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Abstract. In this paper, we introduce and study five families of Lie
groups in degenerate Clifford geometric algebras. These Lie groups pre-
serve the even and odd subspaces and some other subspaces under the
adjoint representation and the twisted adjoint representation. The con-
sidered Lie groups contain degenerate spin groups, Lipschitz groups,
and Clifford groups as subgroups in the case of arbitrary dimension
and signature. The considered Lie groups can be of interest for various
applications in physics, engineering, and computer science.
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1. Introduction

In this paper, we study degenerate Clifford geometric algebras Gp,q,r of arbi-
trary dimension and signature. Degenerate geometric algebras are important
for applications in geometry, computer science, engineering, signal and image
processing, physics, etc. For instance, projective geometric algebra (PGA)
Gp,0,1 is useful for computations with flat objects and is applied in com-
puter graphics and vision, robotics, motion capture, dynamics simulations
[6,9,22,28,29]. PGA can be realized as a subalgebra of conformal geometric
algebra (CGA) [21,34,36,38,41], which has applications in pose estimation,
robotics, computer animation, machine learning, neural networks, etc. [23–
25,35,37,54]. The algebras G3,0,1, G0,3,1, even subalgebras G(0)

3,0,1 (known as
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the motor algebra), G(0)
0,3,1, G(0)

6,0,2, G(0)
6,0,6 are applied in robotics and computer

vision [6,8,45].
We introduce and study five families of Lie groups P±

p,q,r, Pp,q,r, P±Λ
p,q,r,

PΛ
p,q,r, P±rad

p,q,r in the degenerate Clifford geometric algebras Gp,q,r of arbi-
trary dimension and signature over the field F of real or complex numbers.
These groups preserve the even subspace G(0)

p,q,r, the odd subspace G(1)
p,q,r, the

grade-0 subspace G0, the grade-n subspace Gn
p,q,r, and their direct sum un-

der the adjoint representation and the twisted adjoint representation. The
twisted adjoint representation has been introduced for the first time in the
classical paper [3]. It is an important mathematical notion, which is used
to describe two-sheeted coverings of orthogonal groups by spin groups. The
spin groups are subgroups of the well-known Clifford groups and Lipschitz
groups [3,10,42,46,47], which preserve the grade-1 subspace under the ad-
joint and twisted adjoint representations respectively. The degenerate spin
groups, Lipschitz and Clifford groups [1,11–13,17,18,20] are subgroups of
the groups introduced in this paper. This paper generalizes the results of the
papers [26,48] on Lie groups in the non-degenerate geometric algebras Gp,q.

The degenerate spin groups and the other Lie groups considered in this
paper can be of interest for various applications in physics, engineering, and
computer science. In particular, the spin groups and Lipschitz groups are
used in the realization of spinor neural networks [37], spinor image process-
ing [5], rotor-based color edge detection [23]. The degenerate spin groups are
applied in rigid body dynamics [25,45], motion estimation [7], and represen-
tation theory of Galilei group [11] in quantum mechanics. The analogue of
the Clifford group, which preserves the Weyl–Heisenberg group under the
adjoint representation, is used in quantum error-correcting codes in quantum
computing [52].

In the particular case of the Grassmann algebras G0,0,1 and G0,0,2, the
Lie groups P±

p,q,r, Pp,q,r, P±Λ
p,q,r, PΛ

p,q,r, and P±rad
p,q,r can be realized as subgroups

of the groups of invertible upper triangular matrices UT(2, F) and UT(4, F)
respectively. These groups are Borel subgroups of the general linear groups
GL(2, F) and GL(4, F) respectively. The unitriangular group SUT(2, F) can
be realized as a subgroup of the five considered Lie groups in the case of
the Grassmann algebra G0,0,1. In the case of G0,0,2, the corresponding five
Lie groups are closely related to the higher-dimensional Heisenberg group
Heis4 (see, for example, [4,30]), which has various applications in quantum
mechanics and computing. In the case of arbitrary dimension and signature,
the relation of the introduced Lie groups with the well-known matrix Lie
groups requires further research. The same problem in the non-degenerate
case is solved in the papers [49–51].

The paper is organized as follows. In Sect. 2, we discuss degenerate Clif-
ford geometric algebras Gp,q,r and prove some auxiliary statements on the
Jacobson radical. We present the statements on the adjoint representation
and the twisted adjoint representation in Sect. 3. Section 4 introduces the
five families of Lie groups in the degenerate geometric algebras P±

p,q,r, Pp,q,r,
P±Λ

p,q,r, PΛ
p,q,r, P±rad

p,q,r and gives their several equivalent definitions. In Sect. 5,
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we provide some examples on the groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, PΛ
p,q,r, and

P±rad
p,q,r in the cases of the low-dimensional degenerate geometric algebras. In

Sect. 6, we prove that the groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, and PΛ
p,q,r preserve the

even subspace and the odd subspace under the adjoint and twisted adjoint
representations. In Sect. 7, we prove that the groups P±

p,q,r, Pp,q,r, and P±rad
p,q,r

preserve the grade-0 and grade-n subspaces and their direct sum under the
adjoint representation and the twisted adjoint representation. We study the
corresponding Lie algebras of the considered Lie groups in Sect. 8. The con-
clusions follow in Sect. 9. We provide a summary of notation used throughout
the paper in Appendix A.

This paper is an extended version of the short note (12 pages) in Confer-
ence Proceedings [27] (International Conference of Advanced Computational
Applications of Geometric Algebra, Denver, USA, 2022). Sections 5 and 7 are
new, Sect. 4 is extended (one additional family of Lie groups is introduced
and studied). Theorems 4.6, 7.1, and 7.3 are presented for the first time. The
detailed proofs of Lemmas 3.1–3.3 and Theorem 4.7 are presented for the
first time.

2. Degenerate Geometric Algebra and the Jacobson Radical

Let us consider the (Clifford) geometric algebra [33,42,44] G(V ) = Gp,q,r,
p + q + r = n ≥ 1, over a vector space V with a symmetric bilinear form
g. We consider the real case V = R

p,q,r and the complex case V = C
p+q,r.

We use F to denote the field of real numbers R in the first case and the
field of complex numbers C in the second case respectively. In this paper,
we concentrate on the degenerate geometric algebras with r �= 0, but all the
following statements are true for arbitrary r ≥ 0.

We denote the identity element of the algebra Gp,q,r by e, the generators
by ea, a = 1, . . . , n. In the case of the real geometric algebra G(Rp,q,r), the
generators satisfy

eaeb + ebea = 2ηabe, a, b = 1, . . . , n, (2.1)

where η = (ηab) is the diagonal matrix with p times 1, q times −1 and r times
0 on the diagonal. In the case of the complex geometric algebra G(Cp+q,r), the
generators satisfy the same conditions but with the diagonal matrix η with
p+q times 1 and r times 0 on the diagonal. Let us denote by Λr := G0,0,r the
subalgebra of Gp,q,r, which is the Grassmann (exterior) algebra [17,21,42].

Consider the subspaces Gk
p,q,r of grades k = 0, 1, . . . , n, which elements

are linear combinations of the basis elements ea1...ak
:= ea1 · · · eak

, a1 < · · · <
ak, with ordered multi-indices of length k. Note that the subspace G0

p,q,r of
grade 0 does not depend on the signature of the algebra, so we denote it by G0

without the lower indices p, q, r. We use the upper multi-index instead of the
direct sum symbol in order to denote the direct sum of different subspaces.
For example, G0n

p,q,r := G0 ⊕ Gn
p,q,r.

The grade involute of the element U ∈ Gp,q,r is denoted by ̂U . This
operation has the following well-known property: ̂UV = ̂U ̂V for any U, V ∈
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Gp,q,r. Consider the even G(0)
p,q,r and odd G(1)

p,q,r subspaces:

G(k)
p,q,r = {U ∈ Gp,q,r : ̂U = (−1)kU} =

⊕

j=k mod 2

Gj
p,q,r, k = 0, 1 (2.2)

with the property

G(k)
p,q,rG(l)

p,q,r ⊂ G(k+l) mod 2
p,q,r , k, l = 0, 1. (2.3)

Let us consider the Jacobson radical rad Gp,q,r of the algebra Gp,q,r.
Let A,B,C be ordered multi-indices with the non-zero length and eA =
ea1 · · · eak

with {a1, . . . , ak} ⊆ {1, . . . , p}, eB = eb1 · · · ebl with {b1, . . . , bl} ⊆
{p+1, . . . , p+ q}, eC = ec1 · · · ecm with {c1, . . . , cm} ⊆ {p+ q +1, . . . , n}. An
arbitrary element y ∈ rad Gp,q,r has the form

y =
∑

C

vCeC +
∑

A,C

vACeAeC +
∑

B,C

vBCeBeC +
∑

A,B,C

vABCeAeBeC , (2.4)

where vC , vAC , vBC , vABC ∈ F.

Remark 2.1. Any element of the Jacobson radical is non-invertible (see [40]).

The Jacobson radical of the Grassmann algebra G0,0,n = Λn is the direct
sum of the subspaces of grades 1, . . . , n:

rad G0,0,n = G1
0,0,n ⊕ G2

0,0,n ⊕ · · · ⊕ Gn
0,0,n, G0,0,n = G0 ⊕ rad G0,0,n.

The non-degenerate algebra Gp,q,0 is semi-simple and rad Gp,q,0 = {0} ([1,17,
40]).

We need the following well-known (see, for example, [2,40]) lemma.

Lemma 2.2. The element e+xy is invertible for any y ∈ rad Gp,q,r, x ∈ Gp,q,r.

The subset of invertible elements of any set is denoted with ×. For
example, we denote the group of invertible elements of the algebra Gp,q,r by
G×

p,q,r.

Lemma 2.3. The element T ∈ G0 ⊕ rad Gp,q,r is invertible if and only if its
projection onto the subspace of grade 0 is non-zero:

T ∈ G0 ⊕ rad Gp,q,r, 〈T 〉0 �= 0 ⇔ T ∈ (G0 ⊕ rad Gp,q,r)×.

