hypercomplex analysis of
slice regular functions are the so-called representation formulas: every regular
function can be determined from its values on a single slice. We prove in
Corollaries 6.6 and 6.10 that our three slice geometric structures, Riemannian,
Hermitian and Kähler, satisfy similar representation formulas, i.e. they can
be recovered from a single slice. Furthermore, our formulas can be seen as
invariant, in the Riemannian case, and equivariant, in the Hermitian and
Kähler cases, identities with respect to the action by conjugation of the group
of unit quaternions. The latter is by itself an interesting set of facts from the
viewpoint of Lie theory.

We recall that differential geometry has already provided an approach
to the quaternionic setup: hyper-Kähler and quaternion-Kähler manifolds.
We discuss in Remark 6.11 the relationship between those notions and our
slice regular approach. As noted there, our methods are better fit to both
geometry and hypercomplex analysis on B. In particular, we observe that
B, with the usual hyperbolic metric ̂G, is not hyper-Kähler and, although
it is quaternion-Kähler, it does not provide globally defined 2-forms. Our
approach does yield both a Kähler-like structure and 2-forms associated to a
Riemannian metric G nicely adapted to hypercomplex analysis.

As for the distribution of this work, Sects. 2 and 3 introduce our two
main tools: slice regularity and Möbius transformations, both non-regular and
regular. The brief Sect. 4 recalls the construction of the geometric structures
on the complex unit disk. As described above, Sects. 5 and 6 contain the
main constructions and results.

The author would like to thank Cinzia Bisi and Caterina Stoppato for
their input, which allowed to improve this work. The input from the anony-
mous reviewers has also provided very useful information that resulted on a
much better version of this work.

2. Slice Regular Functions

We will denote from now on by H the division real algebra of quaternions
and by B its unit ball centered at the origin. As usual Re and Im will de-
note the real part and imaginary part functions defined on H. In particular,
Im(H) denotes the space of purely imaginary quaternions so that its subset S,
consisting of the unitary purely imaginary quaternions, is the 2-dimensional



Vol. 34 (2024) Geometric Structures on the Quaternionic Unit Ball Page 5 of 24 41

sphere of imaginary units of H. For every I ∈ S, we will denote by CI the
complex plane in H whose elements are of the form x + yI, where x, y ∈ R.
Correspondingly, the slice of B determined by a given I ∈ S will be denoted
by DI = B∩CI , which is the unit disk in CI . We will also consider the com-
plex plane C in the classical sense and denote by D its unit disk centered at
the origin. Note that, in this work and for the case of C (not considered as
contained in H), the real and imaginary parts will have their classical mean-
ing as real numbers. This is important to keep in mind since we will have the
occasion to deal with some classical complex geometric objects.

The fundamental notion of slice regularity as first formulated in [13]
(see also [11,12]) is introduced in the following definition.

Definition 2.1. A function f : B → H is called slice regular if the equation

1
2

(

∂

∂x
+ I

∂

∂y

)

f(x + yI) = 0

is satisfied for every I ∈ S and x, y ∈ R such that x + yI ∈ B.

The theory of slice regular functions on B, and furthermore on suitable
domains of H, has been deeply developed. We will use well known facts from
this theory and refer to [12] for further details. However, we will have the
occasion to provide precise references when this helps to clarify our discussion.

Every slice regular function f : B → H admits a power series expansion

f(q) =
∞
∑

n=0

qnan

with coefficients in H that converges uniformly on compact sets. Conversely,
every such convergent power series yields a slice regular function on B (see
[12, Sect. 1.1]). This allows us to introduce the following constructions for
slice regular functions on B. We refer to [11,12] for further details and the
proofs of our claims below.

Definition 2.2. For f, g : B → H slice regular functions admitting power series
expansions

f(q) =
∞
∑

n=0

qnan, g(q) =
∞
∑

n=0

qnbn

the (slice regular) ∗-product is the function f ∗ g : B → H given by

f ∗ g(q) =
∞
∑

n=0

qn
∑

k+l=n

akbl,

for every q ∈ B.

It is a well known fact that the ∗-product of slice regular functions is slice
regular, and also that the space of all such functions becomes a real algebra
with the ∗-product. Furthermore, one can define reciprocals with respect to
the ∗-product as follows.
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Definition 2.3. Let f : B → H be a slice regular function with power series
expansion given by

f(q) =
∞
∑

n=0

qnan.

The regular conjugate fc : B → H is the (slice regular) function given by

fc(q) =
∞
∑

n=0

qnan.

The symmetrization fs of f is the (slice regular) function defined as
fs = fc ∗ f = f ∗ fc. The regular reciprocal of f is the function f−∗ :
B\Zfs → H defined as

f−∗ =
1
fs

fc,

where Zfs is the zero set of fs.

It is a fundamental fact that all the functions introduced in Defini-
tion 2.3 are slice regular.

3. Linear Fractional Transformations

We will recall the two main notions of linear fractional transformations as-
sociated to the unit ball B. This are built from the Lie groups that we now
proceed to define.

Let us denote

I1,1 =
(

[r]1 0
0 −1

)

the matrix that yields pseudo-Hermitian inner products of signature (1, 1) on
both C

2 and H
2. The corresponding isometry groups for those inner prod-

ucts are

U(1, 1) = {A ∈ M2(C) | A∗I1,1A = I1,1},

Sp(1, 1) = {A ∈ M2(H) | A∗I1,1A = I1,1},

called the pseudo-unitary, complex and quaternionic, respectively, Lie groups
of signature (1, 1). We also have the Lie groups T and Sp(1) which consist of
the complex and quaternionic elements, respectively, with norm 1. In partic-
ular, both are the unit spheres centered at the origin in their corresponding
division real algebras. Finally, we will denote by T × T and Sp(1) × Sp(1)
the groups of 2 × 2 diagonal matrices with entries in T and Sp(1) in the di-
agonal, respectively. It is straightforward to check that T × T ⊂ U(1, 1) and
Sp(1) × Sp(1) ⊂ Sp(1, 1). Moreover, both are maximal compact subgroups
(see [15]).

