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Abstract. In this paper, we introduce and study five families of Lie
groups in degenerate Clifford geometric algebras. These Lie groups pre-
serve the even and odd subspaces and some other subspaces under the
adjoint representation and the twisted adjoint representation. The con-
sidered Lie groups contain degenerate spin groups, Lipschitz groups,
and Clifford groups as subgroups in the case of arbitrary dimension
and signature. The considered Lie groups can be of interest for various
applications in physics, engineering, and computer science.
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1. Introduction

In this paper, we study degenerate Clifford geometric algebras G, 4, of arbi-
trary dimension and signature. Degenerate geometric algebras are important
for applications in geometry, computer science, engineering, signal and image
processing, physics, etc. For instance, projective geometric algebra (PGA)
Gp,0,1 is useful for computations with flat objects and is applied in com-
puter graphics and vision, robotics, motion capture, dynamics simulations
[6,9,22,28,29]. PGA can be realized as a subalgebra of conformal geometric
algebra (CGA) [21,34,36,38,41], which has applications in pose estimation,
robotics, computer animation, machine learning, neural networks, etc. [23—

25,35,37,54]. The algebras Gs 0.1, Gos.1, even subalgebras G ; (known as
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the motor algebra), gé?g’l, gé?&Q, gé?gﬁ are applied in robotics and computer

vision [6,8,45].
We introduce and study five families of Lie groups P;t’q’r, Py Pi{;r,
]’[}7{177", Piﬂfflaf in the degenerate Clifford geometric algebras G, ., of arbi-
trary dimension and signature over the field F of real or complex numbers.
These groups preserve the even subspace g;?(},r, the odd subspace QI(,,I%T, the
grade-0 subspace G°, the grade-n subspace b and their direct sum un-
der the adjoint representation and the twisted adjoint representation. The
twisted adjoint representation has been introduced for the first time in the
classical paper [3]. It is an important mathematical notion, which is used
to describe two-sheeted coverings of orthogonal groups by spin groups. The
spin groups are subgroups of the well-known Clifford groups and Lipschitz
groups [3,10,42,46,47], which preserve the grade-1 subspace under the ad-
joint and twisted adjoint representations respectively. The degenerate spin
groups, Lipschitz and Clifford groups [1,11-13,17,18,20] are subgroups of
the groups introduced in this paper. This paper generalizes the results of the
papers [26,48] on Lie groups in the non-degenerate geometric algebras G, 4.

The degenerate spin groups and the other Lie groups considered in this
paper can be of interest for various applications in physics, engineering, and
computer science. In particular, the spin groups and Lipschitz groups are
used in the realization of spinor neural networks [37], spinor image process-
ing [5], rotor-based color edge detection [23]. The degenerate spin groups are
applied in rigid body dynamics [25,45], motion estimation [7], and represen-
tation theory of Galilei group [11] in quantum mechanics. The analogue of
the Clifford group, which preserves the Weyl-Heisenberg group under the
adjoint representation, is used in quantum error-correcting codes in quantum
computing [52].

In the particular case of the Grassmann algebras Gy o,1 and Gg g2, the
Lie groups Piqm? Pygrs Pi{;w Pg’qﬁr, and Pifﬁf can be realized as subgroups
of the groups of invertible upper triangular matrices UT(2,F) and UT (4, F)
respectively. These groups are Borel subgroups of the general linear groups
GL(2,F) and GL(4,F) respectively. The unitriangular group SUT(2,F) can
be realized as a subgroup of the five considered Lie groups in the case of
the Grassmann algebra Gy 1. In the case of Gy 2, the corresponding five
Lie groups are closely related to the higher-dimensional Heisenberg group
Heisy (see, for example, [4,30]), which has various applications in quantum
mechanics and computing. In the case of arbitrary dimension and signature,
the relation of the introduced Lie groups with the well-known matrix Lie
groups requires further research. The same problem in the non-degenerate
case is solved in the papers [49-51].

The paper is organized as follows. In Sect. 2, we discuss degenerate Clif-
ford geometric algebras G, ., and prove some auxiliary statements on the
Jacobson radical. We present the statements on the adjoint representation
and the twisted adjoint representation in Sect.3. Section4 introduces the
five families of Lie groups in the degenerate geometric algebras P* P

p,q,7T? p,q,7m>
8 P PErad and gives their several equivalent definitions. In Sect. 5,
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we provide some examples on the groups P Py.g.r PjEA A and

p.q,7 D¢, T p,g,r

Pffff;i in the cases of the low-dimensional degenerate geometric algebras. In
Sect. 6, we prove that the groups Pp 0 Ppayrs Pp g and qu - Dreserve the
even subspace and the odd subspace under the adJomt and twisted adjoint
representations. In Sect. 7, we prove that the groups Pp ar» Pp.gr, and P;tfla;il
preserve the grade-0 and grade-n subspaces and their direct sum under the
adjoint representation and the twisted adjoint representation. We study the
corresponding Lie algebras of the considered Lie groups in Sect. 8. The con-
clusions follow in Sect. 9. We provide a summary of notation used throughout
the paper in Appendix A.

This paper is an extended version of the short note (12 pages) in Confer-
ence Proceedings [27] (International Conference of Advanced Computational
Applications of Geometric Algebra, Denver, USA, 2022). Sections 5 and 7 are
new, Sect.4 is extended (one additional family of Lie groups is introduced
and studied). Theorems 4.6, 7.1, and 7.3 are presented for the first time. The
detailed proofs of Lemmas 3.1-3.3 and Theorem 4.7 are presented for the

first time.

2. Degenerate Geometric Algebra and the Jacobson Radical

Let us consider the (Clifford) geometric algebra [33,42,44] G(V) = Gp q.r,
p+qg+r =mn>1, over a vector space V with a symmetric bilinear form
g. We consider the real case V = R?%" and the complex case V = CPT¢T",
We use F to denote the field of real numbers R in the first case and the
field of complex numbers C in the second case respectively. In this paper,
we concentrate on the degenerate geometric algebras with r 2 0, but all the
following statements are true for arbitrary r > 0.

