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Abstract. This work introduces fractional d-bar derivatives in the setting
of quaternionic analysis, by giving meaning to fractional powers of the
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1. Introduction

Fractional calculus is the branch of mathematical analysis dedicated to defin-
ing and studying derivative and integral operators of fractional (non-integer)
orders. These operators include fractional derivatives, fractional integrals,
fractional partial derivatives, fractional Laplacians, and many more. Although
the concept dates back to a letter of Leibniz in 1695, and real-world applica-
tions date back to a paper of Abel in 1823, the more detailed mathematical
and scientific development of fractional calculus has mostly taken place dur-
ing the last half-century, and so it is often seen as a new and modern branch
of analysis. For more details on the background and development of fractional
calculus, we refer to some of the standard textbooks of the field [10–12].

Although complex analysis historically played a major role in the de-
velopment of fractional calculus, thanks to the work of Nekrassov in 1888 [9]
as well as further studies of Osler in the early 1970s, nowadays the study of
fractional calculus is often done in a purely real setting. Although fractional
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derivatives to complex orders are well known, and defining fractional deriva-
tives using complex contours is a classical concept albeit less well known
nowadays, there is only one paper, by the first author, which has attempted
to define a fractional power of the complex d-bar derivative [3]. This is only
a first advance towards many other forthcoming developments in the inter-
section of fractional calculus and complex analysis, such as a concept of frac-
tional polyanalytic functions and a d-bar formalism for solving fractional
partial differential equations.

Another way of generalising the fractional complex d-bar derivative is to
pose the following research question. How can we define a fractional version
of the d-bar derivative in higher-dimensional settings? The usual higher-
dimensional analogue of complex analysis is Clifford analysis, in which a
higher-dimensional analogue of the complex d-bar derivative plays a very
important role in constructing higher-dimensional analogues of complex dif-
ferentiable functions. Therefore, what we are seeking is a fractional version
of the d-bar derivative in a general Clifford algebra. To keep the problem at
a manageable scale, for now, we investigate the most fundamental Clifford
algebra of dimension higher than the complex numbers: namely, the space
H of quaternions, which is a 4-dimensional real vector space and the only
Clifford algebra that is also a non-commutative division algebra.

In the space of a few paragraphs, we have reached our main research
question, how to define a fractional quaternionic d-bar derivative, the answer-
ing of which will require knowledge of both fractional calculus and quater-
nionic analysis. The remainder of this paper is organised as follows. In Sect. 2,
we introduce required preliminaries from fractional calculus, complex analy-
sis, and quaternionic analysis. Section 3 contains the main definition together
with its motivation and some basic properties, and the following sections
delve into more advanced properties: in Sect. 4 we conduct a detailed investi-
gation of composition properties, and in Sect. 5 we apply the new operator to
various example functions. Section 6 is devoted to a brief comparative analy-
sis with previous research bringing together fractional calculus with Clifford
analysis, and Sect. 7 concludes the work with some pointers towards future
continuations.

2. Preliminaries

2.1. Fractional Calculus

We begin this section with some fundamental definitions and facts from frac-
tional calculus.

Definition 2.1. (Riemann–Liouville fractional calculus [10–12]) The fractional
integral to order α of a function f(x) with constant of integration c is defined
as

RL
c Iα

x f(x) =
1

Γ(α)

∫ x

c

(x − t)α−1f(t) dt, (2.1)

where α > 0 is a real number and f is a function such that this integral
exists. (It is also possible to take α complex, with positive real part, but in
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this paper we will use real fractional orders, for reasons that will become
clear later.) Usually, we consider x to be a real variable greater than c, e.g.
we may assume x ∈ [c, d] and f ∈ L1[c, d].

The fractional derivative to order α of a function f(x) with constant c
is defined by a combination of ordinary repeated derivatives and fractional
integrals:

RL
c Dα

x f(x) =
dn

dxn

(
RL

c In−α
x f(x)

)
, (2.2)

where α ≥ 0 is a real number and n can be any natural number greater than
α, usually taken to be n = �α�+1 or n = �α� (both choices are equivalent for
α ∈ N, and both work in general under the assumption that α ∈ R, although
only the former is valid for non-real α with integer real part). Possible function
spaces for f include ACn[c, d] if x is a real variable in [c, d].

Remark 2.2. The above definition is according to the Riemann–Liouville con-
vention of fractional calculus. There are other ways to define fractional in-
tegral and derivative operators—for example, by swapping the order of the
repeated derivative and the fractional integral in (2.2), we would obtain the
so-called Caputo fractional derivative [2], which is often preferred in applica-
tions of fractional calculus due to the fact that it is associated with classical-
type initial conditions rather than fractional initial conditions when creating
well-posed initial value problems. In the current work, we are sticking with
the Riemann–Liouville definition of fractional calculus, since it is mathemat-
ically natural, easy to justify as an extension of classical calculus, and has
many known useful properties as it is the most heavily studied of all frac-
tional calculus definitions. We use the term differintegral to mean a fractional
operator that may be either a derivative or an integral, and also use the con-
vention [10,12] that derivatives to negative order are integrals to positive
order and vice versa:

RL
c D−α

x f(x) = RL
c Iα

x f(x),

enabling these operators to be defined for all α ∈ R, positive or negative.

Lemma 2.3. [10–12] Choosing c = 0 gives natural formulae for the fractional
differintegrals of power functions:

RL
0Iα

x

(
xβ

)
=

Γ(β + 1)
Γ(β + α + 1)

xβ+α, β > −1, (2.3)

RL
0Dα

x

(
xβ

)
=

Γ(β + 1)
Γ(β − α + 1)

xβ−α, β > −1, (2.4)

or more generally for any finite c ∈ R,

RL
c Iα

x

(
(x − c)β

)
=

Γ(β + 1)
Γ(β + α + 1)

(x − c)β+α, β > −1, (2.5)

RL
c Dα

x

(
(x − c)β

)
=

Γ(β + 1)
Γ(β − α + 1)

(x − c)β−α, β > −1, (2.6)
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Meanwhile, choosing c = −∞ gives natural formulae for the fractional differ-
integrals of exponential functions:

RL
−∞Iα

x (eax) = a−αeax, a > 0, (2.7)
RL
−∞Dα

x (eax) = aαeax, a > 0. (2.8)

Lemma 2.4. [10–12] Fractional differintegrals of fractional integrals, and
ordinary repeated derivatives of fractional differintegrals, have a semigroup
property with respect to the fractional order:

RL
c Iα

x ◦ RL
c Iβ

x = RL
c Iα+β

x , α, β ∈ R, β > 0; (2.9)
dn

dxn
◦ RL

c Dα
x = RL

c Dα+n
x , α ∈ R, n ∈ N. (2.10)

Fractional differintegrals of fractional derivatives do not, in general, have a
semigroup property; instead, we have the following formula:

RL
c Dα

x

(
RL

c Dβ
xf(x)

)
= RL

c Dα+β
x f(x) −

n∑
k=1

(x − c)−α−k

Γ(1 − α − k)

[
RL

c Dβ−k
x f(x)

]
x=c

,

(2.11)

where α, β ∈ R, β > 0, and n = �β�.
2.2. Fractional Complex d-Bar Derivatives

Following the above brief introduction to the well-known fundamentals of
fractional calculus, we provide the key definitions and facts of the theory of
fractional d-bar derivatives in complex analysis, as introduced in [3].