We will consider the right Sp(1, 1)-action on B given by

FA(q) = q · A = (qc + d)−1(qa + b)
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for every q ∈ B and where A ∈ Sp(1, 1) has the expression

A =
(

a c
b d

)

.

The map FA will be called the Möbius transformation of B associated to
the matrix A ∈ Sp(1, 1). The set of all such Möbius transformations will
be denoted by M(B). We recall that M(B) is a Lie group isomorphic to
Sp(1, 1)/{±I2} (see [3]).

Remark 3.1. It is a known fact that the action of Sp(1, 1) on B defined above
realizes all linear fractional transformations, with right coefficients, that map
B onto itself. We refer to [3,7,8] for the proof of this claim. We observe that
in most of the previous works dealing with quaternionic Möbius transforma-
tions, with some exceptions as, for example, [3,6], one considers coefficients
on the left which lead to a corresponding left action. We have chosen to use
coefficients and corresponding action on the right to better resemble slice reg-
ular maps. Left multiplication by a constant quaternion is not slice regular
but right multiplication is.

On the other hand, [16] introduced the regular counterpart of linear
fractional transformations (see also [12]). For every A ∈ Sp(1, 1) as above
the regular Möbius transformation of B associated to A is the (regular) map
FA : B → B given by

FA(q) = (qc + d)−∗ ∗ (qa + b).

Every regular Möbius transformation is a homeomorphism of B. However, as a
consequence of the properties of the regular product, the assignment A �→ FA

is not a group homomorphism. Nevertheless, these are the transformations
that better fit the analysis of slice regular functions. We will denote by M(B)
the set of all regular Möbius transformations. In particular, M(B) is not a
group for the usual composition of functions. However, it is interesting to
note that M(B) is the orbit of the identity map on B for a suitable Sp(1, 1)-
action: see [12, Corollary 9.17] for further details. In other words, M(B) does
have a close relationship with a Lie group, namely Sp(1, 1).

Whenever we need to clearly distinguish the transformations of M(B)
with those obtained from the Sp(1, 1)-action considered above, we will refer
to the latter as non-regular Möbius transformations.

We recall the following alternative description of the elements in M(B).

Proposition 3.2. [16] A map F : B → B is a regular Möbius transformation
if and only if there exist a ∈ B and u ∈ Sp(1) such that

F(q) = (qa − 1)−∗ ∗ (q − a)u.

In such case, a and u are uniquely associated to F .

Note that we have applied a change of sign in such expression with
respect to the one found in [12,16]. This will be convenient for our computa-
tions.
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We establish in the next result some properties for the previous expres-
sion of regular Möbius transformations that will be useful for our purposes.
Nevertheless, this result is interesting by itself.

Proposition 3.3. For every a ∈ B, let us denote by Fa the regular Möbius
transformation defined by Fa(q) = (qa − 1)−∗ ∗ (q − a), for every q ∈ B.
Then, Fa satisfies

Fa(q) = (q2|a|2 − 2q Re(a) + 1)−1(q2a − q(a2 + 1) + a),

for every q ∈ B. Furthermore, the following holds for every a ∈ B.

1. Fa(a) = 0, Fa(0) = a and F0(q) = −q, for all q ∈ B.
2. Fa is a diffeomorphism whose directional derivative at a in the direction

of α is given by

d (Fa)a(α) =
(1 − a2)−1(aαa − α)

1 − |a|2 ,

for every α ∈ H.

Proof. Let us fix a ∈ B and consider the functions on B defined by the
expressions

f(q) = qa − 1, g(q) = q − a,

so that we have

Fa =
1
fs

fc ∗ g.

From the definitions we can compute

fs(q) = (qa − 1) ∗ (qa − 1) = q2|a|2 − 2q Re(a) + 1
(

fc ∗ g
)

(q) = q2a − q(a2 + 1) + a,

for every q ∈ B.
On the other hand, we note that either f ≡ −1 (for a = 0), or we have

f(q) = 0 if and only if q = (a)−1. Since |(a)−1| > 1, we conclude that f
does not vanish in B, and so [12, Proposition 3.10] implies that fs does not
vanish in B either. Hence we obtain the formula for Fa in the statement and
also conclude that its expression is well-defined: i.e. its denominator does not
vanish in B.

From the previous remarks, we can evaluate to conclude that Fa(a) = 0
and Fa(0) = a. For a = 0, it is straightforward to see that F0(q) = −q, for
all q ∈ B. In particular we obtain (1).

For the first claim in (2) we use Corollary 8.24 and Theorem 9.12 from
[12]. The latter implies that Fa is a homeomorphism, in particular injective,
and so the former implies that Fa is a local diffeomorphism. It follows that
Fa is a diffeomorphism.
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To obtain the formula in (2) we compute as follows

d (Fa)a(α) =
d
dt

∣

∣

∣

t=0
Fa(a + tα)

=
d
dt

∣

∣

∣

t=0

(

(

(a + tα)2|a|2 − 2(a + tα)Re(a) + 1
)−1

· (

(a + tα)2a − (a + tα)(a2 + 1) + a
)

)

=
(

d
dt

∣

∣

∣

t=0

(

(a + tα)2|a|2 − 2(a + tα)Re(a) + 1
)−1

)

· (

a3 − a(a2 + 1) + a
)

+
(

a2|a|2 − 2aRe(a) + 1
)−1

· d
dt

∣

∣

∣

t=0

(

(a + tα)2a − (a + tα)(a2 + 1) + a
)

= 0 +
(

a2|a|2 − a(a + a) + 1
)−1((aα + αa)a − α(a2 + 1)

)

=
(

a2|a|2 − a2 − |a|2 + 1
)−1(aαa − α)

=
(

(1 − a2)(1 − |a|2))−1(aαa − α),

which yields the stated expression. We used the chain rule in the first identity.
In the computations that follow, we used Leibniz rule for the product (in H)
of H-valued functions, which is justified from the bilinearity of such product.

