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Abstract. In this paper, we extend the quadratic phase Fourier transform
of a complex valued functions to that of the quaternion-valued func-
tions of two variables. We call it the quaternion quadratic phase Fourier
transform (QQPFT). Based on the relation between the QQPFT and
the quaternion Fourier transform (QFT) we obtain the sharp Hausdorff–
Young inequality for QQPFT, which in particular sharpens the constant
in the inequality for the quaternion offset linear canonical transform
(QOLCT). We define the short time quaternion quadratic phase Fourier
transform (STQQPFT) and explore some of its properties including in-
ner product relation and inversion formula. We find its relation with that
of the 2D quaternion ambiguity function and the quaternion Wigner–
Ville distribution associated with QQPFT and obtain the Lieb’s uncer-
tainty and entropy uncertainty principles for these three transforms.
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1. Introduction

In [11,12] authors have studied the quadratic phase Fourier transform (QPFT)
defined as

(Q∧f)(ξ) =
∫
R

1√
2π

ei(At2+Btξ+Cξ2+Dt+Eξ)f(t)dt, ξ ∈ R, (1)

where f ∈ L2(R,C), ∧ = (A,B,C,D,E), B �= 0 which generalizes the classi-
cal Fourier transform (FT). Several other important integral transforms like
fractional Fourier transform (FrFT) [1,41], linear canonical transform (LCT)
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[28], offset linear canonical transform (OLCT) [9,48], Fresnel transform [31]
and Lorentz transform can be obtained by choosing ∧ appropriately and
amplifying (1) with suitable constants. Along with several important prop-
erties like the Riemann-Lebesgue lemma and Plancherel theorem, authors in
[12] have given several convolutions and obtained the convolution theorem
associated with the QPFT. Recently, Shah et al. [44] generalized several un-
certainty principles for the FT, FrFT [46], and LCT for the QPFT defined
in (1). Even though QPFT generalizes several integral transforms as men-
tioned above, due to the presence of a global kernel it fails to give the local
quadratic phase spectrum content of non-transient signals. To overcome this,
Shah et al. [43]) formulated a short time quadratic phase Fourier transform
(STQPFT) and studied its important properties. They have generalized the
Heisenberg’s, logarithmic and local uncertainty principles (UPs) for FT and
fractional FT [46,49] and Lieb’s UP for short time FT [25] in the context
of STQPFT. Apart from STQPFT, the wavelet transform and Wigner–Ville
distribution associated with the QPFT have also been studied. Shah et al.
[45] proposed a novel quadratic phase Wigner distribution by combining the
advantages of Wigner distribution and the QPFT. They obtained several
fundamental properties, including Moyal’s formula and inversion formula.
Prasad et al. [42] defined the wavelet transform associated with the QPFT
and studied its properties like the inversion formula, Parseval’s formula, and
also its continuity on some function spaces.

In 1843, W.R. Hamilton first introduced the quaternion algebra. It is
denoted by H in his honor. In Harmonic analysis and applied mathematics,
the FT is an essential tool, so its extension to the quaternion-valued functions
has become an interesting problem. The quaternion Fourier transform (QFT)
was introduced by Ell [19] for the analysis of 2D linear time-invariant partial
differential system and later applied in color image processing [20]. In the
analysis of quaternion-valued functions, the quaternion Fourier transform
plays a significant role. Because of the non-commutativity of the quaternion
multiplication, the Fourier transform of the quaternion-valued function on
R

2 can be classified into various types, viz., right-sided, left-sided and two-
sided Fourier transform [4,6,19]. Cheng et al. [14] gave the inversion theorem
and the Plancherel theorem for the right-sided QFT and also obtained its
relation with the left-sided and the two-sided QFT for the quaternion-valued
square-integrable functions. It transforms a quaternion-valued 2D signal into
a quaternion-valued frequency domain signal.

Lian [36] proved various inequalities like Pitt’s inequality, logarithmic
UP using the method adopted by Beckner [8] in the case of complex vari-
ables, entropy UP without using the sharp Hausdorff–Young inequality, for
the two-sided QFT with optimal constants, which are same to those obtained
in the complex case. The logarithmic UP obtained in [36] is different from
that given in [13]. In [37], the author obtained the sharp Hausdorff–Young
inequality, using the orthogonal plan split of the quaternion [30], for the
two-sided QFT followed by the Hirschman’s entropy UP using the standard
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differential approach. In [38], the author has extended the QFT to the Clif-
ford valued function defined on R

n, namely geometric FT, and derived sev-
eral sharp inequalities including sharp Hausdorff-Young inequality and sharp
Pitt’s inequality, followed by the sharp entropy inequality for the Clifford
ambiguity functions. Recently, QFT has been extended to the quaternion
fractional Fourier transform (QFrFT) and quaternion linear canonical trans-
form (QLCT).

Replacing the kernels Ki(t1, ξ1) = 1√
2π

e−it1ξ1 and Kj(t2, ξ2) = 1√
2π

e−jt2ξ2 , in the definition

(FHf)(ξ) =
∫
R2

Ki(t1, ξ1)f(t)Kj(t2, ξ2)dt, ξ = (ξ1, ξ2) ∈ R
2, (2)

of the two-sided QFT [39], with that of the kernels of the FrFT [1,41,46]
and LCT, respectively, results in the two-sided quaternion fractional Fourier
transform (QFrFT) and the two-sided quaternion linear canonical transform
(QLCT) [33]. Analogously, the right-sided and the left-sided QFrFT and
QLCT have been defined in the literature (see [33,47]). Kou et al. [33] adopted
the approach by Chen et al. [13] to obtain the energy theorem and proved
the Heisenberg’s UP for the QLCT. Using the orthogonal plan split method,
authors in [35] have obtained the relation of the two-sided QLCT with that of
the LCT and obtained some important inequalities and uncertainty principles
of two-sided QLCT.

Bahri et al. [5] generalized the classical windowed Fourier transform
to quaternion-valued functions of two variables. Using the machinery of the
right-sided QFT [6], authors proved several important properties, including
reconstruction formula, reproducing kernel, and orthogonality relation. Fol-
lowing the methods adopted by Wilczok [49], they also obtained the Heisen-
berg UP for the quaternion windowed Fourier transform (QWFT). In [3],
authors gave the alternate proofs of the properties studied in [5]. They also
studied the Pitt’s inequality, Lieb’s inequality, and the logarithmic UP for
the two-sided QWFT studied in [5]. Including the orthogonality property,
authors in [10,32] studied the local UP, logarithmic UP, Beckner’s UP in
terms of entropy, Lieb’s UP, Amrein–Berthier UP for the two-sided QWFT.
Replacing the Fourier kernel in the left-sided, right-sided, or two-sided QWFT
by the kernels of the FrFT (or LCT) results in the left-sided, right-sided, and
two-sided QWFrFT (or QWLCT), respectively. In [22], authors have studied
the two-sided QWFT with the real-valued window function and studied its
important properties and the associated Balian–Low theorem. In [23], au-
thors studied the orthogonality relation along with Heisenberg’s UP for the
two-sided QWLCT, with a quaternion-valued window function. Bahri, in [2],
has extended the classical ambiguity function (AF) and the Wigner–Ville dis-
tribution (WVD) to the quaternion algebra setting, namely, quaternion am-
biguity function (QAF) and quaternion Wigner-Ville distribution (QWVD).
They studied several important properties, including Moyal’s principle and
reconstruction formula for these two-sided QAF and QWVD. Authors in [21]
have extended these two-sided QAF and QWVD in the linear canonical do-
main and obtained the relation among them. They have also studied their
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important properties like shifting, dilation, reconstruction formula, Moyal’s
theorem, etc.

Proposed problem: Several important properties, along with the UPs of
the QPFT and the STQPFT, have been studied for the function of complex
variables as mentioned above. The QPFT has more degrees of freedom and
is more flexible with the parameters involved in the FT, FrFT, LCT, and
the OLCT; with the same computational cost as the FT, it is natural to
extend QPFT to a quaternion setting. To the best of our knowledge, the
QPFT and the STQPFT have yet to be explored for the quaternion-valued
functions. Due to the non-commutativity of the quaternion multiplication,
we can define at least three different types of quaternion quadratic phase
Fourier transform (QQPFT), viz., right-sided, left-sided, and two-sided.

