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Abstract. In this study, we extend Beckner’s seminal work on the Fourier
transform to the domain of Cayley–Dickson algebras, establishing a pre-
cise form of the Hausdorff–Young inequality for functions that take
values in these algebras. Our extension faces significant hurdles due
to the unique characteristics of the Cayley–Dickson Fourier transform.
This transformation diverges from the classical Fourier transform in sev-
eral key aspects: it does not conform to the Plancherel theorem, alters
the interplay between derivatives and multiplication, and the product
of algebra elements does not necessarily maintain the magnitude rela-
tionships found in classical settings. To overcome these challenges, our
approach involves constructing the Cayley–Dickson Fourier transform
by sequentially applying classical Fourier transforms. A pivotal part of
our strategy is the utilization of a theorem that facilitates the norm-
preserving extension of linear operators between spaces Lp and Lq. Fur-
thermore, our investigation brings new insights into the complexities
surrounding the Beckner–Hirschman Entropic inequality in the context
of non-associative algebras.
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1. Introduction

The Hausdorff–Young inequality is a cornerstone in Fourier analysis, stating
the boundedness of the Fourier transform

Ff(ζ) =
∫
Rn

f(x)e−i2π〈x,ζ〉dx,
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between Lp(Rn) and Lq(Rn) spaces, with q being the Hölder conjugate of p
for 1 < p � 2 � q < ∞. The optimal constant in this inequality, known as the
Babenko–Beckner constant, has been established for q � 2 and is achieved
for Gaussian functions, as evidenced by analytic methods and maximization
strategies [2,4,16].

Extensions of the Quaternionic Fourier transform [15] signify the evo-
lution of multichannel signal processing. The quaternion approach is shown
to better maintain signal integrity than traditional component-wise methods.
This transformation offers detailed understanding of signal space structures,
enhancing areas such as color imaging, vector field visualization, and speech
signal processing [9].

However, extending the sharp Hausdorff–Young inequality to the non-
associative octonion algebra poses significant challenges. This paper explores
this area, also examining the broader Cayley–Dickson algebras, which in-
clude nested algebras developed through the Cayley–Dickson process. This
sequence, represented by

C0 ⊂ C1 ⊂ C2 ⊂ C3 ⊂ · · · ,

begins with the algebras R, C, H, O, and progresses into more intricate
structures, often exhibiting more challenging properties [7,8].

We aim to further the comprehensive Fourier transform theory for Cm

with m � 4, building upon the foundational work on real-valued functions
by Snopek [22,23]. Our extension includes functions valued in Cm [10].

The octonion Fourier transform was initially introduced by Snopek [23]
for real-valued functions, and later expanded by B�laszczyk [5,6] for octonion-
valued functions as:

FOf(y) =
∫
R3

f(x)e−2πe1x1y1e−2πe2x2y2e−2πe4x3y3dx. (1.1)

The properties of this transform have been systematically studied by
B�laszczyk and Lian [5,6,15], with applications spanning various fields [13–
15,22].

In the context of Cayley–Dickson algebras, Fourier transforms encounter
several challenges

• The product of two algebra elements may have a magnitude that does
not match the product of their individual magnitudes.

• The non-applicability of interpolation theory in this algebraic setting
limits conventional proof techniques.

• The Plancherel theorem is not valid within these algebras.
• The classical relationship between derivatives and multiplications is al-

tered in this non-associative setting.

To address these complexities, we use an innovative method, construct-
ing the Cayley–Dickson Fourier transform through sequential classical Fourier
transforms, following the complex structures within the algebra.
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Specifically, the Cayley–Dickson Fourier transform Fmf, defined for
functions in L1(Rm, Cm), is expressed as

Fmf(y) =
∫
Rm

f(x)e−2πe1x1y1e−2πe2x2y2 · · · e−2πe2m−1xmymdx,

using a left-to-right multiplication rule for the integrand. This transformation
is constructed through a series of classical Fourier transforms FCe

2t−1
, aligned

with the complex structure indicated by e2t−1 . This composite method is
represented as a successive application of FCe

2i−1
for each i from 1 to m.