Proof. Suppose 〈T 〉0 �= 0 for some T = αe+W = α(e+ 1
αW ), where α ∈ F

×,
W ∈ rad Gp,q,r. We have e + 1

αW ∈ G×
p,q,r by Lemma 2.2; thus, T ∈ (G0 ⊕

rad Gp,q,r)×.
Suppose T ∈ (G0 ⊕ rad Gp,q,r)×. Assume 〈T 〉0 = 0; then T ∈ rad G×

p,q,r,
and we get a contradiction by Remark 2.1. �

Remark 2.4. The inverse of any invertible T = αe + βe1...n ∈ (G0 ⊕ Gn
p,q,r)

×,
where α, β ∈ F, has the form T−1 = αe − βe1...n ∈ (G0 ⊕ Gn

p,q,r)
×, since

(αe + βe1...n)(αe − βe1...n) = α2e − β2(e1...n)2 ∈ G0.
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3. Adjoint and Twisted Adjoint Representations in Gp,q,r

Consider the adjoint representation ad acting on the group of all invertible
elements ad : G×

p,q,r → AutGp,q,r as T �→ adT , where

adT (U) = TUT−1, U ∈ Gp,q,r, T ∈ G×
p,q,r. (3.1)

Consider the twisted adjoint representation [3] ǎd acting on the group of all
invertible elements ǎd : G×

p,q,r → AutGp,q,r as T �→ ǎdT , where

ǎdT (U) = ̂TUT−1, U ∈ G1
p,q,r, T ∈ G×

p,q,r. (3.2)

The formula (3.2) defines the twisted adjoint representation only for the
elements of the grade-1 subspace (vectors). There are two ways to define it
for the case of other grades. The first one is to define it by the same formula
[15,16,19,31,43]:

ǎdT (U) = ̂TUT−1, U ∈ Gp,q,r, T ∈ G×
p,q,r. (3.3)

The second way is to define it with different signs [32,39,53]:

ãdT (U) = (−1)kmTUT−1, U ∈ Gk
p,q,r, T ∈ Gm×

p,q,r, (3.4)

where we use another notation ãdT so as not to confuse this operation with
the operation (3.3). Extending this operation by the linearity ãdT (U + V ) =
ãdT (U) + ãdT (V ), we finally get

ãdT (U) = TU0T
−1 + ̂TU1T

−1, T ∈ G×
p,q,r,

U = U0 + U1 ∈ Gp,q,r, U0 ∈ G(0)
p,q,r, U1 ∈ G(1)

p,q,r. (3.5)

Note that

ãdT (U0) = adT (U0), ∀U0 ∈ G(0)
p,q,r, T ∈ G×

p,q,r, (3.6)

ãdT (U1) = ǎdT (U1), ∀U1 ∈ G(1)
p,q,r, T ∈ G×

p,q,r. (3.7)

Each of the two ways to define a twisted adjoint representation has its own
advantages, which are indicated in the works cited above. The first way (3.3)
is also related to similar operations, which are considered in the represen-
tation theory of Lie groups, see, for example, [55]. The second way (3.4) is
preferable for obtaining the correct signs when we consider reflections of el-
ements of higher grades with respect to hyperplanes in geometric algebras
using the Cartan–Dieudonné theorem. In this paper, for the convenience of
readers, we give answers to all the posed questions for both operations ǎdT

and ãdT .

Lemma 3.1. We have

{X ∈ Gp,q,r : ̂XV = V X ∀V ∈ G1
p,q,r} = Λr.

Proof. Let us prove that the right set is a subset of the left one. Suppose
X ∈ Λr has the following decomposition over a basis: X = X1 + · · · + Xk,
Xi = αieAi

, αi ∈ F, i = 1, . . . , k, Ai �= Aj for any i �= j. We have eaXi =
Xiea = 0 if Ai contains a. If Xi ∈ Λ(0)

r does not contain a, then eaXi = Xiea.
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If Xi ∈ Λ(1)
r does not contain a, then eaXi = −Xiea. Thus, V X = ̂XV for

any V ∈ G1
p,q,r by linearity.

Let us prove that the left set is a subset of the right one. Suppose
V = ea, ∀a = 1, . . . , n; then ̂Xea = eaX. Let us represent X in the form
X = A0 + A1 + eaB0 + eaB1, where A0, B0 ∈ G(0)

p,q,r, A1, B1 ∈ G(1)
p,q,r and

A0, B0, A1, B1 do not contain ea. We have (A0 + A1 + eaB0 + eaB1)̂ea =
ea(A0 + A1 + eaB0 + eaB1), i.e. A0ea − A1ea − eaB0ea + eaB1ea = eaA0 +
eaA1 +(ea)2B0 +(ea)2B1. Since A0ea = eaA0, A1ea = −eaA1, B0ea = eaB0,
B1ea = −eaB1, we obtain (ea)2B0 + (ea)2B1 = 0, i.e. (ea)2B0 = 0 and
(ea)2B1 = 0. If (ea)2 = 0, then B0 and B1 are any elements from Gp,q,r.
If (ea)2 �= 0, then B0 = B1 = 0; therefore, X does not contain ea. Acting
similarly to all generators ea, a = 1, . . . , n, we obtain that X does not contain
invertible generators. Thus, X ∈ Λr. �

It is well-known (see, for example, [1,13]) that the center of Gp,q,r is

Zp,q,r =

{

Λ(0)
r ⊕ Gn

p,q,r if n is odd,

Λ(0)
r if n is even.

(3.8)

Lemma 3.2. We have

{X ∈ Gp,q,r : XV = V X ∀V ∈ G(0)
p,q,r} = Λr ⊕ Gn

p,q,r,

{X ∈ Gp,q,r : ̂XV = V X ∀V ∈ G(0)
p,q,r} =

{

Λ(0)
r , n is odd,

Λ(0)
r ⊕ Gn

p,q,r, n is even.

Proof. Let us prove that the set Λr ⊕Gn
p,q,r is a subset of the set {X ∈ Gp,q,r :

XV = V X ∀V ∈ G(0)
p,q,r}. Suppose X = Y + H ∈ Λr ⊕ Gn

p,q,r, where Y ∈ Λr

and H ∈ Gn
p,q,r. We get Xeab = (Y +H)eab = ea

̂Y eb + eabH = eab(Y +H) =
eabX, where we use Lemma 3.1 and that H ∈ Zp,q,r if n is odd, H commutes
with all even elements if n is even. Since we can get any even basis element
as a product of grade-2 elements, XV = V X for any V ∈ G(0)

p,q,r by linearity.
Let us prove that the set {X ∈ Gp,q,r : XV = V X ∀V ∈ G(0)

p,q,r}
is a subset of the set Λr ⊕ Gn

p,q,r. Suppose V = eab, ∀a < b; then Xeab =
eabX. Consider the case a = 1, b = 2. Let us represent X in the form
X = A + e1B + e2C + e12D, where A,B,C,D contain neither e1 nor e2.
We have (A + e1B + e2C + e12D)e12 = e12(A + e1B + e2C + e12D). Since
Ae12 = e12A, De12 = e12D, e1Be12 = −e12e1B, e2Ce12 = −e12e2C, we
obtain

(e1)2e2B − (e2)2e1C = 0. (3.9)

If (e1)2 �= 0 and (e2)2 �= 0 (case 1), then from (3.9) it follows that B = C = 0,
since B and C contain neither e1 nor e2. If (e1)2 �= 0 and (e2)2 = 0 (case
2), then from (3.9) it follows that C is any element from Gp,q,r and e2B = 0.
Hence, B = 0, since B does not contain e2. If (e1)2 = 0 and (e2)2 = 0 (case
3), then from (3.9) it follows that B,C are any elements from Gp,q,r. Acting
similarly to all other a < b, we obtain that each of the summands of X either
does not contain any invertible generators or contains all invertible generators
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(it follows from case 1); there is no such summand in X that contains at least
one invertible generator but does not contain any of non-invertible generators
(it follows from case 2). Thus, X ∈ Λr ⊕ Gn

p,q,r.

Let us prove that {X ∈ Gp,q,r : ̂XV = V X ∀V ∈ G(0)
p,q,r} coincides with

Λ(0)
r if n is odd and with Λ(0)

r ⊕Gn
p,q,r if n is even. Substituting V = e ∈ G(0)

p,q,r

into ̂XV = V X, we obtain ̂X = X. Therefore, X ∈ G(0)
p,q,r. We get

{X ∈ Gp,q,r : ̂XV = V X ∀V ∈ G(0)
p,q,r}

= {X ∈ G(0)
p,q,r : XV = V X ∀V ∈ G(0)

p,q,r}
= {X ∈ Gp,q,r : XV = V X ∀V ∈ G(0)

p,q,r} ∩ G(0)
p,q,r

= (Λr ⊕ Gn
p,q,r) ∩ G(0)

p,q,r,

and the proof is completed. �

Lemma 3.3. Consider an arbitrary element X ∈ Gp,q,r and an arbitrary fixed
subset H of the set G(0)

p,q,r ∪G(1)
p,q,r. If ̂XU = UX for any U ∈ H, then we have

̂X(U1 · · · Um) = (U1 · · · Um)X ∀U1, . . . , Um ∈ H (3.10)

for any odd natural number m.

Proof. The proof is word for word the same as the proof of this statement in
the particular case r = 0, i.e. in the case of the non-degenerate algebra Gp,q,0

(see Lemma 4 [26]). �

Let us consider the kernels of the adjoint and the twisted adjoint rep-
resentations:

ker(ad) = {T ∈ G×
p,q,r : TUT−1 = U, ∀U ∈ Gp,q,r},

ker(ǎd) = {T ∈ G×
p,q,r : ̂TUT−1 = U, ∀U ∈ Gp,q,r},

ker(ãd) = {T ∈ G×
p,q,r : TU0T

−1 + ̂TU1T
−1 = U,

∀U = U0 + U1 ∈ Gp,q,r, U0 ∈ G(0)
p,q,r, U1 ∈ G(1)

p,q,r}.

Lemma 3.4. We have

ker(ad) = Z×
p,q,r =

{

(Λ(0)
r ⊕ Gn

p,q,r)
× ifn is odd,

Λ(0)×
r ifn is even,

(3.11)

ker(ǎd) = Λ(0)×
r , (3.12)

ker(ãd) = Λ×
r . (3.13)

Proof. We obtain (3.11) from (3.8).
Let us prove Λ(0)×

r ⊆ ker(ǎd). Suppose T ∈ Λ(0)×
r ; then TUT−1 = U

for any U ∈ Gp,q,r. Since T is even, we have ̂T = T ; therefore, ̂TUT−1 = U
for any U ∈ Gp,q,r.

Let us prove ker(ǎd) ⊆ Λ(0)×
r . Suppose T ∈ G×

p,q,r satisfies ̂TUT−1 = U

for any U ∈ G. Substituting the element U = e, we obtain ̂T = T ; hence, T ∈
G(0)×

p,q,r and TUT−1 = U for any U ∈ Gp,q,r. In other words, T ∈ G(0)×
p,q,r∩ker(ad).
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Using (3.11), we obtain T ∈ G(0)×
p,q,r ∩ (Λ(0)

r ⊕ Gn
p,q,r)

× = Λ(0)×
r in the case of

odd n, T ∈ Λ(0)×
r in the case of even n, and the proof is completed.