�

4. Hermitian Structure on D

In this section we recall the group theoretic construction of the Hermitian,
Riemannian and Kähler structures on the complex unit disk D ⊂ C. This will
provide the motivation to understand how to deal with the corresponding
problem for B ⊂ H.

Consider the right action of U(1, 1) on the unit disk D by Möbius trans-
formations which is given by

z · A = (zc + d)−1(za + b)

where z ∈ D and

A =
(

a c
b d

)

belongs to U(1, 1). The isotropy subgroup of this action at the origin is T×T

which acts on D by

z · (a, d) = dza = zad,

for z ∈ D and a, d ∈ T. The canonical Hermitian inner product of C is
given by

(α, β) �→ αβ, (4.1)
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and we think of it as a Hermitian form at the tangent space of D at the origin
0. The T × T-action on D ⊂ C is R-linear and so the differential at 0 of the
action of elements in T×T is given by the same linear expression. Hence, the
next computation shows that the Hermitian form chosen is T × T-invariant

(αad)(βad) = αβ|a|2|d|2 = αβ, (4.2)

which holds for a, d ∈ T and by the commutativity of C. The next step is to
translate the Hermitian form at 0 to other points using Möbius transforma-
tions. For a given z ∈ D we consider a Möbius transformation ϕ of D such
that ϕ(z) = 0, and we define the Hermitian form hz at the tangent space of
D at z by

hz(α, β) = dϕz(α)dϕz(β), (4.3)

for every α, β ∈ C. If ψ is some other Möbius transformation of D mapping
ψ(z) = 0, then the transformation ϕ ◦ ψ−1 fixes 0 and so we conclude the
existence of (a, d) ∈ T×T such that ϕ◦ψ−1 = R(a,d), where R(a,d) stands for
the right action of the element (a, d) ∈ T × T over D. Hence, we can rewrite
this as

ϕ = R(a,d) ◦ ψ. (4.4)

Then, Eq. (4.2) implies that

dϕz(α)dϕz(β) = dR(a,d)(dψz(α))dR(a,d)(dψz(β)) = dψz(α)dψz(β),

for every α, β ∈ C. It follows that the Hermitian form hz considered in
Eq. (4.3) is well defined for all z ∈ D. A straightforward computation now
yields the following well known result.

Proposition 4.1. Let h be the Hermitian form defined by Eq. (4.3). Then, h
is a Hermitian metric on D with explicit expression given by

hz(α, β) =
αβ

(1 − |z|2)2 ,

for every z ∈ D and α, β ∈ C. Its real and imaginary parts g and ω, respec-
tively, yield the hyperbolic metric on D and its associated Kähler form. All
three tensor forms h, g and ω are U(1, 1)-invariant, i.e. invariant under the
Möbius transformations of D.

Proof. The expression follows by an explicit computation of dϕz for any
choice of ϕ as in the previous discussion. The U(1, 1)-invariance can be proved
easily from its definition and the fact that U(1, 1) acts on D. �

5. Slice Geometric Structures on B

Following the classical complex case described in Sect. 4, we consider the
R-bilinear form

H0(α, β) = αβ, (5.1)
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now defined for α, β ∈ H. We observe that H0 is H-Hermitian for the left
vector space structure of H over itself. We will call these sort of forms left
H-Hermitian. Let us also denote

G0(α, β) = Re(αβ), Ω0(α, β) = Im(αβ), (5.2)

which are defined for α, β ∈ H as well. In this case, G0 is the canonical
positive definite inner product of H � R

4 and Ω0 is an Im(H)-valued anti-
symmetric R-bilinear form. We will think of these three forms, H0, G0 and
Ω0, as defined on the tangent space to B at the origin 0. Note that Eq. (5.1)
corresponds to the classical complex case given by Eq. (4.1). Similarly, the
forms (5.2) correspond to the real part and i-times the imaginary part of (4.1).
To clarify the point, it is important to note that Ω0 is vector-valued, while
the imaginary part of (4.1) is real-valued.

We now consider the Sp(1, 1)-action on B by Möbius transformations
discussed in Sect. 3. As stated in the next result, if we look for Sp(1, 1)-
invariant geometric structures, then we obtain a Riemannian metric but we
do not get a Hermitian metric, nor a 2-form.

Theorem 5.1. Let H0, G0,Ω0 be the forms given by Eqs. (5.1) and (5.2).
Then, the following properties hold.

1. There exists a unique, up to a constant factor, Sp(1, 1)-invariant Rie-
mannian metric on B. In particular, at 0, all of them are a constant
multiple of G0. Furthermore, the Sp(1, 1)-invariant metric whose value
at 0 is G0 has the expression

̂Gq(α, β) =
Re(αβ)

(1 − |q|2)2 ,

where q ∈ B and α, β ∈ H.
2. There do not exist H-valued left Hermitian positive definite tensor forms

on B that are also Sp(1, 1)-invariant.
3. There do not exist Im(H)-valued 2-forms on B whose value at 0 is Ω0

that are also Sp(1, 1)-invariant.

Proof. It is well known (see [3,15]) that the right Sp(1, 1)-action on B is tran-
sitive. Furthermore, if we consider (as before) Sp(1) × Sp(1) as a diagonally
embedded subgroup of Sp(1, 1), then such subgroup is precisely the stabilizer
of 0 for the Sp(1, 1)-action. This can be used to obtain a realization of B as
a homogeneous space that can be described as follows. Our main reference
is [15] which considers left actions as opposed to our right actions. However,
the standard correspondence between these two types of actions can be used
to apply the results in [15] to our setup.