We denote the identity element of the algebra G, , » by e, the generators
by eq, a = 1,...,n. In the case of the real geometric algebra G(RP°%"), the
generators satisfy

€€ + epeq = 21ape, a,b=1,...,n, (2.1)

where 1 = (74p) is the diagonal matrix with p times 1, ¢ times —1 and r times
0 on the diagonal. In the case of the complex geometric algebra G(CPT9"), the
generators satisfy the same conditions but with the diagonal matrix n with
p+q times 1 and r times 0 on the diagonal. Let us denote by A, := Gg o, the
subalgebra of Gy, 4., which is the Grassmann (exterior) algebra [17,21,42].

Consider the subspaces g;f,q,r of grades k = 0,1,...,n, which elements
are linear combinations of the basis elements e,, . o, = €4, - €4, 01 < -+ <
ag, with ordered multi-indices of length k. Note that the subspace gg,w of
grade 0 does not depend on the signature of the algebra, so we denote it by G°
without the lower indices p, ¢, 7. We use the upper multi-index instead of the
direct sum symbol in order to denote the direct sum of different subspaces.
For example, G0 =G &Gy, .

The grade involute of the element U € gpq - is denoted by U. This
operation has the following well-known property: UV = UV for any U,V €
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Gp,q,r- Consider the even g,‘,?q),r and odd gé}(},, subspaces:

G =AU €Gpqr: U=(-1'U}= @ G, k=01 (22)
j=k mod 2

with the property
g;(alfq),rg(l) C Glk+D) mod 2. k1 =0,1. (2.3)

p,q,T p.q,r

Let us consider the Jacobson radical rad G, , of the algebra G, ;..
Let A, B,C be ordered multi-indices with the non-zero length and e4 =
€aq """ Cay with {a1,...,ak} - {1,...,p}, €B = €p, " Eyp, with {bl,...,bl} -
{p+1,....p+q}, ec = e e, with {c1,...,em} C{p+qg+1,...,n}. An
arbitrary element y € rad G, 4, has the form

y:E vcechE UACQAQCJFE vpcepec + E vapceaepec, (2.4)
C ac B.C AB.C

where vo,vac, Vo, VaBc € F.
Remark 2.1. Any element of the Jacobson radical is non-invertible (see [40]).

The Jacobson radical of the Grassmann algebra Go o, = Ay, is the direct
sum of the subspaces of grades 1,...,n:

rad Go.0,n = gé,o,n D Q&O,n @ ®Ggon YG00n= G° @ rad Goo.n-
The non-degenerate algebra G, 4 ¢ is semi-simple and rad G, 40 = {0} ([1,17,

40]).
We need the following well-known (see, for example, [2,40]) lemma.

Lemma 2.2. The element e+xy is invertible for any y € rad Gp q.r, © € Gp q.r-

The subset of invertible elements of any set is denoted with x. For
example, we denote the group of invertible elements of the algebra G, ;. by
g

Lemma 2.3. The element T € G° @ rad G, 4. is invertible if and only if its
projection onto the subspace of grade 0 is non-zero:

TeG @oradGyy,, (To#0 &  Te(G®radG,,.)>.

Proof. Suppose (T')g # 0 for some T'= ae+ W = a(e+ éW), where o« € F*,
W € rad Gp q,r. We have e + éW € G, by Lemma 2.2; thus, T' € G @
rad Gp ¢.r) .

Suppose T € (G° @ rad G, q,»)*. Assume (T')o = 0; then T' € rad G5, .,
and we get a contradiction by Remark 2.1. 0

Remark 2.4. The inverse of any invertible T' = ae + fe;..,, € (GY @ ggw)X,
where a, 3 € F, has the form 7! = ae — Be;., € (G° @ Gy ) since
(ae + ﬁel...n)(ae - ﬁel...n) = Ol26 - ﬂ2(el...n)2 S gOC
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3. Adjoint and Twisted Adjoint Representations in G, , .

Consider the adjoint representation ad acting on the group of all invertible

elements ad : g;qyr — AutG, 4, as T'— adyp, where

adr(U) =TUT ™, Ue€Gpyr, TeGgr

p,q,r”

(3.1)

Consider the twisted adjoint representation [3] ad acting on the group of all

invertible elements ad : g;w — AutGp g as T — aHT, where

adp(U) =TUT™', Ueg! Tegr

P,q,r p.a,r (3.2)
The formula (3.2) defines the twisted adjoint representation only for the
elements of the grade-1 subspace (vectors). There are two ways to define it
for the case of other grades. The first one is to define it by the same formula

[15,16,19,31,43):

adp(U) =TUT™Y,  U€Gygr, TEGS, (3.3)
The second way is to define it with different signs [32,39,53]:
adr(U) = (-1)F"TUT™,  UeGh, ., Tegn, (3.4)

where we use another notation aHT so as not to confuse this operation with
the operation (3.3). Extending this operation by the linearity adr(U + V) =
adr(U) + adr(V), we finally get

adp(U) = TUT ' + TU T, Tegr

s
U=Up+Ui €Gpgr. UpeGl) ., Uregl).. (35
Note that
adr(Up) = adr(Uo), VUo€Gl) ..  TeGr, ., (3.6)
adr(Uy) = adr(Uh), YU €6, TeGr,.,. (3.7)

Each of the two ways to define a twisted adjoint representation has its own
advantages, which are indicated in the works cited above. The first way (3.3)
is also related to similar operations, which are considered in the represen-
tation theory of Lie groups, see, for example, [55]. The second way (3.4) is
preferable for obtaining the correct signs when we consider reflections of el-
ements of higher grades with respect to hyperplanes in geometric algebras
using the Cartan—Dieudonné theorem. In this paper, for the convenience of
readers, we give answers to all the posed questions for both operations adp
and aHT.