A clear and insightful description of signals with several simultaneous
components under control is offered by the theory of quaternions. Due to the
distinguishing algebraic properties of the field of quaternions, the QQPFT is
extended to the realm of quaternion algebra. The transforms play a vital role
in the efficient representation of quaternion-valued signals, and as in [7,24], it
can be applied in diverse areas of signal and image processing, such as color
image processing, speech recognition, edge detection, and data compression.
Despite the humongous merits of the QQPFT, it fails to provide an adequate
time-frequency representation of non-stationary signals because of its global
kernel. In the present study, our goal is to evade such limitations of the
QQPFT by formulating a novel integral transform called the STQQPFT,
which relies upon a sliding window to capture the localized spectral contents
of non-stationary two-dimensional quaternion-valued signals.

This article concentrates on the two-sided QQPFT, which generalizes
QOLCT [17] and obtains sharper bounds for some inequalities studied in
[50]. Based on its relation with the quaternion Fourier transform (QFT), we
obtain the sharp Hausdorff–Young inequality, which in particular sharpens
the constant in the Hausdorff–Young inequality for quaternion OLCT [50].
Using the sharp Hausdorff–Young inequality, we obtain the Rènyi and Shan-
non entropy UP for QQPFT. We also define the STQQPFT and explore its
important properties like boundedness, linearity, translation, scaling, inner
product relation, and inversion formula. Based on the sharp Hausdorff-Young
inequality we obtain the Lieb’s uncertainty and entropy uncertainty principles
of the STQQPFT followed by the same for the newly defined 2D quaternion
quadratic phase ambiguity function (QQPAF) and 2D quaternion quadratic
phase Wigner–Ville distribution (QQPWVD), using the relation of the later
transforms with that of the STQQPFT. QQPWVD defined here generalizes
the quaternion Wigner-Ville distribution associated with OLCT [16,18] and
complements it with Lieb’s and entropy UPs, in particular.

The organization of the paper is as follows: In Sect. 2, we recall some
basic definitions and properties of quaternion algebra. In Sect. 3, we give
the definition of two-sided QQPFT and study its important properties, like
Parseval’s identity, sharp Hausdorff–Young inequality, Rènyi, and Shannon
entropy UPs. In Sect. 4, we generalize the two-sided quaternion windowed
Fourier transform [22] to the two-sided STQQPFT and study its properties
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and its relations with that of the proposed two-sided QQPAF and the QQP-
WVD, based on which we obtain the Lieb’s and entropy UPs for these three
transforms. Finally, in Sect. 5, we conclude our paper.

2. Preliminaries

The field of real and complex numbers are respectively denoted by R and C.
Let

H = {r = r0 + ir1 + jr2 + kr3 : r0, r1, r2, r3 ∈ R},

where i, j and k are the imaginary units such that they satisfy the following
Hamilton’s multiplication rule

ij = k = −ji, jk = i = −kj, ki = j = −ik, i2 = j2 = k2 = −1.

For a quaternion r = r0 + ir1 + jr2 + kr3, we call r0 the real scalar
part of r, and denote it by Sc(r). The scalar part satisfies the following cyclic
multiplication symmetry [29]

Sc(pqr) = Sc(qrp) = Sc(rpq), ∀ p, q, r ∈ H. (3)

We denote the quaternion conjugate of r as r̄ and is defined as

r̄ = r0 − ir1 − jr2 − kr3.

The quaternion conjugate satisfy the following

qr = r̄q̄, q + r = q̄ + r̄, ¯̄q = q, ∀ q, r ∈ H. (4)

The modulus of r ∈ H is defined as

|r| =
√

rr̄ =

(
3∑

l=0

r2
l

) 1
2

, (5)

and it satisfies |qr| = |q||r|, ∀ q, r ∈ H.
A quaternion-valued function h defined on R

2 can be written as

h(x) = h0(x) + ih1(x) + jh2(x) + kh3(x), x ∈ R
2,

where h0, h1, h2 and h3 are real-valued function on R
2.

If 1 ≤ q < ∞, then the Lq-norm of h is defined by

‖h‖Lq
H
(R2) =

(∫
R2

|h(x)|qdx

) 1
q

=

⎧⎨
⎩
∫
R2

(
3∑

l=0

|hl(x)|2
) q

2

dx

⎫⎬
⎭

1
q

(6)

and Lq
H
(R2) is a Banach space of all measurable quaternion-valued func-

tions f having finite Lq-norm. L∞
H

(R2) is the set of all essentially bounded
quaternion-valued measurable functions with norm

‖f‖L∞
H

(R2) = ess supx∈R2 |f(x)|. (7)
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Moreover, the quaternion-valued inner product

(f, g) =
∫
R2

f(x)g(x)dx, (8)

with symmetric real scalar part

〈f, g〉 =
1
2
[(f, g) + (g, f)]

=
∫
R2

Sc
[
f(x)g(x)

]
dx

= Sc

(∫
R2

f(x)g(x)dx

)
(9)

turns L2
H
(R2) to a Hilbert space, where the norm in Eq. (6) can be expressed

as

‖f‖L2
H
(R2) =

√
〈f, f〉 =

√
(f, f) =

(∫
R2

|f(x)|2dx

) 1
2

. (10)

3. Quaternion quadratic phase Fourier transform (QQPFT)

In this section we give a definition of quaternion quadratic phase Fourier
transform (QQPFT) and study its important properties.

Definition 3.1. Let ∧l = (Al, Bl, Cl,Dl, El), Al, Bl, Cl,Dl, El ∈ R and Bl �=
0 for l = 1, 2. The quaternion quadratic phase Fourier transform (QQPFT)
of f(t) ∈ L2

H
(R2), t = (t1, t2), is defined by

(Q∧1,∧2
H

f)(ξ) =
∫
R2

Ki
∧1

(t1, ξ1)f(t)Kj
∧2

(t2, ξ2)dt, ξ = (ξ1, ξ2) ∈ R
2 (11)

where

Ki
∧1

(t1, ξ1) =
1√
2π

e−i(A1t21+B1t1ξ1+C1ξ2
1+D1t1+E1ξ1) (12)

and

Ki
∧2

(t2, ξ2) =
1√
2π

e−j(A2t22+B2t2ξ2+C2ξ2
2+D2t2+E2ξ2). (13)

The corresponding inversion formula is given by

f(t) = |B1B2|
∫
R2

Ki∧1
(t1, ξ1)(Q∧1,∧2

H
f)(ξ)Ki∧2

(t2, ξ2)dξ (14)

3.1. Relation between QQPFT and QFT

We now see an important relation between the QQPFT and the QFT, which
plays a vital role in obtaining the sharp Hausdorff-Young inequality for the
QQPFT.
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(Q∧1,∧2
H

f)(ξ) =
1

2π

∫
R2

e−i(A1t21+B1t1ξ1+C1ξ2
1+D1t1+E1ξ1)f(t)

× e−j(A2t22+B2t2ξ2+C2ξ2
2+D2t2+E2ξ2)dt

= e−i(C1ξ2+E1ξ1)
{

1

2π

∫
R2

e−iB1t1ξ1 f̃(t)e−jB2t2ξ2dt

}
e−j(C2ξ2+E2ξ2),

where

f̃(t) = e−i(A1t2i +D1t1)f(t)e−j(A2t2i +D2t2). (15)

Thus,

(Q∧1,∧2
H

f)(ξ) = e−i(C1ξ2+E1ξ1)
(
FHf̃

)
(B1ξ1, B2ξ2)e−j(C2ξ2+E2ξ2) (16)

where (
FHf̃

)
(ξ) =

∫
R2

1√
2π

e−it1ξ1 f̃(t)
1√
2π

e−jt2ξ2dt. (17)

Based on this relation between QQPFT and the QFT, we obtain the following
important inequality.

Theorem 3.1. (Sharp Hausdorff–Young Inequality) Let 1 ≤ p ≤ 2, 1
p + 1

q = 1
and f ∈ Lp

H
(R2), then

‖Q∧1,∧2
H

f‖Lq
H
(R2) ≤ (2π)

1
q − 1

p A2
p

|B1B2| 1
q

‖f‖Lp
H
(R2), (18)

where Ap =
(

p
1
p

q
1
q

) 1
2

.

Proof. Using the relation between the QQPFT and the QFT, we get

‖Q∧1,∧2
H

f‖Lq
H
(R2) =

(∫
R2

∣∣∣
(
FHf̃

)
(B1ξ1, B2ξ2)

∣∣∣q dξ

) 1
q

=
1

|B1B2| 1
q

‖FHf̃‖Lq
H
(R2).

