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Abstract. Let Γ be a d-summable surface in R
m, i.e., the boundary of a

Jordan domain in R
m, such that

∫ 1

0
NΓ(τ)τd−1dτ < +∞, where NΓ(τ)

is the number of balls of radius τ needed to cover Γ and m−1 < d < m.
In this paper, we consider a singular integral operator S∗

Γ associated with
the iterated equation Dk

xf = 0, where Dx stands for the Dirac operator
constructed with the orthonormal basis of Rm. The fundamental result
obtained establishes that if α > d

m
, the operator S∗

Γ transforms functions
of the higher order Lipschitz class Lip(Γ, k+α) into functions of the class
Lip(Γ, k + β), for β = mα−d

m−d
. In addition, an estimate for its norm is

obtained.
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1. Introduction

The problem about the existence of the limit boundary values of the complex
Cauchy Transform

CΓf(z) :=
1

2πi

∫

Γ

f(ζ)
ζ − z

dζ,
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with f ∈ C0,α(Γ), is widely treated in [8], which leads to the Plemelj-Sojotski
formulas:

C+
Γ f(t) = lim

z→t
z∈Ω+

CΓf(z) =
1
2

(f(t) + SΓf(t))

C−
Γ f(t) = lim

z→t
z∈Ω−

CΓf(z) =
1
2
(−f(t) + SΓf(t)), (1.1)

where

SΓf(t) :=
1
πi

∫

Γ

f(ζ)
ζ − t

dζ, t ∈ Γ

= lim
ε→0

1
πi

∫

Γ\Γ∩B(t,ε)

f(ζ)
ζ − t

dζ.

is a singular integral operator understood in the sense of the Cauchy principal
value.

From the Plemelj-Sojotski formulas (1.1), we obtain an alternative def-
inition of this singular operator, given by the expression

SΓf(t) = C+
Γ f(t) + C−

Γ f(t). (1.2)

In addition, we have

C+
Γ f(t) − C−

Γ f(t) = f(t),

from where
C−
Γ f(t) = C+

Γ f(t) − f(t). (1.3)
Also, note that, by substituting (1.3) into (1.2),

SΓf(t) = 2C+
Γ f(t) − f(t). (1.4)

The expression just obtained for SΓf will be the starting point in the
present research.

The Plemelj–Privalov theorem, named in honor of the Slovenian math-
ematician Josip Plemelj (1873–1967) and the Russian mathematician Ivan
Ivanovich Privalov (1891–1941), is of great importance in the theory of sin-
gular integral equations and complex variable function theory. This theorem
affirms the invariance of the Hölder classes under the action of the Cauchy
singular integral operator, i.e., SΓ : C0,α(Γ) → C0,α(Γ), 0 < α < 1.

The result was obtained by Plemelj [13] for the case of smooth curves.
It was rediscovered independently by Privalov [14] for the circle and, later
on, for any smooth piecewise curve without cusps [15]. The reader is referred
to the work of [11] for further historical details.

A higher order version of the above mentioned result was established in
[5,6], where the higher order Lipschitz class Lip(Γ, k+α) plays the role of the
more traditional Hölder classes. More precisely, in these works the invariance
of a generalized singular integral operator S

(k)
Γ when acting on Lip(Γ, k +α),

is proved in complex and Clifford settings.
In the more general context of non-smooth boundaries, such invariance

is no longer true. This time, the corresponding singular integral operator acts
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between differents Hölder classes (see [1]). For the case where the boundary
Γ is d-summable, an estimation of its norm is also established in the above
mentioned paper.

This brief introduction leads to the aim of the present paper: to charac-
terize the behaviour of a singular integral operator related to iterated Dirac
equations in domains with fractal boundaries. We will prove a sort of invari-
ance of this operator between higher order Lipschitz classes. Moreover, an
estimation for its norm is obtained.

2. Preliminaries

2.1. Polymonogenic Functions

Denote by e1, e2, . . . , em an orthonormal basis of Rm, subjected to the mul-
tiplication relations

e2
i = −1, eiej = −ejei, i, j = 1, 2, . . . m, i < j.

Thus the Euclidean space

R
m = {x = x1e1 + x2e2 + . . . xmem, xi ∈ R, i = 1, 2, . . . m}

is embedded in the real Clifford algebra R0,m generated by e1, e2, . . . em

over the field of real numbers R. An element a ∈ R0,m may be written as
a =

∑
A aAeA, where aA are real constants and A runs over all the possible

ordered sets

A = {0 ≤ i1 < · · · < ik ≤ m}, or A = ∅,

and

eA := ei1ei2 · · · eik
, e0 = e∅ = 1.