Let us prove ker(ãd) ⊆ Λ×
r . Suppose T ∈ ker(ãd); then ̂TU1T

−1 = U1

for any U1 ∈ G1
p,q,r. Thus, T ∈ Λ×

r by Lemma 3.1.
Now we must only prove that Λ×

r ⊆ ker(ãd). Suppose T ∈ Λ×
r ; then

TG(0)
p,q,r = G(0)

p,q,rT and ̂TG1
p,q,r = G1

p,q,rT by Lemmas 3.2 and 3.1 respectively.
Since any odd basis element can be represented as a product of an odd number
of generators, we obtain ̂TG(1)

p,q,r = G(1)
p,q,rT by Lemma 3.3. Thus, TU0T

−1 +
̂TU1T

−1 = U for all U = U0 + U1 ∈ Gp,q,r, where U0 ∈ G(0)
p,q,r and U1 ∈ G(1)

p,q,r,
and the proof is completed. �

In the particular case of the non-degenerate algebra Gp,q,0, we get the
well-known statement

ker(ǎd) = ker(ãd) = G0×, ker(ad) =
{

(G0 ⊕ Gn
p,q,0)

× if n is odd,
G0× if n is even.

In the particular case of the Grassmann algebra G0,0,n = Λn, we obtain

ker(ǎd) = Λ(0)×
n , ker(ãd) = Λ×

n , ker(ad) =

{

(Λ(0)
n ⊕ Gn

0,0,n)× if n is odd,

Λ(0)×
n if n is even.

4. The Groups P±
p,q,r , Pp,q,r , P±Λ

p,q,r , PΛ
p,q,r , and P±rad

p,q,r

Let us denote by Sp,q,r the following subset of the center Zp,q,r (3.8):

Sp,q,r :=
{G0 ⊕ Gn

p,q,r if n is odd,
G0 if n is even.

(4.1)

Note that Sp,q,r ⊕ (Λ(0)
r \ G0) = Zp,q,r. In the case of the non-degenerate

algebra Gp,q,0, we have Sp,q,0 = Zp,q,0.
Let us consider the groups P±

p,q,r and Pp,q,r:

P±
p,q,r := G(0)×

p,q,r ∪ G(1)×
p,q,r , (4.2)

Pp,q,r := P±
p,q,rZ

×
p,q,r (4.3)

=

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(Λ(0)
r ⊕ Gn

p,q,r)
×, n is odd,

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ(0)×
r , n is even,

(4.4)

= P±
p,q,rS

×
p,q,r (4.5)

=

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×, n is odd,

G(0)×
p,q,r ∪ G(1)×

p,q,r , n is even,
(4.6)

where we get (4.6) by Lemma 4.1. Note that Z×
p,q,r = ker(ad) in (4.3)–(4.13)

by Lemma 3.4. In the particular case Gp,q,0, we obtain the groups from the
paper [48]:

P±
p,q,0 = P± = G(0)×

p,q,0 ∪ G(1)×
p,q,0, Pp,q,0 = P = Z×

p,q,0(G(0)×
p,q,0 ∪ G(1)×

p,q,0). (4.7)
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Lemma 4.1. In the case of arbitrary n, we have

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ(0)×
r = G(0)×

p,q,r ∪ G(1)×
p,q,r , (4.8)

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(Λ(0)
r ⊕ Gn

p,q,r)
× = (G(0)×

p,q,r ∪ G(1)×
p,q,r)(G0 ⊕ Gn

p,q,r)
×. (4.9)

Proof. The statement (4.8) is true by (2.3). The proof of the statement (4.9)
in the case r = 0 is trivial, since Λ(0)

0 = G0. Consider the case r �= 0. The right
set in (4.9) is a subset of the left one. Let us prove that the left set in (4.9)
is a subset of the right one. Suppose T = AW , where A ∈ G(0)×

p,q,r ∪ G(1)×
p,q,r and

W = αe+X +βe1...n ∈ (Λ(0)
r ⊕Gn

p,q,r)
×, α, β ∈ F and X ∈ Λ(0)

r \G0. Since W

is invertible, α �= 0 by Lemma 2.3. Then we get W = (e+ 1
αX)(αe+βe1...n) ∈

Λ(0)×
r (G0 ⊕Gn

p,q,r)
×, where the first factor is invertible by Lemma 2.3. Hence,

T = AW = A(e + 1
αX)(αe + βe1...n) ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ(0)×

r (G0 ⊕ Gn
p,q,r)

× =

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×, and the proof is completed. �

Also let us consider the groups P±Λ
p,q,r and PΛ

p,q,r:

P±Λ
p,q,r := Λ×

r P±
p,q,r = P±

p,q,rΛ
×
r = (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ×

r , (4.10)

PΛ
p,q,r := Λ×

r Pp,q,r = Pp,q,rΛ×
r (4.11)

= P±Λ
p,q,rZ

×
p,q,r (4.12)

=

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(Λ(0)
r ⊕ Gn

p,q,r)
×Λ×

r , n is odd,

P±Λ
p,q,r = (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ×

r , n is even,
(4.13)

= P±Λ
p,q,rS

×
p,q,r (4.14)

=

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×Λ×
r , n is odd,

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ×
r , n is even,

(4.15)

=

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(Λr ⊕ Gn
p,q,r)

×, n is odd,

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ×
r , n is even,

(4.16)

where we get (4.15) and (4.16) by Lemma 4.2. Note that in (4.10)–(4.16),
Λ×

r = ker(ãd) and Z×
p,q,r = ker(ad) by Lemma 3.4.

Lemma 4.2. In the case of arbitrary n, we have

(Λ(0)
r ⊕ Gn

p,q,r)
×Λ×

r = (G0 ⊕ Gn
p,q,r)

×Λ×
r = (Λr ⊕ Gn

p,q,r)
×. (4.17)

Proof. In the case r = 0, the proof of the equalities is trivial, since Λ0 =
Λ(0)

0 = G0. Consider the case r �= 0. By multiplying the factors in the first
and the second sets in (4.17), we get that each of these sets is a subset of the
third one in (4.17).

Let us show that the third set in (4.17) is a subset of the first two ones.
Suppose T = αe+X+βe1...n ∈ (Λr⊕Gn

p,q,r)
×, where α, β ∈ F and X ∈ Λr\G0.

Since T is invertible, α �= 0 by Lemma 2.3. Then T = (αe+βe1...n)(e+ 1
αX) ∈

(G0 ⊕ Gn
p,q,r)

×Λ×
r ⊆ (Λ(0)

r ⊕ Gn
p,q,r)

×Λ×
r , where the second factor is invertible

by Lemma 2.3, and the proof is completed. �
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Let us consider the group P±rad
p,q,r :

P±rad
p,q,r := P±

p,q,r(G0 ⊕ rad Gp,q,r)× = (G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ rad Gp,q,r)×.

(4.18)

Remark 4.3. The groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, PΛ
p,q,r, and P±rad

p,q,r are related
as follows:

Pp,q,r = P±
p,q,rker(ad) = P±

p,q,rZ
×
p,q,r = P±

p,q,rS
×
p,q,r, (4.19)

P±Λ
p,q,r = P±

p,q,rker(ãd) = P±
p,q,rΛ

×
r , (4.20)

PΛ
p,q,r = P±

p,q,rker(ad)ker(ãd) = P±
p,q,rZ

×
p,q,rΛ

×
r = P±

p,q,rS
×
p,q,rΛ

×
r , (4.21)

P±rad
p,q,r = P±

p,q,r(G0 ⊕ rad Gp,q,r)×, (4.22)

P±
p,q,r is a subgroup of the groups Pp,q,r, PΛ

p,q,r, P±Λ
p,q,r, P±rad

p,q,r ; the groups
P±

p,q,r, Pp,q,r, P±Λ
p,q,r are subgroups of PΛ

p,q,r; the group P±Λ is a subgroup of
the group P±rad

p,q,r .

Remark 4.4. In the particular case of the algebra Gp,q,0, the groups P±Λ
p,q,r,

P±rad
p,q,r , and PΛ

p,q,r coincide with the groups P± and P respectively:

P±Λ
p,q,0 = P±rad

p,q,0 = P±
p,q,0 = P± ⊆ PΛ

p,q,0 = Pp,q,0 = P, (4.23)

moreover, if n = p + q is even, all the considered groups coincide.

Remark 4.5. In the case of the Grassmann algebra G0,0,n = Λn, we have

P±
0,0,1

∼= F
× ⊂ P0,0,1 = P±Λ

0,0,1 = PΛ
0,0,1 = P±rad

0,0,1 = Λ×
1 ; (4.24)

P±
0,0,n = P0,0,n = Λ(0)×

n ⊂ P±Λ
0,0,n = PΛ

0,0,n = P±rad
0,0,n = Λ×

n , n is even;

(4.25)

P±
0,0,n = Λ(0)×

n ⊂ P0,0,n = (Λ(0)
n ⊕ Λn

n)× (4.26)

⊂ P±Λ
0,0,n = PΛ

0,0,n = P±rad
0,0,n = Λ×

n , n ≥ 3 is odd. (4.27)

The statements P±
0,0,n = Λ(0)×

n and P0,0,n = Λ(0)×
n (G0 ⊕ Λn

n)× follow from
Lemma 2.3, since any invertible element of Λ×

n has the non-zero projection
onto the subspace of grade 0 and, consequently, is not odd.

In Theorems 4.6–4.8, we give the equivalent definitions of the groups
P±rad

p,q,r , PΛ
p,q,r, P±Λ

p,q,r, Pp,q,r, and P±
p,q,r. We use these definitions to prove

Theorems 6.1, 7.1, and 7.3.

Theorem 4.6. We have the following equivalent definitions of the group P±rad
p,q,r :

P±rad
p,q,r = (G(0)×

p,q,r ∪ G(1)×
p,q,r)(G0 ⊕ rad Gp,q,r)× (4.28)

= {T ∈ G×
p,q,r : ̂T−1T ∈ (G0 ⊕ rad Gp,q,r)×}. (4.29)

Proof. Let us prove that the set (4.28) is a subset of the set (4.29). Suppose
T = AB ∈ P±rad

p,q,r , where A ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r , B ∈ (G0 ⊕ rad Gp,q,r)×. Then
̂T−1T = ̂(AB)−1(AB) = ̂B−1 ̂A−1AB = ± ̂B−1A−1AB = ± ̂B−1B ∈ (G0 ⊕
rad Gp,q,r)×, and the proof is completed.
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Now let us prove that the set (4.29) is a subset of the set (4.28). This
statement is proved in the particular case of Gp,q,0 in the paper [26] (see
Theorem 1). Consider the case r �= 0. Suppose T ∈ G×

p,q,r satisfies ̂T−1T =

W0 + W1 + βe1...n ∈ (G0 ⊕ rad Gp,q,r)×, where W0 ∈ G0 ⊕ rad G(0)
p,q,r \ Gn

p,q,r,

W1 ∈ rad G(1)
p,q,r \Gn

p,q,r, and β ∈ F. Then T = ̂T (W0 +W1 +βe1...n). Suppose

T = T0 + T1, where T0 ∈ G(0)
p,q,r, T1 ∈ G(1)

p,q,r. Then

T0 + T1 = (T0 − T1)(W0 + W1 + βe1...n). (4.30)

Consider the case of even n. From the Eq. (4.30) it follows that T0 =
T0W0 + βT0e1...n − T1W1, T1 = −T1W0 − βT1e1...n + T0W1, i.e. T0(e − W0 −
βe1...n) = −T1W1, T1(e+W0 +βe1...n) = T0W1. Note that at least one of the
elements e − W0 − βe1...n and e + W0 + βe1...n has the non-zero projection
onto the subspace of grade 0, since otherwise we can sum the equations
〈e − W0 − βe1...n〉0 = 0, 〈e + W0 + βe1...n〉0 = 0 and get 〈2e〉0 = 0, i.e. a
contradiction, where we use the linearity of the projection operator. Then we
obtain that at least one of the elements e − W0 − βe1...n and e + W0 + βe1...n

is invertible by Lemma 2.3. Hence, we have at least one of the following two
equations:

T0 = −T1W1(e − W0 − βe1...n)−1, (4.31)
T1 = T0W1(e + W0 + βe1...n)−1. (4.32)

Therefore, T = T0 + T1 = T1(e − W1(e − W0 − βe1...n)−1) ∈ G(1)×
p,q,r(G0 ⊕

rad Gp,q,r)× or T = T0(e+W1(e+W0 +βe1...n)−1) ∈ G(0)×
p,q,r(G0 ⊕ rad Gp,q,r)×,

where we use that (e−W0−βe1...n)−1, (e+W0+βe1...n)−1 ∈ (G0⊕rad Gp,q,r)×.
In both cases, the second factor in the factorization of T is invertible by
Lemma 2.3, since its projection onto the subspace of grade 0 is non-zero.
Thus, T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r)(G0 ⊕ rad Gp,q,r)×, and the proof is completed.