Using the sharp Hausdorff–Young inequality ([37]) for the QFT, we get

‖Q∧1,∧2
H

f‖Lq
H
(R2) ≤ (2π)

1
q − 1

p A2
p

|B1B2| 1
q

‖f̃‖Lp
H
(R2).

Substituting f̃ , from (15), we get (18). This completes the proof. �

Theorem 3.2. (Parseval’s formula) Let f, g ∈ L2
H
(R2), then

〈f, g〉 = |B1B2|〈Q∧1,∧2
H

f,Q∧1,∧2
H

g〉. (19)

In particular,

‖f‖2
L2

H
(R2) = |B1B2|‖Q∧1,∧2

H
f‖2

L2
H
(R2×R2). (20)
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Proof. By the Parseval’s formula for the QFT of the function f̃ and g̃, we
have

〈f̃ , g̃〉 = 〈FHf̃ ,FHg̃〉

= Sc

∫
R2

|B1B2|
(
FHf̃

)
(B1ξ1, B2ξ2)(FHg̃) (B1ξ1, B2ξ2)dξ.

Using the relation between the QQPFT and the QFT, we get

〈f̃ , g̃〉 = |B1B2|
∫
R2

Sc
[
ei(C1ξ2

1+E1ξ2) (Q∧1,∧2
H

g
)
(ξ)

(Q∧1,∧2
H

g
)
(ξ)e−i(C1ξ2

1+E1ξ2)
]
dξ

= |B1B2|
∫
R2

Sc
[(Q∧1,∧2

H
g
)
(ξ)

(Q∧1,∧2
H

g
)
(ξ)

]
dξ

= |B1B2|〈Q∧1,∧2
H

f, Q∧1,∧2
H

g〉.

This proves Eq. (19). In particular, if we take f = g, in Eq. (19), we get Eq.
(20).

This completes the proof. �

3.2. Rènyi and Shannon entropy uncertainty principle

In this subsection we obtain the Rènyi and Shannon entropy UPs for the
proposed QQPFT. Analogous results for the FrFT of complex valued function
can be found in [26]. Recently, Shannon entropy UP for the QPFT and the
two-sided QLCT are studied in [35,44] respectively. Below we prove Rènyi
UP for the QQPFT and obtain the Shannon UP in limiting case. We start
with the following definition.

Definition 3.2. [15,26] The Rènyi entropy of a probability density function
P on R

n is defined by

Hα(P ) =
1

1 − α
log

(∫
Rn

[P (t)]αdt

)
, α > 0, α �= 1. (21)

If α → 1, then (21) leads to the following Shannon entropy

E(P ) = −
∫
Rn

P (t) log[P (t)]dt (22)

Theorem 3.3. If f ∈ L2
H
(R2), 1

2 < α < 1 and 1
α + 1

β = 2, then

Hα(|f |2) + Hβ

(∣∣∣√|B1B2|
(Q∧1,∧2

H
f
)
(ξ)

∣∣∣2
)

≥ − log(|B1B2|) − 2 log(2π) −
(

1
1 − α

log(2α) +
1

1 − β
log(2β)

)
.

Proof. By Hausdorff–Young inequality (18), we have

(∫
R2

∣∣(Q∧1,∧2
H

f
)
(ξ)

∣∣q dξ

) 1
q

≤ (2π)
1
q − 1

p A2
p

|B1B2| 1
q

(∫
R2

|f(t)|pdt

) 1
p

. (23)
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Putting p = 2α and q = 2β, in Eq. (23), we have

1√|B1B2|

(∫
R2

∣∣∣√|B1B2|
(Q∧1,∧2

H
f
)
(ξ)

∣∣∣2β

dξ

) 1
2β

≤ (2π)
1
2β − 1

2α A2
2α

|B1B2| 1
2β

(∫
R2

|f(t)|2αdt

) 1
2α

.

This implies

|B1B2|
1
β

−1

(2π)
1
α

− 1
β A4

2α

≤
(∫

R2
|f(t)|2αdt

) 1
α
(∫

R2

∣∣∣√|B1B2|
(Q∧1,∧2

H
f
)
(ξ)

∣∣∣2β
dξ

)− 1
β

.(24)

Since 1
α + 1

β = 2, we have

α

1 − α
= − β

1 − β
. (25)

Raising to the power α
1−α in (24) and using (25), we get

|B1B2|−1

(2π)(
1
α − 1

β )( α
1−α )A

4α
1−α

2α

≤
(∫

R2
|f(t)|2αdt

) 1
1−α

(∫
R2

∣∣∣√|B1B2|
(Q∧1,∧2

H
f
)
(ξ)

∣∣∣2β

dξ

) 1
1−β

.

Taking log on both sides, we get

− log(|B1B2|) − log
(

(2π)(
1
α − 1

β )( α
1−α )A

4α
1−α

2α

)

≤ 1
1 − α

log
(∫

R2
|f(t)|2αdt

)

+
1

1 − β
log

(∫
R2

∣∣∣√|B1B2|
(Q∧1,∧2

H

)
(ξ)

∣∣∣2α

dξ

)
. (26)

Thus, it follows that

Hα(|f |2) + Hβ

(∣∣∣√|B1B2|
(Q∧1,∧2

H
f
)
(ξ)

∣∣∣2
)

≥ − log(|B1B2|) − 2 log(2π) −
(

1
1 − α

log(2α) +
1

1 − β
log(2β)

)
.(27)

This is the Rènyi entropy UP for QQPFT. �

Remark 1. If α → 1, then β → 1 and in this case Eq. (27) can be written as

E(|f |2) + E

(∣∣∣√|B1B2|
(Q∧1,∧2

H
f
)
(ξ)

∣∣∣2
)

≥ − log(|B1B2|) − 2 log(2π) + 2 − log 4,

its right hand side is obtained using the relation 1
α + 1

β = 2 and taking the
limit as α → 1. Thus, we have

E(|f |2) + E

(∣∣∣√|B1B2|
(Q∧1,∧2

H
f
)
(ξ)

∣∣∣2
)

≥ log
(

e2

16π2|B1B2|
)

. (28)

This is the Shannon entropy UP for QQPFT.
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4. Short time quaternion quadratic phase Fourier
transform

In this section we give the definition of the STQQPFT and study its proper-
ties. We obtain its relation with that of the quaternion AF and the quaternion
WVD associated with the QQPFT.

Definition 4.1. Let ∧l = (Al, Bl, Cl,Dl, El), Al, Bl, Cl,Dl, El ∈ R and Bl �=
0 for l = 1, 2. The short time quaternion quadratic phase Fourier transform
(STQQPFT) of a function f ∈ L2

H
(R2) with respect to a quaternion window

function (QWF) g ∈ L2
H
(R2) ∩ L∞

H
(R2) is defined by

(
S∧1,∧2
H,g f

)
(x, ξ) =

∫
R2

Ki
∧1

(t1, ξ1)f(t)g(t − x)Kj
∧2

(t2, ξ2)dt, (x, ξ) ∈ R
2 × R

2,

where Ki
∧1

(t1, ξ1) and Kj
∧2

(t2, ξ2) are given by Eqs. (12) and (13), respectively.

We now derive some of the basic properties of the STQQPFT. But
before that we state the following lemma:

Lemma 4.1. Let t = (t1, t2), ξ = (ξ1, ξ2),k = (k1, k2) ∈ R
2, r ∈ R. Then the

kernel Ki
∧1

(t1, ξ1) and Kj
∧2

(t2, ξ2) satisfy the following

Ki
∧1

(t1 + rk1, ξ1) = Ki
∧1

(
t1, ξ1 +

2rk1A1

B1

)
φi

∧1,r(k1, ξ1), (29)

where

φi
∧1,r(k1, ξ1) = e

−i

(
A1r2k2

1+D1rk1+B1rk1ξ1− 4r2A2
1C1k2

1
B2

1
− 4rA1C1k1ξ1

B1
− 2rA1k1

B1

)

(30)

and

Kj
∧2

(t2 + rk2, ξ2) = Kj
∧2

(
t2, ξ2 +

2rk2A2

B2

)
φj

∧2,r(k2, ξ2), (31)

where

φj
∧2,r(k2, ξ2) = e

−j

(
A2r2k2

2+D2rk2+B2rk2ξ2− 4r2A2
2C2k2

2
B2

2
− 4rA2C2k2ξ2

B2
− 2rA2k2

B2

)
.