Definition 2.5. (Fractional d-bar derivatives in C [3]) The complex partial
derivatives with respect to a complex variable z = x + yi and its complex
conjugate z = x − yi, namely the operators

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
,

have fractional powers defined as follows:

1
c∂

α
z f(z) = 2−α

∞∑
k=0

(
α

k

)
RL

c Dα−k
x (−iDy)k

f(x + yi),

2
c∂

α
z f(z) = 2−α

∞∑
k=0

(
α

k

)(−iRL
c Dy

)α−k
Dk

xf(x + yi),

1
c∂

α
z f(z) = 2−α

∞∑
k=0

(
α

k

)
RL

c Dα−k
x (iDy)k

f(x + yi),

2
c∂

α
z f(z) = 2−α

∞∑
k=0

(
α

k

)(
iRL

c Dy

)α−k
Dk

xf(x + yi),

where α ∈ R and f(z) is a complex function in the function space C∞
B defined

in [3, Definition 2.4].
Note that there are two different definitions for the fractional powers of

each of ∂z and ∂z. These correspond to the two possible types of fractional
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binomial theorem, based on natural generalisation of the finite binomial-type
sum for the nth power of ∂z and ∂z when n ∈ N.

Further justification for the naturality of the above definition is provided
by the following two results, both identical to the corresponding results in
classical (real) fractional calculus.

Lemma 2.6. [3] Fractional d-bar derivatives have the following semigroup prop-
erties with respect to the fractional order:

1
c∂

α
z ◦ 1

c∂
β
z = 1

c∂
α+β
z , α, β ∈ R, β < 0; (2.12)

∂n

∂zn ◦ 1
c∂

α
z = 1

c∂
α+n
z , α ∈ R, n ∈ N, (2.13)

with exactly the same relations also holding for the 2
c∂

α
z and 1

c∂
α
z and 2

c∂
α
z

operators.

Lemma 2.7. [3] Fractional d-bar derivatives satisfy the following fractional
Leibniz rule:

1
c∂

α
z

(
f(z)g(z)

)
=

∞∑
k=0

(
α

k

)
1
c∂

α−k
z f(z) · ∂n

z g(z),

with exactly the same relations also holding for the 2
c∂

α
z and 1

c∂
α
z and 2

c∂
α
z

operators.

2.3. Quaternionic Analysis

A particularly important and fundamental Clifford algebra, often considered
as the next simplest case after R and C, is the set H of quaternions [8]. Ac-
cording to a theorem of Frobenius [5], the only finite-dimensional associative
division algebras over R are precisely R, C, and H, which means these are
the only Clifford algebras that are also division algebras, and H is the only
non-commutative one. As a vector space, it is generated by four basis ele-
ments 1, e1, e2, e3 satisfying e2

i = −1 for i = 1, 2, 3 and eiei+1 = ei+2 where
i = 1, 2, 3 is taken modulo 3.

Quaternionic analysis studies quaternion-valued functions f of a quater-
nionic variable x = x0 + e1x1 + e2x2 + e3x3, where xi is a real independent
variable for i = 0, 1, 2, 3. As the standard definition of differentiability from
real and complex analysis does not give a useful class of functions in quater-
nionic analysis [6, Theorem 5.8], holomorphicity of quaternionic functions is
instead defined using the d-bar operator, applied to functions from the left
or right as follows:

∂f =
∂f

∂x0
+ e1

∂f

∂x1
+ e2

∂f

∂x2
+ e3

∂f

∂x3
,

f∂ =
∂f

∂x0
+

∂f

∂x1
e1 +

∂f

∂x2
e2 +

∂f

∂x3
e3,

A quaternionic function f is said to be left-holomorphic if ∂f = 0, or right-
holomorphic if f∂ = 0. (Here we use the “left” and “right” convention ac-
cording to [6], although some other works [13] use the opposite convention.)
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The above definitions of holomorphicity of quaternionic functions are
natural generalisations of the d-bar condition for holomorphicity of complex
functions. However, variables and polynomials must be defined in a non-
obvious way in order to guarantee their holomorphicity. The simple identity
function f(x) = x is neither left-holomorphic nor right-holomorphic over the
quaternions, which led to the introduction of the Fueter variables:

zk(x) = xk − x0ek, k = 1, 2, 3.

These functions of x are both left-holomorphic and right-holomorphic [6,
§5.2.2], and they can be used to construct Fueter polynomials of any order
as follows.

Definition 2.8. (Fueter polynomials [6, Definition 6.1]) Let k = (k1, k2, k3)
be a multi-index where each ki is a non-negative integer. The degree of this
multi-index, and the corresponding Fueter term, are defined as

k = |k| =
3∑

i=1

ki and zk = zk1
1 zk2

2 zk3
3 .

The Fueter polynomial Pk(x), for any x ∈ H, is defined as follows.
• If there exist any negative ki, then we define Pk(x) := 0.
• If k = (0, 0, 0), shortly denoted as k = 0, then we define P0(x) := 1.
• For k with |k| > 0, the Fueter polynomial can be defined in the following

way:

Pk(x) :=
1
k!

∑
σ∈perm(k)

σ (zk) ,

where perm(k) is the permutation group on k elements.

Example. To clarify the definition above, we consider some examples of Fueter
polynomials for small values of k.

• If k = (1, 0, 0), then k = |k| = 1 and zk = z1. Hence,

Pk(x) =
1
1!

⎛
⎝ ∑

σ∈perm(1)

σ(z1)

⎞
⎠ = z1.

• If k = (1, 1, 0), then k = |k| = 2 and zk = z1z2. Hence,

Pk(x) =
1
2!

⎛
⎝ ∑

σ∈perm(2)

σ(z1z2)

⎞
⎠ =

1
2

(z1z2 + z2z1) .

• If k = (1, 2, 0), then k = |k| = 3 and zk = z1z2
2. Hence,

Pk(x) =
1
3!

⎛
⎝ ∑

σ∈perm(3)

σ(z1z2
2)

⎞
⎠

=
1
6

[
z1z2z2 + z1z2z2 + z2z1z2 + z2z1z2 + z2z2z1 + z2z2z1

]

=
1
3

(
z1z2

2 + z2z1z2 + z2
2z1

)
.
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The Fueter polynomials are necessary to define in order to have a quater-
nionic version of polynomials which are holomorphic. One of the important
results concerning them [6, Theorem 6.2] is that every Fueter polynomial is
both left-holomorphic and right-holomorphic: we have ∂Pk(x) = Pk(x)∂ = 0
for any multi-index k.

3. A Fractional Quaternionic d-Bar Derivative

Before beginning to define fractional powers of the quaternionic d-bar deriv-
ative ∂ = ∂

∂x0
+ ∂

∂x1
e1 + ∂

∂x2
e2 + ∂

∂x3
e3, we should firstly consider the nth

powers of this operator for n ∈ N. A good fractional derivative definition
generalises not only the derivatives to order 0 and 1, but the derivatives to
all natural-number orders.

When n = 2, following the cancellation of mixed partial derivatives in
the product of ∂

∂x0
+ ∂

∂x1
e1 + ∂

∂x2
e2 + ∂

∂x3
e3 with itself, we find:

∂
2

=
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

+ 2
(

∂2

∂x0∂x1
e1 +

∂2

∂x0∂x2
e2 +

∂2

∂x0∂x3
e3

)
.