Consider the case of odd n. From the Eq. (4.30) it follows that T0 =
T0W0 − T1W1 − βT1e1...n, T1 = T0W1 + βT0e1...n − T1W0, i.e. T0(e − W0) =
−T1(W1 + βe1...n), T1(e + W0) = T0(W1 + βe1...n). Since at least one of the
elements e + W0 and e − W0 has the non-zero projection onto the subspace
of grade 0, at least one of them is invertible by Lemma 2.3. Therefore, we
obtain at least one of the following two equations:

T0 = −T1(W1 + βe1...n)(e − W0)−1, (4.33)
T1 = T0(W1 + βe1...n)(e + W0)−1. (4.34)

Therefore, T = T0 + T1 = T1(e − (W1 + βe1...n)(e − W0)−1) ∈ G(1)×
p,q,r(G0 ⊕

rad Gp,q,r)× or T = T0(e+(W1+βe1...n)(e+W0)−1) ∈ G(0)×
p,q,r(G0⊕rad Gp,q,r)×,

where we use that (e − W0)−1, (e + W0)−1 ∈ (G0 ⊕ rad Gp,q,r)×. In both
cases, the second factor in the factorization of T is invertible by Lemma
2.3, since its projection onto onto the subspace of grade 0 is non-zero. Thus,
T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r)(G0 ⊕ rad Gp,q,r)× = P±rad

p,q,r , and the proof is completed.
�
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Theorem 4.7. We have the following equivalent definitions of the group PΛ
p,q,r:

PΛ
p,q,r =

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×Λ×
r , n is odd,

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ×
r , n is even,

(4.35)

=

{

{T ∈ G×
p,q,r : ̂T−1T ∈ (Λr ⊕ Gn

p,q,r)
×}, n is odd,

{T ∈ G×
p,q,r : ̂T−1T ∈ Λ×

r }, n is even,
(4.36)

= {T ∈ G×
p,q,r : ̂T−1T ∈ (Λr ⊕ Gn

p,q,r)
×} (4.37)

and the group P±Λ
p,q,r:

P±Λ
p,q,r = (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ×

r (4.38)

= {T ∈ G×
p,q,r : ̂T−1T ∈ Λ×

r } (4.39)

=

{

{T ∈ G×
p,q,r : ̂T−1T ∈ Λ×

r }, n is odd,
{T ∈ G×

p,q,r : ̂T−1T ∈ (Λr ⊕ Gn
p,q,r)

×}, n is even,
(4.40)

where Λ×
r = ker(ãd).

Proof. First let us prove (4.35)–(4.37). Let us prove that the set (4.35) is
a subset of the set (4.36). Suppose T = AB ∈ PΛ

p,q,r = Pp,q,rΛ×
r (4.11),

where A ∈ Pp,q,r, B ∈ Λ×
r . Then ̂T−1T = ̂(AB)−1(AB) = ̂B−1 ̂A−1AB.

Since ̂A−1A ∈ S×
p,q,r ⊆ Z×

p,q,r by Theorem 4.8 and since ̂B−1B ∈ Λ×
r , we

obtain ̂T−1T ∈ S×
p,q,rΛ

×
r . Therefore, we get ̂T−1T ∈ Λ×

r in the case of even

n, ̂T−1T ∈ (Λr ⊕ Gn
p,q,r)

× in the case of odd n by Remark 4.2, and the proof
is completed. It is trivial that the set (4.36) is a subset of the set (4.37).

Let us prove that the set (4.37) is a subset of the set (4.35). This
statement is proved in the particular case Gp,q,0 in the paper [48] (see the
proof of Theorem 3.2). Consider the case r �= 0. Suppose T ∈ G×

p,q,r satisfies
̂T−1T = W0 + W1 + βe1...n ∈ (Λr ⊕ Gn

p,q,r)
×, where W0 ∈ Λ(0)

r , W1 ∈ Λ(1)
r ,

and β ∈ F. Suppose T = T0 + T1, where T0 ∈ G(0)
p,q,r, T1 ∈ G(1)

p,q,r. Then we
obtain the Eq. (4.30). Consider the case of even n. From the Eq. (4.30) it
follows that we have at least one of the Eqs. (4.31)–(4.32) by the proof of
Theorem 4.6. Therefore, T = T0 + T1 = T1(e − W1(e − W0 − βe1...n)−1) ∈
G(1)×

p,q,rΛ×
r or T = T0(e + W1(e + W0 + βe1...n)−1) ∈ G(0)×

p,q,rΛ×
r , where we

use that (e − W0 − βe1...n)−1, (e + W0 + βe1...n)−1 ∈ G0 ⊕ Λr ⊕ Gn
p,q,r and

W1e1...n = 0. In both cases, the second factor in the factorization of T is
invertible by Lemma 2.3, since its projection onto onto the subspace of grade
0 is non-zero. Thus, T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ×

r , and the proof is completed.
Consider the case of odd n. From the Eq. (4.30) it follows that we have at
least one of the Eqs. (4.33)–(4.34) by the proof of Theorem 4.6. Therefore,
T = T0 + T1 = T1(e − (W1 + βe1...n)(e − W0)−1) ∈ G(1)×

p,q,r(Λr ⊕ Gn
p,q,r)

× or

T = T0(e + (W1 + βe1...n)(e + W0)−1) ∈ G(0)×
p,q,r(Λr ⊕ Gn

p,q,r)
×, where we use

that (e − W0)−1, (e + W0)−1 ∈ Λr. In both cases, the second factor in the
factorization of T is invertible by Lemma 2.3, since its projection onto onto
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the subspace of grade 0 is non-zero. Thus, T ∈ (G(0)×
p,q,r ∪G(1)×

p,q,r)(Λr ⊕Gn
p,q,r)

× =

(G(0)×
p,q,r ∪G(1)×

p,q,r)(G0⊕Gn
p,q,r)

×Λ×
r (see Remark 4.2), and the proof is completed.

Now let us prove (4.38)–(4.40). First let us prove that the set (4.38) is a
subset of the set (4.39). Suppose T = AB ∈ P̌Λ

p,q,r, where A ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r ,

B ∈ Λ×
r . Then ̂T−1T = ̂(AB)−1(AB) = ̂B−1 ̂A−1AB = ± ̂B−1A−1AB =

± ̂B−1B ∈ Λ×
r , and the proof is completed. It is trivial that the set (4.39) is

a subset of the set (4.40).

Let us prove that the set (4.40) is a subset of the set (4.38). In the
case of even n, we have proved {T ∈ G× : ̂T−1T ∈ (Λr ⊕ Gn

p,q,r)
× =

(G(0)×
p,q,r ∪G(1)×

p,q,r)Λ×
r (see (4.35) and (4.37)). Consider the case of odd n. Suppose

̂T−1T = W +βe1...n ∈ Λ×
r , where β = 0, W ∈ Λ×

r . As shown above, we obtain
at least one of the Eqs. (4.33)–(4.34). Hence, we get T0 = −T1W1(e − W0)−1

or T1 = T0W1(e+W0)−1. Therefore, we obtain T = T0 +T1 = T1(e−W1(e−
W0)−1) ∈ G(1)×

p,q,rΛ×
r or T = T0(e + W1(e + W0)−1) ∈ G(0)×

p,q,rΛ×
r , where we use

that (e − W0)−1, (e + W0)−1 ∈ Λr. In both cases, the second factor in the
factorization of T is invertible by Lemma 2.3. Thus, T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ×

r ,
and the proof is completed. �

Note that G0 ⊆ Λ(0)
r ⊆ G0 ⊕ rad G(0)

p,q,r ⊆ G0n
p,q,r ⊕ rad G(0)

p,q,r in (4.42)–
(4.45) and (4.49)–(4.51).

Theorem 4.8. We have the following equivalent definitions of the group Pp,q,r:

Pp,q,r =

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)G0n×
p,q,r, n is odd,

G(0)×
p,q,r ∪ G(1)×

p,q,r , n is even,
(4.41)

= {T ∈ G×
p,q,r : ̂T−1T ∈ S×

p,q,r} (4.42)

= {T ∈ G×
p,q,r : ̂T−1T ∈ ker(ad)} (4.43)

=

{

{T ∈ G×
p,q,r : ̂T−1T ∈ (G0n

p,q,r ⊕ rad G(0)
p,q,r)×}, n is odd,

{T ∈ G×
p,q,r : ̂T−1T ∈ (G0 ⊕ rad G(0)

p,q,r)×}, n is even,
(4.44)

= {T ∈ G×
p,q,r : ̂T−1T ∈ (G0n

p,q,r ⊕ rad G(0)
p,q,r)

×}, (4.45)

where in (4.42) and (4.43),

S×
p,q,r =

{

(G0 ⊕ Gn
p,q,r)

×, n is odd,
G0×, n is even,

(4.46)

ker(ad) =

{

(Λ(0)
r ⊕ Gn

p,q,r)
×, n is odd,

Λ(0)×
r , n is even.