(32)
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Proof. From the definition of Ki
∧1

, we have

Ki
∧1

(t1 + rk1, ξ1)

=
1√
2π

e−i{A1(t1+rk1)
2+B1(t1+rk1)ξ1+C1ξ2

1+D1(t1+rk1)+E1ξ1}

=
1√
2π

e
−i

{
A1t21+B1t1

(
ξ1+

2rA1k1
B1

)
+D1t1+C1ξ2

1+E1ξ1+B1rk1ξ1

}

× e−i(A1r2k2
1+D1rk1)

=
1√
2π

e
−i

{
A1t21+B1t1

(
ξ1+

2rA1k1
B1

)
+D1t1+C1

(
ξ1+

2rA1k1
B1

)2
+E1

(
ξ1+

2rA1k1
B1

)}

φi
∧1,r(k1, ξ1),

i.e., Ki
∧1

(t1 + rk1, ξ1) = Ki
∧1

(
t1, ξ1 +

2rk1A1

B1

)
φi

∧1,r(k1, ξ1).

This proves Eq. (29). Similarly, Eq. (31) can be proved. �

The theorem below gives the basic properties of the proposed STQQPFT.

Theorem 4.1. Let g, g1, g2 ∈ L2
H
(R2) ∩ L∞

H
(R2) be QWFs and f, f1, f2 ∈

L2
H
(R2). Also let λ �= 0, k = (k1, k2) ∈ R

2, p, q ∈ {x + iy : x, y ∈ R}, r, s ∈
{x + jy : x, y ∈ R}, then

(i) Boundedness:
∥∥∥S∧1,∧2

H,g f
∥∥∥

L∞
H

(R2)
≤ 1

2π ‖g‖L2
H
(R2)‖f‖L2

H
(R2).

(ii) Linearity: S∧1,∧2
H,g (pf1 + qf2) = p

[
S∧1,∧2
H,g f1

]
+ q

[
S∧1,∧2
H,g f2

]

(iii) Anti-linearity: S∧1,∧2
H,rg1+sg2

f =
[
S∧1,∧2
H,g1

f
]
r̄ +

[
S∧1,∧2
H,g2

f
]
s̄.

(iv) Translation:
(
S∧1,∧2
H,g (τkf)

)
(x, ξ) = φi

∧1,1(k1, ξ1)
(
S∧1,∧2
H,g f

)
(x − k,

ξ′
x)φj

∧2,1(k2, ξ2), where (τkf)(t) = f(t−k), ξ′
x =

(
ξ1 + 2A1x1

B1
, ξ2 + 2A2x2

B2

)
,

φi
∧1,1(k1, ξ1, ) and φj

∧2,1(k2, ξ2), are obtained from (30) and (32) by re-
placing r = 1.

(v) Scaling:
(
S∧1,∧2
H,gλ

fλ

)
(x, ξ) =

(
S∧′

1,∧′
2

H,g f
) (

1
λx, ξ

)
, where (fλ)(t) = 1

λf
(

1
λt
)
,

∧′
l =

(
λ2Al, λBl, Cl, λDl, El

)
, l = 1, 2.

Proof. The proof of (i), (ii) and (iii) are straight forward so we omit their
proof.

(iv) We have from the Definition 4.1

(
S∧1,∧2
H,g (τkf)

)
(x, ξ) =

∫
R2

Ki
∧1

(t1 + k1, ξ1)f(t)g(t − (x − k))Kj
∧2

(t2 + k1, ξ2)dt.
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Using lemma (4.1), we get
(
S∧1,∧2
H,g (τkf)

)
(x, ξ)

=
∫
R2

Ki
∧1

(
t1, ξ1 +

2A1k1

B1

)
φi

∧1,1(k1, ξ1)f(t)g(t − (x − k))Kj
∧2

×
(

t2, ξ2+
2A2k2

B2

)
φj

∧2,1(k2, ξ2)dt

= φi
∧1,1(k1, ξ1)

{∫
R2

Ki
∧1

(
t1, ξ1 +

2A1k1

B1

)
f(t)g(t − (x − k))Kj

∧2

×
(

t2, ξ2+
2A2k2

B2

)
dt

}
φj

∧2,1(k2, ξ2).

Thus, we have
(
S∧1,∧2
H,g (τkf)

)
(x, ξ) = φi

∧1,1(k1, ξ1)
(
S∧1,∧2
H,g f

)
(x − k, ξ′

x)φj
∧2,1(k2, ξ2).

This proves (iv).
(v) We have
(
S∧1,∧2
H,gλ

fλ

)
(x, ξ) =

∫
R2 Ki

∧1
(λt1, ξ1)f(t)g

(
t − 1

λx
)Kj

∧1
(λt2, ξ2)dt. (33)

Now,

Ki
∧1

(λt1, ξ1) =
1√
2π

e−i((λ2A1)t
2
1+(λB1)t1ξ1+C1ξ2

1+D1t1+E1ξ1)

= Ki
∧′

1
(t1, ξ1). (34)

Similarly,

Kj
∧2

(λt2, ξ2) = Kj
∧′

2
(t2, ξ2). (35)

Using Eqs. (34) and (35) in Eq. (33), we get

(
S∧1,∧2
H,gλ

fλ

)
(x, ξ) =

∫
R2

Ki
∧′

1
(t1, ξ1)f(t)g

(
t − 1

λ
x

)
Kj

∧′
2
(t2, ξ2)dt,

i.e.,
(
S∧1,∧2
H,gλ

fλ

)
(x, ξ) =

(
S∧′

1,∧′
2

H,g f
)( 1

λ
x, ξ

)
.

This completes the proof. �

Theorem 4.2. (Inner product relation) If g1, g2 be two QWFs and f1, f2 ∈
L2
H
(R2), then S∧1,∧2

H,g1
f1, S∧1,∧2

H,g2
f2 ∈ L2

H
(R2 × R

2) and

〈
S∧1,∧2
H,g1

f1,S∧1,∧2
H,g2

f2

〉
=

1
|B1B2| 〈f1(g1, g2), f2〉. (36)
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Proof. We have∫
R2

∫
R2

∣∣∣
(
S∧1,∧2
H,g1

f1

)
(x, ξ)

∣∣∣2 dxdξ

=
∫
R2

{∫
R2

∣∣∣
(
Q∧1,∧2

H
{f1(·)g1(· − x)}

)
(ξ)

∣∣∣2 dξ

}
dx

=
1

|B1B2|
∫
R2

{∫
R2

|f1(t)g1(t − x)|2dt

}
dx, using Parseval’s Identity

=
1

|B1B2| ‖f1‖2
L2

H
(R2)‖g1‖2

L2
H
(R2).

Thus, S∧1,∧2
H,g1

f1 ∈ L2
H
(R2 × R

2). Similarly, S∧1,∧2
H,g2

f2 ∈ L2
H
(R2 × R

2).
Now,

〈
S∧1,∧2
H,g1

f1, S∧1,∧2
H,g2

f2
〉

= Sc

∫
R2

∫
R2

(
Q∧1,∧2

H
{f1(·)g1(· − x)}

)
(ξ)

(
Q∧1,∧2

H
{f2(·)g2(· − x)}

)
(ξ)dxdξ

=
1

|B1B2|Sc

∫
R2

{∫
R2

f1(t)g1(t − x) f2(t)g2(t − x)dt

}
dx

=
1

|B1B2|Sc

∫
R2

f1(t) (g1, g2) f2(t)dt.

Thus, it follows that
〈
S∧1,∧2
H,g1

f1,S∧1,∧2
H,g2

f2

〉
=

1
|B1B2| 〈f1 (g1, g2) , f2〉.

This finishes the proof. �

Remark 2. From theorem 4.2, we have the following results:
1. If g1 = g2 = g in Eq. (36), then

〈
S∧1,∧2
H,g1

f1,S∧1,∧2
H,g2

f2

〉
=

1
|B1B2| ‖g‖2

L2
H
(R2)〈f1, f2〉.

2. If f1 = f2 = f in Eq. (36), then
〈
S∧1,∧2
H,g1

f1,S∧1,∧2
H,g2

f2

〉
=

1
|B1B2| ‖f‖2

L2
H
(R2)〈g1, g2〉.