When n = 3, some more elementary calculation yields:

∂
3

=
∂3

∂x3
0

− ∂3

∂x3
1

e1 − ∂3

∂x3
2

e2 − ∂3

∂x3
3

e3

+ 3
(

∂3

∂x2
0∂x1

e1 +
∂3

∂x2
0∂x2

e2 +
∂3

∂x2
0∂x3

e3

)

− 3
(

∂3

∂x0∂x2
1

+
∂3

∂x0∂x2
2

+
∂3

∂x0∂x2
3

)

−
(

∂3

∂x1∂x2
2

e1 +
∂3

∂x1∂x2
3

e1 +
∂3

∂x2
1∂x2

e2

+
∂3

∂x2∂x2
3

e2 +
∂3

∂x2
1∂x3

e3 +
∂3

∂x2
2∂x3

e3

)
.

When n = 4, after a lot of calculation we find:

∂
4

=
∂4

∂x4
0

+
∂4

∂x4
1

+
∂4

∂x4
2

+
∂4

∂x4
3

+4

(
∂4

∂x3
0∂x1

e1 +
∂4

∂x3
0∂x2

e2 +
∂4

∂x3
0∂x3

e3

)

− 6

(
∂4

∂x2
0∂x2

1

+
∂4

∂x2
0∂x2

2

+
∂4

∂x2
0∂x2

3

)
+ 2

(
∂4

∂x2
1∂x2

2

+
∂4

∂x2
2∂x2

3

+
∂4

∂x2
1∂x2

3

)

− 4

(
∂4

∂x0∂x3
1

e1 +
∂4

∂x0∂x3
2

e2 +
∂4

∂x0∂x3
3

e3

)

− 4

(
∂4

∂x0∂x1∂x2
2

e1 +
∂4

∂x0∂x1∂x2
3

e1 +
∂4

∂x0∂x2
1∂x2

e2



2 Page 8 of 25 A. Fernandez et al. Adv. Appl. Clifford Algebras

+
∂4

∂x0∂x2∂x2
3

e2 +
∂4

∂x0∂x2
1∂x3

e3 +
∂4

∂x0∂x2
2∂x3

e3

)
.

In all of the above cases, we see that there is symmetry between x1/e1

and x2/e2 and x3/e3: these can be permuted in any way and the overall
formula would remain the same. However, x0 behaves differently, as might
be expected for a quaternionic operator since 1 behaves differently from e1

and e2 and e3 in the algebra. The coefficients in the n = 4 case indicate that
these are not any sort of binomial sums, but the most natural way to order
the terms in each ∂n expression appears to be by gathering them according
to the degree of the x0 derivative.

Thinking further in this direction, we notice that the original operator
∂ is a sum of a scalar part ∂

∂x0
and a vector part ∂

∂x1
e1 + ∂

∂x2
e2 + ∂

∂x3
e3.

Therefore, recalling from [3] the idea of writing powers of an operator by
formulating it as a sum of two parts and using the binomial theorem, we find
that the nth-order quaternionic d-bar derivative can be written as follows:

∂
n

x =
n∑

k=0

(
n

k

) (
∂

∂x0

)n−k (
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

.

Here, the Moisil–Teodorescu operator ∂
∂x1

e1 + ∂
∂x2

e2 + ∂
∂x3

e3 has a scalar
square, (

∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)2

= −
(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
, (3.1)

which makes it a Dirac operator and will make its powers easy to calculate.
Extending the idea of using the binomial theorem, in its form as an

infinite sum for a fractional power rather than a finite sum for a natural-
number power, we arrive naturally at the following definition for fractional
powers of the quaternionic d-bar derivative.

Definition 3.1. The fractional quaternionic d-bar derivative is defined to act
(from left or right) on a suitable quaternion-valued function f(x) = f(x0 +
e1x1 + e2x2 + e3x3) as follows:

RL
c ∂

α

xf =
∞∑

k=0

(
α

k

)
RL

c Dα−k
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

f, (3.2)

fRL
c ∂

α

x =
∞∑

k=0

(
α

k

)
RL

c Dα−k
x0

f

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

. (3.3)

Here, we use a constant of differintegration c ∈ R and a fractional order
α ∈ R, and we make use of the Riemann–Liouville fractional differintegral
with respect to x0.

Because of the Dirac property of the Moisil–Teodorescu operator (3.1),
these formulae can also be written equivalently as follows, separating the even
and odd values of k:

RL
c ∂

α

xf =
∞∑

�=0

(−1)�

(
α

2�

)
RL

c Dα−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

f
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+
∞∑

�=0

(−1)�

(
α

2� + 1

)
RL

c Dα−2�−1
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)� (
e1

∂f

∂x1
+ e2

∂f

∂x2
+ e3

∂f

∂x3

)
, (3.4)

fRL
c ∂

α

x =
∞∑

�=0

(−1)�

(
α

2�

)
RL

c Dα−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

f

+
∞∑

�=0

(−1)�

(
α

2� + 1

)
RL

c Dα−2�−1
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)� (
∂f

∂x1
e1 +

∂f

∂x2
e2 +

∂f

∂x3
e3

)
. (3.5)

Using the trinomial formula for the �th power of a sum of three (scalar,
hence commutative) terms, we can also break down these formulae into their
components in each direction (scalar, e1, e2, e3) by means of the following
equivalent expressions:

RL
c ∂

α

x =
∞∑

m=0

∞∑
n=0

∞∑
r=0

(−1)m+n+r (m + n + r)!
m!n!r![(

α

2m + 2n + 2r

)
RL

c Dα−2m−2n−2r
x0

∂2m+2n+2r

∂x2m
1 ∂x2n

2 ∂x2r
3

+
(

α

2m + 2n + 2r + 1

)
RL

c Dα−2m−2n−2r−1
x0

∂2m+2n+2r+1

∂x2m+1
1 ∂x2n

2 ∂x2r
3

e1

+
(

α

2m + 2n + 2r + 1

)
RL

c Dα−2m−2n−2r−1
x0

∂2m+2n+2r+1

∂x2m
1 ∂x2n+1

2 ∂x2r
3

e2

+
(

α

2m + 2n + 2r + 1

)
RL

c Dα−2m−2n−2r−1
x0

∂2m+2n+2r+1

∂x2m
1 ∂x2n

2 ∂x2r+1
3

e3

]
.

Our definition makes sense from the viewpoint of the binomial theorem,
formally constructing a fractional power of a sum of derivative operators.
But, does it make sense as a fractional quaternionic derivative? We must find
out whether standard properties of fractional derivatives are preserved as ex-
pected, and also whether standard properties of quaternionic derivatives are
preserved as expected, in this new setting that combines two different mathe-
matical fields. The remainder of this paper is essentially devoted to justifying
Definition 3.1 by establishing some natural properties of the operator defined
therein.

Example. How does the operator RL
c ∂

α

x apply to a constant function? All
classical derivatives of f(x) = A with respect to x1, x2, x3 will be zero, so
this will come down to what happens in the very first term of the binomial-
type series:

RL
c ∂

α

x(A) =
∞∑

k=0

(
α

k

)
RL

c Dα−k
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

(A)
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=
(

α

0

)
RL

c Dα−0
x0

(A) =
(x0 − c)−α

Γ(1 − α)
A,

and similarly for the right-sided operator, giving the results as:

RL
c ∂

α

x(A) =
A(x0 − c)−α

Γ(1 − α)
= (A)RL

c ∂
α

x . (3.6)

Note that this is consistent with the way that fractional differintegrals of
Riemann–Liouville type are expected to behave. In the original fractional
calculus, we know from Lemma 2.3 that the Riemann–Liouville derivative of
a constant is

RL
c Dα

x (A) =
A(x − c)β−α

Γ(1 − α)
,

which looks very much like the formula (3.6) that we discovered here for the
fractional quaternionic d-bar derivative of a constant.