(4.47)
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We have the following equivalent definitions of the group P±
p,q,r:

P±
p,q,r = G(0)×

p,q,r ∪ G(1)×
p,q,r (4.48)

= {T ∈ G×
p,q,r : ̂T−1T ∈ G0×} (4.49)

= {T ∈ G×
p,q,r : ̂T−1T ∈ Λ(0)×

r = ker(ǎd)} (4.50)

= {T ∈ G×
p,q,r : ̂T−1T ∈ (G0 ⊕ rad G(0)

p,q,r)
×} (4.51)

=

{

{T ∈ G×
p,q,r : ̂T−1T ∈ (G0 ⊕ rad G(0)

p,q,r)×}, n is odd,
{T ∈ G×

p,q,r : ̂T−1T ∈ (G0n
p,q,r ⊕ rad G(0)

p,q,r)×}, n is even.
(4.52)

Proof. First let us prove (4.41)–(4.44). Let us prove that the set (4.41) is a
subset of the set (4.42). Suppose T = AB ∈ Pp,q,r, where A ∈ G(0)×

p,q,r ∪ G(1)×
p,q,r

and B ∈ (G0 ⊕ Gn
p,q,r)

× in the case of odd n, B = e in the case of even

n. Then ̂T−1T = (̂AB)−1(AB) = ̂B−1 ̂A−1AB = ± ̂B−1A−1AB = ± ̂B−1B.
We have ̂B−1B ∈ (G0 ⊕ Gn

p,q,r)
× in the case of odd n (see Remark 2.4) and

̂B−1B = e ∈ G0× in the case of even n, and the proof is completed. The set
(4.42) is a subset of the set (4.43), which is a subset of the sets (4.44) and
(4.45), since G0 ⊆ Λ(0)

r ⊆ G0 ⊕ rad G(0)
p,q,r ⊆ G0 ⊕ rad G(0)

p,q,r ⊕ Gn
p,q,r.

Let us prove that the set (4.45) is a subset of the set (4.41). This
statement is proved in the particular case Gp,q,0 in the paper [48] (Theo-
rem 3.2). Consider the case r �= 0. Suppose T ∈ G×

p,q,r satisfies ̂T−1T =

W0 + W1 + βe1...n ∈ (G0 ⊕ rad G(0)
p,q,r ⊕ Gn

p,q,r)
×, where W0 ∈ G0 ⊕ rad G(0)

p,q,r,

W1 = 0, and β ∈ F. Suppose T = T0 + T1, where T0 ∈ G(0)
p,q,r, T1 ∈ G(1)

p,q,r.
Then we obtain the Eq. (4.30). Consider the case of even n. From the
Eq. (4.30) it follows that we obtain one of the Eqs. (4.31)–(4.32) by the
proof of Theorem 4.6. Therefore, we get either T0 = 0 or T1 = 0, since
W1 = 0. Thus, T ∈ G(0)×

p,q,r ∪ G(1)×
p,q,r = P±

p,q,r, and the proof is completed.
Consider the case of odd n. From the Eq. (4.30) it follows that we have
one of the Eqs. (4.33)–(4.34) by the proof of Theorem 4.6. Therefore, ei-
ther T = T0 + T1 = T1(e − βe1...n(e − W0)−1) ∈ G(1)×

p,q,r(G0 ⊕ Gn
p,q,r)

× or

T = T0(e+βe1...n(e+W0)−1) ∈ G(0)×
p,q,r(G0 ⊕Gn

p,q,r)
×, where in both cases, the

second factor is invertible by Lemma 2.3. Thus, T ∈ (G(0)×
p,q,r ∪ G(1)×

p,q,r)Z×
p,q,r.

Now let us prove (4.48)–(4.51). The set (4.48) is a subset of the set
(4.49), since we obtain ̂T−1T = ±T−1T = ±e ∈ G0× for any T ∈ G(0)×

p,q,r ∪
G(1)×

p,q,r . The set (4.49) is a subset of the set (4.50), which is a subset of the sets
(4.51) and (4.52), since G0 ⊆ Λ(0)

r ⊆ G0 ⊕ rad G(0)
p,q,r ⊆ G0 ⊕ rad G(0)

p,q,r ⊕Gn
p,q,r.

Let us prove that the set (4.52) is a subset of the set (4.48). In the case
of even n, we have proved {T ∈ G× : ̂T−1T ∈ (G0 ⊕ rad G(0)

p,q,r ⊕Gn
p,q,r)

×} =

G(0)×
p,q,r ∪ G(1)×

p,q,r (see. (4.45) and (4.41)). Consider the case of odd n. Suppose
̂T−1T = W0 + βe1...n ∈ G0 ⊕ rad G(0)

p,q,r, where β = 0, W0 ∈ G0 ⊕ rad G(0)
p,q,r.

As shown above, we obtain one of the Eqs. (4.33)–(4.34). Since β = 0, we get
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either T0 = 0 or T1 = 0; thus, T ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r and the proof is completed.
�

5. Examples on the Groups P±
p,q,r , Pp,q,r , P±Λ

p,q,r , PΛ
p,q,r , and

P±rad
p,q,r

Let us give some examples on the groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, PΛ
p,q,r and

P±rad
p,q,r in the cases of the low-dimensional degenerate geometric algebras

Gp,q,r. We use that the degenerate geometric algebra can be embedded into
the non-degenerate geometric algebra of larger dimension (see Clifford – Jor-
dan – Wigner representation [14]), which is isomorphic to the matrix algebra
(see, for example, [42,44]).

Let us consider the groups of upper triangular matrices UT(2, F) and
UT(4, F) (see, for example, [4]):

UT(2, F) :=
{[

x11 x12

0 x21

]

∈ GL(2, F)
}

, (5.1)

UT(4, F) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

x11 x12 x13 x14

0 x22 x23 x24

0 0 x33 x34

0 0 0 x44

⎤

⎥

⎥

⎦

∈ GL(4, F)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (5.2)

and a unipotent subgroup SUT(2, F) [4] of the group UT(2, F):

SUT(2, F) :=
{[

1 x12

0 1

]

, x12 ∈ F

}

. (5.3)

Example 5.1. Consider the degenerate algebra Λ1 = G0,0,1, which can be em-
bedded into the non-degenerate algebra G1,1,0

∼= Mat(2, F). For the elements
e and e1, we have

e �→
[

1 0
0 1

]

, e1 �→
[

0 1
0 0

]

.

We obtain P±
0,0,1 = Λ(0)×

1 = G0× ∼= F
× and

P0,0,1 = P±Λ
0,0,1 = PΛ

0,0,1 = P±rad
0,0,1 = Λ×

1 (5.4)

∼=
{[

x0 x1

0 x0

]

: x0, x1 ∈ F, x0 �= 0
}

. (5.5)

Let us note that all the introduced groups can be realized as subgroups of the
group of upper triangular matrices UT(2, F) (5.1), which is a Borel subgroup
(see, for example, [4]) of the general linear group GL(2, F). Also note that the
unitriangular group SUT(2, F) (5.3) is a subgroup of the considered matrix
group (5.5).
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Let us consider the higher-dimensional Heisenberg group Heis4 (see, for
example, [4,30]):

Heis4 :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

1 x12 x13 x14

0 1 0 x24

0 0 1 x34

0 0 0 1

⎤

⎥

⎥

⎦

∈ GL(4, F)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (5.6)

Example 5.2. Since Λ2 = G0,0,2 can be embedded into the algebra G2,2,0
∼=

Mat(4, F), we get

P±Λ
0,0,2 = PΛ

0,0,2 = P±rad
0,0,2 = Λ×

2 (5.7)

∼=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

x0 x1 x2 x3

0 x0 0 −x2

0 0 x0 x1

0 0 0 x0

⎤

⎥

⎥

⎦

: x0, x1, x2, x3 ∈ F, x0 �= 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (5.8)

and

P±
0,0,2 = P0,0,2 = Λ(0)×

2 (5.9)

∼=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

x0 0 0 x3

0 x0 0 0
0 0 x0 0
0 0 0 x0

⎤

⎥

⎥

⎦

: x0, x3 ∈ F, x0 �= 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (5.10)

These matrix groups are subgroups of the group of upper triangular matrices
UT(4, F) (5.2). Also note that all the introduced Lie groups are closely related
to the higher-dimensional Heisenberg group Heis4 (5.6).

Example 5.3. Let us consider the degenerate algebra G1,0,1. It can be embed-
ded into G2,1,0

∼= Mat(2, F) ⊕ Mat(2, F). We obtain

P±
1,0,1

∼=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

x0 x3 0 0
0 x0 0 0
0 0 x0 x3

0 0 0 x0

⎤

⎥

⎥

⎦

∈ GL(4, F) (5.11)

∪

⎡

⎢

⎢

⎣

x1 x2 0 0
0 −x1 0 0
0 0 −x1 −x2

0 0 0 x1

⎤

⎥

⎥

⎦

∈ GL(4, F)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (5.12)

Note that this matrix group is a subgroup of UT(4, F) (5.2). Also note that
this group is closely related to Heis4 (5.6) as well as the groups in the previous
example.

6. The Groups Preserving the Subspaces of Fixed Parity
Under the Adjoint and Twisted Adjoint Representations

We use the following notation for the groups preserving the subspaces of fixed
parity under ad (3.1):

Γ(k)
p,q,r := {T ∈ G×

p,q,r : adT (G(k)
p,q,r) = TG(k)

p,q,rT
−1 ⊆ G(k)

p,q,r}, k = 0, 1, (6.1)
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under ǎd (3.3):

Γ̌(k)
p,q,r := {T ∈ G×

p,q,r : ǎdT (G(k)
p,q,r) = ̂TG(k)

p,q,rT
−1 ⊆ G(k)

p,q,r}, k = 0, 1, (6.2)

and under ãd (3.4):

Γ̃(k)
p,q,r := {T ∈ G×

p,q,r : ãdT (G(k)
p,q,r) ⊆ G(k)

p,q,r}, k = 0, 1. (6.3)

Theorem 6.1. We have

Pp,q,r = Γ(1)
p,q,r ⊆ PΛ

p,q,r = Γ(0)
p,q,r = Γ̃(0)

p,q,r, (6.4)

P±
p,q,r = Γ̌(0)

p,q,r ⊆ P±Λ
p,q,r = Γ̌(1)

p,q,r = Γ̃(1)
p,q,r. (6.5)

Proof. The statements Pp,q,r ⊆ PΛ
p,q,r and P±

p,q,r ⊆ P±Λ
p,q,r follow from the

definitions of the groups (4.41), (4.6), (4.10), and (4.15). We obtain Γ̃(0)
p,q,r =

Γ(0)
p,q,r and Γ̃(1)

p,q,r = Γ̌(1)
p,q,r, since ãdT (G(0)

p,q,r) = adT (G(0)
p,q,r) and ãdT (G(1)

p,q,r) =
ǎdT (G(1)

p,q,r) by (3.6) and (3.7) respectively.
Let us prove P±

p,q,r ⊆ Γ̌(0)
p,q,r. Suppose T ∈ P±

p,q,r (4.41). If T ∈ G(0)×
p,q,r ,

then ̂T = T and T−1 ∈ G(0)×
p,q,r . If T ∈ G(1)×

p,q,r , then ̂T = −T and T−1 ∈
G(1)×

p,q,r . In both cases, we obtain ̂TG(0)
p,q,rT−1 ⊆ G(0)

p,q,r by (2.3). Thus, T ∈
Γ̌(0)

p,q,r. Let us prove Pp,q,r ⊆ Γ(1)
p,q,r. Suppose T = XW ∈ Pp,q,r = P±

p,q,rZ
×
p,q,r

(4.13), where X ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r and W ∈ Z×
p,q,r. Then we get TG(1)

p,q,rT−1 =

XWG(1)
p,q,rW−1X−1 = XG(1)

p,q,rWW−1X−1 = XG(1)
p,q,rX−1 ⊆ G(1)

p,q,r, where we
use (2.3). Thus, T ∈ Γ(1)

p,q,r.
Let us prove PΛ

p,q,r ⊆ Γ(0)
p,q,r. Suppose T = XW ∈ PΛ

p,q,r (4.35), where

X ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r , W ∈ (Λr ⊕ Gn
p,q,r)