Lemma 3.1. We have

(X €Gpyr: XV=VX VWVeg!

p,qn'} = A

Proof. Let us prove that the right set is a subset of the left one. Suppose
X € A, has the following decomposition over a basis: X = X; + - + X,
Xi = ajeq,, o €F, i =1,...k A; # A; for any 7 # j. We have e, X; =

X;e, = 01if A; contains a. If X; € AS«O) does not contain a, then e, X; = X;e,.
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If X; € Agl) does not contain a, then e, X; = —X;e,. Thus, VX = XV for
any V € g;’w by linearity.

Let us prove that the left set is a subset of the right one. Suppose
V = eq, Ya = 1,...,n; then )?ea = e,X. Let us represent X in the form
X = Ao+ A1 + eqBo + e, B1, where Ay, By € g;?q),r, A, By € g;,lq),r and
Ao, By, A1, B do not contain e,. We have (Ag + A1 + e,Bo + €,B1) eq =
ea(Ao+ A1 + eaBo + €eaB1), i.e. Apeq — Areq — eqBoeq + eaBieq = e, Ag +
eqa A1+ (ea)?Bo + (eq)?By. Since Age, = e, A, Areq = —ea A1, Boea = €4 Bo,
Bie, = —e,B1, we obtain (e,)?By + (eq4)?B1 = 0, i.e. (e,)2By = 0 and
(eq)?By = 0. If (e,)* = 0, then By and B; are any elements from G, ;..
If (eq)? # 0, then By = By = 0; therefore, X does not contain e,. Acting
similarly to all generators e,, a = 1,...,n, we obtain that X does not contain
invertible generators. Thus, X € A,. O

It is well-known (see, for example, [1,13]) that the center of G, 4, is

(0) n e
= A,{O) ®© Gy, ifnisodd, (3.9)
Ay ifnis even.

Lemma 3.2. We have
(X €Gpgr: XV=VX WeG) }=A oG],
A£°), nis odd,

X €Gpgr: XV=VX VWeg® }=
{ P.d, b} A9 g Gl yen s even.

Proof. Let us prove that the set A, © G, . is a subset of the set {X € G, :
XV=VX YW e G\, }. Suppose X =Y + H e A, &G, where Y € A,

P.q,r
and H € G}, .. We get Xeq, = (Y + H)eap = eaf/eb +ewH =eu(Y+H)=
eqpX , where we use Lemma 3.1 and that H € Z, ;. if n is odd, H commutes
with all even elements if n is even. Since we can get any even basis element
as a product of grade-2 elements, XV =V X for any V € g,S?(},r by linearity.

Let us prove that the set {X € G,,, : XV =VX VV € g},?g,,.}
is a subset of the set A, & G, .. Suppose V' = eqp, Va < b; then Xeq, =
eqapX. Consider the case a = 1, b = 2. Let us represent X in the form
X = A+ e1B + exC + e12D, where A, B,C, D contain neither e; nor es.
We have (A + e1B + e2C + e12D)e1a = e12(A + e1B + e2C + e12D). Since
A€12 = 612A7 D612 = 612D7 613612 = —612613, 620612 = —612620, we
obtain

(81)2623 — (62)2610 =0. (39)

If (e1)? # 0 and (e3)? # 0 (case 1), then from (3.9) it follows that B = C' = 0,
since B and C' contain neither e; nor ep. If (e1)? # 0 and (e2)? = 0 (case
2), then from (3.9) it follows that C' is any element from G, , , and e2B = 0.
Hence, B = 0, since B does not contain es. If (e1)> = 0 and (e2)? = 0 (case
3), then from (3.9) it follows that B, C are any elements from G, , .. Acting
similarly to all other a < b, we obtain that each of the summands of X either
does not contain any invertible generators or contains all invertible generators
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(it follows from case 1); there is no such summand in X that contains at least
one invertible generator but does not contain any of non-invertible generators
(it follows from case 2). Thus, X € A, & G”

p,q,T*

Let us prove that {X € G, ¢, : . XV=VX Ve gp,q, } coincides with

A" if n is odd and with A" & Gp g i 1 is even. Substituting V =e € g,(,?g,r

into XV = VX, we obtain X = X. Therefore, X € g,(,?,i,«. We get

(X€Gpyr: XV=VX Wegl
={xegl), . Xv=vX wegl }

={X€Gpqr: XV=VX YWegl 1ngl,
(A 69ggqr)mgpq'r?
and the proof is completed. O

Lemma 3.3. Consider an arbitrary element X € G, ;. and an arbitrary fized
subset H of the set g(f{} rU ,(;1(3 r If XU=UX for any U € H, then we have

X(U1-~Um):(U1~~~Um)X YUy, ...,Un € H (3.10)
for any odd natural number m.

Proof. The proof is word for word the same as the proof of this statement in
the particular case r = 0, i.e. in the case of the non-degenerate algebra G, 4.0
(see Lemma 4 [26]). O

Let us consider the kernels of the adjoint and the twisted adjoint rep-
resentations:

ker(ad) = {T (S g;,qﬂ‘ : jﬂlljjﬂl_1 = U, YU € gp,q,r}7
ker(ad) = {T € G),,: TUT'=U, YUEG,,.},
ker(ad) = {T ¢ Griar TUT ' +TUT ' =U,

VU=Up+U; €Gpgr, Usc gp q,r? Ui € g’(”l‘;’r}'
Lemma 3.4. We have
A g gn ) ifnis odd
ker ad _ ZX _ ( T p,q,r ’ 311
(ad) = P,q,r {ASO)X ifnis even, ( )
ker(ad) = AO, (3.12)

Proof. We obtain (3.11) from (3.8).