Additionally, our approach utilizes a theorem about the norm-preserving
extension of linear operators. Specifically, for any σ-finite measurable spaces
(X, ΓX , μ) and (Y,ΓY , ν), a bounded linear operator

T : Lp(X,C) −→ Lq(Y,C)

where q is the conjugate exponent of p and p � q, can be extended to

T : Lp(X, �2(C)) −→ Lq(Y, �2(C))

with an unchanged norm, utilizing the natural inclusion C ⊂ �2(C).
In Cm, we establish the Hausdorff–Young inequality for functions in

Lp(Rm, Cm) with 1 < p < 2, expressed as

‖Ff‖q �
(
p

1
p q− 1

q

)m/2

‖f‖p.

Notably, for Gaussian functions, this inequality is exact and achievable, show-
ing a distinct jump between the cases of m = 1 and m > 1.

Our study also highlights practical implications, especially concerning
the Beckner–Hirschman entropic inequality

S(|f |2) + S(|Fmf |2) � m(1 − ln 2), (1.2)

for functions f ∈ L2(Rm, Cm) with ‖f‖2 = 1. Here, S denotes the von Neu-
mann entropy.

2. Preliminaries

In this section, we will provide an overview of the Cayley–Dickson algebras
and the Fourier transform in the setting of the Cayley–Dickson algebras. For
the recent development related to the Cayley–Dickson algebras, we refer to
[1,12,13,18–21].

Convention: In this paper, we will adopt the convention of left-to-right
multiplication, due to the non-associativity of Cm for m � 3, unless explicitly
stated otherwise. Thus, for any xj ∈ Cm, j = 1, 2, . . . , n, we have

x1x2x3x4x5 · · · xn−1xn = (· · ·((((x1x2)x3)x4)x5) · · · xn−1)xn.
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2.1. Cayley–Dickson Process

The Cayley–Dickson algebras consist of a set of 2m-dimensional real algebras.
These algebras include all finite-dimensional division algebras over the reals
that are alternative, such as the real numbers R, complex numbers C, quater-
nions H, and octonions O. However, it is worth noting that Cayley–Dickson
algebras with dimensions greater than 8 are not alternative and have zero
divisors.

The definition of the Cayley–Dickson algebra Cm, where m � 1 and
C0 = R, can be found in [3,7,8]. As a real linear space, Cm−1 has a dimension
of 2m−1. Its standard orthogonal basis consists of 2m−1 elements, denoted as

e0, e1, . . . , e2m−1−1, (2.1)

where e0 = 1. The multiplication rule for the basis is given by

ekel = −δkl + γklses (2.2)

for all k, l, s = 1, 2, . . . , 2m−1 − 1, where the coefficients γkls are totally anti-
symmetric with respect to the interchange of k and l, and any two of k, l, s
uniquely determine the third, provided that k, l, s are not equal to each other.

We can represent any arbitrary element x in Cm−1 using an orthonormal
basis as:

x = x0 +
2m−1−1∑

k=1

xkek, (2.3)

where xk belongs to the set of real numbers. The conjugation of x is defined
as:

x = x0 −
2m−1−1∑

k=1

xkek. (2.4)

Using the anti-symmetry property of the coefficients, i.e., γkls = −γlks, it can
be shown that conjugation is an involution. Therefore,

x = x and xy = y x. (2.5)

The expressions for the real part �e(x) and imaginary part �(x) of x
are given by:

�e(x) =
x + x

2
, �(x) = x − �e(x). (2.6)

We can define the Cayley–Dickson inner product 〈x, y〉, the real inner
product 〈x, y〉R, and the norm |x| for any x, y ∈ Cm−1 as follows:

〈x, y〉 = xy, (2.7)

〈x, y〉R = �e〈x, y〉 =
2m−1−1∑

k=0

xkyk, (2.8)

|x| = 〈x, x〉1/2 =

(
2m−1−1∑

k=0

x2
k

)1/2

. (2.9)
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Now we consider the relation between Cm and Cm−1. We take the or-
thonormal basis of Cm−1 in (2.1) and let e2m−1 is an imaginary unit in Cm

that anti-commutes with the basis elements of e2m−1 , i.e.,

eke2m−1 = −e2m−1ek (2.10)

for all k = 1, 2, . . . , 2m−1 − 1. We define

ek+2m−1 = eke2m−1 .

Then we have a standard orthonormal basis of Cm, given by

e0, e1, . . . , e2m−1−1, e2m−1 , . . . , e2m−1.