Theorem 3.2. The fractional quaternionic d-bar derivative RL
c ∂

α

xf is well de-
fined if f is infinitely differentiable (with respect to x0, x1, x2, x3) inside a ball
B(c,R) and one of the following further conditions is satisfied.

(a) There exists M ∈ R
+ such that, for all k ∈ Z

+
0 , the function

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

f

is bounded uniformly by M or by Mk.
(b) There exists M ∈ R

+ such that, for all �,m, n ∈ Z
+
0 , the function

∂�+m+nf

∂x�
1∂xm

2 ∂xn
2

is bounded uniformly by M or by M �+m+n.

Similarly for the fractional quaternionic d-bar derivative fRL
c ∂

α

x , with the
condition in part (a) being on

f

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

instead and the condition in part (b) remaining the same.

Proof. Suppose f(x) is infinitely differentiable inside a ball B(c,R) with re-
spect to x0, x1, x2, x3. Then each term of the series (3.2) and (3.3) is certainly
well-defined, and we only need to show that these series converge.

Clearly,
∣∣∣RL

c ∂
α

xf(x)
∣∣∣ =

∣∣∣∣∣
∞∑

k=0

(
α

k

)
RL

c Dα−k
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

f(x)

∣∣∣∣∣

≤
∞∑

k=0

∣∣∣∣
(

α

k

)∣∣∣∣
∥∥∥∥∥RL

c Dα−k
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

f

∥∥∥∥∥
∞
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and

∣∣∣
(
fRL

c ∂
α

x

)
(x)

∣∣∣ =

∣∣∣∣∣
∞∑

k=0

(
α

k

)
RL

c Dα−k
x0

f

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

(x)

∣∣∣∣∣

≤
∞∑

k=0

∣∣∣∣
(

α

k

)∣∣∣∣
∥∥∥∥∥RL

c Dα−k
x0

f

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k
∥∥∥∥∥

∞
.

For the convergence, we only care about when k is very large, so we can
assume k > �Re α� + 1, in which case RL

c Dα−k
x0

= RL
c Ik−α

x0
is a fractional

integral. And we know [12] that fractional integral operators are bounded for
bounded functions.

Under an assumption of type (a), we now have
∥∥∥∥∥RL

c Dα−k
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

f

∥∥∥∥∥
∞

≤ Rk−Re α

(k − Re α) |Γ(k − α)| · Mk

and∥∥∥∥∥RL
c Dα−k

x0
f

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k
∥∥∥∥∥

∞
≤ Rk−Re α

(k − Re α) |Γ(k − α)| · Mk,

where Mk equals either M or Mk. This gives that both RL
c ∂

α

xf(x) and(
fRL

c ∂
α

x

)
(x) are bounded by the series

∞∑
k=1

∣∣∣∣
(

α

k

)∣∣∣∣ MkRk−Re α

(k − Re α) |Γ(k − α)| ,

which is convergent by the ratio test, giving the result under assumption (a).
If instead we make an assumption of the form (b), then we use the

expansion of
(

∂
∂x1

e1 + ∂
∂x2

e2 + ∂
∂x3

e3

)k

as a trinomial sum, with all powers
of e1 and e2 and e3 being boundable by the binomial theorem:

∥∥∥∥∥RL
c Dα−k

x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

f

∥∥∥∥∥
∞

≤ Rk−Re α

(k − Re α) |Γ(k − α)|

∥∥∥∥∥
(

∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

f

∥∥∥∥∥
∞

≤ Rk−Re α

(k − Re α) |Γ(k − α)|
∑

�+m+n=k

k!
�!m!n!

∥∥∥∥ ∂k

∂x�
1∂xm

2 ∂xn
3

f

∥∥∥∥
∞

≤ Rk−Re α

(k − Re α) |Γ(k − α)|
∑

�+m+n=k

(
k!

�!m!n!

)
Mk

=
Rk−Re α

(k − Re α) |Γ(k − α)|3
kMk,
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where again Mk equals either M or Mk. This gives that both RL
c ∂

α

xf(x) and(
fRL

c ∂
α

x

)
(x) are bounded by the series

∞∑
k=1

∣∣∣∣
(

α

k

)∣∣∣∣ 3kMkRk−Re α

(k − Re α) |Γ(k − α)| ,

which is again convergent by the ratio test, giving the result under assumption
(b). This completes the proof. �

4. Composition Properties

In this section, we examine what happens when we combine the newly defined
fractional quaternionic d-bar operator with itself using different fractional
orders. Finding natural results here will go a long way towards justifying
our definition as something that makes sense as a fractional differintegral
operator for quaternionic functions.

As a general note, in the results of this section, we shall understand
the assumption of “suitable” quaternionic functions f to be an assumption
that the relevant d-bar operators are well-defined: for example, assumptions
as written in Theorem 3.2 would be sufficient.

Theorem 4.1. For α ∈ R and any suitable quaternionic function f , the fol-
lowing hold:

∂
(

RL
c ∂

α

xf
)

= RL
c ∂

α+1

x f, fRL
c ∂

α+1

x =
(
fRL

c ∂
α

x

)
∂.

Proof. We prove only the left-sided case, since the work in the right-sided
case is almost identical. Let us use the notation ∂123 = ∂

∂x1
e1 + ∂

∂x2
e2 + ∂

∂x3
e3

for simplicity, so that ∂ = ∂
∂x0

+ ∂123 and

RL
c ∂

α

xf =
∞∑

�=0

(−1)�

(
α

2�

)
RL

c Dα−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

f

+
∞∑

�=0

(−1)�

(
α

2� + 1

)
RL

c Dα−2�−1
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

∂123f.

(4.1)

Applying ∂ to the first sum in (4.1) yields, using the semigroup properties of
Riemann–Liouville operators from Lemma 2.4:

∞∑
�=0

(−1)�

(
α

2�

)
RL

c Dα+1−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

f

+
∞∑

�=0

(−1)�

(
α

2�

)
RL

c Dα−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

∂123f.

Applying ∂ to the second sum in (4.1) yields, again using the semigroup
properties of Riemann–Liouville operators from Lemma 2.4 as well as the
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relation (3.1):
∞∑

�=0

(−1)�

(
α

2� + 1

)
RL

c Dα−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

∂123f

+
∞∑

�=0

(−1)�+1

(
α

2� + 1

)
RL

c Dα−2�−1
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�+1

f.

Putting all four of the above sums together, while separating out the � = 0
term in the first one and substituting � for � + 1 in the second one, we get:

∂
(

RL
c ∂

α

xf
)

= RL
c Dα+1

x0
f +

∞∑
�=1

(−1)�

(
α

2�

)
RL

c Dα+1−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

f

+
∞∑

�=0

(−1)�

[(
α

2�

)
+

(
α

2� + 1

)]
RL

c Dα−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

∂123f

+
∞∑

�=1

(−1)�

(
α

2� − 1

)
RL

c Dα−2�+1
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

f.