In particular, Sc a := a0 is referred as the scalar part of a. Conjugation in
R0,m is defined as the anti-involution a �→ a for which ei = −ei. A norm
‖.‖ on R0,m is defined by ‖a‖2 = Sc[aa] for a ∈ R0,m. We remark that for
x ∈ R

m we have ‖x‖ = |x|, the symbol |.| denotes the usual Euclidean norm.
We will consider functions defined on subsets of Rm and taking values

in R0,m. Those functions might be written as f =
∑

A fAeA, where fA are
R-valued functions. The notions of continuity, differentiability and integrabil-
ity of a R0,m-valued function f have the usual component-wise meaning. In
particular, the spaces of all k-time continuous differentiable and p-integrable
functions are denoted by Ck(E) and Lp(E) respectively, where E is a suitable
subset of Rm.

The Dirac operator Dx for C1-functions on R
m is defined by

Dx = ∂x1e1 + ∂x2e2 + · · · + ∂xm
em.

It is worth pointing out that Dx factorizes the Laplace operator in R
m

in the sense that

DxDx = −�.

The fundamental solution of Dx is thus given by

E0(x) = ∂xE1(x),
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where

E1(x) =
1

(m − 2)σm|x|m−2 , x 	= 0

is the fundamental solution of � and σm stands for the surface area of the
unit sphere in R

m.
The function

E0(x) = − 1
σm

x

|x|m ,

called Clifford–Cauchy kernel, satisfy in R
m \ {0} the equations

DxE0 = E0Dx = 0.

An R0,m-valued function f , defined and differentiable in an open region
Ω of Rm, is called left monogenic (right monogenic) if Dxf = 0 (fDx = 0)
in Ω. Functions that are both left and right monogenic are called two-sided
monogenic. We refer the reader to [4,10] for the more classical setting of
Clifford analysis.

More generally, an R0,m-valued function f in Ck(Ω) is called polymono-
genic (left) of order k, or simply k-monogenic (left) if Dk

x f = 0 in Ω. In
particular, bimonogenic functions are nothing more than R0,m-valued har-
monic functions. See papers such as [2,3,16] for further general information
concerning polymonogenic functions.

2.2. Higher Order Lipschitz Classes and Whitney Extension Theorem

Here and subsequently, j := (j1, j2, ..., jm) and l := (l1, l2, ..., lm) denote
multi-indexes, with j! := j1!j2!...jm!, |j| := j1 + j2 + ...+ jm; xl = xl1

1 xl2
2 ... xlm

m

and ∂j := ∂|j|

∂
j1
x1 ...∂jm

xm

.

Definition 2.1. [17] Let E be a closed subset of Rm, k a non-negative integer
and 0 < α ≤ 1. We shall say that a real valued function f , defined in E,
belongs to Lip(E, k + α) if there exist real valued bounded functions f j,
0 < |j| ≤ k, defined on E, with f0 = f , and such that if

f j(x) =
∑

|j+l|≤k

f j+l(y)
l!

(x − y)l + Rj(x, y),

then

|f j(x)| ≤ M, |Rj(x, y)| ≤ M |x − y|k+α−|j|, ∀x, y ∈ E, |j| ≤ k, (2.1)

where M is a positive constant.

The above compatibility conditions (2.1) are equivalent to the fact that
the field of polynomials

∑

|j|≤k

f j(y)(x − y)j, y ∈ Γ

is the field of Taylor polynomials of a Ck,α-function. In 1934 H. Whitney
proves that given a function f ∈ Lip(E, k+α) there exists f̃ ∈ Lip(Rm, k+α)
such that f̃ ∈ C∞(Rm \E) [19], a result which we state here without proof.
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Theorem 2.2. [17] Let f ∈ Lip(E, k + α). Then, there exists a function f̃ ∈
Lip(Rm, k + α) satisfying

(i) f̃ |E = f0, ∂jf̃ |E = f j,

(ii) f̃ ∈ Ck+1(Rm \ E),

(iii) |∂jf̃(x)| ≤ c dist(x,E)α−1, for |j| = k + 1, x ∈ R
m \ E.

Here and subsequently, c denotes a generic constant, not necessarily the
same at each occurrence.