Using the Cayley–Dickson construction, we can define the multiplica-
tion law for Cm in terms of Cm−1 and an additional imaginary unit e2m−1 .
Specifically, for any x, y, z, w ∈ Cm−1, we have:

(x + ye2m−1)(z + we2m−1) = (xz − wy) + (wx + yz)e2m−1 . (2.11)

Alternatively, we can express this as:

x(we2m−1) = (wx)e2m−1 , (ye2m−1)z = (yz)e2m−1 , (ye2m−1)(we2m−1)
= −wy.

The multiplication table provided by the Cayley–Dickson construction
is shown below:

(e2m−1ek)el = e2m−1(elek), (2.12)
ek(ele2m−1) = (elek)e2m−1 , (2.13)

e2m−1(e2m−1ek) = −ek, (2.14)
(ele2m−1)e2m−1 = −el, (2.15)

(e2m−1ek)(ele2m−1) = −elek. (2.16)

The Cayley–Dickson construction allows us to express Cm in terms of
Cm−1 and e2m−1 . With this decomposition, we can compute the inner prod-
uct, norm, and real inner product in Cm. More precisely, let u, v ∈ Cm be
written as

u = x + ye2m−1 , v = z + we2m−1 ,

where x, y, z, w ∈ Cm−1. We can define

u := x − ye2m−1 (2.17)

and obtain

〈u, v〉 = uv = xz + wy + (yz − wx)e2m−1 , (2.18)

|u| = 〈u, u〉 1
2 = (|x|2 + |y|2) 1

2 , (2.19)

〈u, v〉R = 〈x, z〉R + 〈y, w〉R =
2m−1−1∑

k=0

(xkzk + ykwk). (2.20)

We can observe that the norm of any u, v ∈ Cm satisfies the triangle
inequality

|u + v| � |u| + |v|. (2.21)
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Additionally, for every non-zero u ∈ Cm, there exists an inverse given by:

u−1 :=
u

|u| . (2.22)

2.2. Multiplicativity of Absolute Value

In this subsection, we explore the relationship between multiplication and
absolute value in Cayley–Dickson algebras.

If m � 4, for any x, y ∈ Cm, the value of |xy| can be greater than, equal
to, or less than |x||y|.

To illustrate this, consider the example where x = e1 + e10 and y =
e5 + e14. In this case, xy = 0, and so |xy| = 0 which is less than |x||y| = 2.

On the other hand, suppose x = e1 − e10 and y = e0 + e1 + e4 − e15.
Then |xy| = 2

√
3, which is greater than |x||y| = 2

√
2.

Finally, if both x and y are real, then |xy| = |x||y|.
We define the set Γm as the collection of all complex planes generated

by the imaginary unit e2j−1 for j ranging from 1 to m. In other words,

Γm =
m⋃

j=1

Ce2j−1 ,

where

Ce2j−1 = R + Re2j−1 .

Lemma 2.1. Let m be a positive integer. For any x ∈ Cm and y ∈ Γm, we
have

|xy| = |x||y|.
Proof. This result can be derived through the Cayley–Dickson construction
(2.11) and the process of induction. More details can be found in [10, Lemma
3.2.]. �

2.3. Vector-Valued Function Spaces

When considering function spaces, we can treat the Cayley–Dickson algebras
Cm as R

2m

, which leads to all function spaces being vector-valued. In this
context, we will focus on two function spaces:

• Lp(Rm, Cm) for 1 � p < ∞,
• S(Rm, Cm), also known as the Schwartz space.

For any function f : Rm → Cm, there exists a standard basis of Cm

which allows us to express f as

2m−1∑
j=0

fj(x)ej ,

where fj : Rm → R are real-valued functions. It is important to note that
f ∈ Lp(Rm, Cm) if and only if fj ∈ Lp(Rm,R) for all j = 0, 1, . . . , 2m − 1.
Similar results hold for other vector-valued spaces.
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2.4. Cayley–Dickson Fourier Transforms

The Cayley–Dickson Fourier Transform is briefly introduced along with its
properties in this subsection. For more detailed information, we refer to the
paper [10].

To define the Cayley–Dickson Fourier Transform of f ∈ L1(Rm, Cm),
we denote the function as Ff and express it as follows:

Ff(y) = Fmf(y) :=
∫
Rm

f(x)e−2πe1x1y1e−2πe2x2y2 · · · e−2πe2m−1xmymdx.