Let us prove A C ker(ad). Suppose T € A(O)X then TUT! =
for any U € G, 4, Since T' is even, we have T = T; therefore TUT—!
for any U € Gp q,r-

Let us prove ker(ad) C A% Suppose T € Gy q.r satisfies TUT ' =U
for any U € G. Substituting the element U = e, we obtain T= T hence, T €
géogi and TUT ' = U for any U € G,, 4. In other words, T € gp arNker(ad).
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Using (3.11), we obtain T € g,(,?g,i (A(O) ©Gy ) = AP in the case of

oddn, T € A£°>X in the case of even n, and the proof is completed.
Let us prove ker(ad) C AX. Suppose T € ker(ad); then TU;T~! = U,
for any U, € G} Thus, T € A by Lemma 3.1.

P,

Now we must only prove that A C ker(a~d). Suppose T" € A); then
Tg,, ar g}ffg +1" and Tg; ar = GpqrT by Lemmas 3.2 and 3.1 respectively.
Since any odd basis element can be represented as a product of an odd number
of generators, we obtain fgz(}g = gp,lq +1" by Lemma 3. 3 Thus, TU T +
TU,T = U for all U = Uy + Uy € Gp gy, where Uy € G3)r and Uy € GSlo.r,
and the proof is completed. O

In the particular case of the non-degenerate algebra G, 0, we get the
well-known statement

N — Fer(ad) — GO (@ @gr, )¢ if nis odd,
orlad) = er(ad) = 77, ker(ad) = {gOX if n is even.
In the particular case of the Grassmann algebra Gy o, = A,, we obtain

ifn is odd,

) . A @ Ggo.)"
ker(ad) = A", ker(ad) = Ay, ker(ad) = {E\%O)X bou) ifn is even.

4. The Groups P* P

+A A +rad
p,q,r? ~ P47 Pp q,r? Pp,q,r’ and P

p.q,T

Let us denote by S, 4., the following subset of the center Zy, 4, (3.8):
G egr,, ifnisodd,
g

Spoar = (4.1)

if n is even.

Note that S, 4, @ (Afno) \ GY) = Zp 4 In the case of the non-degenerate
algebra G, 4.0, we have S, 40 = Zy, 4 0-

Let us consider the groups Pp g and Py g
Pyar = Gpar U9pia (4.2
. +
Pogr =Py 200
_ @R v G @Gy, 0% misedd,
( ;(70% U gp}g,X)A(O n is even,
= Piq rSpyg,r (4.5)
_ @5 0G@ @ Gpy)* nis odd, (46)
ng)X U gplg,i, n is even,

where we get (4.6) by Lemma 4.1. Note that ZX_ . = ker(ad) in (4.3)—(4.13)

p.q.r
by Lemma 3.4. In the particular case G, 4,0, we obtain the groups from the

paper [48]:

+ +
Prio=PF gp,tLOngqO’ p

=P= Z;qO(gpqOngqO) (47)

p,q,0 —
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Lemma 4.1. In the case of arbitrary n, we have
(gp03>7<0 U gp ). T)A(O)X g]()03>7<n U gp13>7<” (4.8)
(Genr UGS (A @Gy ) = (G)F UGG @Gy, )" (4.9)
)

Proof. The statement (4.8) is true by (2.3). The proof of the statement (4.9

in the case r = 0 is trivial, since Ago) = G°. Consider the case r # 0. The right
set in (4.9) is a subset of the left one. Let us prove that the left set in (4.9)
is a subset of the right one. Suppose T'= AW, where A € g,@?g,i U g;}g,i and
W =ae+X+fer e (A @Gr, )< a,f€Fand X € A\ GO Since W
is invertible, a # 0 by Lemma 2.3. Then we get W = (e+éX)(ae+ﬂel,,,n) c
A (G°® Gy, )%, where the first factor is invertible by Lemma 2.3. Hence,

T=AW = A(e + éX)(oze + ,681“,77,) (ng)X U gp q, r) T‘O)X (gO 2 gg,q,r)x =

( ,@?3? U Q;(),lq),i)(go @ ngq’r)x, and the proof is completed. O
Also let us consider the groups P;fl\r and Pﬁq -
P;jt,fz\, = AXP;tq r = Pzz)tq TA’I>‘< - (gp?tgi U gp,q, ) fa (410)
Pﬁq r = A Ppgr = PpgrAf (4.11)
_ pEA
- Ppﬂmzziq, (4-12)
_ (G U G, r)(A(O) @ gﬁ% DAY, nis odd, (4.13)
szffz\, = ( pot;,x gp q, r) nis even,
_ pEA
- Pp q, rS;q T (414)
_ (gpq,rug Xr)(go@ggq) YA, nis odd, (4.15)
(g o U g 7») ol nis even, '
— ( quUg >T<‘)(A @ggqr)x? ’I’LiSOdd7 (416)
(gp,q,r U gp7q,><) nis even,

where we get (4.15) and (4.16) by Lemma 4.2. Note that in (4.10)-(4.16),
A) =ker(ad) and Z) . = ker(ad) by Lemma 3.4.

Lemma 4.2. In the case of arbitrary n, we have

AV @G, )N = (G 86 ,) A = (A @Gy

p,q,r

<. (4.17)

Proof. In the case r = 0, the proof of the equalities is trivial, since Ay =
Aéo) = G°. Consider the case r # 0. By multiplying the factors in the first
and the second sets in (4.17), we get that each of these sets is a subset of the
third one in (4.17).