The proof of Theorem 2.2 uses the so-called Whitney decomposition,
which involves a collection of disjoint cubes Q whose lengths are proportional
to their distance from E. This decomposition, usually denoted by W, is so
that

R
m \ E =

⋃

Q∈W
Q.

In what follows we use the symbol |Q| to denote the diameter of the cube
Q ∈ W. For details we refer the reader to [17].

In our context we will say that an R0,m-valued function f belongs to
Lip(E, k +α) if each of its real components does so. It is easy to see that this
component-wise definition is equivalent to the assumption that there exist
R0,m-valued functions f j such that if

f j(x) =
∑

|j+l|≤k

f j+l(y)
l!

(x − y)l + Rj(x, y), (2.2)

then

‖f j(x)‖ ≤ M, ‖Rj(x, y)‖ ≤ M |x − y|k+α−|j|, ∀x, y ∈ E, |j| ≤ k. (2.3)

The following norm in Lip(E, k + α) was introduced in [18]:

‖f‖k+α,E = sup
0≤|j|≤k

{

sup
x∈E

‖f j(x)‖, sup
x,y∈E

‖Rj(x, y)‖
|x − y|k+α−|j|

}

, (2.4)

where ‖.‖ denotes the Clifford norm on R0,m.
Before going further, it is necessary to consider the notion of d-summable

sets. This concept was introduced by Harrison and Norton in [12]. We say
that E is d-summable for some m − 1 < d < m if the improper integral

1∫

0

NE(τ)τd−1dτ converges,

where NE(τ) is the number of balls of radius τ needed to cover E.
The following lemma establishes a relationship between the Whitney

decomposition W and the concept of d-summability. The reader is invited to
review [12] for details of the proof.
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Lemma 2.3. If Ω is a Jordan domain of Rm with d-summable boundary Γ,
then the d-sum

∑
Q∈W |Q| of the Whitney decomposition W of Ω is finite.

For notational convenience, we will use the symbol s(d) to denote the
d-sum of a Jordan domain Ω with d-summable boundary.

For f ∈ Lip(Γ, k + α), the polymonogenic Cauchy Transform

C(k)
Γ∗ f(x) = f̃(x)χΩ − (−1)k+1

∫

Ω

Ek(y − x)Dk+1
y f̃(y)dy, (2.5)

with Γ being d-summable, was introduced in [9].
Here and below, Es (s ≥ 1) are given by:

Es−1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c(m, s)
x

|x|m−s+1
if m and s are odd,

or if m is even, s is odd and s < m,

c(m, s)
1

|x|m−s
if m is odd and s is even

or if m is even, s is even and s < m,
c(m, s)xs−m (log |x| + d(m, s)) if m is even and s ≥ m,

where c(m, s) is a constant that depends on m and s; and d(m, s) is a real
constant that depends on m and s [16].

For the kernels Es, the following estimation:
∣
∣∂jEs(x)

∣
∣ ≤ c

|x|m−s−1+|j| , (2.6)

is obtained in [6].
Let us define the singular integral operator:

S(k)
Γ∗ f(t) = 2(C(k)

Γ∗ )+f(t) − f(t), (2.7)
which may be written as

S(k)
Γ∗ f(t) = f̃(t) − 2Tk+1Dk+1

x f̃(t), (2.8)

where

Tk+1g(x) := (−1)k+1

∫

Ω

Ek(y − x)g(y)dy,

denotes the higher-order Teodorescu operator.
We will adopt (2.8) as the definition of our singular integral operator,

whose properties are studied bellow.

3. Main Results

The following result is a generalization of [7, Lemma 1].

Lemma 3.1. Let be F ∈ Lip(Rm, k + α) and E ⊂ R
m a compact set. Then

f = F |E belongs to Lip(E, k + α). Moreover, we have

‖f‖k+α,E ≤ sup
|j|=k

{
2

m
2 m!

(m − k)!k!
‖∂jF‖α,Rm , sup

x∈E
‖f(x)‖

}

. (3.1)
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Proof. Let f be defined as the trace of F in E, i. e., f = F |E. Taking f j =
F j|E = ∂jF |E obviously yields f ∈ Lip(E, k + α).

On the other hand, if |j| = 0, it follows that

sup
x∈E

‖f j(x)‖ = sup
x∈E

‖f(x)‖, (3.2)

since by definition f0 = f .
Let us introduce the following notations

f j =
∑

A

f j
AeA,

∂jF =
∑

A

∂jFAeA,

and
Rj =

∑

A

RjAeA,

where f j
A, ∂jFA, and RjA are R-valued functions.