(2.23)

Here, x and y are m-dimensional vectors, Cm is identified with the 2m-
dimensional real space, and ei is the i-th unit vector.

Proposition 2.2. For any f ∈ L1(Rm, Cm), Ff is uniformly continuous on
R

m, and

‖Ff‖L∞(Rm,Cm) � ‖f‖L1(Rm,Cm). (2.24)

Proposition 2.3. (Parseval) For any f ∈ L2(Rm, Cm), we have

‖Ff‖L2(Rm,Cm) = ‖f‖L2(Rm,Cm). (2.25)

We will now prove that the Cayley–Dickson-Fourier transform preserves
the Schwartz space S(Rm, Cm). To do this, we need to introduce a critical
involution given by

τα,β(y) =
(
y1, (−1)α1+β1y2, . . . , (−1)

∑m−1
l=1 (αl+βl)ym

)
,

where α and β are multi-indices in N
m.

Proposition 2.4. [10] Let α and β be multi-indices in N
m. Then, the Cayley–

Dickson Fourier Transform of ∂α(xβf), evaluated at y, can be expressed as
follows:

F{∂α(xβf)}(y) = Cyα∂βFf(τα,β(y))e−βm

2m−1 · · · e−β1
1 eαm

2m−1 · · · eα1
1 , (2.26)

where

C = (−1)|β|(2π)|α|−|β|.

3. The Proof of Sharp Hausdorff–Young Inequalities

In order to establish our main theorem, it is necessary to extend an operator
that is associated with vector-valued functions, as presented in [17, Theorem
5.5.1.].

Definition 3.1. Let 1 � p < ∞, and (X,ΓX , μ) be a σ-finite measure space.
Let fj be complex-valued functions in Lp(X,C). We define f as the sequence
{fj}∞

j=1, where fj ∈ Lp(X,C) for all j. We say that f ∈ Lp(X, �2(C)) if

|f |�2(C) =

( ∞∑
j=1

|fj |2
)1/2
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belongs to Lp(X,C). We denote the norm of f in Lp(X, �2(C))

‖f‖Lp(X,l2(C)) =
∥∥∥ |f |�2(C)

∥∥∥
Lp(X,C)

:=

∥∥∥∥∥
( ∞∑

j=1

|fj |2
)1/2∥∥∥∥∥

Lp(X,C)

.

The space Lp(X, �2(C)) is a Banach space.

Theorem 3.2. [17, Theorem 5.5.1.] Suppose 1 � p � q < ∞ and let (X, ΓX , μ)
and (Y,ΓY , ν) be two σ-finite measure spaces. Let T be a bounded linear
operator from Lp(X,C) to Lq(Y,C) with norm N. Then T has a norm-
preserving extension, also denoted by T, from Lp(X, l2(C)) to Lq(Y, l2(C)),
where we use the canonical embedding C ⊂ l2(C). In other words, for any
f ∈ Lp(X, l2(C)), we have

‖Tf‖Lq(X,l2(C)) � N‖f‖Lp(X,l2(C)). (3.1)

The Cayley–Dickson algebra Cm can be viewed as a complex linear
space consisting of the direct sum of

2m−1−1⊕
j=0

ejCe2m−1 ,

which in turn can be seen as C
2m−1

in a certain way.

Lemma 3.3. The Cayley–Dickson algebras, as a real linear space, can be rep-
resented by a direct sum of orthogonal complex planes. Specifically, there exists
an isometric isomorphism

I : Cm −→
2m−1−1⊕

j=0

ejCe2m−1

given by

I(x) = I

⎛
⎝2m−1∑

j=0

xjej

⎞
⎠ =

2m−1−1∑
j=0

ej(xj + xj+2m−1e2m−1). (3.2)

Proof. To prove this, it is sufficient to show that I is an isomorphism and
isometric. It is clear that I is an isomorphism. To see that I is isometric, we
have

|I(x)|2 =
∑2m−1−1

j=0 (x2
j + x2

j+2m−1) =
2m−1∑
j=0

x2
j = |x|2.

The proof is complete. �

We present a generalization of Beckner’s result [4] to the case of Cayley–
Dickson algebras Cm. Our main theorem is as follows.