We recall that the coset space

(Sp(1) × Sp(1))\Sp(1, 1)

admits a unique manifold structure such that the Sp(1, 1)-action on the right
is smooth. This is a consequence of [15, Theorem 4.2, Chapter II]. If we
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consider the map given by

(Sp(1) × Sp(1))\Sp(1, 1) → B

(Sp(1) × Sp(1))A �→ FA(0) = 0 · A,

then the previous remarks on the Sp(1, 1)-action show that this is a well-
defined bijection. Furthermore, Theorem 3.2 and Proposition 4.3 in Chap-
ter II of [15] imply that such map is in fact a diffeomorphism, thus providing
a homogeneous space realization of B. We also note that such diffeomorphism
is Sp(1, 1)-equivariant for the right actions on both domain and target.

On the other hand, by [15, Table V, p. 518], the pair

(Sp(1, 1),Sp(1) × Sp(1))

is a so-called Riemannian symmetric pair (see Definition in [15, p. 209]) of
type CII. Hence, [15, Proposition 3.4, Chapter IV] implies the existence of a
Sp(1, 1)-invariant Riemannian metric on the quotient space

(Sp(1) × Sp(1))\Sp(1, 1),

which thus translates into a Sp(1, 1)-invariant Riemannian metric on B as
a consequence of the equivariance satisfied by the diffeomorphism between
these two manifolds. This proves the existence of the Riemannian metric as
stated in (1). To establish uniqueness, we recall that Sp(1, 1) is a simple Lie
group (see Definition in [15, p. 131]) and that the Sp(1) × Sp(1)-action on
the tangent space at 0 in B is irreducible; this follows from the fact that
the symmetric pair (Sp(1, 1),Sp(1) × Sp(1)) is listed in [15, Table V, p. 518].
Hence, by the remarks at the end of page 255 in [15] the Riemannian metric
in B is unique, up to a constant positive factor. Also note that, for every
u, v ∈ Sp(1) and α, β ∈ H we have

Re(uαvuβv) = Re(uαβu) = Re(αβ),

thus proving that G0 is Sp(1)×Sp(1)-invariant, and so G0 is unique, up to a
constant factor, by the irreducibility mentioned above. To complete the proof
of (1) we note that the expression for ̂G has been computed in [3]: for further
details see [3, Theorem 1.9] and the remarks before this result.

Next, we claim that Ω0 is not Sp(1) × Sp(1)-invariant, and so that
the same holds for H0. To see this, let us assume that u ∈ Sp(1) satisfies
Im(uαuβ) = Im(αβ), for all α, β ∈ H. Then, by choosing β = 1 we conclude
that Im(uαu) = Im(α), which is easily seen to imply that αu = uα, for all
α ∈ H, because |u| = 1. Hence, we conclude that u = ±1, thus proving our
claim.

Let us assume the existence of an Sp(1, 1)-invariant H-valued left Her-
mitian positive definite tensor form on B and let T0 be its value at 0. In
particular, T0 is an Sp(1) × Sp(1)-invariant H-valued left Hermitian posi-
tive definite form on H. By The Basis Theorem 2.46 from [14], applied to
the H-Hermitian symmetric type (see [14, p. 21]), there exists c > 0 such
that H0 = cT0. This implies that H0 is Sp(1) × Sp(1)-invariant, which is a
contradiction. This proves (2).



Vol. 34 (2024) Geometric Structures on the Quaternionic Unit Ball Page 13 of 24 41

Finally, the non-invariance of Ω0 for the Sp(1)×Sp(1)-action and argu-
ments similar to those used above yield (3). �

Remark 5.2. Theorem 5.1 can be seen as proving that non-regular Möbius
transformations do not provide invariant Hermitian and symplectic geometric
structures on B of a quaternionic nature. By comparing the proof of Theo-
rem 5.1 with the constructions from Sect. 4 one can readily see that this fact
is a direct consequence of the non-commutativity of H.

On the other hand, Theorem 5.1(1) is a restatement of the well known
existence and uniqueness of an Sp(1, 1)-invariant metric on B (see [3,15]). In
fact, the Riemannian metric ̂G above is indeed the one studied in [3].

In order to obtain Hermitian and symplectic-like geometric structures
on B of a true quaternionic nature we set our sights on M(B), the regular
Möbius transformations. Following the ideas from Sect. 4 we first note that,
in contrast to the arguments found in the proof of Theorem 5.1, the tensor
H0, and so G0 and Ω0, is invariant under the regular Möbius transformations
that fix the origin. We describe the latter, along with some properties, in the
next result, whose first part follows from [12, Lemma 9.19].

Proposition 5.3. Let us denote by M(B)0 the set of regular Möbius transfor-
mations of B that fix 0. Then, the following properties hold.

1. The right action of Sp(1) on B given by

(q, u) �→ qu = Ru(q),

yields maps of B that realize M(B)0. In other words, M(B)0 consists of
the set of transformations Ru, for u ∈ Sp(1). In particular, M(B)0 is a
group isomorphic to Sp(1) acting on the right on B and fixing 0.

2. The differential at 0 of the M(B)0-action on B leaves invariant the form
H0. In particular, the same holds for G0 and Ω0.

Proof. As noted above, (1) is a consequence of [12, Lemma 9.19].
Since the M(B)0-action on B is R-linear, its differential has the same

expression. Hence, the trivial identity

(αu)(βu) = αβ,

which holds for every α, β ∈ H and u ∈ Sp(1), yields the proof of (2). �

Remark 5.4. The Sp(1)-invariance of H0 is the first step to build geometric
structures on B out of regular Möbius transformations. It is important to note
that Proposition 5.3 has provided a sort of isotropy at 0 for such transforma-
tions, which turns out to be an actual group. However, for the composition
of maps, M(B) is not a group and so at this point the full group theoretic
argument used in Sect. 4 for the classical complex case breaks down. Never-
theless, the next result provides the analog of Eq. (4.4) for regular Möbius
transformations. It is worthwhile to mention that the techniques from [5] are
similar in spirit, since such work considers regular self-maps of B that fix the
origin.
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Lemma 5.5. Let F1 and F2 be regular Möbius transformations of B. If there
is some q ∈ B such that F1(q) = F2(q) = 0, then there exists u ∈ Sp(1) for
which we have F1 = Ru ◦ F2.