For |j| = 0, we have

Rj(x, y) =f(x) −
∑

|l|≤k

f l(y)
l!

(x − y)l, x, y ∈ E,

or equivalently,

Rj(x, y) =F (x) −
∑

|l|≤k

∂lF (y)
l!

(x − y)l

=F (x) −
∑

|l|≤k−1

∂lF (y)
l!

(x − y)l −
∑

|l|=k

∂lF (y)
l!

(x − y)l.

Thus, for each RjA(x, y) it turns out that

RjA(x, y) = FA(x) −
∑

|l|≤k−1

∂lFA(y)
l!

(x − y)l −
∑

|l|=k

∂lFA(y)
l!

(x − y)l. (3.3)

At this stage we make use of the mean value theorem, which leads to

FA(x) −
∑

|l|≤k−1

∂lFA(y)
l!

(x − y)l =
∑

|l|=k

∂lFA(y∗)
l!

(x − y)l. (3.4)

where y∗ belongs to the segment joining x and y.
By substituting (3.4) into (3.3), one has

RjA(x, y) =
∑

|l|=k

∂lFA(y∗)
l!

(x − y)l −
∑

|l|=k

∂lFA(y)
l!

(x − y)l

=
∑

|l|=k

[
∂lFA(y∗) − ∂lFA(y)

l!

]

(x − y)l.
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Hence,

|RjA(x, y)| ≤
∑

|l|=k

1
l!

|∂lFA(y∗) − ∂lFA(y)||(x − y)l|

≤
∑

|l|=k

1
l!

|∂lFA(y∗) − ∂lFA(y)||x − y||l|

≤
∑

|l|=k

1
l!

|∂lFA(y∗) − ∂lFA(y)||x − y|k

≤
∑

|l|=k

1
l!

|∂lFA(y∗) − ∂lFA(y)|
|x − y|α |x − y|k+α

≤ m!
(m − k)!k!

sup
|l|=k

|∂lFA(y∗) − ∂lFA(y)|
|y∗ − y|α |x − y|k+α

≤ m!
(m − k)!k!

|∂lFA|α,Rm |x − y|k+α.

Consequently,

|RjA(x, y)|
|x − y|k+α

≤ m!
(m − k)!k!

|∂lFA|α,Rm .

Thus,

‖Rj(x, y)‖ =‖
∑

A

RjA(x, y)eA‖

=
√∑

A

R2
jA

(x, y)

≤
√∑

A

max
A

R2
jA

(x, y)

≤
√

2m max
A

R2
jA

(x, y)

≤2
m
2 max

A
|RjA(x, y)|.

Therefore,

‖Rj(x, y)‖
|x − y|k+α

≤ 2
m
2 m!

(m − k)!k!
max

A

{
|∂lFA|α,Rm

}

≤ 2
m
2 m!

(m − k)!k!
‖∂lF‖α,Rm . (3.5)

The proof of the general case 1 ≤ |j| ≤ k, follows a completely analogous
procedure and for the sake of brevity will be omitted. �

The following Lemma will be useful.
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Lemma 3.2. Let h ∈ Lp(Ω), with p > m. Then

H(x) =
∫

Ω

(y − x)j

|y − x|m+|j|−1
h(y)dy (3.6)

is a function belonging to C0,β(Rm) with β = p−m
p .

Proof. We have
∣
∣
∣
∣
∣

(y − x)j

|y − x|m+|j|−1
−

(y − z)j

|y − z|m+|j|−1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(y − x)j

|y − x|m+|j|−1
−

(y − x)j

|y − z|m+|j|−1
+

(y − x)j

|y − z|m+|j|−1
−

(y − z)j

|y − z|m+|j|−1

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
(y − x)j

[
1

|y − x|m+|j|−1
− 1

|y − z|m+|j|−1

]∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

(y − x)j − (y − z)j

|y − z|m+|j|−1

∣
∣
∣
∣
∣

:= I1 + I2.

First, we estimate I1.