Let us show that the third set in (4.17) is a subset of the first two ones.
Suppose T’ = ae+X+0e1. n € (A ®G), ,)*, where a, 3 € Fand X € A,\G.
Since T is invertible, o # 0 by Lemma 2.3. Then T' = (oze—i—ﬁel,,,n)(e—i—éX) €
(G @gy, )AL C (A&O) © Gy yr) A, where the second factor is invertible
by Lemma 2.3, and the proof is completed. O
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Let us consider the group Pif;ﬁ :
Pt =Po (G ®rad G, qr) = (S5 UGSIH)(G @ rad Gy g )™
(4.18)
Remark 4.3. The groups Pzﬂf’qﬂ,, Ppygrs Pi{;m’ Pé},qmv and Pig‘f are related
as follows:
P,.r = PE  ker(ad) =P 7%  =P> S~ (4.19)
Pya,r p.a,r p.¢.mp.q.r p.¢,72p,q,1 ‘
+A + > +
Py, =Py, ker(ad) = P AT, (4.20)
A + - + +
Py ar = Pugrker(ad)ker(ad) = P 25, AT =P, S7 AL, (4.21)
+ +
prad —pr (G @rad Gy ), (4.22)
Piqﬂ“ is a subgroup of the groups P, 4, leiq,r’ Pi{;r, Pifl"j‘f; the groups
Piqm’ Pygrs Pif;r are subgroups of P;}’q’r; the group P* is a subgroup of
the group PFrad .

+A

Remark 4.4. In the particular case of the algebra G, 40, the groups P;o'

Pi{z‘?;i , and Pa(” coincide with the groups P* and P respectively:

+A _ ptrad _ pt _ p* A _
Pp’q,O - Pp,q,O - Pp,q,O =P=C Pp,q,O =Ppgo="P, (4.23)
moreover, if n = p + ¢ is even, all the considered groups coincide.

Remark 4.5. In the case of the Grassmann algebra Gy o, = A, we have

P, 2F* CPoo1 =P, =Poo, =Piiy =A% (4.24)
P(j)t,o,n =Poon = A;O)X - Paffo\m = P([io,n = P(jJE,B?s =AY, niseven;

(4.25)

Py, = A CPog, = (AD @A7)> (4.26)

C Py, =Plo, =P5i =AY, n>3isodd (4.27)

The statements Poi,o,n = A" and Po,on = A%O)X(Q’O @ A7)* follow from
Lemma 2.3, since any invertible element of A has the non-zero projection
onto the subspace of grade 0 and, consequently, is not odd.

In Theorems 4.6-4.8, we give the equivalent definitions of the groups

+rad A +A + L
var s Poar Ppgr Ppgr, and P .. We use these definitions to prove

Theorems 6.1, 7.1, and 7.3.

Theorem 4.6. We have the following equivalent definitions of the group Pifﬁf :
P;t,fff = (g;()?g,i U g;g,lg;i)(go @ rad Gy qg,r) " (4.28)
={TeGl,,: T'Te(G ®radG,q,) "} (4.29)

Proof. Let us prove that the set (4.28) is a subset of the set (4.29). Suppose

T = AB € P where A € Gyyr UGYas, B € (G° ®rad Gpy,r)*. Then

T-1T = (AB)-"Y(AB) = B-1A1AB = +B'A~'AB = +B-'B ¢ (¢° ®
rad G, 4.-), and the proof is completed.
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Now let us prove that the set (4.29) is a subset of the set (4.28). This
statement is proved in the particular case of G, 40 in the paper [26] (see

Theorem 1). Consider the case r # 0. Suppose T' € G, . satisﬁes T-1T =
Wo + W1 + ﬁelmn € (G @rad G, 4,)%, where Wy € G° @ rad Qp ar \ Gp g
Wi € rad gpw\g”q -, and ﬂ €F. Then T = T(WO + W1+ Ber..n). Suppose
T =T+ Ty, where Ty € gpqr, T, € gpqr Then

To + T1 = (TO — Tl)(Wo + W1 + ﬁel...n)~ (430)

Consider the case of even n. From the Eq. (4.30) it follows that Ty =
ToWo + BToer.... — TiW1, Ty = =T1Wy — fTrer..n + ToWh, ie. To(e — Wy —
Ber.n) = =T1Wy, Ti(e+Wy+ Ber..n) = ToWi. Note that at least one of the
elements e — Wy — Bey.., and e + Wy + Bey.. ., has the non-zero projection
onto the subspace of grade 0, since otherwise we can sum the equations
<6 - WO - ﬂel...n>0 = Oa <€ + WO + ﬁel...n>0 = 0 and get <26>0 = Oa ie. a
contradiction, where we use the linearity of the projection operator. Then we
obtain that at least one of the elements e — Wy — Beq..,, and e+ Wy + [Beq. .n
is invertible by Lemma 2.3. Hence, we have at least one of the following two
equations:

1)

TO = —T1W1(€ — W() - ﬂel...n)_17 (4'
4.32)

3
Ty = ToWi(e + Wo + Ber..n) . (4.3
Therefore, T = Ty + Ty = Ti(e — Wi(e — Wy — Bey. )" ) € GS05(G° &
rad Gy q.r)* or T = To(e+ Wi(e+Wo +fern)~t) € G (G @rad Gy gr)*,
where we use that (e—Wo—Be1. )1, (e+Wo+Ber. )"t € (G°@rad Gp.gr)™
In both cases, the second factor in the factorization of T is invertible by
Lemma 2.3, since its projection onto the subspace of grade 0 is non-zero.
Thus, T € (g,S?,?,,i U g;};,é)(go @rad Gy 4.) %, and the proof is completed.

Consider the case of odd n. From the Eq. (4.30) it follows that Ty =
ToWo — ThWy — BTher..n, Ty = ToW1 + Toer.., — T1Wo, ie. To(e — Wy) =
—T1 (W1 + Ber..n), Ti(e + Wo) = To(W7 + Bey.. ). Since at least one of the
elements e + Wy and e — W, has the non-zero projection onto the subspace
of grade 0, at least one of them is invertible by Lemma 2.3. Therefore, we
obtain at least one of the following two equations:

To = —Th (W1 + Ber. n)(e — Wo) ™1, (4.33)
Ty = To(W1 + Ber..n)(e +Wo) L. (4.34)