3. If f1 = f = f2 and g1 = g = g2 in Eq. (36), then

‖S∧1,∧2
H,g f‖2

L2
H
(R2×R2) =

1
|B1B2| ‖f‖2

L2
H
(R2)‖g‖2

L2
H
(R2). (37)

The theorem below gives the reconstruction formula for the STQQPFT.

Theorem 4.3. (Inversion formula) Let g be a QWF and f ∈ L2
H
(R2), then

f(t) =
|B1B2|

‖g‖2
L2

H
(R2)

∫
R2

∫
R2

Ki∧1
(t1, ξ1)

(
S∧1,∧2
H,g f

)
(x, ξ)Kj

∧2
(t2, ξ2)g(t − x)dxdξ.
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Proof. We have

〈f, h〉 =
|B1B2|

‖g‖2
L2

H
(R2)

Sc

∫
R2

∫
R2

(
S∧1,∧2
H,g f

)
(x, ξ)

{∫
R2

Ki∧1
(t1, ξ1)h(t)g(t − x)Kj

∧2
(t2, ξ2)dt

}
dxdξ

=
|B1B2|

‖g‖2
L2

H
(R2)

∫
R2

∫
R2

∫
R2

Sc

{(
S∧1,∧2
H,g f

)
(x, ξ)Kj

∧2
(t2, ξ2)g(t − x)h(t)Ki∧1

(t1, ξ1)
}

dtdxdξ

=
|B1B2|

‖g‖2
L2

H
(R2)

Sc

∫
R2{∫

R2

∫
R2

Ki∧1
(t1, ξ1)

(
S∧1,∧2
H,g f

)
(x, ξ)Kj

∧2
(t2, ξ2)g(t − x)dxdξ

}
h(t)dt

=
|B1B2|

‖g‖2
L2

H
(R2)〈∫

R2

∫
R2

Ki∧1
(t1, ξ1)

(
S∧1,∧2
H,g f

)
(x, ξ)Kj

∧2
(t2, ξ2)g(· − x)dxdξ, h(·)

〉
.

Since h ∈ L2
H
(R2) is arbitrary, it follows that

f(t) =
|B1B2|

‖g‖2
L2

H
(R2)

∫
R2

∫
R2

Ki∧1
(t1, ξ1)

(
S∧1,∧2
H,g f

)
(x, ξ)Kj

∧2
(t2, ξ2)g(t − x)dxdξ.

This completes the proof. �

4.1. Quaternion ambiguity function and Wigner-Ville distribution associated
to the QQPFT

In this subsection, we give the definitions of two-sided QQPAF and QQP-
WVD and obtain their relation with that of the proposed STQQPFT.

Definition 4.2. The two-sided quaternion quadratic phase ambiguity function
(QQPAF) of f, g ∈ L2

H
(R2) is defined by

(A∧1,∧2
H

(f, g)
)
(x, ξ) =

∫
R2

Ki
∧1

(t1, ξ1)f
(

t +
1
2
x

)
g

(
t − 1

2
x

)
Kj

∧2
(t2, ξ2) dt,

where Ki
∧1

(t1, ξ1) and Kj
∧2

(t2, ξ2) are given by Eqs. (12) and (13) respectively.

The following theorem gives the relation between the QQPAF and the
STQQPFT.

Theorem 4.4. If g is a QWF and f ∈ L2
H
(R2), then

(A∧1,∧2
H

(f, g)
)
(x, ξ) = φi

∧1,− 1
2
(x1, ξ1)

(
S∧1,∧2
H,g f

)
(x, ξ′

x)φj

∧2,− 1
2
(x2, ξ2),

ξ′
x =

(
ξ1 − A1x1

B1
, ξ2 − A2x2

B2

)



Vol. 34 (2024) Short Time Quaternion Quadratic Phase Fourier... Page 15 of 29 28

where φi
∧1,− 1

2
(x1, ξ1) and φj

∧2,− 1
2
(x2, ξ2) are obtained from Eqs. (30) and (32)

by replacing r = − 1
2 .

Proof. From the definition of A∧1,∧2
H

(f, g), it follows that
(A∧1,∧2

H
(f, g)

)
(x, ξ) =

∫
R2

Ki
∧1

(
t1 − x1

2
, ξ2

)
f(t)g(t − x)Kj

∧2

(
t2 − x2

2
, ξ2

)
dt.

Using Eqs. (29) and (31) for r = − 1
2 , we get(A∧1,∧2

H
(f, g)

)
(x, ξ)

=
∫
R2

Ki
∧1

(
t1, ξ1 − A1x1

B1

)
φi

∧1,− 1
2
(x1, ξ1)f(t)g(t − x)

Kj
∧2

(
t2, ξ2 − A2x2

B2

)
φj

∧2,− 1
2
(x2, ξ2)dt

= φi
∧1,− 1

2
(x1, ξ1){∫

R2
Ki

∧1

(
t1, ξ1 − A1x1

B1

)
f(t)g(t − x)Kj

∧2

(
t2, ξ2 − A2x2

B2

)
dt

}

φj

∧2,− 1
2
(x2, ξ2).

This gives
(A∧1,∧2

H
(f, g)

)
(x, ξ) = φi

∧1,− 1
2
(x1, ξ1)

(
S∧1,∧2
H,g f

)
(x, ξ′

x)φj

∧2,− 1
2
(x2, ξ2).

This completes the proof. �

Definition 4.3. The two-sided quaternion quadratic phase Wigner–Ville dis-
tribution (QQPWVD) of f, g ∈ L2

H
(R2), is defined by

(W∧1,∧2
H

(f, g)
)
(x, ξ) =

∫
R2

Ki
∧1

(t1, ξ1)f
(

x +
1
2
t

)
g

(
x − 1

2
t

)
Kj

∧2
(t2, ξ2) dt,

where Ki
∧1

(t1, ξ1) and Kj
∧2

(t2, ξ2) are given by Eqs. (12) and (13) respectively.

The following theorem gives the relation between the QQPWVD and
the STQQPFT.

Theorem 4.5. If g is a QWF and f ∈ L2
H
(R2), then

(W∧1,∧2
H

(f, g)
)
(x, ξ) = 4ψi

∧1
(x1, ξ1)

(
S∧′

1,∧′
2

H,g̃ f
)

(2x, ξ′
x)ψj

∧2
(x2, ξ2),

ξ′
x =

(
ξ1 − 4A1x1

B1
, ξ2 − 4A2x2

B2

)

where ∧′
l = (4Al, 2Bl, Cl, 2Dl, El), l = 1, 2, g̃(t) = g(−t),

ψi
∧1

(x1, ξ1) = e
−i

(
4A1x2

1−2B1x1ξ1−2D1x1− 16A2
1C1x2

1
B2

1
+

8A1C1x1ξ1
B1

+
4A1E1x1

B1

)

and

ψj
∧2

(x2, ξ2) = e
−j

(
4A2x2

2−2B2x2ξ2−2D2x2− 16A2
2C2x2

2
B2

2
+

8A2C2x2ξ2
B2

+
4A2E2x2

B2

)
.
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Proof. From the definition of W∧1,∧2
H

(f, g), we have(W∧1,∧2
H

(f, g)
)
(x, ξ)

= 4
∫
R2

Ki
∧1

(2(t1 − x1), ξ1)f(t)g(2x − t)Kj
∧2

(2(t2 − x2), ξ2)dt

= 4
∫
R2

Ki
∧1

(2(t1 − x1), ξ1)f(t)g̃(t − 2x)Kj
∧2

(2(t2 − x2), ξ2)dt. (38)

Now from the definition of Ki
∧1

, in Eq. (12), we have

Ki
∧1

(2(t1 − x1), ξ1)

=
1√
2π

e−i(4A1t2
1−8A1x1t1+2B1t1ξ1+2D1t1+E1ξ1+C1ξ2)e−i(4A1x2

1−2B1x1ξ1−2D1x1)

=
1√
2π

e
−i

{
(4A1)t2

1+2B1

(
ξ1− 4A1x1

B1

)
+C1

(
ξ1− 4A1x1

B1

)2
+(2D1)t1+E1

(
ξ1− 4A1x1

B1

)(
ξ1− 4A1x1

B1

)}

ψi
∧1

(x1, ξ1)

i.e.,

Ki
∧1

(2(t1 − x1), ξ1) = Ki
∧′

1

(
t1, ξ1 − 4A1x1

B1

)
ψi

∧1
(x1, ξ1). (39)

Similarly, we have

Kj
∧2

(2(t2 − x2), ξ2) = Kj
∧′

2

(
t2, ξ2 − 4A2x2

B2

)
ψj

∧2
(x2, ξ2). (40)

Using Eqs. (39) and (40) in (38), we have(W∧1,∧2
H

(f, g)
)
(x, ξ)

= 4
∫
R2

Ki
∧′

1

(
t1, ξ1 − 4A1x1

B1

)
ψi

∧1
(x1, ξ1)f(t)g̃(t − 2x)Kj

∧′
2(

t2, ξ2 − 4A2x2

B2

)
ψj

∧2
(x2, ξ2)dt

= 4ψi
∧1

(x1, ξ1){∫
R2

Ki
∧′

1

(
t1, ξ1 − 4A1x1

B1

)
f(t)g̃(t − 2x)Kj

∧′
2

(
t2, ξ2 − 4A2x2

B2

)
dt

}

ψj
∧2

(x2, ξ2).