Proof. By Proposition 3.2, there exist a1, a2 ∈ B and u1, u2 ∈ Sp(1) such
that Fi = Rui

◦Fai
, for i = 1, 2, where Fai

are given as in Proposition 3.3. In
particular, we have Fa1(q) = Fa2(q) = 0, and so Proposition 3.3(1) implies
that a1 = a2 = q. Hence, Fa1 = Fa2 and we conclude

F1 = Ru ◦ F2,

for u = u−1
2 u1 ∈ Sp(1). �

The next definition introduces geometric structures on B using regular
Möbius transformations. This is the analog of Eq. (4.3) considered for the
classical complex case.

Definition 5.6. For every q ∈ B, let us define the forms Hq, Gq and Ωq by

Hq(α, β) = dFq(α)dFq(β)

Gq(α, β) = Re
(

dFq(α)dFq(β)
)

Ωq(α, β) = Im
(

dFq(α)dFq(β)
)

for every α, β ∈ H, where F ∈ M(B) satisfies F(q) = 0. The tensors H,
G and Ω thus obtained on B will be called the slice Hermitian metric, the
slice Riemannian metric and the slice 2-form of B, respectively. We may also
abbreviate their names to s-Hermitian, s-Riemannian and s-2-form. All three
of them will be called the slice geometric or s-geometric structures of B.

With the constructions considered so far, it is now easy to prove that
H, G and Ω are well defined. We will also establish the first properties of the
slice geometric structures of B in the next result.

Theorem 5.7. The tensors H, G and Ω from Definition 5.6 are well defined
and smooth. The slice Hermitian metric H has the following explicit expres-
sion

Hq(α, β) =
(1 − q2)−1(α − qαq)(β − qβq)(1 − q2)−1

(1 − |q|2)2 ,

for every q ∈ B and α, β ∈ H. Furthermore, the following properties are
satisfied.

1. H is R-bilinear.
2. H is Hermitian symmetric in the sense that Hq(α, β) = Hq(β, α), for

every q ∈ B and α, β ∈ H.
3. H is positive definite, i.e. for every q ∈ B and α ∈ H we have Hq(α, α) ≥

0, with equality only for α = 0.

Proof. For a given q ∈ B, let F1,F2 ∈ M(B) be such F1(q) = F2(q) = 0. By
Lemma 5.5, there exists u ∈ Sp(1) such that F1 = Ru ◦F2. Since Ru is linear
it is equal to its differential and we conclude that for every α, β ∈ H we have

d (F1)q(α)d (F1)q(β) =
(

d (F2)q(α)u
)(

d (F2)q(β)u
)

= d (F2)q(α)d (F2)q(β).
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This proves that all three tensors H, G and Ω are well defined. Hence, the
definition of H clearly implies claims (1) and (2).

For a given q ∈ B, it is straightforward to compute the formula for Hq by
choosing Fq as the transformation mapping q to 0 and using the expression
for its differential at q obtained in Proposition 3.3(2). The formula for H now
implies the smoothness of all three tensors.

Finally, to prove the positive definiteness of H let us choose q ∈ B and
α ∈ H. Then, we clearly have

Hq(α, α) =
|α − qαq|2

|1 − q2|2(1 − |q|2)2 ≥ 0.

If this expression vanishes, then we have α = qαq. For q = 0, this implies
α = 0. On the other hand, if both q and α are non-zero, then we conclude
that

|α| = |qαq| = |q|2|α| < |α|.
This contradiction proves that α = 0 when q �= 0 as well. This yields (3) and
concludes the proof. �

Remark 5.8. We note that the H-valued tensor H is not left H-Hermitian at
every point. Such property of H0 has been lost. However, the properties of H0

have been replaced by the R-bilinearity and Hermitian positivity obtained in
(1) and (2) of Theorem 5.7. On the other hand, all three tensors H, G and Ω
can be considered as invariantly obtained from regular Möbius transforma-
tions, as it follows immediately from their definition. Full invariance cannot
be even considered since M(B) is not a group for the composition of maps.
Nevertheless, we will see in the next section that some useful properties are
satisfied by the slice geometric structures.

6. Properties of the Slice Geometric Structures on B

The tensors G and Ω can be given explicit expressions by simply taking the
real and imaginary parts, respectively, of H. However, we can obtain simpler
formulas. To achieve this, we introduce some notation.

For every I ∈ S, we consider the decomposition

H = CI ⊕ CIJ,

where J is any element of S that anti-commutes with I. This decomposition
is orthogonal for the canonical inner product of H � R

4. In particular, CIJ is
the orthogonal complement for such inner product and so it does not depend
on the choice of J . We will denote from now on by πI and π⊥

I the orthogonal
projections from H onto CI and (CI)⊥ = CIJ , respectively.

It follows from the proof of Theorem 5.7 that G is indeed a smooth
Riemannian metric. The next result further provides for G some useful sim-
plified formulas. Recall that ̂G is the Sp(1, 1)-invariant metric on B from
Theorem 5.1(1). Also, and as usual, TqB will denote the tangent space to B

at a point q; note that this space is naturally isomorphic (as a real vector
space) to H.
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Theorem 6.1. The slice Riemannian metric G of B has the following expres-
sion

Gq(α, β) =
Re((α − qαq)(β − qβq))

|1 − q2|2(1 − |q|2)2 ,

for every q ∈ B and α, β ∈ H. Alternatively, with the notation considered
above, we also have

Gq(α, β) =
Re(αβ)

(1 − |q|2)2 + 4
| Im(q)|2 Re(π⊥

I (α)π⊥
I (β))

|1 − q2|2(1 − |q|2)2

= ̂Gq(α, β) + 4
| Im(q)|2 Re(π⊥

I (α)π⊥
I (β))

|1 − q2|2(1 − |q|2)2 ,

for every q ∈ DI , where I ∈ S, and α, β ∈ H. In particular, for every α ∈ TqB,
the length ‖α‖q of α with respect to the metric Gq is given by

‖α‖2
q = Gq(α, α) =

|α|2
(1 − |q|2)2 + 4

| Im(q)|2 Re(π⊥
I (α)2)

|1 − q2|2(1 − |q|2)2
for every q ∈ CI , where I ∈ S.