Therefore, T = Ty + Ty = Ti(e — (W1 + Ber..n)(e — Wo)™1) € g},ﬂ%i(go
rad Gy 4.)* or T = To(e+(Wi+Ber.n)(e+Wp)™1) € ng)X (G®rad Gy 4.)%,
where we use that (e — Wp)™!, (e + Wp)~! € (G ®rad G, 4.)%. In both
cases, the second factor in the factorization of T is invertible by Lemma
2.3, since its projection onto onto the subspace of grade 0 is non-zero. Thus,
T e (Qp qr U gpl)x)(go @®rad Gy qr)* = P and the proof is completed.
O
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Theorem 4.7. We have the following equivalent definitions of the group Pp ar’

A (Grig’r U Gpia 7 )(G° @ G y.n)* A, mis odd, (4.35)
par = (Q;(;Oq)xr u gpl)X)AX nis even, '
X . 1 n ;
T eGl, s T'Te (A @Gy,,)" nz's odd, (4.36)
{regy,.: T~ T-1T € AXY, nis even,
—{Teg,,: TTe(lad,, )} (4.37)
and the group P;E{I‘T'
Poar = (GY0r UGSIAS (4.38)
={Teg, ,.: T-1T € NS} (4.39)
x . -1 x .
_J{Tegy,.: T-'Te AXY, n zs odd, (4.40)
{regy,.,: T7'Te(A, @Gy, )"}, nis even,

where A = ker(ad).

Proof. First let us prove (4.35)—(4.37). Let us prove that the set (4.35) is
a subset of the set (4.36). Suppose T = AB € P2 = = quAX (4.11),

p.a,r
where A € Pp 4., B € AX. Then 717 = (AB)"Y(AB) = B~ B-1A-1AB.
Since A-14 € SX, . C 7% by Theorem 4.8 and since B~1B € AX,

P.q,T P.q."
obtain T-17T € Sy g+ A Therefore, we get T T-1T € A in the case of even
n, T~ T-1T e (A @Gy ,)" in the case of odd n by Remark 4.2, and the proof

is completed. It is trivial that the set (4.36) is a subset of the set (4.37).
Let us prove that the set (4.37) is a subset of the set (4.35). This

statement is proved in the particular case G, 40 in the paper [48] (see the

proof of Theorem 3.2). Consider the case r # 0. Suppose T' € G*_ . satisfies

p,q,T
T-1T = Wo + Wy + fer. € (A, ®G,,)%, where Wy € AL, W € ALY,

and B € [F. Suppose T' = Ty + T, where Ty € g,(,‘?(},r, T, € gp,w. Then we
obtain the Eq. (4.30). Consider the case of even n. From the Eq. (4.30) it
follows that we have at least one of the Eqgs. (4.31)—(4.32) by the proof of
Theorem 4.6. Therefore, T' = Ty + 11 = T1(e — Wi(e — WO — Ber.n)"h) €

Z(,lgrAX or T = Ty(e + Wl(e + Wy + Bex.. n)_l) € g,,qrAﬁ7 where we
use that (e — Wy — Be1. ) L (e + Wo + Ber.n) L € GPD A, @ Gy 4 and
Wieir.., = 0. In both cases, the second factor in the factorization of T is
invertible by Lemma 2.3, since its projection onto onto the subspace of grade
0 is non-zero. Thus, T € (g,,o)x U gpl)X)Aj, and the proof is completed.
Consider the case of odd n. From the Eq. (4.30) it follows that we have at

least one of the Egs. (4.33)—(4.34) by the proof of Theorem 4.6. Therefore,
T=To+T =Ti(e— (W1 + Ber._n)(e— W )7 ) € gz%i(A ® Gy r) or
T = Tole + (Wh + Ber...)(e + Wo)~t) € gp 0 (A @ Gryr) <, Where we use
that (e — Wo)~1, (e + Wy)~! € A,.. In both cases, the second factor in the
factorization of T is invertible by Lemma 2.3, since its projection onto onto
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the subspace of grade 0 is non-zero. Thus, T' € ( ;(;(25; ugﬁ}g’i)(Ar@ggq,r)x =
(g,ﬁ?gi UQI()}J,XT)(QO ©G) ,r) A (see Remark 4.2), and the proof is completed.
Now let us prove (4.38)—(4.40). First let us prove that the set (4.38) is a

subset of the set (4.39). Suppose T'= AB € lf’;}’qm, where A € g},‘?g,i U g;}g,i,

B € AX. Then T-\T = (AB)~(AB) = B-1A—1AB = +B-1A"'AB =
+B~!B € AX, and the proof is completed. It is trivial that the set (4.39) is
a subset of the set (4.40).

Let us prove that the set (4.40) is a subset of the set (4.38). In the

—

case of even n, we have proved {T' € G* : T-1T € (A, ®Gy,,)" =
(g;?(},?ug},}gi)A; (see (4.35) and (4.37)). Consider the case of odd n. Suppose

T-17 = W+pBer..n € AS, where § =0, W € AX. As shown above, we obtain
at least one of the Eqs. (4.33)—(4.34). Hence, we get Ty = —TyWy(e — Wy) ™!
or Ty = ToWi(e+ W) 1. Therefore, we obtain T = Ty + Ty = Ty (e — Wi (e —
Wo)™1) € QZ(,};XTATX or T =Ty(e+ Wi(e+Wp)™!) € QI()?(;,XTAf, where we use
that (e — Wy)~1, (e + Wy)~! € A,. In both cases, the second factor in the
factorization of T is invertible by Lemma 2.3. Thus, T € (QI(,?(E,XT U gﬁ,ﬁ)A;,
and the proof is completed. O

Note that ¢° C A C G @ rad G\ C GO, ®rad Gogr in (4.42)
(4.45) and (4.49)—(4.51).