This gives(W∧1,∧2
H

(f, g)
)
(x, ξ) = 4ψi

∧1
(x1, ξ1)

(
S∧′

1,∧′
2

H,g̃ f
)

(2x, ξ′
x)ψj

∧2
(x2, ξ2).

This completes the proof. �

4.2. Uncertainty principle for STQQPFT

The Heisenberg’s UP gives the information about a function and its FT, it
says that the function cannot be highly localized in both time and frequency
domain. Wilczok [49] introduced a new class of UP that compares the local-
ization of a functions with the localization of its wavelet transform, analogous
to the Heisenberg UP governing the localization of the complex valued func-
tion and the corresponding FT. Gupta et al. [27] obtained the Lieb’s and
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Donoho-Stark’s UP for the linear canonical wavelet transform and obtained
the lower bound of the measure of its essential support.

Here, we prove the Lieb’s UP for the STQQPFT, QQPWVD and QQ-
PAF. Analogous result for the classical STFT and the windowed linear canon-
ical transform can be found in [25,34] respectively. Before we move forward,
let us first prove the following lemma.

Lemma 4.2. (Lieb’s inequality) Let g be a QWF, f ∈ L2
H
(R2) and 2 ≤ q < ∞.

Then

∥∥∥S∧1,∧2
H,g f

∥∥∥
Lq

H
(R2×R2)

≤ (2π)
1
q − 1

p

|B1B2| 1
q

(
2
q

) 2
q

‖g‖L2
H
(R2)‖f‖L2

H
(R2). (41)

Proof.
(∫

R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣q dξ

) 1
q

=

(∫
R2

∣∣∣
(
Q∧1,∧2

H
{f(·)g(· − x)}

)
(ξ)

∣∣∣q dξ

) 1
q

.

(42)

Using Hausdorff–Young inequality, we get
(∫

R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣q dξ

) 1
q

≤ A2
p(2π)

1
q − 1

p

|B1B2| 1
q

(∫
R2

∣∣∣f(t)g(t − x)
∣∣∣p dt

) 1
p

=
A2

p(2π)
1
q − 1

p

|B1B2| 1
q

(∫
R2

|f(t)|p|g̃(x − t)|pdt

) 1
p

, g̃(t) = g(−t)

=
A2

p(2π)
1
q − 1

p

|B1B2| 1
q

{(|f |p 
 |g̃|p) (x)} 1
p ,

where 
 is the convolution defined as (u 
 v)(x) =
∫
R2

u(t)v(x − t)dt. This

implies that

∫
R2

∫
R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣q dxdξ ≤ A2q
p (2π)q( 1

q − 1
p )

|B1B2|
∫
R2

{(|f |p 
 |g̃|p) (x)} q
p dx.

This gives
{∫

R2

∫
R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣q dxdξ

} 1
q

≤ A2
p(2π)

1
q − 1

p

|B1B2| 1
q

[∫
R2

{(|f |p 
 |g̃|p) (x)} q
p dx

] q
p · 1q

=
A2

p(2π)
1
q − 1

p

|B1B2| 1
q

‖|f |p 
 |g̃|p‖
1
p

L
q
p
H

(R2)

. (43)
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Now we see that, if k = 2
p , l = q

p , then k ≥ 1 and 1
k + 1

k = 1 + 1
l . Since

|f |p, |g̃|p ∈ Lk
H
(R2), we get, by Young’s inequality

‖|f |p 
 |g̃|p‖
1
p

L
q
p
H

(R2)

≤ A4
kA2

l′‖f‖p
L2

H
(R2)

‖g̃‖p
L2

H
(R2)

, (44)

where l′ is such that 1
l + 1

l′ = 1. Therefore, from Eqs. (43) and (44), it follows
that {∫

R2

∫
R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣q dxdξ

} 1
q

≤ (2π)
1
q − 1

p

|B1B2| 1
q

A2
pA

4
p

k A
2
p

l′ ‖g‖L2
H
(R2)‖f‖L2

H
(R2), (45)

where Ar =
(

r
1
r

r
′ 1

r′

) 1
2

, 1
r + 1

r′ = 1. Now, we have

A2
pA

4
p

k A
2
p

l′ =
p

1
p

q
1
q

· k

k′ 2
k′p

· l′
1

pl′

(
q
p

) 1
q

, since k =
2
q
, l =

q

p

=
p

q
2
q

· l′
1

pl′

k′ 2
k′p

=
2

q
2
q

·
(

1
2

) q−p
pq

, since k′ = 2l′

=
(

2
q

) 2
q

. (46)

Thus using Eqs. (46) in (45), we get
{∫

R2

∫
R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣q dxdξ

} 1
q

≤ (2π)
1
q − 1

p

|B1B2| 1
q

(
2
q

) 2
q

‖g‖L2
H
(R2)‖f‖L2

H
(R2).

This finishes the proof. �

4.3. Lieb’s uncertainty principle

Definition 4.4. Let ε ≥ 0 and Ω ⊂ R
n be measurable. A function F ∈ L2

H
(Rn)

is said to be ε-concentrated on Ω if

‖χΩcF‖L2
H
(Rn) ≤ ε‖F‖L2

H
(Rn),

where χΩc denotes the indicator function on Ωc = R
n \ Ω.

If 0 ≤ ε ≤ 1
2 , then majority of the energy is concentrated on Ω and Ω is

said to be the essential support of F. Support of F is contained in Ω, if ε = 0.

Theorem 4.6. Let g be a QWF and f ∈ L2
H
(R2), such that f �= 0. Let ε ≥ 0

and Ω ⊂ R
2 × R

2 is a measurable set. If S∧1,∧2
H,g f, on Ω, is ε-concentrated,

then for every q > 2

|Ω| ≥ (2π)2

|B1B2| (1 − ε2)
q

q−2

(q

2

) 4
q−2

.
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Proof. Since S∧1,∧2
H,g f is ε-concentrated on Ω, we have

∥∥∥χΩcS∧1,∧2
H,g f

∥∥∥2

L2
H
(R2×R2)

≤ ε2

|B1B2| ‖f‖2
L2

H
(R2)‖g‖2

L2
H
(R2).

This implies∥∥∥χΩS∧1,∧2
H,g f

∥∥∥2

L2
H
(R2×R2)

≥ 1
|B1B2| (1 − ε2)‖f‖2

L2
H
(R2)‖g‖2

L2
H
(R2). (47)

Now, using Holder’s inequality with exponents q
q−2 and q

2 , we have

∥∥∥χΩS∧1,∧2
H,g f

∥∥∥2

L2
H
(R2×R2)

≤
{∫

R2

∫
R2

(χΩ(x, ξ))
q

q−2 dxdξ

} q−2
q

{∫
R2

∫
R2

(∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2
) q

2

dxdξ

} 2
q

= |Ω| q−2
q

∥∥∥S∧1,∧2
H,g f

∥∥∥2

Lq
H
(R2)

.

Using, the Lieb’s inequality (41), we get
∥∥∥χΩS∧1,∧2

H,g f
∥∥∥2

L2
H
(R2×R2)

≤ |Ω| q−2
q

(2π)
2
q − 2

p

|B1B2| 2
q

(
4
q

) 4
q

‖f‖2
L2

H
(R2)‖g‖2

L2
H
(R2). (48)

From Eqs. (47) and (48), we get

|Ω| q−2
q

(2π)
2
q − 2

p

|B1B2| 2
q

(
2
q

) 4
q

≥ 1
|B1B2| (1 − ε2).