Proof. We will use in this proof the following easy to check fact

Re(αβ) = Re(βα), (6.1)

for every α, β ∈ H. In particular, the first expression is now a consequence of
this identity and Theorem 5.7 by the following computation

Re((1 − q2)−1(α − qαq)(β − qβq)(1 − q2)−1)

= Re((1 − q2)−1(1 − q2)−1(α − qαq)(β − qβq))

= |1 − q2|−2 Re((α − qαq)(β − qβq)),

for every q ∈ B and α, β ∈ H.
We also note that for q ∈ R, the second and third expressions for Gq

are obvious consequences of the first one, which was just proved. Hence, we
proceed to manipulate the expression

Re((α − qαq)(β − qβq))

under the assumption that q ∈ CI\R for some I ∈ S. In particular, we can
consider πI and π⊥

I and the decomposition that they entitle. We first compute
as follows

Re((α − qαq)(β − qβq)) = Re(αβ) + Re(qαqqβq) − Re(qαqβ) − Re(αqβq)

= Re(αβ) + |q|2 Re(qαβq) − Re(qαqβ) − Re(qαqβ)

= Re(αβ) + |q|4 Re(αβ) − Re(qαqβ) − Re(qαqβ)

= (1 + |q|4)Re(αβ) − Re(qαqβ) − Re(qαqβ),

where we have applied (6.1) on the second identity (fourth term) and third
identity (second term). Let us choose J ∈ S that anti-commutes with I. If we



Vol. 34 (2024) Geometric Structures on the Quaternionic Unit Ball Page 17 of 24 41

write α = α1 +α2J and β = β1 +β2J , with α1, α2, β1, β2 ∈ CI , then a direct
computation yields

Re(qαqβ) = Re(q2α1β1) + |q|2 Re(α2β2),

Re(qαqβ) = Re(q2α1β1) + |q|2 Re(α2β2).

Hence, replacing in the previous expression we obtain

Re((α − qαq)(β − qβq))

= (1 + |q|4)Re(αβ) − 2Re(q2)Re(α1β1) − 2|q|2 Re(α2β2)

=
(

1 − 2Re(q2) + |q|4) Re(αβ) + 2
(

Re(q2) − |q|2) Re(α2β2)

= |1 − q2|2 Re(αβ) − 4| Im(q)|2 Re(α2β2),

which yields the second formula for Gq once we observe that

α2β2 = −α2Jβ2J = −π⊥
I (α)π⊥

I (β).

The third formula now follows from Theorem 5.1(1).
Finally, the formula for the length of a tangent vector with respect to

the metric G follows by taking α = β in the expressions already obtained.
�

As a consequence, we conclude that the Riemannian geometry on the
disk DI = B∩CI induced from the slice Riemannian metric G of B is exactly
the usual hyperbolic geometry. More precisely, we have the next result. We
will denote by gI the Riemannian metric on DI induced by the canonical
identification DI � D.

Corollary 6.2. For every I ∈ S, the slice Riemannian metric G of B restricted
to the tangent bundle TCI of CI is gI . More precisely, we have

Gq(α, β) = (gI)q(α, β),

whenever q ∈ DI and α, β ∈ CI . In other words, the Riemannian metric on
DI induced by the slice Riemannian metric G of B is the usual hyperbolic
metric under the canonical identification DI � D.

As noted in our Introduction, a Riemannian metric on B has been
constructed in [1] following a function space theoretic approach. This was
achieved by considering the quaternionic Hardy space on B. We will now
restate some of the results from [1, Theorem 1.1] within the setup of our
notation. This will allow us to consider the Riemannian metric defined in [1]
and compare it with our Riemannian metric G. For this, we will discuss some
of the notions studied in [1]. We refer to the latter for further details and
claims below on this matter.

Let us denote by H2(B), the quaternionic Hardy space, which consists
of functions defined by (convergent) power series of the form

∞
∑

n=0

qnan,
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where (an)n is an absolutely square summable quaternionic sequence. The
space H2(B) admits the positive definite quaternionic inner product given
by

〈 ∞
∑

n=0

qnan,
∞
∑

n=0

qnbn,

〉

H2(B)

=
∞
∑

n=0

bnan,

for which H2(B) turns out to be a quaternionic reproducing kernel Hilbert
space. Its reproducing kernel is obtained from the following elements of
H2(B)

kq(w) =
∞
∑

n=0

wnqn,

where both q, w ∈ B. Proceeding in a way similar to the complex case, [1]
defines a pseudo-hyperbolic distance given by

δ(p, q) =

(

1 −
∣

∣

∣

∣

〈

kp
‖kp‖H2(B)

,
kq

‖kq‖H2(B)

〉

H2(B)

∣

∣

∣

∣

2
) 1

2

, (6.2)

for every p, q ∈ B. As the following result states, it is proved in [1] that this
distance comes from a Riemannian metric. The next result is in fact a subset
of [1, Theorem 1.1] in the setup of our current notation.

Theorem 6.3. (Arcozzi–Sarfatti [1]) The distance δ defined in (6.2) is in-
duced by a Riemannian metric ˜G. Furthermore, for every q ∈ B and α ∈ TqB,
the norm of α with respect to ˜Gq is given by

|α|2q = ˜Gq(α, α) =
|πI(α)|2

(1 − |q|2)2 +
|π⊥

I (α)|2
|1 − q2|2 .

The next result proves that our metric G and Arcozzi–Sarfatti’s metric,
denoted here by ˜G, turn out to be exactly the same.