Theorem 3.4. (Hausdorff–Young) Let f ∈ Lp(Rm, Cm) with 1 < p < 2. Then,
we have

‖Ff‖q � Am
p ‖f‖p, (3.3)
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where

Ap =
(
p

1
p q− 1

q

)1/2

is sharp and can be attained if f is a Gaussian function

f(x) = ae−π(
∑m

j=1 bjx2
j+2cjxj), (3.4)

where bj is positive for all j, (c1, c2, . . . , cm) ∈ Ce1 × R
m−1, and

a ∈
{
Ce1 , m = 1,

R, m � 2.

Remark 3.5. The inequality of Hausdorff–Young holds for p = 1 and p = 2,
where (3.3) reduces to (2.24) and (2.25), respectively. However, the extremiz-
ers differ from the 1 < p < 2 case, where there exist only a few functions that
satisfy equality in (3.3). In the cases of p = 1 and p = 2, there are numerous
functions that satisfy equality, especially in L2(Rm, Cm), where all functions
satisfy equality as demonstrated in Theorem 2.3.

Let us return to the proof of Theorem 3.4.

Proof. Let us assume f ∈ S(Rm, Cm) and use an approximation process and
Theorem 2.4 to show that it suffices to prove (3.3) only for functions in the
Schwartz space.

To begin, we note that the constant Am
p is sharp. We represent Fm−1

as the composition of the classic Fourier transform over the complex plane
Ce2t−1 . More precisely, we have

Fm−1 = FCe
2m−2

◦ · · · ◦ FCe1
,

where FCe2i−1 for i = 1, . . . , m−1 represents the classic Fourier transform over
the complex plane Ce2i−1 . We then express Fm−1f in real-valued measurable
components, as given by

Fm−1f =
2m−1∑
j=0

gjej =
2m−1−1∑

j=0

ej(gj + gj+2m−1e2m−1), (3.5)

where gj are the Fourier coefficients of f. We define auxiliary functions

hj := gj + gj+2m−1e2m−1

and observe that the associator

[ej , hj , e
−2πe2m−1xmym ]

is zero, which implies that

Ff = FCe
2m−1

◦ Fm−1f =
2m−1−1∑

j=0

ejFCe
2m−1

hj . (3.6)

Lemma 3.3 implies that the complex planes ejCe2m−1 are mutually or-
thogonal. Using this, we obtain the expressions

|Fm−1f |2 =
2m−1−1∑

j=0

|hj |2, (3.7)
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and

|Ff |2 =
2m−1−1∑

j=0

|FCe2m−1 hj |2, (3.8)

where hj denotes the j-th component of f under the isometric isomorphism
I from Lemma 3.3.

Using induction, we will prove our theorem by assuming that inequality
(3.9) holds for t = 1 and t = m − 1 for any ϕ ∈ S(Rm, Cm). It states that

‖Ftϕ(·, xt+1, . . . , xm)‖q � At
p‖ϕ(·, xt+1, . . . , xm)‖p. (3.9)

We should note that the t = 1 case corresponds to the classical result, while
the t = m − 1 case serves as our induction hypothesis.

Then we prove that (3.9) also holds for t = m. We denote x′ = (x1, . . . ,
xm−1). By (3.7), f(x) is Lp integrable for almost every xm ∈ R and induction
(3.9), we have
(∫

Rm−1

(
2m−1∑
j=0

|hj(y′,xm)|2
)q/2

dy′
)1/q

=

(∫
Rm−1

|Fm−1f(y′, xm)|qdy′
)1/q

� Am−1
p

(∫
Rm−1

|f(x)|pdx′
)1/p

.

(3.10)

Integrate on both sides of (3.10) with respect to xm, we obtain
∫
R

(∫
Rm−1

(
2m−1∑
j=0

|hj(y′, xm)|2
)q/2

dy′
)p/q

dxm � Apm−p
p ‖f‖p

p.

Then we invoke the Minkowski inequality to the left side of above integral
inequality to get(∫

Rm−1

(∫
R

(
2m−1∑
j=0

|hj(y′, xm)|2
)p/2

dxm

)q/p

dy′
)p/q

�
∫
R

(∫
Rm−1

(
2m−1∑
j=0

|hj(y′, xm)|2
)q/2

dy′
)p/q

dxm < ∞. (3.11)

This show that each hj is Lp integrable with respect to xm for almost every
y′ = (y1, . . . , ym−1) ∈ R

m−1.
Next, we claim that the quantity on the left side of (3.11) is greater

than or equal to

A−p
p

(∫
Rm

(
2m−1∑
j=0

|FCe
2m−1

hj(y)|2
) q

2

dy

) p
q

. (3.12)

Indeed, we note that the functions hj , which are C2m−1-valued and oper-
ated on by the classic Fourier Transform FCe

2m−1
, satisfy the conditions of

Lemma 3.2 with respect to xm. By the induction step (3.9), the norm N in
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Lemma 3.2 can be taken to be Ap. Also, since 1 < p < 2 < q, we can apply
Theorem 2.4 and Tonelli’s theorem to complete the proof of our claim.