Theorem 4.8. We have the following equivalent definitions of the group Py, 4 -

b _ G uGhanGgh. s odd, Ll
par = GO | o1 : (4.41)
D,q,T D,q,T n s even,
—{TeG),,: T'Tes},.} (4.42)
—{TeG),,: T 'T€ker(ad)} (4.43)
_ {regy, .. T-1T € (G @rad Q,()?(}r)x}, nis odd, (4.44)
{Tegy,.: T7'T¢€ (G° @ rad Qﬁ?g,r)x 1, nis even, ’

—{T€G),,: T 'Te(G", araddl )<}, (4.45)

where in (4.42) and (4.43),

« _ J(@°agy, )%, nis odd,
Spar = {QOX, nis even, (4.46)
(0) n X .
ker(ad) = {(A@X@QW) ol (1.47)
A7, nis even.
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We have the following equivalent definitions of the group Pp o’

p7q7 - gp?tix gz(xlqﬂ' (4'48)
—{T€G},,: T'Teg"} (4.49)
—{T€G),,: T 'TeAV=Lker(ad)} (4.50)
—{T€G),,: T 'Te(G @rad g;,og Bl (4.51)
_ {{T €6, T\T € (G°®rad G\), )},  mis odd, (452)

{regy,.: T T-1T € (G . @rad gﬁog #) %}, nis even.

Proof. First let us prove (4.41)—(4.44). Let us prove that the set (4.41) is a
subset of the set (4.42). Suppose T'= AB € P, ; ., where A € g,(,ogi U gp qur
and B € (G° ® Gp,,.)* in the case of odd n, B = e in the case of even
n. Then T-1T = (AB)"'(AB) = B-1A-1AB = +B-1A~'AB = +B-1B.
We have B—1B € (G° @Gy, )" in the case of odd n (see Remark 2.4) and
B-1B=e¢ € G in the case of even n, and the proof is completed. The set
(4.42) is a subset of the set (4.43), Which is a subset of the sets (4.44) and
(4.45), since G C A C G @ rad Gy, € G° ®rad Gygr ©GP, -

Let us prove that the set (4.45) is a subset of the set (4.41). This
statement is proved in the particular case G, 40 in the paper [48] (Theo-

rem 3.2). Consider the case r 75 0. Suppose T' € G, . satisfies T T-17 =

Wo + Wi + Ber..p € (G° @ rad G, & Gr )<, where Wy € G° @ rad G\,
Wi =0, and 3 € F. Suppose T = Tp + Ty, where Ty € G\'a, Tt € GSla .
Then we obtain the Eq. (4.30). Consider the case of even n. From the
Eq. (4.30) it follows that we obtain one of the Eqs. (4.31)-(4.32) by the
proof of Theorem 4.6. Therefore, we get either Ty = 0 or 77 = 0, since
Wi = 0. Thus, T € gﬁ,?(},i U g,(,,lgfﬁ = PI:!:JLT’ and the proof is completed.
Consider the case of odd n. From the Eq. (4.30) it follows that we have
one of the Eqgs. (4.33)—(4.34) by the proof of Theorem 4.6. Therefore, ei-
ther T = Ty + Ty = Ti(e — ﬂel n(e —Wo)™Y) € g§%G° @ Gy ) or
T =Ty(e+Ber. n(e+Wp)™t) € Qp q. T(go@g;}q )¢, where in both cases, the
second factor is invertible by Lemma 2.3. Thus, T € ( 1(,(2? U g;}g,x)zgq -
Now let us prove (4 48)—(4.51). The set (4.48) is a subset of the set

(4 49) since we obtain T-1T = +T-1T = +e € G°% for any T € gpo)x
g,, q.r- The set (4.49) is a subset of the set (4.50), which is a subset of the sets
(4.51) and (4.52), since G° C A? € G @rad g,S?g,r C G°®rad g,@?;,,« ©Gy g
Let us prove that the set (4.52) is a subset of the set (4.48). In the case
of even n, we have proved {T' € G* : T-1T ¢ (G ®rad g,(,?g,r@gg,q’r)x], =
,(,?,3? U Q,Lq, (see. (4.45) and (4. 41)) Consider the case of odd n. Suppose

T-1T = Wo + Ber..n € G° ®rad qur, where 8 =0, Wy € G° @ rad gpqr
As shown above, we obtain one of the Eqgs. (4.33)—(4. 34) Since B = 0, we get
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either Ty = 0 or 77 = 0; thus, T' € g,(,?q),i U QI(;}%« and the proof is completed.
O

5. Examples on the Groups P+

+rad
p,q,T

A
p,q,r’ PP#I?"" Pp q,r? P p,q,T° and

Let us give some examples on the groups P Pygrs pta A and

p.q,7 a0 L g
P;tgaf in the cases of the low-dimensional degenerate geometric algebras
Gp,q,r- We use that the degenerate geometric algebra can be embedded into
the non-degenerate geometric algebra of larger dimension (see Clifford — Jor-
dan — Wigner representation [14]), which is isomorphic to the matrix algebra
(see, for example, [42,44]).
Let us consider the groups of upper triangular matrices UT(2,F) and
UT(4,F) (see, for example, [4]):

UT(2,F) := {VSI 2?] € GL(27]F)}7 (5.1)
T11  T12 X133 T4
. 0 Tog T3  X2q
UTAF) =1 | o 00 02 Dt e oL@ ¢, (5.2)
0 0 0 T g4

and a unipotent subgroup SUT(2,F) [4] of the group UT(2,F):
SUT(2,F) := {Ll) xf] , T1p € IE‘}. (5.3)

FEzample 5.1. Consider the degenerate algebra Ay = Gy 0,1, which can be em-
bedded into the non-degenerate algebra Gy 1,0 = Mat(2,F). For the elements
e and ey, we have

e'_)[l 0}’ elH{o 1]
0 1 0 0
We obtain Pg, = = A% = g0x >~ F* and
PO,O,l = PiAl = Po 0,1 — P(jfff? = A1X (5-4)
~ {[ﬂgo ij . 20,11 €F, 30 # 0}. (5.5)