Theorem 6.4. The slice Riemannian metric G of B satisfies

‖α‖2
q = Gq(α, α) =

|πI(α)|2
(1 − |q|2)2 +

|π⊥
I (α)|2

|1 − q2|2 ,

for every q ∈ B and α ∈ TqB. In particular, G = ˜G, where the latter is the
Riemannian metric considered in Theorem 6.3.

Proof. Once the identity in the statement has been proved, a polarization
argument implies that G = ˜G. Hence, we proceed to establish the aforemen-
tioned identity.

Let us fix q ∈ B and α ∈ TqB. Note that each tangent space of B is
canonically identified with H, and so we consider α ∈ H. Let us assume that
q ∈ CI , where I ∈ S, and let us choose J ∈ S which anti-commutes with I.
Thus, we can consider the decomposition

α = α1 + α2J,

where α1, α2 ∈ CI . Hence, |α1|2 = |πI(α)|2 and we also have

|α2|2 = −π⊥
I (α)2, |α2|2 = |π⊥

I (α)|2,
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where the first identity follows from the discussion at the end of the proof of
Theorem 6.1, and the second is a consequence of the first. Hence, by using
these identities in the last formula for Gq in Theorem 6.1 we obtain

‖α‖2
q = Gq(α, α) =

|α1|2 + |α2|2
(1 − |q|2)2 − 4

| Im(q)|2|α2|2
|1 − q2|2(1 − |q|2)2

=
|πI(α)|2 + |π⊥

I (α)|2
(1 − |q|2)2 − 4

| Im(q)|2|π⊥
I (α)|2

|1 − q2|2(1 − |q|2)2

=
|πI(α)|2

(1 − |q|2)2 +
( |1 − q2|2 − 4| Im(q)|2

(1 − |q|2)2
) |π⊥

I (α)|2
|1 − q2|2 .

Hence, it is enough to prove that the quantity in parentheses is identically
1 for every q ∈ B. This is a simple computation that we show for the sake
of completeness. Recall that q ∈ CI , so we write q = x + yI with x, y ∈ R.
Then, we have

|1 − q2|2 − 4| Im (q) |2 = |1 − (

x2 − y2 + 2xyI
) |2 − 4y2

=
(

1 − x2 + y2
)2

+ 4x2y2 − 4y2

= 1 + x4 + y4 − 2x2 + 2y2 − 2x2y2 + 4x2y2 − 4y2

= 1 + x4 + y4 − 2x2 − 2y2 + 2x2y2

=
(

1 − x2 − y2
)2

=
(

1 − |q|2)2
,

which thus complete the proof. �

Remark 6.5. A number of properties for the slice Riemannian metric G can
be derived from Theorem 6.4 thanks to the developments carried out in [1].
For the slice Riemannian metric G = ˜G, the latter computes the isometry
group, the Lipschitz functions, geodesics and induced volume form on the
boundary of B, as well as their relationship with regular functions.

On the other hand, it is important to emphasize the difference in tech-
niques used to obtain G = ˜G in [1] as opposed to our approach. The construc-
tion of this metric in [1] follows a function theoretic approach that mirrors the
pseudo-hyperbolic distance in the complex unit disk as expressed in terms of
a reproducing kernel. Our approach mirrors the complex case as well, which
was described in Sect. 4, but we do so from the viewpoint of transformations
as geometric objects. Even though the quaternionic case of B does not entitle
a group from regular Möbius transformations, we have been able to extract
enough group-like properties to construct the metric G by looking for an in-
variant geometric tensor. One advantage of our method is the simplicity, in
terms of computations needed, to obtain the slice Riemannian metric.

At any rate, Theorem 6.4 ensures that both the function space theory
and geometric/group-like approaches to construct a Riemannian metric lead
to the same solution: the slice Riemannian metric G.
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We now prove that the slice Riemannian metric of B can be determined
by its value at a single slice. This will make use of the non-regular Möbius
transformation Cu defined by Cu(q) = u−1qu, where u ∈ Sp(1).

Corollary 6.6. (Riemannian representation formula) The slice Riemannian
metric is Cu-invariant for every u ∈ Sp(1). In particular, for any fixed I0 ∈ S,
the restriction of G to the points of the slice DI0 of B determines G everywhere
in the following sense. For every I ∈ S and u ∈ Sp(1) such that I = u−1I0u,
we have

Gq(α, β) = Guqu−1(uαu−1, uβu−1),

for every q ∈ DI and α, β ∈ H, where we note that uqu−1 ∈ DI0 .

Proof. Since Cu is linear for every u ∈ Sp(1), it coincides with its differential.
We also note that the following identities hold

Re(uαu−1uβu−1) = Re(αβ)

|1 − (uqu−1)2| = |1 − q2|
|uqu−1| = |q|,

for every q ∈ B, α, β ∈ H and u ∈ Sp(1). These remarks and the first
formula for G in Theorem 6.1 imply the claimed invariance. From this, the
representation formula is just a restatement of the Cu−1-invariance. �

The slice 2-form Ω has properties similar to those of G that relates it to
the classical complex case. As with the Riemannian case, we will denote by
ωI the Kähler form on DI induced by the canonical identification DI � D.

Theorem 6.7. The slice 2-form Ω of B has the expression

Ωq(α, β) =
Im

(

(1 − q2)−1(α − qαq)(β − qβq)(1 − q2)−1
)

(1 − |q|2)2 ,

for every q ∈ B and α, β ∈ H. In particular, Ω satisfies the following proper-
ties.

1. (Anti-symmetry) Ω is an Im(H)-valued 2-form of B. More precisely, for
every q ∈ B, we have Ωq(α, β) = −Ωq(β, α), for all α, β ∈ H.

2. (Non-degeneracy) Ω is non-degenerate. More precisely, for every q ∈ B,
if some α ∈ H satisfies Ωq(α, β) = 0 for all β ∈ H, then α = 0.

3. (Slice closedness) For every I ∈ S, let us denote by ΩI the restriction
of Ω to the tangent bundle TDI of DI . Then, ΩI is an IR-valued closed
2-form. Furthermore, we have ΩI = IωI .