Using the fact that
(

α
2�

)
+

(
α

2�+1

)
=

(
α+1
2�+1

)
, we find

∂
(

RL
c ∂

α

xf
)

= RL
c Dα+1

x0
f +

∞∑
�=1

(−1)�

(
α + 1

2�

)
RL

c Dα+1−2�
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

f

+
∞∑

�=0

(−1)�

(
α + 1
2� + 1

)
RL

c Dα+1−2�−1
x0

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)�

∂123f,

which is exactly RL
c ∂

α+1

x f according to the formulation (4.1). �

Corollary 4.2. For α ∈ R and n ∈ N and any suitable quaternionic function
f , the following hold:

∂
n
(

RL
c ∂

α

xf
)

= RL
c ∂

α+n

x f, fRL
c ∂

α+n

x =
(
fRL

c ∂
α

x

)
∂

n
.

Proof. This follows immediately from Theorem 4.1 by induction on n. �

Theorem 4.3. For α, β ∈ R with β < 0, and for any suitable quaternionic
function f , the following hold:

RL
c ∂

α

x

(
RL

c ∂
β

xf
)

= RL
c ∂

α+β

x f, fRL
c ∂

α+β

x =
(
fRL

c ∂
β

x

)
RL

c ∂
α

x .

Proof. Again, we prove only the left-sided case, since the work in the right-
sided case is almost identical. This time using the formula (3.2), we have

RL
c ∂

α
x

(
RL

c ∂
β
xf

)
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=

∞∑
k=0

(α

k

)
RL

c Dα−k
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

∞∑
n=0

(β

n

)
RL

c Dβ−n
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)n

(f)

=

∞∑
k=0

∞∑
n=0

(α

k

)(β

n

)
RL

c Dα−k
x0

RL
c Dβ−n

x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k+n

f

=

∞∑
k=0

∞∑
n=0

(α

k

)(β

n

)
RL

c Dα+β−(k+n)
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k+n

f

=
∞∑

p=0

p∑
k=0

(α

k

)( β

p − k

)
RL

c Dα+β−p
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)p

f, (4.2)

where we have written p = k + n in the last step and used the semigroup
property for Riemann–Liouville operators (Lemma 2.4 applies since β−n < 0
for all n ≥ 0). Now, by the Chu–Vandermonde identity, the finite sum over k

of the two binomial coefficients becomes a single binomial coefficient
(
α+β

p

)
,

and the expression above becomes:

=
∞∑

p=0

(
α + β

p

)
RL

c Dα+β−p
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)p

f(x)

= RL
c ∂

α+β

x f(x),

thus proving the result as stated. �

The above results all show cases where a semigroup property is valid for
the fractional quaternionic d-bar operator. To verify that it is not universally
valid when β > 0, we also include the following result which is for β = 1.

Theorem 4.4. For α ∈ R and any suitable quaternionic function f , the fol-
lowing hold:

RL
c ∂

α

x

(
∂f

)
(x) = RL

c ∂
α+1

x f(x) −
∞∑

k=0

(
α

k

)
(x0 − c)k−α−1

Γ(k − α)

×
(

∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

f(c + e1x1 + e2x2 + e3x3),

((
f∂

)
RL

c ∂
α

x

)
(x) =

(
fRL

c ∂
α+1

x

)
(x) −

∞∑
k=0

(
α

k

)
(x0 − c)k−α−1

Γ(k − α)

×f(c + e1x1 + e2x2 + e3x3)
(

∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k

.

Proof. Again, we prove only the left-sided case, since the work in the right-
sided case is almost identical. In the previous proof, everything up to and
including (4.2) does not use the assumption that β < 0, so we can start from
(4.2) here in the case β = 1:

RL
c ∂

α

x

(
RL

c ∂
β

xf
)
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=
∞∑

k=0

∞∑
n=0

(
α

k

)(
1
n

)
RL

c Dα−k
x0

RL
c D1−n

x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k+n

f.

(4.3)

Given the appearance of the binomial coefficient
(
1
n

)
, the infinite sum over n

is in fact a finite sum, with only the values n = 0 and n = 1 giving nonzero
contributions. When n = 1, the inner differintegral with respect to x0 is
the identity operator and so we certainly have a semigroup property in this
case. When n = 0, the inner differintegral with respect to x0 is a first-order
derivative, and so Lemma 2.4 tells us that

RL
c Dα−k

x0

(
RL

c D1
x0

g(x0)
)

= RL
c Dα−k+1

x0
g(x0) − (x0 − c)α−k−1

Γ(α − k)
[
g(x0)

]
x0=c

.

Thus, overall in (4.3), the only deviation from a perfect semigroup prop-
erty is given by, for every k and for n = 0 only, the subtraction of a term(
α
k

) (x0−c)α−k−1

Γ(α−k)

[
g(x0)

]
x0=c

inside the sum. For the terms exhibiting a perfect
semigroup property, we can use the same Chu–Vandermonde argument as in
the proof of Theorem 4.3 to obtain exactly RL

c ∂
α+1

x f . Then (4.3) becomes:

RL
c ∂

α+β
x f −

∞∑
k=0

(
α

k

)
(x0 − c)α−k−1

Γ(α − k)

[(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k+0

f

]

x0=c

,

which gives the result as stated. �

The above Theorem 4.4 is a special case of the following theorem, which
we have stated separately because it is a particularly elegant formula (more
so than the following more general result) and will be particularly useful in
the next section.

Theorem 4.5. For α, β ∈ R with β > 0, and for any suitable quaternionic
function f , the following hold:

(
RL

c ∂
α

x
RL

c ∂
β

xf
)
(x) =

(
RL

c ∂
α+β

x f
)
(x)

−
∞∑

p=0

�β�∑
q=1

Ap,q−1(α, β)
(x0 − c)p−q−α

Γ(p − q − α + 1)

×
[

RL
c Dβ−q

x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)p

f

]
x0=c

,

(
fRL

c ∂
β

x
RL

c ∂
α

x

)
(x) =

(
fRL

c ∂
α+β

x

)
(x)

−
∞∑

p=0

�β�∑
q=1

Ap,q−1(α, β)
(x0 − c)p−q−α

Γ(p − q − α + 1)

×
[

RL
c Dβ−q

x0
f

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)p]
x0=c

,
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where the coefficient Ap,q−1(α, β) is defined by the following combinatorial
sum:

Ap,q−1(α, β) =
min(p,q−1)∑

n=0

(
α

p − n

)(
β

n

)
.

Proof. Again, we prove only the left-sided case, since the work in the right-
sided case is almost identical. The same as in the previous proof, we can
start from the expression (4.2) for RL

c ∂
α

x
RL

c ∂
β

xf . By Lemma 2.4, we have a
semigroup property in (4.2) when β ≤ n, and the following result when β > n
(i.e. when n ≤ �β� − 1):

RL
c Dα−k

x0

(
RL

c Dβ−n
x0

g(x0)
)

= RL
c Dα+β−k−n

x0
g(x0)

−
�β−n�∑

i=1

(x0 − c)−α+k−i

Γ(1 − α + k − i)

[
RL

c Dβ−n−i
x g(x0)

]
x0=c

.