Furthermore, we can see that (3.12) is exactly equal to A−p
p ‖F{f}‖p

q by
using (3.8).

Now we come to show that the sharp constant Am
p can be attained by

the Gaussian function given in (3.4). Additionally, we can verify that this
condition indeed leads to equality in (3.3).

To do so, we refer to two well-known classical results:

‖g‖Lp(R,C) = |a|eπb−1(�e(c))2(pb)− 1
2p , (3.13)

‖FCg‖Lq(R,C) = ‖ab− 1
2 e−πb−1(y+e1c)2‖Lq(R,C)

= |a|b− 1
2 eπb−1(�e(c))2(q−1b)

1
2q , (3.14)

where

g(x) = ae−πbx2+2πcx

with a ∈ C, b > 0, and c ∈ C.
Using (3.13)–(3.14), (3.4), and Lemma 2.1, we can compute the following

expressions:

‖f‖Lp(Rm,Cm) = |a|eπ
∑m

j=1 b−1
j (�e(cj))

2
m∏

j=1

(pbj)− 1
2p , (3.15)

‖Ff‖Lq(R,Cm)

=

∥∥∥∥∥∥a

⎛
⎝ m∏

j=1

b
− 1

2
j

⎞
⎠ e−πb−1

1 (y1+e1c1)
2 · · · e−πb−1

m (ym+e2m−1cm)2

∥∥∥∥∥∥
Lq(R,Cm)

= |a|
⎛
⎝ m∏

j=1

b
− 1

2
j eπb−1

j (�e(cj))
2
(q−1bj)

1
2q

⎞
⎠ . (3.16)

It is clear that (3.15)–(3.16) make (3.3) become an equality. This completes
the proof of our theorem. �

Remark 3.6. We do not know if all Lp functions that satisfy (3.4) are those
that attain the optimal constant Am

p . If m � 2, we can prove by induction
that (3.10) is an equality if and only if f is a Gaussian function of the form

f(x) = a(xm)e−π(∑m−1
j=1 bj(xm)x2

j+2cj(xm)xj) (3.17)

where a(xm) ∈ Ce1, bj(xm) > 0, c1(xm) ∈ Ce1, and cj(xm) ∈ R for j � 2.
However, it is challenging to demonstrate that cj(xm) is independent of xm.

Using the Hausdorff–Young inequality in Theorem 3.4, we can derive the
following direct implication, known as the sharp Beckner–Hirschman entropic
inequality.

Theorem 3.7. (Beckner–Hirschman) Let f ∈ L2(Rm, Cm) and ‖f‖2 = 1.
Then we have

S(|f |2) + S(|Ff |2) � m(1 − ln 2) (3.18)
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whenever the left hand side has meaning, where

S(|f |) = −
∫
Rm

|f(x)| ln |f(x)|dx

is the Shannon entropy of |f |.
Proof. The result follows by differentiating (3.3) with respect to p at p =
2. �

This theorem is the generalization of Hirschman’s result [11] in the
setting of Cayley–Dickson algebras.

4. Concluding Remarks

We have proved the sharp Hausdorff–Young inequality for Fourier transforms
over the Cayley–Dickson algebra Cm for any positive integer m. This result
is attained by the Gaussian function given by

f(x) = ae−π(
∑m

j=1 bjx2
j+2cjxj),

where bj is positive for all j, (c1, c2, . . . , cm) ∈ Ce1 × R
m−1, and

a ∈
{
Ce1 , m = 1,

R, m � 2.

In [16], Lieb showed that when m = 1, the aforementioned functions
are the sole extremizers of the inequality. This result remains valid for any
m ∈ N, as long as the extremizers are even functions. Nevertheless, it is
currently unknown whether these functions remain the only extremizers even
when m = 2 in the context of quaternions.
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