× in the case of odd n and W ∈
Λ×

r in the case of even n. We obtain TG(0)
p,q,rT−1 = XWG(0)

p,q,rW−1X−1 =
XG(0)

p,q,rWW−1X−1 = XG(0)
p,q,rX−1 ⊆ G(0)

p,q,r, where we use the property (2.3)
and that WG(0)

p,q,r = G(0)
p,q,rW by Lemma 3.2. Thus, T ∈ Γ(0)

p,q,r. Let us prove
P±Λ

p,q,r ⊆ Γ̌(1)
p,q,r. Suppose T = XW ∈ P±Λ

p,q,r (4.10), where X ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r

and W ∈ Λ×
r . Since ̂Wea = eaW for any generator ea, a = 1, . . . , n, by

Lemma 3.1 and since any odd basis element can be represented as a product
of an odd number of generators, we get ̂WG(1)

p,q,r = G(1)
p,q,rW by Lemma 3.3.

Then we obtain ̂TG(1)
p,q,rT−1 = ̂X̂WG(1)

p,q,rW−1X−1 = ±XG(1)
p,q,rWW−1X−1 =

±XG(1)
p,q,rX−1 ⊆ G(1)

p,q,r by (2.3). Thus, T ∈ Γ̌(1)
p,q,r.

Let us prove Γ(1)
p,q,r ⊆ Pp,q,r. Suppose T ∈ G×

p,q,r satisfies TG(1)
p,q,rT−1 ⊆

G(1)
p,q,r; then we obtain TUT−1 = −(TUT−1)̂ = ̂TU ̂T−1 for any U ∈ G(1)

p,q,r.
Multiplying both sides of this equation on the left by ̂T−1, on the right by
T , we get

( ̂T−1T )U = U( ̂T−1T ), ∀U ∈ G(1)
p,q,r. (6.6)

In particular, (6.6) is true for any generator U = ea ∈ G(1)
p,q,r, a = 1, . . . , n.

Since the identity element U = e ∈ G0 satisfies (6.6) as well, we obtain
ad

̂T−1T
(U) = U for any U ∈ Gp,q,r. Therefore, ̂T−1T ∈ ker(ad). Thus, T ∈

Pp,q,r by Theorem 4.8.
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Let us prove Γ̌(1) ⊆ P±Λ
p,q,r. Suppose T ∈ G×

p,q,r satisfies ̂TG(1)
p,q,rT−1 ⊆

G(1)
p,q,r. Then we get ̂TUT−1 = −( ̂TUT−1)̂ = TU ̂T−1 for any U ∈ G(1)

p,q,r.
Multiplying both sides of the equation on the left by T−1, on the right by

T , we obtain T−1
̂TU = U ̂T−1T , i.e. ̂( ̂T−1T )U = U( ̂T−1T ) for any U ∈

G(1)
p,q,r. In particular, this equation is true for any generator U = ea ∈ G1

p,q,r,

a = 1, . . . , n. Using Lemma 3.1, we get ̂T−1T ∈ Λ×
r ; hence, T ∈ P±Λ

p,q,r by
Theorem 4.7.

Let us prove Γ(0)
p,q,r ⊆ PΛ

p,q,r. Suppose T ∈ G×
p,q,r satisfies TG(0)

p,q,rT−1 ⊆
G(0)

p,q,r. Then we get TUT−1 = (TUT−1)̂ = ̂TU ̂T−1 for any U ∈ G(0)
p,q,r.

Multiplying both sides of this equation on the left by ̂T−1, on the right by
T , we obtain ( ̂T−1T )U = U( ̂T−1T ) for any U ∈ G(0)

p,q,r. Using Lemma 3.2, we
have ̂T−1T ∈ Λr ⊕ Gn

p,q,r. Thus, T ∈ PΛ
p,q,r by Theorem 4.7.

Let us prove Γ̌(0)
p,q,r ⊆ P±

p,q,r. This statement is proved in the case r = 0
in the paper [26]. Consider the case r �= 0. Suppose T ∈ G×

p,q,r satisfies
̂TG(0)

p,q,rT−1 ⊆ G(0)
p,q,r. Then ̂TUT−1 = ( ̂TUT−1)̂ = TU ̂T−1 for any U ∈

G(0)
p,q,r. Multiplying both sides of this equation on the left by T−1, on the

right by T , we obtain T−1
̂TU = U ̂T−1T , i.e. ̂( ̂T−1T )U = U( ̂T−1T ) for

any U ∈ G(0)
p,q,r. Using (3.9), we get ̂T−1T ∈ (Λ(0)

r ⊕ Gn
p,q,r)

× in the case

of even n and ̂T−1T ∈ Λ(0)×
r in the case of odd n. Therefore, T ∈ P±

p,q,r

by (4.50) in the case of odd n and by (4.51) in the case of even n, since
Λ(0)

r ⊕ Gn
p,q,r ⊆ G0 ⊕ rad G(0)

p,q,r. �

Remark 6.2. In the particular case r = 0, we have by (4.7) and (4.23):

P±
p,q,0 = P±Λ

p,q,0 = Γ̌(0)
p,q,0 = Γ̌(1)

p,q,0 = Γ̃(1)
p,q,0 (6.7)

⊂ Pp,q,0 = PΛ
p,q,0 = Γ(1)

p,q,0 = Γ(0)
p,q,0 = Γ̃(0)

p,q,0, n is odd, (6.8)

and

P±
p,q,0 = P±Λ

p,q,0 = Γ̌(0)
p,q,0 = Γ̌(1)

p,q,0 = Γ̃(1)
p,q,0 (6.9)

= Pp,q,0 = PΛ
p,q,0 = Γ(1)

p,q,0 = Γ(0)
p,q,0 = Γ̃(0)

p,q,0, n is even. (6.10)

Remark 6.3. In the particular case of the Grassmann algebra G0,0,n = Λn,
we have three different groups:

P±
0,0,n = Γ̌(0)

0,0,n = ker(ǎd) = Λ(0)×
n , (6.11)

PΛ
0,0,n = P±Λ

0,0,n = Γ(0)
0,0,n = Γ̃(0)

0,0,n = Γ̌(1)
0,0,n = Γ̃(1)

0,0,n = ker(ãd) = Λ×
n , (6.12)

P0,0,n = Γ(1)
0,0,n = ker(ad) =

{

(Λ(0)
n ⊕ Λn

n)× if n is odd,

Λ(0)×
n if n is even.

(6.13)
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7. The Groups Γ0
p,q,r , Γn

p,q,r , Γ0n
p,q,r , Γ̌0

p,q,r , Γ̌n
p,q,r , Γ̌0n

p,q,r ,

Γ̃0
p,q,r , Γ̃n

p,q,r , and Γ̃0n
p,q,r

Let us use the following notation for the groups preserving the subspace of
the fixed grade k under ad (3.1):

Γk
p,q,r := {T ∈ G×

p,q,r : adT (Gk
p,q,r) = TGk

p,q,rT
−1 ⊆ Gk

p,q,r}, (7.1)

under ǎd (3.3):

Γ̌k
p,q,r := {T ∈ G×

p,q,r : ǎdT (Gk
p,q,r) = ̂TGk

p,q,rT
−1 ⊆ Gk

p,q,r}, (7.2)

and under ãd (3.4):

Γ̃k
p,q,r := {T ∈ G×

p,q,r : ãdT (Gk
p,q,r) ⊆ Gk

p,q,r}. (7.3)

The groups Γ̃k
p,q,r are related with the groups Γk

p,q,r and Γ̌k
p,q,r in the following

way:

Γ̃k
p,q,r =

{

Γ̌k
p,q,r, k is odd,

Γk
p,q,r, k is even,

(7.4)

since ãdT (Gk
p,q,r) = adT (Gk

p,q,r) in the case of even k by (3.6) and ãdT (Gk
p,q,r) =

ǎdT (Gk
p,q,r) in the case of odd k by (3.7). In this section, we consider only the

groups Γ0
p,q,r, Γn

p,q,r, Γ̌0
p,q,r, Γ̌n

p,q,r, Γ̃0
p,q,r, and Γ̃n

p,q,r (the cases of k = 0, n),
since these groups are related with the groups P±

p,q,r and P±rad
p,q,r discussed in

Sects. 4–6 above. The groups Γk
p,q,r, Γ̌k

p,q,r, and Γ̃k
p,q,r, k = 1, . . . , n − 1, differ

significantly from the introduced groups even in the particular case of the
non-degenerate algebra Gp,q,0 [26,48].

Theorem 7.1. We have

Γ0
p,q,r = Γ̃0

p,q,r = G×
p,q,r, Γn

p,q,r =
{G×

p,q,r, n is odd,
Γ̃n

p,q,r = P±rad
p,q,r , n is even,

(7.5)

Γ̌0
p,q,r = P±

p,q,r, Γ̌n
p,q,r =

{

Γ̃n
p,q,r = P±rad

p,q,r , n is odd,
G×

p,q,r, n is even.
(7.6)

Proof. We obtain Γ̃0
p,q,r = Γ0

p,q,r in the case of arbitrary n, Γ̃n
p,q,r = Γn

p,q,r in
the case of even n, and Γ̃n

p,q,r = Γ̌n
p,q,r in the case of odd n, using (7.4). Now

it remains to consider only the groups Γ0
p,q,r, Γn

p,q,r, Γ̌0
p,q,r, and Γ̌n

p,q,r.
We have Γ0

p,q,r = G×
p,q,r in the case of arbitrary n, since TG0T−1 ⊆

G0 is true for any T ∈ G×
p,q,r. We obtain Γn

p,q,r = G×
p,q,r if n is odd, since

Te1...nT−1 = e1...nTT−1 = e1...n ∈ Gn
p,q,r for any T ∈ G×

p,q,r by e1...n ∈ Zp,q,r.
We get Γ̌n

p,q,r = G×
p,q,r if n is even, since ̂Te1...nT−1 = e1...nTT−1 = e1...n ∈

Gn
p,q,r for any T ∈ G×

p,q,r, since e1...n commutes with all even elements and
anticommutes with all odd elements.