Substituting this into (4.2), and using the fact that the terms exhibiting
a perfect semigroup property will together give RL

c ∂
α+β

x f by the same Chu–
Vandermonde argument as in the proof of Theorem 4.3, we find the following:

(
RL

c ∂
α
x

RL
c ∂

β
xf

)
(x) =

(
RL

c ∂
α+β
x f

)
(x)

−
∞∑

k=0

�β�−1∑
n=0

�β�−n∑
i=1

(
α

k

)(
β

n

)
(x0 − c)−α+k−i

Γ(1 − α + k − i)

×
[

RL
c Dβ−n−i

x

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)k+n

f(x)

]

x0=c

Now the result follows from rewriting the triple sum, setting p = k + n and
q = n + i so that k = p − n and k − i = p − q, where

∞∑
k=0

�β�−1∑
n=0

�β�−n∑
i=1

=
∞∑

p=0

�β�∑
q=1

min(p,q−1)∑
n=1

.

This substitution is done in order to achieve a final answer where only one
of the dummy-variable indices appears on each differintegral operator (the
orders change from β−n−i and k+n to β−q and p respectively), and where
the innermost sum over n contains only binomial coefficients and nothing
else. �

We have now obtained various semigroup and composition relations for
the new fractional quaternionic d-bar derivative, which are natural in the
sense that they are similar or analogous to the corresponding relations for
the classical (Riemann–Liouville) fractional derivative. In the same way as
in [3], such results help to justify our definition, and they will also be useful
in the next section for calculating the result of actually applying our new
operator to some well-known functions.
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5. Applications to Functions

So far, we have considered the application of the fractional quaternionic d-
bar derivative to only one type of function: the basic constant function. In
the usual calculus, one might consider the second-simplest function after a
constant function to be the identity function f(x) = x. But in quaternionic
calculus, this function is neither left-holomorphic nor right-holomorphic, so
we do not expect a neat result from applying the fractional d-bar derivative
to this function, if even the classical (first-order) d-bar derivative does not
give zero.

Instead, let us start by considering the Fueter variables: z1 = x1 −x0e1,
z2 = x2 −x0e2, z3 = x3 −x0e3. These are all both left-holomorphic and right-
holomorphic, and can be considered as partially analogous to the identity
function in quaternionic calculus.

Theorem 5.1. The Fueter variables zi = xi − x0ei in H have fractional d-bar
derivatives given by

RL
c ∂

α

x(zi) = (zi)RL
c ∂

α

x =
(x0 − c)−α

Γ(1 − α)
zi,

and therefore, as a particular case,

RL
0∂

α

x(zi) = (zi)RL
0∂

α

x =
x−α

0

Γ(1 − α)
zi,

valid for i = 1, 2, 3 and any α ∈ R.

Proof. We start with the left-sided case, and use the formula (3.4) for the
fractional quaternionic d-bar derivative, noting that every term with � ≥ 1
will contribute zero to the sum. Firstly, for c = 0 and for any i = 1, 2, 3, we
have:

RL
0∂

α

x(zi) =
(

α

0

)
RL

0Dα
x0

(xi − x0ei)

+
(

α

1

)
RL

c Dα−1
x0

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)
(xi − x0ei)

= RL
0Dα

x0
(xi − x0ei) + αRL

0Dα−1
x0

(ei)

=
x−α

0

Γ(1 − α)
xi − x1−α

0

Γ(2 − α)
ei + α

x1−α
0

Γ(2 − α)
ei

=
x−α

0

Γ(1 − α)
xi − 1 − α

Γ(2 − α)
x1−α

0 ei

=
x−α

0

Γ(1 − α)
xi − x−α

0

Γ(1 − α)
x0ei =

x−α
0

Γ(1 − α)
(xi − x0ei),

where we have used Lemma 2.3 for handling the fractional differintegrals of
constants and of x0.

For the general (finite) c, we need to be more careful with handling
these fractional differintegrals, since (x0 − c) does not immediately appear.
We have:

RL
c ∂

α

x(zi) = RL
c Dα

x0
(xi − x0ei) + αRL

c Dα−1
x0

(ei)
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= RL
c Dα

x0

( − (x0 − c)ei − cei + xi

)
+ αRL

c Dα−1
x0

(ei)

= − (x0 − c)1−α

Γ(2 − α)
ei +

(x0 − c)−α

Γ(1 − α)
(−cei + xi) + α

(x0 − c)1−α

Γ(2 − α)
ei

= − 1 − α

Γ(2 − α)
(x0 − c)1−αei +

(x0 − c)−α

Γ(1 − α)
(−cei + xi)

= − (x0 − c)−α(x0 − c)
Γ(1 − α)

ei +
(x0 − c)−α

Γ(1 − α)
(−cei + xi)

=
(x0 − c)−α

Γ(1 − α)
( − ei(x0 − c) + (−cei + xi)

)

=
(x0 − c)−α

Γ(1 − α)
(xi − x0ei),

which is the required general result in the left-sided case. The work in the
right-sided case will be exactly analogous, since (x0−c)−α

Γ(1−α) is a scalar and so
multiplying by it on the left or right yields the same result. �

How can we generalise Theorem 5.1 on Fueter variables to a broader
class of functions?

Fueter variables are a special case of Fueter polynomials, and we have
also dealt with another special case already, namely constant functions. For
the Fueter polynomial Pk(x), we now know that, if the degree of the multi-
index k is either 0 or 1, then the result of applying the fractional d-bar
derivative to Pk(x), on the left or right, is multiplication by the scalar function
(x0−c)−α

Γ(1−α) . Let us now see what happens if the degree of k is 2.

Theorem 5.2. The Fueter polynomials Pk with |k| = 2 come in two types:
firstly, P2εi

= z2
i for i = 1, 2, 3, with for any α ∈ R

RL
c ∂

α

xP2εi
(x) =

(
P2εi

RL
c ∂

α

x

)
(x) =

(x0 − c)−α

Γ(1 − α)
P2εi

(x),

and secondly, Pεi+εj
= 1

2 (zizj + zjzi) for i < j, with for any α ∈ R

RL
c ∂

α

xPεi+εj
(x) =

(
Pεi+εj

RL
c ∂

α

x

)
(x) =

(x0 − c)−α

Γ(1 − α)
Pεi+εj

(x).

Proof. Without loss of generality, we consider just k = (2, 0, 0) and k =
(1, 1, 0), as the other cases will then follow from a symmetry argument. We
again consider only the left-sided case, since the right-sided case will be ex-
actly analogous with the same scalar multiplier.

Firstly, for k = (2, 0, 0) we have Pk(x) = x2
1 − 2x0x1e1 − x2

0. All partial
derivatives with respect to x2 and x3 are zero, as are all partial derivatives
of order greater than 2 with respect to x1. So, using the formula (3.4), we
only take account of � = 0 and � = 1 in the first sum, and only � = 0 in the
second sum, to get:

RL
c ∂

α

x

(
x1

2 − 2x0x1e1 − x0
2
)

= (−1)0
(

α

0

)
RL

c Dα
x0

(
x1

2 − 2x0x1e1 − x0
2
)
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+ (−1)1
(

α

2

)
RL

c Dα−2
x0

(
∂2

∂x2
1

)1 (
x1

2 − 2x0x1e1 − x0
2
)

+ (−1)0
(

α

1

)
RL

c Dα−1
x0

(
∂

∂x1
e1

) (
x1

2 − 2x0x1e1 − x0
2
)

= RL
c Dα

x0

(
x1

2 − 2(x0 − c + c)x1e1 − (x0 − c + c)2
)

+ αRL
c Dα−1

x0
(2x1e1 + 2x0) −

(
α

2

)
RL

c Dα−2
x0

(2).