This gives

|Ω| ≥ 1
|B1B2| (2π)2(1− 2

q ) q
q−2 (1 − ε2)

q
q−2

(q

2

) 4
q−2

, since
1
p

+
1
q

= 1

i.e., |Ω| ≥ 1
|B1B2| (2π)2(1 − ε2)

q
q−2

(q

2

) 4
q−2

.

This completes the proof. �
Remark 3. Taking ε = 0, in the above theorem, we get the following lower
bound for the support of S∧1,∧2

H,g f

∣∣∣supp
(
S∧1,∧2
H,g f

)∣∣∣ ≥ (2π)2

|B1B2| lim
q→2+

(q

2

) 4
q−2

i.e.,
∣∣∣supp

(
S∧1,∧2
H,g f

)∣∣∣ ≥ (2πe)2

|B1B2| . (49)

i.e., measure of the support of S∧1,∧2
H,g f ≥ (2πe)2

|B1B2| .

Corollary 4.8.1. Let g be a QWF and f ∈ L2
H
(R2), such that f �= 0. Let ε ≥ 0

and Ω ⊂ R
2 ×R

2 is measurable. If A∧1,∧2
H

(f, g), on Ω, is ε-concentrated, then
for every q > 2

|Ω| ≥ (2π)2

|B1B2| (1 − ε2)
q

q−2

(q

2

) 4
q−2

. (50)
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In particular, if ε = 0, then
∣∣supp

(A∧1,∧2
H

(f, g)
)∣∣ ≥ (2πe)2

|B1B2| . (51)

Proof. From Theorem 4.4, it follows that
∣∣(A∧1,∧2

H
(f, g)

)
(x, ξ)

∣∣ =
∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ′

x)
∣∣∣ , ξ′

x =
(

ξ1 − A1x1

B1
, ξ2 − A2x2

B2

)
.

Since A∧1,∧2
H

(f, g) is ε-concentrated on Ω, it can be shown that S∧1,∧2
H,g f

is ε-concentrated on P−1Ω, where P is the non-singular matrix given by⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

A1
B1

0 1 0
0 A2

B2
0 1

⎤
⎥⎥⎦ and P−1Ω = {P−1x : x ∈ Ω}. So, by Theorem 4.6, we have

|P−1Ω| ≥ (2π)2

|B1B2| (1 − ε2)
q

q−2

(q

2

)( 4
q−2 )

.

This gives

|Ω| ≥ (2π)2

|B1B2| (1 − ε2)
q

q−2

(q

2

)( 4
q−2 )

, since det(P−1) = 1.

This proves Eq. (50). �

Corollary 4.8.2. Let g be a QWF and f ∈ L2
H
(R2), such that f �= 0. Let ε ≥ 0

and Ω ⊂ R
2×R

2 is measurable. If W∧1,∧2
H

(f, g), on Ω, is ε-concentrated, then
for every q > 2

|Ω| ≥ (2π)2

16|B1B2| (1 − ε2)
q

q−2

(q

2

) 4
q−2

. (52)

In particular, if ε = 0, then
∣∣supp

(W∧1,∧2
H

(f, g)
)∣∣ ≥ (πe)2

4|B1B2| . (53)

Proof. From Theorem 4.5, it follows that∣∣(W∧1,∧2
H

(f, g)
)
(x, ξ)

∣∣ = 4
∣∣∣
(
S∧′

1,∧′
2

H,g̃ f
)

(2x, ξ′
x)
∣∣∣ ,

ξ′
x =

(
ξ1 − 4A1x1

B1
, ξ2 − 4A2x2

B2

)
.

Since W∧1,∧2
H

(f, g) is ε-concentrated on Ω, it can be shown that S∧′
1,∧′

2
H,g f

is ε-concentrated on P−1Ω, where P is the non-singular matrix given by⎡
⎢⎢⎣

1
2 0 0 0
0 1

2 0 0
4A1
B1

0 1 0
0 4A2

B2
0 1

⎤
⎥⎥⎦. So, by Theorem 4.6, we have

|P−1Ω| ≥ (2π)2

4|B1B2| (1 − ε2)
q

q−2

(q

2

)( 4
q−2 )

.
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This gives

|Ω| ≥ (2π)2

16|B1B2| (1 − ε2)
q

q−2

(q

2

)( 4
q−2 )

, since det(P−1) = 4.

This proves Eq. (52). �

4.4. Entropy uncertainty principle

As a consequence of the inner product relation and the Lieb’s inequality we
have the following theorem, the proof of which is motivated from the [40].

Theorem 4.7. Let f ∈ L2
H
(R2) and g be a QWF such that ‖g‖L2

H
(R2)‖f‖L2

H
(R2) =

1, then

ES(f, g,∧1,∧2) ≥ 2
|B1B2| , (54)

where

ES(f, g,∧1,∧2) = −
∫
R2

∫
R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2

log
(∣∣∣

(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2
)

dxdξ.

Proof. Define

I(f, g,∧1,∧2, q) =
∫
R2

∫
R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣q dxdξ. (55)

Then using (55) in (37), we get

I(f, g,∧1,∧2, 2) =
1

|B1B2| . (56)

Also, from (41) and (56), it can be shown that

I(f, g,∧1,∧2, q) ≤ (2π)2−q

|B1B2|
(

2
q

)2

. (57)

Define, for λ > 0,

R(λ) =
I(f, g,∧1,∧2, 2) − I(f, g,∧1,∧2, 2 + 2λ).

λ

Then

R(λ) ≥ 1
λ

{
1

|B1B2| − (2π)−2λ

|B1B2|
(

1
1 + λ

)2
}

>
1

λ|B1B2|
{

1 − 1
(1 + λ2)

}

i.e.,

R(λ) >
2 + λ

|B1B2|(1 + λ)2
. (58)

Assume that ES(f, g,∧1,∧2) < ∞, otherwise (54) is obvious.
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Now using the inequality 1 + λ log a ≤ aλ, λ > 0, we have

0 ≤ 1
λ

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2
(

1 −
∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2λ
)

≤ −
∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2 log
(∣∣∣

(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2
)

. (59)

Since, −
∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2 log
(∣∣∣

(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2
)

is integrable, in view

of Eq. (59), using Lebesgue dominated convergence theorem, we have

lim
λ→0+

R(λ) =

∫
R2

∫
R2

lim
λ→0+

{
1

λ

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2
(

1 −
∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ)

∣∣∣2λ
)}

dxdξ

= ES(f, g, ∧1, ∧2). (60)

Again from (58), we get

lim
λ→0+

R(λ) ≥ 2
|B1B2| . (61)

Thus from (60) and (61), we have Eq. (54). This completes the proof. �

Corollary 4.9.1. Let f ∈ L2
H
(R2) and g be a QWF such that ‖g‖L2

H
(R2)‖f‖L2

H
(R2) =

1, then

EA(f, g,∧1,∧2) ≥ 2
|B1B2| , (62)

where

EA(f, g,∧1,∧2) = −
∫
R2

∫
R2

∣∣(A∧1,∧2
H

(f, g)
)
(x, ξ)

∣∣2

log
(∣∣(A∧1,∧2

H
(f, g)

)
(x, ξ)

∣∣2) dxdξ.

Proof. From Theorem 4.4, it follows that
∣∣(A∧1,∧2

H
(f, g)

)
(x, ξ)

∣∣ =
∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ′

x)
∣∣∣ , ξ′

x =
(

ξ1 − A1x1

B1
, ξ2 − A2x2

B2

)
.

So, we have

EA(f, g,∧1,∧2) = −
∫
R2

∫
R2

∣∣∣
(
S∧1,∧2
H,g f

)
(x, ξ′

x)
∣∣∣2

log
(∣∣∣

(
S∧1,∧2
H,g f

)
(x, ξ′

x)
∣∣∣2
)

dxdξ

= ES(f, g,∧1,∧2).

Thus using Theorem 4.7, we have Eq. (62). �

Corollary 4.9.2. Let f ∈ L2
H
(R2) and g be a QWF such that ‖g‖L2

H
(R2)‖f‖L2

H
(R2) =

1. Then

EW (f, g,∧1,∧2) ≥ 2 − log 16
|B1B2| ,
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where

EW (f, g,∧1,∧2) = −
∫
R2

∫
R2

∣∣(W∧1,∧2
H

(f, g)
)
(x, ξ)

∣∣2

log
(∣∣(W∧1,∧2

H
(f, g)

)
(x, ξ)

∣∣2) dxdξ.