Let us prove P±
p,q,r ⊆ Γ̌0

p,q,r. Suppose T ∈ P±
p,q,r = G(0)×

p,q,r ∪ G(1)×
p,q,r ; then

̂T = ±T and ̂TG0T−1 = ±TG0T−1 ⊆ G0, and the proof is completed. Let
us prove Γ̌0

p,q,r ⊆ P±
p,q,r. Suppose T ∈ G×

p,q,r satisfies ̂TG0T−1 ⊆ G0; then
̂TT−1 = αe, where α ∈ F

×, i.e. ̂T = αT . Suppose T = T0 + T1, where
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T0 ∈ G(0)
p,q,r and T1 ∈ G(1)

p,q,r; then we get T0 − T1 = αT0 + αT1, i.e. T0 = αT0

and −T1 = αT1. If α = 1, then T1 = 0 and T ∈ G(0)×
p,q,r . If α = −1, then T0 = 0

and T ∈ G(1)×
p,q,r . If α �= 1,−1, then T0 = T1 = 0, and we get a contradiction.

Thus, T ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r = P±
p,q,r.

Let us prove Γn
p,q,r ⊆ P±rad

p,q,r in the case of even n. Suppose T ∈ G×
p,q,r

satisfies Te1...nT−1 = αe1...n, where α ∈ F
×. Multiplying both sides of this

equation on the left by T−1, on the right by 1
αT , we get 1

αe1...n = T−1e1...nT .
Then we obtain e1...n

̂T−1T = 1
αe1...n, where we use that e1...n commutes

with all even elements and anticommutes with all odd elements. Therefore,
̂T−1T ∈ (G0 ⊕ rad Gp,q,r)× and T ∈ P±rad

p,q,r by Theorem 4.6. Let us prove

P±rad
p,q,r ⊆ Γn

p,q,r if n is even. Suppose ̂T−1T = αe + W ∈ (G0 ⊕ rad Gp,q,r)×,
where α ∈ F

× and W ∈ rad Gp,q,r. Multiplying both sides of this equation on
the left by e1...n, we obtain e1...n

̂T−1T = αe1...n, where we use that e1...nW =
0. Therefore, T−1e1...nT = αe1...n. Multiplying both sides of the equation on
the left by 1

αT , on the right by T−1, we get Te1...nT−1 = 1
αe1...n ∈ Gn

p,q,r.
Thus, T ∈ Γn

p,q,r.

Let us prove Γ̌n
p,q,r ⊆ P±rad

p,q,r if n is odd. Suppose T ∈ G×
p,q,r satisfies

̂Te1...nT−1 = αe1...n, where α ∈ F
×. Multiplying both sides of this equation

on the left by ̂T−1, on the right by 1
αT , we get 1

αe1...n = ̂T−1e1...nT . Then we
obtain e1...n

̂T−1T = 1
αe1...n, since e1...n ∈ Zp,q,r. Therefore, ̂T−1T ∈ (G0 ⊕

rad Gp,q,r)× and T ∈ P±rad
p,q,r by Theorem 4.6. Let us prove that P±rad

p,q,r ⊆ Γ̌n
p,q,r

if n is odd. Suppose ̂T−1T = αe+W ∈ (G0 ⊕ rad Gp,q,r)×, where α ∈ F
× and

W ∈ rad Gp,q,r. Multiplying both sides of the equation on the left by e1...n,
we obtain e1...n

̂T−1T = αe1...n. Therefore, ̂T−1e1...nT = αe1...n. Multiplying
both sides of this equation on the left by 1

α
̂T , on the right by T−1, we obtain

̂Te1...nT−1 = 1
αe1...n ∈ Gn

p,q,r. Thus, T ∈ Γ̌n
p,q,r. �

Remark 7.2. In the case of the non-degenerate algebra Gp,q,0, we have the fol-
lowing statements, which are proved in the papers [48] and [26] respectively:

Γk
p,q,0 = Γn−k

p,q,0, Γ̌k
p,q,0 = Γ̌n−k

p,q,0, k = 1, . . . , n − 1. (7.7)

Note that in the case of the degenerate algebra Gp,q,r, r �= 0, the statements
(7.7) are not true. Let us consider the following example. In the case G0,0,3,
n = r = 3, consider the element T = e + e1, which is invertible, since
(e + e1)(e − e1) = e.

We have T �∈ Γ1
0,0,3, since Te2T

−1 = (e + e1)e2(e − e1) = e2 + 2e12 �∈
G1

0,0,3. We obtain T ∈ Γ2
0,0,3, since TeabT

−1 = eab ∈ G2
0,0,3 for a, b = 1, 2, 3,

a < b. Thus, Γ1
p,q,r �= Γ2

p,q,r.

We have T ∈ Γ̌1
0,0,3, since ̂Te1T

−1 = (e − e1)ea(e − e1) = ea ∈ G1
0,0,3

for a = 1, 2, 3. We get T �∈ Γ̌2
0,0,3, since ̂Te23T

−1 = (e − e1)e23(e − e1) =
(e23 − e123)(e − e1) = e23 − 2e123 �∈ G2

0,0,3. Thus, Γ̌1
p,q,r �= Γ̌2

p,q,r.
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Let us consider the groups preserving the direct sum of the subspaces
G0 and Gn

p,q,r under ad (3.1) and ǎd (3.3) respectively:

Γ0n
p,q,r := {T ∈ G×

p,q,r : ad(G0n
p,q,r) = TG0n

p,q,rT
−1 ⊆ G0n

p,q,r}, (7.8)

Γ̌0n
p,q,r := {T ∈ G×

p,q,r : ǎd(G0n
p,q,r) = ̂TG0n

p,q,rT
−1 ⊆ G0n

p,q,r}. (7.9)

Also we consider the groups preserving the subspace G0n
p,q,r under ãd (3.4):

Γ̃0n
p,q,r := {T ∈ G×

p,q,r : ãd(G0n
p,q,r) ⊆ G0n

p,q,r} (7.10)

=
{{T ∈ G×

p,q,r : ̂TGn
p,q,rT

−1 ⊆ G0n
p,q,r}, n is odd,

{T ∈ G×
p,q,r : TG0n

p,q,rT
−1 ⊆ G0n

p,q,r}, n is even.
(7.11)

Theorem 7.3. We have

Γ0n
p,q,r = Γn

p,q,r =
{G×

p,q,r, n is odd,
P±rad

p,q,r , n is even,
(7.12)

Γ̌0n
p,q,r = Pp,q,r, (7.13)

Γ̃0n
p,q,r =

{

Pp,q,0, n is odd and r = 0,
P±rad

p,q,r , in the other cases. (7.14)

Proof. Let us prove (7.12). In the case of odd n, the statement Γ0n
p,q,r = G×

p,q,r

follows from Γ0
p,q,r = Γn

p,q,r = G×
p,q,r (Lemma 7.1). Consider the case of even

n. If r = 0, then we have Γ0n
p,q,r = P± = P±rad

p,q,0 by Lemma 2 [26]. Consider the
case r �= 0. Let us prove Γ0n

p,q,r ⊆ P±rad
p,q,r . Suppose TGn

p,q,rT
−1 ⊆ (G0 ⊕Gn

p,q,r);
then Te1...nT−1 = e1...n

̂TT−1 = αe+βe1...n, α, β ∈ F, where we use that e1...n

commutes with all even elements and anticommutes with all odd elements.
Since 〈e1...nX〉0 = 0 for any X ∈ Gp,q,r, we get 〈e1...n

̂TT−1〉0 = 0; hence,
α = 0, i.e. TGn

p,q,rT
−1 ⊆ Gn

p,q,r. Thus, T ∈ Γn
p,q,r = P±rad

p,q,r (Lemma 7.1) and
the proof is completed. Let us prove P±rad

p,q,r ⊆ Γ0n
p,q,r. Since P±rad

p,q,r = Γn
p,q,r and

Γ0
p,q,r = G×

p,q,r by Lemma 7.1, we get P±rad
p,q,r = Γn

p,q,r = Γ0
p,q,r ∩Γn

p,q,r ⊆ Γ0n
p,q,r,

and the proof is completed.
Now let us prove (7.13). First let us prove Pp,q,r ⊆ Γ̌0n

p,q,r. In the case of
even n, we have Pp,q,r = P±

p,q,r = Γ̌0
p,q,r = Γ̌0

p,q,r∩Γ̌n
p,q,r ⊆ Γ̌0n

p,q,r, where we use
Lemma 7.1. Consider the case of odd n. Suppose T = XY ∈ Pp,q,r, where X ∈
G(0)×

p,q,r ∪G(1)×
p,q,r , Y ∈ Z×. For α, β ∈ F, we get ̂T (αe+βe1...n)T−1 = (̂XY )(αe+

βe1...n)(XY )−1 = ±X ̂Y (αe+βe1...n)Y −1X−1 = ±(αe+βe1...n)XX−1
̂Y Y −1

= ±(αe + βe1...n)̂Y Y −1 ∈ (G0 ⊕ Gn
p,q,r), where we use ̂X = ±X. Thus,

T ∈ Γ̌0n
p,q,r. Let us prove Γ̌0n

p,q,r ⊆ Pp,q,r. Suppose ̂TG0T−1 ⊆ (G0 ⊕ Gn
p,q,r),

i.e. ̂TT−1 = αe + βe1...n ∈ (G0 ⊕ Gn
p,q,r), where α, β ∈ F. Multiplying both

sides of the equation on the left by ̂T−1, on the right by T , we get α ̂T−1T +
β ̂T−1e1...nT = e. Consider the case of even n. We obtain α ̂T−1T = e −
βe1...n ∈ (G0 ⊕ Gn

p,q,r)
×; hence, T ∈ P±

p,q,r = Pp,q,r by Lemma 4.8. Consider

the case of odd n. We get (αe + βe1...n) ̂T−1T = e. Since ̂T−1T ∈ G×
p,q,r and

e ∈ G×
p,q,r, we have (αe + βe1...n) ∈ G×

p,q,r. Then ̂T−1T = αe − βe1...n ∈
(G0 ⊕ Gn

p,q,r)
×; therefore, T ∈ Pp,q,r by Lemma 4.8.
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Finally, let us prove (7.14). In the case of even n, we obtain Γ̃0n
p,q,r =

Γ0n
p,q,r = P±rad

p,q,r , using (7.11) and (7.12). Let us consider the case of odd n.
If r = 0, then e1...n is invertible; therefore, we obtain Γ̃0n

p,q,0 = {T ∈ G×
p,q,0 :

Gn
p,q,0

̂TT−1 ⊆ G0n
p,q,0} = {T ∈ G×

p,q,0 : ̂TT−1 ∈ G0n
p,q,0} = {T ∈ G×

p,q,0 :
̂TG0n

p,q,0T
−1 ⊆ G0n

p,q,0} = Γ̌0n
p,q,0 = Pp,q,0, where we use (7.13). If r �= 0, then

〈e1...nX〉0 = 0 for any X ∈ Gp,q,r; therefore, we get Γ̃0n
p,q,r = {T ∈ G×

p,q,r :
Gn

p,q,r
̂TT−1 ⊆ G0n

p,q,r} = {T ∈ G×
p,q,r : Gn

p,q,r
̂TT−1 ⊆ Gn

p,q,r} = {T ∈ G×
p,q,r :