As before, we simplify this expression by expanding the polynomials in terms
of (x0 − c) instead of x0:

= RL
c Dα

x0

[
x1

2 − 2x1e1(x0 − c) − 2cx1e1 − (x0 − c)2 − 2x0c + c2
]

+ αRL
c Dα−1

x0
(2x1e1 + 2(x0 − c) + 2c) − α(α − 1)

2
RL

c Dα−2
x0

(2)

= RL
c Dα

x0

[
x1

2 − 2cx1e1 − c2 − 2x1e1(x0 − c) − (x0 − c)2 − 2(x0 − c)c
]

+ αRL
c Dα−1

x0
(2x1e1 + 2c + 2(x0 − c)) − α(α − 1)

2
· 2(x0 − c)2−α

Γ(3 − α)

=
[
x1

2 − 2cx1e1 − c2
] (x0 − c)−α

Γ(1 − α)

− 2 (x1e1 + c)
(x0 − c)1−α

Γ(2 − α)
− Γ(3)

Γ(3 − α)
(x0 − c)2−α

+ 2α(x1e1 + c)
(x0 − c)1−α

Γ(2 − α)
+ 2α

(x0 − c)2−α

Γ(3 − α)

− α(α − 1)
(x0 − c)2−α

Γ(3 − α)
.

Observing the factors of (x1e1 + c) appearing in later terms, we also notice
that the factor in square brackets in the first term is −(x1e1 + c)2, enabling
us to simplify further:

= −
[
x1

2e2
1 + 2cx1e1 + c2

] (x0 − c)−α

Γ(1 − α)
− 2(x1e1 + c)

1 − α

Γ(2 − α)
(x0 − c)1−α

− 2 − 2α + α2 − α

Γ(3 − α)
(x0 − c)2−α

= −(x1e1 + c)2
(x0 − c)−α

Γ(1 − α)
− 2(x1e1 + c)

(x0 − c)1−α

Γ(1 − α)
− (x0 − c)2−α

Γ(1 − α)

=
(x0 − c)−α

Γ(1 − α)

[
− (x1e1 + c)2 − 2(x1e1 + c)(x0 − c) − (x0 − c)2

]

=
(x0 − c)−α

Γ(1 − α)

(
x2

1 − 2x0x1e1 − x2
0

)
,

which is the stated result.
Secondly, for k = (1, 1, 0) we have Pk(x) = x1x2 − x0x2e1 − x0x1e2. All

partial derivatives with respect to x3 are zero, as are all partial derivatives
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of order greater than 1 with respect to x1 or x2. So, using the formula (3.4),
we only take account of � = 0 in each sum, to get:

RL
c ∂

α

x

(
x1x2 − x0x2e1 − x0x1e2

)

= (−1)0
(

α

0

)
RL

c Dα
x0

(
x1x2 − x0x2e1 − x0x1e2

)

+ (−1)0
(

α

1

)
RL

c Dα−1
x0

(
∂

∂x1
e1 +

∂

∂x2
e2

)(
x1x2 − x0x2e1 − x0x1e2

)

= RL
c Dα

x0

(
x1x2 − x0x2e1 − x0x1e2

)
+ αRL

c Dα−1
x0

(
x2e1 − x0e1e2 + x1e2 − x0e2e1

)

= x1x2
(x0 − c)−α

Γ(1 − α)
− (

x1e2 + x2e1

) (x0 − c)1−α

Γ(2 − α)

+ α
(
x2e1 + x1e2

) (x0 − c)−α

Γ(1 − α)

=
(x0 − c)1−α

Γ(1 − α)

(
x1x2 +

α − 1
1 − α

(xjei + xiej)
)

=
(x0 − c)−α

Γ(1 − α)
Pεi+εj

(x),

which is the stated result. �

After seeing the results of Theorems 5.1 and 5.2, as well as that of the
Example in Sect. 3, we may wonder if a similar result is true for an arbitrary
holomorphic quaternionic function. It is known [3] that any holomorphic com-
plex function g(z) has fractional d-bar derivatives given by multiplying g(z)
with (2(x−c))−α

Γ(1−α) or (2(ci−yi))−α

Γ(1−α) , and therefore plausible that a similar result
may be true in the quaternionic setting, at least for functions which are both
left-holomorphic and right-holomorphic such as Fueter polynomials.

However, increasing the degree of the multi-index k to 3, we found that
this is not the case: when k = (1, 2, 0), we have the following result.

Example. If k = (1, 2, 0), then the Fueter polynomial is

Pk(x) =
1
3

(
z1z2

2 + z2z1z2 + z2
2z1

)

= x1x
2
2 − x2

0x1 − 2x0x1e2 − x0x
2
2e1 +

1
3
x3

0e1,

and its left-sided fractional d-bar derivative (with constant c = 0) is

RL
c ∂

α

xPk(x) =
x−α

0

Γ(1 − α)

[
x1x

2
2 +

x0

1 − α

( − 2x1e2 − x2
2e1(1 − α) − 2x1x2e2

)

+
x2

0

(1 − α)(2 − α)
( − 2x1 + 2αe1e2 − 2αx2e1e2 − α(α − 1)x1

)

+
x3

0

(1 − α)(2 − α)(3 − α)

(e1

3
− 2αe1 + α(α − 1)e1

) ]
,

which cannot be equal to x−α
0

Γ(1−α)Pk(x) since the latter has no component
in the direction of e1e2 = e3 while the fractional derivative formula has a
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nonzero component in this direction. Thus, by a symmetry argument, we
find that

RL
c ∂

α

xPk(x) �= (x0 − c)−α

Γ(1 − α)
Pk(x) �=

(
Pk

RL
c ∂

α

x

)
(x),

and the pattern previously observed for low values of |k| does not hold true
in general.

All of the fractional d-bar derivatives found above were done by direct
calculation. Is there an easier way to find fractional d-bar derivatives of func-
tions such as Fueter polynomials? The answer is yes: recalling that Fueter
polynomials are left-holomorphic and right-holomorphic, we can make use of
Theorem 4.4 together with a neat trick from fractional calculus to achieve
the following result.

Theorem 5.3. For any α ∈ R and any multi-index k as in Definition 2.8, we
have the following formula for the fractional d-bar derivatives of the Fueter
polynomial Pk:

RL
c ∂

α

xPk(x) =
∞∑

n=0

(−1)n(x0 − c)n−α

n!Γ(1 − α)

×
[(

∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)n

Pk(x)
]

x0=c

; (5.1)

(
Pk

RL
c ∂

α

x

)
(x) =

∞∑
n=0

(−1)n(x0 − c)n−α

n!Γ(1 − α)

×
[
Pk(x)

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)n]
x0=c

. (5.2)

Proof. As usual, we prove only the left-sided case, the proof for the right-
sided case being analogous.

Using Theorem 4.4, we know that the order-α fractional d-bar derivative
can be expressed in terms of the order-(α − 1) fractional d-bar derivative of
the simple d-bar derivative, which latter for all Fueter polynomials we know
to be zero:

RL
c∂

α
x Pk(x) = RL

c∂
α−1
x

(
∂Pk

)
(x) +

∞∑
n=0

(α − 1

n

) (x0 − c)n−α

Γ(n − α + 1)

×
(

∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)n

Pk(c + e1x1 + e2x2 + e3x3)

=

∞∑
n=0

Γ(α)(x0 − c)n−α

Γ(α − n)n!Γ(n − α + 1)

(
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)n [
Pk(x)

]
x0=c

.