Proof. The expression for Ωq in the statement is a direct consequence of the
definition of Ω and Theorem 5.7.

The anti-symmetry of Ω follows immediately from the property Im(αβ) =
− Im(βα) for α, β ∈ H. On the other hand, the non-degeneracy of Ω follows
from Definition 5.6, the fact that d (Fq)q is an isomorphism (see Proposi-
tion 3.3) and the non-degeneracy of the bilinear form (α, β) �→ Im(αβ).
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Finally, for a given I ∈ S, the restriction of Ω to the tangent bundle
TDI is obtained by considering the values

(ΩI)q(α, β) = Ωq(α, β),

only for q ∈ DI and α, β ∈ CI . In this case, we obtain from the above
expression that

(ΩI)q(α, β) =
Im(αβ)

(1 − |q|2)2 .

The latter expression is precisely I-times the Kähler form ωI of the unit disk
DI . In symbols we have ΩI = IωI , and so the slice closedness of Ω, as stated
in (3), follows from the closedness of ωI . �

The previous result provides the basis for the next definition.

Definition 6.8. The Im(H)-valued 2-form Ω from Definition 5.6 will be called
the slice Kähler form of B.

Remark 6.9. To be absolutely clear about our notation above, recall that Im
stands for two different functions depending on whether it is applied on H

or C. For the former, Im takes values in the space generated by S, while for
the latter Im is R-valued. Hence, Ω is vector-valued, but ω and ωI are real-
valued. This explains the need for the factor I in the formula ΩI = IωI in
Theorem 6.7.

As in the Riemannian case given by Corollary 6.6, the value of the slice
Hermitian metric and the slice Kähler form of B are completely determined
by their values at a single slice. Note that the vector-valued nature of these
tensors introduce an additional conjugation. In other words, we obtain equi-
variant geometric structures instead of invariant ones for the maps Cu, where
u ∈ Sp(1).

Corollary 6.10. (Slice Hermitian and slice Kähler representation formulas)
The slice Hermitian metric H and the slice Kähler form Ω of B are Cu-

equivariant for every u ∈ Sp(1). More precisely, we have

Hq(α, β) = u−1
(

Huqu−1(uαu−1, uβu−1)
)

u,

Ωq(α, β) = u−1
(

Ωuqu−1(uαu−1, uβu−1)
)

u,

for every u ∈ Sp(1), q ∈ B and α, β ∈ H. In particular, the values of H and
Ω at the points of any slice can be recovered from the values at the points of
a given single slice using the formulas above.

Proof. The equivariance formulas stated are easily obtained by substitution
on the expressions for H and Ω given in Theorems 5.7 and 6.7, respectively.

�
Remark 6.11. (A comparison with other quaternionic-like structures) With
the previous results at hand, we compare the Sp(1, 1)-invariant metric ̂G
and a couple of well known geometric quaternionic structures with our slice
geometric ones. For simplicity, we will discuss the 4-dimensional case which
is clearly enough for our purposes.
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In the first place, we have the notion of a hyper-Kähler structure. On
a 4-dimensional manifold, such structure is given by a Riemannian metric
and three integrable complex structures orthogonal for the metric and satis-
fying the usual quaternionic commutation relations. Further details on their
definition and properties can be found in [2]. As stated in Theorem 14.13
of the latter reference, Berger proved that every hyper-Kähkler manifold is
Ricci flat. However, the metric ̂G is known to have strictly negative sectional
curvature (see [15]) and so strictly negative Ricci curvature. Hence, from
Theorem 5.1 it follows that there is no hyper-Kähler structure on B that is
invariant under the Sp(1, 1)-action by non-regular Möbius transformations.

In second place, there is the notion of quaternion-Kähler manifold.
We refer again to [2] for further details. One possible definition, in the 4-
dimensional case, is obtained by requiring the given Riemannian manifold to
have holonomy Sp(1) × Sp(1). This is in fact the case for the metric ̂G, since
the holonomy and the isotropy coincide for Riemannian symmetric spaces
(see [15]). Hence, B with the metric ̂G is quaternion-Kähler. It is also known,
as discussed in section D from Chapter 14 of [2] and in page 92 of [14],
that every quaternion-Kähler manifold carries three locally defined almost-
complex structures and three locally defined 2-forms. The latter allow to
construct a globally defined 4-form. However, in the case of B with the met-
ric ̂G the locally defined objects cannot be extended globally. In particular,
the quaternion-Kähler structure obtained from the Sp(1, 1)-action does not
yield associated globally defined 2-forms.

In conclusion, the Sp(1, 1)-action by non-regular Möbius transforma-
tions fails to provide a notion of Kähler structure on B as some sort of 2-form
involving H that could also be nicely related to a corresponding Riemannian
metric.

However, the slice regular Kähler structure Ω does provide a natural 2-
form with the Kähler-like properties obtained in Theorem 6.7. Furthermore,
by construction, Ω exhibits as much invariance under M(B) as the latter
allows considering that it is not a group. Since, Ω is Im(H)-valued we can al-
ways consider the components with respect to an orthonormal basis of Im(H)
to obtain three real-valued 2-forms. The slice Hermitian metric H and the
slice Riemannian metric G have similar properties as stated in Theorems 5.7
and 6.1, respectively, and their corollaries. More precisely, they both exhibit
as much invariance as M(B) allows.

Also, a certain degree of invariance for all three slice geometric struc-
tures has been obtained in Corollaries 6.6 and 6.10. The latter have provided
the sort of Representation Formulas found in the theory of slice regular func-
tions, but now for geometric structures on B built from regular Möbius trans-
formations.

Finally, the slice Riemannian metric G and the slice Kähler form Ω
can be considered nicely related in a similar way as it occurs in the classical
complex case. The reason is that G and Ω are the (quaternionic) real and
imaginary parts, respectively, of the slice Hermitian metric H. With all three
of them built out of the same principle: regular Möbius transformations.
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