̂TGn
p,q,rT

−1 ⊆ Gn
p,q,r} = Γ̌n

p,q,r = P±rad
p,q,r , where we use Theorem 7.1, and the

proof is completed. �

Remark 7.4. In the particular case of the Grassmann algebra G0,0,n = Λn,
we get from Theorems 7.1 and 7.3:

Γ̌0
0,0,1 = G0× ⊂ Γ0

0,0,1 = Γ̃0
0,0,1 = Γ1

0,0,1 = Γ̌1
0,0,1 = Γ̃1

0,0,1 (7.15)

= Γ01
0,0,1 = Γ̌01

0,0,1 = Γ̃01
0,0,1 = Λ×

1 , n = 1; (7.16)

Γ̌0
0,0,n = Γ̌0n

0,0,n = Λ(0)×
n ⊂ Γ0

0,0,n = Γ̃0
0,0,n = Γn

0,0,n = Γ̌n
0,0,n (7.17)

= Γ̃n
0,0,n = Γ0n

0,0,n = Γ̃0n
0,0,n = Λ×

n , n is even; (7.18)

Γ̌0
0,0,n = Λ(0)×

n ⊂ Γ̌0n
0,0,n = (Λ(0)

r ⊕ Λn
r )× ⊂ Γ0

0,0,n = Γ̃0
0,0,n = Γn

0,0,n (7.19)

= Γ̌n
0,0,n = Γ̃n

0,0,n = Γ0n
0,0,n = Γ̃0n

0,0,n = Λ×
n , n ≥ 3 is odd, (7.20)

where we use Remark 4.5.

Remark 7.5. In the particular case of the non-degenerate geometric algebra
Gp,q,0, we obtain the statements from the papers [26] and [48]:

Γ0
p,q,0 = Γ̃0

p,q,0 = G×
p,q,0, Γn

p,q,0 = Γ0n
p,q,0 =

{G×
p,q,0, n is odd,

P±, n is even,
(7.21)

Γ̌0
p,q,0 = Γ̃n

p,q,0 = P±, Γ̌0n
p,q,0 = Γ̃0n

p,q,0 = P, Γ̌n
p,q,0 =

{

P±, n is odd,
G×

p,q,0, n is even,

(7.22)

i.e. we have

Γ̌0
p,q,0 = Γ̌n

p,q,0 = Γ̃n
p,q,0 = P± ⊂ Γ0

p,q,0 = Γ̃0
p,q,0 = Γn

p,q,0 (7.23)

= Γ0n
p,q,0 = Γ̌0n

p,q,0 = Γ̃0n
p,q,0 = P = G×

p,q,0, n = 1, (7.24)

Γ̌0
p,q,0 = Γn

p,q,0 = Γ̃n
p,q,0 = Γ0n

p,q,0 = Γ̌0n
p,q,0 = Γ̃0n

p,q,0 = P± = P (7.25)

⊂ Γ0
p,q,0 = Γ̃0

p,q,0 = Γ̌n
p,q,0 = G×

p,q,0, n is even, (7.26)

Γ̌0
p,q,0 = Γ̌n

p,q,0 = Γ̃n
p,q,0 = P± ⊂ Γ̌0n

p,q,0 = Γ̃0n
p,q,0 = P (7.27)

⊂ Γ0
p,q,0 = Γ̃0

p,q,0 = Γn
p,q,0 = Γ0n

p,q,0 = G×
p,q,0, n ≥ 3 is odd. (7.28)

8. The Corresponding Lie Algebras

Let us denote the Lie algebras of the Lie groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, PΛ
p,q,r,

and P±rad
p,q,r by p±p,q,r, pp,q,r, p±Λ

p,q,r, p
Λ
p,q,r, and p±rad

p,q,r respectively.



Vol. 33 (2023) On Some Lie Groups in Degenerate Clifford Geometric Algebras Page 23 of 29 44

Theorem 8.1. We have the Lie algebras

p±p,q,r = G(0)
p,q,r; (8.1)

p±Λ
p,q,r = G(0)

p,q,r ⊕ Λ(1)
r ; (8.2)

p±rad
p,q,r = G(0)

p,q,r ⊕ rad G(1)
p,q,r; (8.3)

pp,q,r =

{

G(0)
p,q,r ⊕ Gn

p,q,r, n is odd;
G(0)

p,q,r, n is even;
(8.4)

pΛ
p,q,r =

{

G(0)
p,q,r ⊕ Λ(1)

r ⊕ Gn
p,q,r, n is odd, n �= r;

G(0)
p,q,r ⊕ Λ(1)

r , in the other cases
(8.5)

of the following dimensions:

dim p±p,q,r = 2n−1;

dim p±Λ
p,q,r =

{

2n−1 + 2r−1, r ≥ 1;
2n−1, r = 0;

dim p±rad
p,q,r =

{

2n − 2p+q−1, p + q ≥ 1;
2n, p = q = 0;

dim pp,q,r =
{

2n−1 + 1, n is odd;
2n−1, n is even;

dim pΛ
p,q,r =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2n−1 + 2r−1 + 1, n is odd, n �= r, r ≥ 1;
2n−1 + 1, n is odd, r = 0;
2n−1, n is even, r = 0;
2n−1 + 2r−1, in the other cases.

The sets on the right-hand sides of (8.1)–(8.5) are considered with respect to
the commutator [U, V ] = UV − V U .

Proof. We use the well-known facts about the relation between an arbitrary
Lie group and the corresponding Lie algebra in order to prove the state-
ments. We calculate the dimensions of the considered Lie algebras using
dim G(0)

p,q,r = 2n−1, dim Λ(1)
r = 2r−1 if r ≥ 1, dim Λ(1)

0 = 0, dimGn
p,q,r = 1,

dim(rad G(1)
0,0,n) = dimG(1)

0,0,n = 2n−1, dim(rad G(1)
p,q,r) = 2n−1 − 2p+q−1 if

p + q ≥ 1. �
Remark 8.2. In the particular case of the non-degenerate algebra Gp,q,0, we
obtain

p±p,q,0 = p±Λ
p,q,0 = p±rad

p,q,0 = G(0)
p,q,0, (8.6)

pp,q,0 = pΛ
p,q,0 =

{

G(0)
p,q,0 ⊕ Gn

p,q,0, n is odd;
G(0)

p,q,0, n is even.
(8.7)

Remark 8.3. In the case of the Grassmann algebra G0,0,n = Λn, we obtain
from Theorem 8.1

p±0,0,n = Λ(0)
n , p±Λ

0,0,n = p±rad
0,0,n = pΛ

0,0,n = Λn, (8.8)

p0,0,n =

{

Λ(0)
n ⊕ Λn

n, n is odd;
Λ(0)

n , n is even.
(8.9)
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9. Conclusions

In this paper, we introduce and study the five families of Lie groups P±
p,q,r,

Pp,q,r, P±Λ
p,q,r, PΛ

p,q,r, and P±rad
p,q,r in the real and complex degenerate Clifford

geometric algebras Gp,q,r of arbitrary dimension and signature:

P±
p,q,r = G(0)×

p,q,r ∪ G(1)×
p,q,r , Pp,q,r = P±

p,q,rZ
×
p,q,r, P±Λ

p,q,r = P±
p,q,rΛ

×
r , (9.1)

PΛ
p,q,r = P±

p,q,rZ
×
p,q,rΛ

×
r , P±rad

p,q,r = P±
p,q,r(G0 ⊕ rad Gp,q,r)×. (9.2)

These groups preserve several fundamental subspaces under the adjoint rep-
resentation and the twisted adjoint representation. The groups (9.1)–(9.2)
are closely related to the spin groups, the Lipschitz groups, and the Clif-
ford groups in the degenerate case, and that is why they are interesting for
consideration.

We provide several equivalent definitions of the groups P±
p,q,r, Pp,q,r,

P±Λ
p,q,r, PΛ

p,q,r, and P±rad
p,q,r in Theorems 4.6–4.8. We prove that some of these

groups preserve the even and odd subspaces under ad (Pp,q,r = Γ(1)
p,q,r ⊆

PΛ
p,q,r = Γ(0)

p,q,r), ǎd (P±
p,q,r = Γ̌(0)

p,q,r ⊆ P±Λ
p,q,r = Γ̌(1)

p,q,r), and ãd (P±Λ
p,q,r =

Γ̃(1)
p,q,r ⊆ PΛ

p,q,r = Γ̃(0)
p,q,r) in Theorem 6.1. We also prove that some of these

groups leave invariant the grade-0 and grade-n subspaces and their direct sum
under ad (P±rad

p,q,r = Γ0n
p,q,r = Γn

p,q,r in the case of even n), under ǎd (P±rad
p,q,r =

Γ̌n
p,q,r in the case of odd n and P±

p,q,r = Γ̌0
p,q,r ⊆ Pp,q,r = Γ̌0n

p,q,r in the case
of arbitrary n), and under ãd (P±rad

p,q,r = Γ̃n
p,q,r, Pp,q,0 = Γ̃0n

p,q,0, and P±rad
p,q,r =

Γ̃0n
p,q,r in the case r �= 0) in Theorems 7.1 and 7.3. We study the Lie algebras

of the introduced Lie groups and calculate their dimensions in Theorem 8.1.
In future, we plan to study the relation between the results of this paper
and such concepts as root systems and universal enveloping algebras. Note
that the groups preserving the other fundamental subspaces under ad, ǎd,
and ãd differ significantly from the groups introduced in this paper (it can
be seen in the particular case of the non-degenerate algebra [26,48]). In the
further research, we are going to consider the groups preserving the subspaces
determined by the grade involution and the reversion under the adjoint and
twisted adjoint representations in the degenerate geometric algebras Gp,q,r.
Also we are going to study normalized subgroups of these groups, which can
be interpreted as generalizations of the spin groups in the degenerate case
and can be used in applications.

The well-known Clifford and Lipschitz groups [1,3,10,12,42] preserve
the grade-1 subspace under the adjoint and twisted adjoint representations
respectively. The groups (9.1)–(9.2) contain the degenerate Clifford and Lip-
schitz groups as subgroups and can be considered as their analogues. The
groups (9.1)–(9.2) are closely related to the higher-dimensional Heisenberg
groups (see, for example, [4,30]) in the cases of the low-dimensional algebras
(Sect. 5). The introduced groups may be useful for applications in physics [11–
13,21,33], engineering [9,23,25], quantum mechanics and computing [11,52],
computer science [6,23,24,35,36], spinor image processing [5], spinor neural
networks [37], and other sciences.
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Appendix A: Summary of Notation

According to the reviewer’s recommendation, we provide an overview of no-
tation used throughout the paper in Table 1. We write out the notation, its
meaning, and the place where it is mentioned for the first time.
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