Using the reflection formula for the gamma function, we have

Γ(α − n)Γ(n − α + 1) =
π

sin(πα − πn)
= (−1)nΓ(α)Γ(1 − α),

which leads to the desired formula. �
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Remark 5.4. From [6, Theorem 6.2], we know that the operator ∂123 =
∂

∂x1
e1 + ∂

∂x2
e2 + ∂

∂x3
e3 has the following effect on Fueter polynomials:

∂123Pk(x) = k1e1Pk−ε1(x) + k2e2Pk−ε2(x) + k3e3Pk−ε3(x).

This would lead to a reformulation of (5.1) and (5.2) expressing the fractional
d-bar derivatives of Pk(x) as sums of Fueter polynomials of smaller degree.
However, we were unable to rewrite these expressions in a neat or concise
form, so we have omitted them from this paper.

The following result, a consequence of Theorem 5.3, provides at least
one infinite family of Fueter polynomials with very neat and natural formulae
for their fractional d-bar derivatives.

Theorem 5.5. For any i = 1, 2, 3 and k ∈ N, we have Pkεi
(x) = (xi − x0ei)

k,
and

RL
c ∂

α

xPkεi
(x) =

(
Pkεi

RL
c ∂

α

x

)
(x) =

(x0 − c)−α

Γ(1 − α)
Pkεi

(x).

Proof. We use the formulae (5.1) and (5.2). When applied to functions of the
type Pkεi

(x) = (xi − x0ei)
k, the operator ∂123 = ∂

∂x1
e1 + ∂

∂x2
e2 + ∂

∂x3
e3 acts

simply as ∂
∂xi

ei, since all partial derivatives with respect to xj will be zero
for j �= i. So we have

RL
c ∂

α

xPkεi
(x) =

∞∑
n=0

(−1)n(x0 − c)n−α

n!Γ(1 − α)

[(
∂

∂xi
ei

)n

Pkεi
(x)

]
x0=c

=
∞∑

n=0

(−1)n(x0 − c)n−α

n!Γ(1 − α)

(
∂

∂xi
ei

)n

(xi − cei)k

=
(x0 − c)−α

Γ(1 − α)

∞∑
n=0

(−1)n(x0 − c)n

n!
en
i

∂n

∂xn
i

(xi − cei)k

=
(x0 − c)−α

Γ(1 − α)

k∑
n=0

(−1)n(x0 − c)n(ei)n

n!
· k!
(k − n)!

(xi − cei)k−n

=
(x0 − c)−α

Γ(1 − α)

k∑
n=0

(
k

n

)
(cei − x0ei)n(xi − cei)k−n

=
(x0 − c)−α

Γ(1 − α)
(xi − x0ei)k =

(x0 − c)−α

Γ(1 − α)
Pkεi

(x),

where in the last step we used the classical binomial theorem, valid since
cei −x0ei and xi − cei always commute, being vectors in the plane generated
by 1 and ei. Similarly,

(
Pkεi

RL
c∂

α
x

)
(x) =

∞∑
n=0

(−1)n(x0 − c)n−α

n!Γ(1 − α)

[
Pkεi

(x)

(
∂

∂xi
ei

)n]
x0=c

=
(x0 − c)−α

Γ(1 − α)

∞∑
n=0

(−1)n(x0 − c)n

n!

[
∂n

∂xn
i

(xi − cei)
k

]
en

i
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=
(x0 − c)−α

Γ(1 − α)

k∑
n=0

1

n!

[
k!

(k − n)!
(xi − cei)

k−n

]
(−1)n(x0 − c)n(ei)

n

=
(x0 − c)−α

Γ(1 − α)

k∑
n=0

(k

n

)
(xi − cei)

k−n(cei − x0ei)
n

=
(x0 − c)−α

Γ(1 − α)
(xi − x0ei)

k =
(x0 − c)−α

Γ(1 − α)
Pkεi

(x),

again using the classical binomial theorem and the fact that xi − cei and
cei − x0ei always commute with each other. �

6. Comparative Analysis

It would be remiss of us not to mention the previous work on “fractional
Clifford analysis” [1,7], and to compare our work with this to clarify its
novelty.

There are two key differences between the fractional operator defined in
our work and the one defined by Kähler and Vieira [7] using Caputo fractional
derivatives as follows:

Dα = e1
C
0 Dα

x1
+ e2

C
0 Dα

x2
+ e3

C
0 Dα

x3
,

an idea later used by Cerejeiras et al [1], Ferreira and Vieira [4], etc.
The first (simpler) difference is that they defined a fractional Dirac

operator, i.e. a fractional version of ∂123 = ∂
∂x1

e1 + ∂
∂x2

e2 + ∂
∂x3

e3, while we
defined a fractional d-bar operator, i.e. a fractional version of ∂ = ∂

∂x0
+∂123.

This means from the beginning that the goals of the two projects are different:
in our work, we have never attempted to define a fractional power of the Dirac
operator ∂123, using only kth powers of this operator for k ∈ Z

+
0 .

The second (more subtle) difference is that our operator RL
c ∂

α

x is an
attempt to defined a fractional power of the original operator ∂, in such a
way that putting α = k recovers the kth power of the d-bar derivative for
every k ∈ N. The fractional Dirac operator defined in [7] is not a fractional
power of the original Dirac operator, in the sense that putting α = k does
not recover the kth power of the Dirac operator except when k = 1. For
example:

D2 = e1
∂2

∂x2
1

+ e2
∂2

∂x2
2

+ e3
∂2

∂x2
3

�=
(

∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

)2

.

The operator Dα is a fractional version of the Dirac operator, but not a frac-
tional power thereof. By contrast, our operator is defined with the intention
of being a fractional power of the d-bar operator, and this is why we were
able to recover properties such as the semigroup relation which are typically
associated with powers.

The fractional Dirac operator of Kähler and Vieira [7] makes a lot of
sense from the Clifford-algebraic viewpoint, with properties such as Weyl
relations and Lie superalgebras emerging naturally in this setting. However,
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from the viewpoint of fractional calculus, we believe that our fractional d-
bar operator has more of the expected fractional properties, such as natural
semigroup relations and action on polynomial analogues.

7. Conclusions

In this work, we have introduced a new operator acting on quaternionic func-
tions which we call a fractional d-bar derivative. We constructed this opera-
tor by thinking about what a fractional power of the ordinary d-bar operator
might look like, starting from natural-number powers and extrapolating using
the binomial theorem. We also justified our definition by considering some
key properties of our operator which showcase behaviours similar to those of
classical fractional derivatives, such as composition formulae and application
to holomorphic polynomial-type functions.

The work done so far is enough for a full investigation of the current
project, introducing a new definition and justifying it mathematically, but it
also inspires many new thoughts which may be investigated in future projects.
For example, it may be possible to extend the work done here in the quater-
nionic space H to the more general setting of C�(n), the Clifford algebra
built on the n-dimensional vector space R

n. It may also be possible to de-
fine fractional versions of other quaternionic or Clifford differential operators,
such as the radial differential operators [6, Definition 11.28] that are used for
exponential and trigonometric functions in higher-dimensional Clifford al-
gebras. From the viewpoint of fractional calculus, everything that we have
done so far has been using only the Riemann–Liouville definition of fractional
derivatives; it may be worth investigating what happens when this fractional
model is replaced by others, such as that of Caputo or more general classes
of operators.
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