I1 ≤
∣
∣y − x

∣
∣|j|
∣
∣|y − z|m+|j|−1 − |y − x|m+|j|−1

∣
∣

|y − x|m+|j|−1|y − z|m+|j|−1
. (3.7)

Developing the power difference in (3.7), we obtain:

I1 ≤ c |z − x|
∣
∣|y − z|m+|j|−2 + |y − z|m+|j|−3|y − x| + · · · + |y − x|m+|j|−2

∣
∣

|y − x|m−1|y − z|m+|j|−1

(3.8)
Since |y − z| ≥ |y−x|

2 , it follows

I1 ≤
c |z − x| |y − z|m+|j|−2

|y − x|m−1|y − z|m+|j|−1

=
c |z − x|

|y − x|m−1|y − z| , (3.9)

and hence

I1 ≤ c |z − x|
|y − x|m . (3.10)

Next, we will estimate I2. By the multi-binomial Theorem, we have

(a + b)j =
∑

l≤j

(
j
l

)

albj−l, (3.11)

and so

(y − x)j = (y − z + z − x)j =
∑

l≤j

(
j
l

)

(y − z)l(z − x)j−l.
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Therefore,

(y − x)j − (y − z)j =
∑

l≤j

(
j
l

)

(y − z)l(z − x)j−l − (y − z)j

=
∑

|l|≤|j|−1

(
j
l

)

(y − z)l(z − x)j−l.

Thus,

I2 ≤

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

|l|≤|j|−1

(
j
l

)

(y − z)l(z − x)j−l

|y − z|m+|j|−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤

∑

|l|≤|j|−1

(
j
l

)
∣
∣y − z

∣
∣|l| |z − x||j|−|l|

|y − z|m+|j|−1

=
c
∣
∣y − z

∣
∣|l| |z − x||j|−|l|−1 |z − x|
|y − z|m+|j|−1

≤
c
∣
∣y − z

∣
∣|l| ∣∣y − z

∣
∣|j|−|l|−1 |z − x|

|y − z|m+|j|−1

≤ c |z − x|
|y − z|m ≤ c |z − x|

|y − x|m .

Sumarizing,
∣
∣
∣
∣
∣

(y − z)j

|y − z|m+|j|−1
−

(y − x)j

|y − x|m+|j|−1

∣
∣
∣
∣
∣
≤ c |z − x|

|y − x|m .

The rest of the proof is completely analogous to those used in [10, Propo-
sition 8.1]. �

A rather simple consecuence of the above Lemma is the following

Proposition 3.3. Let g ∈ Lp(Ω), with p > m. Then,

Tk+1g ∈ Ck,β(Rm),

for β = p−m
p . �

We are now in a position to formulate our main result.

Theorem 3.4. Let Γ be d-summable and α >
d

m
. Then

S(k)
Γ∗ : Lip(Γ, k + α) → Lip(Γ, k + β),
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for β =
mα − d

m − d
. In addition,

‖S(k)
Γ∗ ‖k+β,Γ ≤ 1 + c1s(d)

1−β
m |Γ|k+β +

2
m
2 m!

(m − k)!k!

(
|Γ|α−β + c2s(d)

1−β
m |Γ|β + c3s(d)

1−β
m

)
,

where c1, c2, and c3 are constants depending on α, d, and m.

Proof. Since α >
d

m
, it follows that

m <
m − d

1 − α
.

Let p = m−d
1−α . Then, from [9, Proposition 2] we have that Dk+1

y f̃ ∈
Lp(Ω). On the other hand, Proposition 3.3 yields Tk+1Dk+1

y f̃ ∈ Lip(Rm, k +
p−m

p ), i. e., Tk+1Dk+1
y f̃ ∈ Lip(Rm, k + β), where use has been made of the

obvious equality

p − m

p
=

m − d

1 − α
− m

m − d

1 − α

=
mα − d

m − d
.

Thus, C(k)
Γ∗ has continuous extensions up to Ω and S(k)

Γ∗ ∈ Lip(Γ, k + β).
Now, we are able to examine ‖S(k)

Γ∗ ‖k+β,Γ. It easily follows from the
Hölder inequality that

‖S(k)
Γ∗ f(t)‖ ≤ ‖f̃‖k+α,Γ + 2‖Tk+1Dk+1

y f̃‖

≤ ‖f‖k+α,Γ + 2‖Dk+1
y f̃‖p‖Ek‖q. (3.12)

On the other hand, for t ∈ Γ we have
∫

Ω

∣
∣Ek(y − t)

∣
∣q dy = c

∫

Ω

∣
∣
∣
∣

y − t

|y − t|m−k

∣
∣
∣
∣

q

dy.

Since |y − t| ≤ |Γ|,
∫

Ω

∣
∣Ek(y − t)

∣
∣q dy ≤ c|Γ|m−(m−k−1)q.