Proof. From Theorem 4.5, it follows that

∣∣(W∧1,∧2
H

(f, g)
)
(x, ξ)

∣∣ = 4
∣∣∣
(
S∧′

1,∧′
2

H,g̃ f
)

(2x, ξ′
x)
∣∣∣ , ξ′

x

=
(

ξ1 − 4A1x1

B1
, ξ2 − 4A2x2

B2

)
.

So, we have

EW (f, g, ∧1, ∧2)

= −16

∫
R2

∫
R2

∣∣∣
(
S∧′

1,∧′
2

H,g̃ f
)

(2x, ξ ′
x )

∣∣∣2 log

(
16

∣∣∣
(
S∧′

1,∧′
2

H,g̃ f
)

(2x, ξ ′
x )

∣∣∣2
)

dxdξ

= −4

∫
R2

∫
R2

∣∣∣
(
S∧′

1,∧′
2

H,g̃ f
)

(x, ξ)
∣∣∣2 log

(
16

∣∣∣
(
S∧′

1,∧′
2

H,g̃ f
)

(x, ξ)
∣∣∣2
)

dxdξ

= − 4 log 16

|4B1B2| − 4

∫
R2

∫
R2

∣∣∣
(
S∧′

1,∧′
2

H,g̃ f
)

(x, ξ)
∣∣∣2 log

(∣∣∣
(
S∧′

1,∧′
2

H,g̃ f
)

(x, ξ)
∣∣∣2
)

dxdξ

= − log 16

|B1B2| + 4ES(f, g̃, ∧′
1, ∧′

2).

Therefore, using Theorem 4.7, we have

EW (f, g,∧1,∧2) ≥ 2 − log 16
|B1B2| .

This finishes the proof. �

Example of STQQPFT: Consider the functions f(t) = e−(t21+t22) and g(t) =⎧⎪⎨
⎪⎩

1, 0 ≤ t1 < 1
2 , 0 ≤ t2 < 1

2

−1, 1
2 ≤ t1 < 1, 1

2 ≤ t2 < 1
0, otherwise

, t = (t1, t2) ∈ R
2. Using the Definition 4.1,

the STQQPFT of f with respect to the window function g is given by

(
S∧1,∧2
H,g f

)
(x, ξ) =

∫
R2

Ki
∧1

(t1, ξ1)f(t)g(t − x)Kj
∧2

(t2, ξ2)dt,

(x, ξ) ∈ R
2 × R

2, (63)
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where x = (x1, x2), ξ = (ξ1, ξ2), t = (t1, t2) ∈ R
2. Thus for the chosen

function f and the window function g, we get from (63)

(
S∧1,∧2
H,g f

)
(x, ξ)

=

{∫ x1+
1
2

x1

1√
2π

e−i(A1t21+B1t1ξ1+C1ξ2
1+D1t1+E1ξ1)e−t21dt1

}

{∫ x2+
1
2

x2

1√
2π

e−j(A2t22+B2t2ξ2+C2ξ2
2+D2t1+E2ξ1)e−t22dt2

}

−
{∫ x1+1

x1+
1
2

1√
2π

e−i(A1t21+B1t1ξ1+C1ξ2
1+D1t1+E1ξ1)e−t21dt1

}

{∫ x2+1

x2+
1
2

1√
2π

e−j(A2t22+B2t2ξ2+C2ξ2
2+D2t1+E2ξ1)e−t22dt2

}
(64)

We first consider the integral

∫ x1+
1
2

x1

1√
2π

e−i(A1t21+B1t1ξ1+C1ξ2
1+D1t1+E1ξ1)e−t21dt1

=
1√
2π

e−i(C1ξ2
1+E1ξ1)

∫ x1+
1
2

x1

e−(1+iA1)t
2
1−i(B1ξ1+D1)t1dt1

=
1√
2π

e
−i(C1ξ2

1+E1ξ1)−
(

B1ξ1+D1
2
√

1+iA1

)2 ∫ x1+
1
2

x1

e
−
(√

1+iA1t1+
B1ξ1+D1
2
√

1+iA1
i

)2

dt1,

i.e.,

∫ x1+ 1
2

x1

1√
2π

e−i(A1t2
1+B1t1ξ1+C1ξ2

1+D1t1+E1ξ1)e−t2
1dt1

= J(∧1, ξ1, i)[
erf

((
x1 +

1

2

)
X(A1, i) + Y (∧1, ξ1, i)

)
− erf (x1X(A1, i) + Y (∧1, ξ1, i))

]
,

(65)

where

J(∧1, ξ1, i) =
1

2
√

2
e
−i(C1ξ2

1+E1ξ1)−
(

B1ξ1+D1
2
√

1+iA1

)2

√
1 + iA1

,

X(A1, i) =
√

1 + iA1, Y (∧1, ξ1, i) =
B1ξ1 + D1

2
√

1 + iA1

i
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and erf(t) = 2√
π

∫ t

0
e−x2

dx. Similarly, we have

∫ x2+
1
2

x2

1√
2π

e−j(A2t22+B2t2ξ2+C2ξ2
2+D2t2+E2ξ2)e−t22dt2

= J(∧2, ξ2, j)[
erf

((
x2 +

1
2

)
X(A2, j) + Y (∧2, ξ2, j)

)

−erf (x2X(A2, j) + Y (∧2, ξ2, j))] . (66)

Also, we have
∫ x1+1

x1+
1
2

1√
2π

e−i(A1t21+B1t1ξ1+C1ξ2
1+D1t1+E1ξ1)e−t21dt1

= J(∧1, ξ1, i)
[erf ((x1 + 1) X(A1, i) + Y (∧1, ξ1, i))

−erf

((
x1 +

1
2

)
X(A1, i) + Y (∧1, ξ1, i)

)]
(67)

and
∫ x2+1

x2+
1
2

1√
2π

e−j(A2t22+B2t2ξ2+C2ξ2
2+D2t2+E2ξ2)e−t22dt2

= J(∧2, ξ2, j)
[erf ((x2 + 1) X(A2, j) + Y (∧2, ξ2, j))

−erf

((
x2 +

1
2

)
X(A2, j) + Y (∧2, ξ2, j)

)]
. (68)

Using Eqs. (65), (66), (67) and (68) in Eq. (64), we have
(
S∧1,∧2
H,g f

)
(x, ξ)

= J(∧1, ξ1, i)
[
erf

((
x1 +

1
2

)
X(A1, i) + Y (∧1, ξ1, i)

)

−erf (x1X(A1, i) + Y (∧1, ξ1, i))]

× J(∧2, ξ2, j)
[
erf

((
x2 +

1
2

)
X(A2, j) + Y (∧2, ξ2, j)

)

−erf (x2X(A2, j) + Y (∧2, ξ2, j))]

− J(∧1, ξ1, i) [erf ((x1 + 1) X(A1, i) + Y (∧1, ξ1, i))

−erf

((
x1 +

1
2

)
X(A1, i) + Y (∧1, ξ1, i)

)]

× J(∧2, ξ2, j) [erf ((x2 + 1) X(A2, j) + Y (∧2, ξ2, j))

−erf

((
x2 +

1
2

)
X(A2, j) + Y (∧2, ξ2, j)

)]
.



28 Page 26 of 29 B. Gupta, A. K. Verma Adv. Appl. Clifford Algebras

5. Conclusions

In this article, we have studied Parseval’s identity and sharp Hausdorff-
Young inequality for the two-sided QQPFT of quaternion-valued functions.
Based on the sharp Hausdorff–Young inequality, we have obtained the sharper
Rènyi entropy UP for the proposed QPFT of quaternion-valued functions. We
have extended the STQPFT of complex-valued functions to the functions
of quaternion-valued and studied the properties like boundedness, linearity,
translation, and scaling. We have also obtained the inner product relation
and inversion formula for the proposed two-sided STQQPFT. We have also
obtained the relations of STQQPFT with that of the QQPAF and the QQP-
WVD of the quaternion-valued function associated with the QQPFT. We
have obtained the sharper version of the Lieb’s and entropy UPs for all
these three transforms based on the sharp Hausdorff-Young inequality for
the QQPFT.
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