Accordingly,

‖Ek‖q ≤ c|Γ|m
q −(m−k−1) = c|Γ|k+1+ 1−q

q m = c|Γ|k+1− m
p . (3.13)

On the other hand, by [9, Proposition 2], it follows that
∫

Ω

‖Dk+1
y f̃(y)‖pdy ≤ c‖Dk

y f̃‖p
α,Γs(d).

From the above, we deduce

‖Dk+1
y f̃‖p ≤ cs(d)

1
p ‖f‖k+α,Γ. (3.14)
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Combining (3.12), (3.13) and (3.14) leads to

‖S(k)
Γ∗ f(t)‖ ≤ ‖f‖k+α,Γ + c1s(d)

1
p ‖f‖k+α,Γ|Γ|k+1− m

p ,

or equivalently,

‖S(k)
Γ∗ f(t)‖ ≤

(
1 + c1s(d)

1
p |Γ|k+1− m

p

)
‖f‖k+α,Γ. (3.15)

Let us now proceed to estimate
∥
∥
∥
∥

[
S(k)

Γ∗

]j∥∥
∥
∥

β,Rm

.

A repeated use of the Hölder inequality yields

‖T j
k+1Dk+1

y f̃‖ ≤ c‖Dk+1
y f̃‖p

∥
∥
∥
∥
∥

(y − t)j

|y − t|m+|j|−1

∥
∥
∥
∥
∥

q

.

Next, after some rather direct computations we have
∥
∥
∥
∥
∥

(y − t)j

|y − t|m+|j|−1

∥
∥
∥
∥
∥

q

=

⎛

⎝
∫

Ω

∣
∣
∣
∣
∣

(y − t)j

|y − t|m+|j|−1

∣
∣
∣
∣
∣

q

dy

⎞

⎠

1
q

=

⎛

⎝
∫

Ω

1
|y − t|(m−1)q

dy

⎞

⎠

1
q

≤
(
|Γ|m−(m−1)q

) 1
q

= |Γ|m
q −(m−1)

≤ |Γ|m
p−1

p −(m−1) = |Γ|
p−m

p = |Γ|β . (3.16)

Consequently, we obtain

‖T j
k+1Dk+1

y f̃‖ ≤ c2s(d)
1
p |Γ|β‖f‖k+α,Γ, (3.17)

which easily follows from (3.14) and (3.16).
As stated by Lemma 3.1, it is required to estimate ‖T j

k+1Dk+1
y f̃‖β,Rm .

On applying Lemma 3.2, we obtain
∥
∥
∥T j

k+1Dk+1
y f̃(y) − T j

k+1Dk+1
y f̃(x)

∥
∥
∥ ≤c‖Dk+1

y f̃‖p|y − x|
p−m

p

≤c3s(d)
1
p ‖f‖k+α,Γ|y − x|β .

Accordingly,
∥
∥
∥T j

k+1Dk+1
y f̃(y) − T j

k+1Dk+1
y f̃(x)

∥
∥
∥

|y − x|β ≤ c3s(d)
1
p ‖f‖k+α,Γ. (3.18)

Then, combining (3.17) and (3.18) we obtain

‖T j
k+1Dk+1

y f̃‖β,Rm ≤
(
c2|Γ|β + c3

)
s(d)

1
p ‖f‖k+α,Γ. (3.19)

It remains to examine ‖∂jf̃‖β,Rm for |j| = k. By properties of the Whit-
ney extension, ‖∂jf̃‖β,Rm = ‖f j‖β,Γ holds. Actually, since α > β, ‖f j‖β,Γ ≤
|Γ|α−β‖f j‖α,Γ, it turns out that

‖∂jf̃‖β,Rm ≤ |Γ|α−β‖f‖k+α,Γ. (3.20)
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On substituting (3.15), (3.19), and (3.20) into (3.1) it yields

‖S(k)
Γ∗ f‖k+β,Γ ≤

{
1 + c1s(d)

1−β
m |Γ|k+β

+
2

m
2 m!

(m − k)!k!

(
|Γ|α−β + c2s(d)

1−β
m |Γ|β + c3s(d)

1−β
m

)}

‖f‖k+α,Γ.

Finally,

‖S(k)
Γ∗ ‖k+β,Γ ≤ 1 + c1s(d)

1−β
m |Γ|k+β

+
2

m
2 m!

(m − k)!k!

(
|Γ|α−β + c2s(d)

1−β
m |Γ|β + c3s(d)

1−β
m

)
,

which completes the proof. �
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