Let us note that all the introduced groups can be realized as subgroups of the
group of upper triangular matrices UT(2,F) (5.1), which is a Borel subgroup
(see, for example, [4]) of the general linear group GL(2,F). Also note that the
unitriangular group SUT(2,F) (5.3) is a subgroup of the considered matrix
group (5.5).
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Let us consider the higher-dimensional Heisenberg group Heis, (see, for
example, [4,30]):
I z12 13 T1a
0 1 0 T24
0

0 1 T34
0 0 0 1

Ezxample 5.2. Since Ay = G 0,2 can be embedded into the algebra G2 =
Mat(4,F), we get

Heisy := € GL(4,F) » . (5.6)

P(ﬂfé\z = P([)X,og = PSE,B?S = A2X (5-7)
o T1 T2 Zs3
~ 0 Zo 0 —x2 )
= 0 0 o 1 X0, T1,T2,x3 € ]F, Zo 7é 0 R (58)
0 0 0 To
and
PE,, = Pooa = A~ 5.9
0,0,2 0,0,2 2 (5.9)
To 0 0 I3
0 Zo 0

1%

0
0 0 o 0 xg,x3 €F, xg 75 0,. (510)

0 0 0 =z
These matrix groups are subgroups of the group of upper triangular matrices

UT(4,TF) (5.2). Also note that all the introduced Lie groups are closely related
to the higher-dimensional Heisenberg group Heisy (5.6).

Ezxample 5.3. Let us consider the degenerate algebra G ¢ 1. It can be embed-
ded into Gy 1,0 = Mat(2,F) @ Mat(2,F). We obtain

ZTo T3 0 0
+  ~ 0 o 0 0
Pio1 = 0 0 =z s € GL(4,F) (5.11)
| 0 0 0 xo
BT 0 0
0 —x1 0 0
U 0 0 a1y € GL(4,F) ;. (5.12)
| 0 0 0 T

Note that this matrix group is a subgroup of UT(4,F) (5.2). Also note that
this group is closely related to Heisy (5.6) as well as the groups in the previous
example.

6. The Groups Preserving the Subspaces of Fixed Parity
Under the Adjoint and Twisted Adjoint Representations

We use the following notation for the groups preserving the subspaces of fixed
parity under ad (3.1):
M, (TGS, ade(G),) = TOH, T €

p.q p,q,7

Y, k=01, (6.1)



Vol. 33 (2023) On Some Lie Groups in Degenerate Clifford Geometric Algebras Page 17 of 29 44

under ad (3.3):
Ik =T eg),,: adr(Gl),)=TG" T-cg®) 1 k=01, (6.2)

D,q,T p,q,T p,q,T
and under ad (3.4):
I ={Teg),, . adp(GH )G } k=01 (6.3)
Theorem 6.1. We have
_r@ A (0
Py, =T cpPd =10 =T0 (6.4)
+ 0 +A 1 1
Poar =Thar CPogr =T00, =T10. (6.5)

Proof. The statements P, ,, C qu , and P;tq » C P;té\r follow from the
definitions of the groups (4.41), (4.6), (4.10), and (4.15). We obtain Fp,;,r =
Ty and Tplg, = Ty, since adp(Gp.r) = adr(Gya,r) and adr(Gyg.) =
ad( ,()1(3 ) by (3.6) and (3.7) respectively.
S C I‘;,()IT Suppose T € Py, , (441) ItT e gp%,
then T = T and T~! € géf’g,x ItT e Qﬁ;;, then T = —T and T-! €
,()}q),x In both cases, we obtain Tg,(, q)’ T-1 C g}j?g, y (2.3). Thus, T €

FZ(,% . Let us prove Pp ar C F,,{,} r. Suppose T'= XW € Ppyq,r P;tq L g
(4.13), where X € Qp ¢r Y gplq),f, and W € Z; .. Then we get Tgp,q,TT—
xwelh),wix—1 = x¢), ww—1x-1 = xg{") . x1 € g{1).., where we
use (2.3). Thus, T € I‘Z(,%

Let us prove qu - C 1"1(,(7)()” Suppose T' = XW € qu » (4.35), where
X € g,(,ogi U gz(,lgi, W e (A @ g;}q,ﬂ)X in the case of odd n and W €
A in the case of even n. We obtaln Tgp,wT— Xng,q,,nW_lX_1 =
Xgp?g, WWw= 1X L= Xg,h ar X1 C QWN, where we use the property (2.3)
and that ng ar gp?g, W by Lemma 3.2. Thus, T € 1";031 . Let us prove
prA C 1“,,13 . Suppose T =XW e PE} (4.10), where X € g;?g,i U Qpﬂ,
and W € AX. Since Wea = ¢,W for any generator e,, a = 1,...,n, by
Lemma 3.1 and since any odd basis element can be represented as a product
of an odd number of generators, we get WQZ(,)l,;, = 1(,,13 TW by Lemma 3.3.
Then we obtain TG\, Tt = XWGL), W—1Xx~1 = £ X6\, . Ww-1x-1 =
+x60, X1 C g;,lg, by (2.3). Thus, T € T\)..

Let us prove I‘p Z r C Pp.g,r. Suppose T' € g;q r 83 satisfies Tgp arl L C

,(,,1,37T, then we obtain TUT! = —(TUT1)" = TUT- 71 ! for any U € g},}(;

Multiplying both sides of this equation on the left by T~ 71 , on the right by
T, we get

Let us prove PE

—

_ I 1)
(T-'T)U =U(T-'T), YU eg').. (6.6)
In particular, (6.6) is true for any generator U = e, € QW”7 a=1...,n.

Since the identity element U = e € G satisfies (6.6) as well, we obtain

ad;=.(U) = U for any U € G, 4. Therefore, T~1T € ker(ad). Thus, T €
Pp.q.» by Theorem 4.8.
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Let us prove '™ C PEA . Suppose T' € g;qr satisfies TGS, T—1 C

() . Then we get TUT~! = —(TUT~')" = TUT! for any U € G\
Multiplying both sides of the equation on the left by 7!, on the right by

T, we obtain T1TU = U’Z/’;\lT ie. (/*\1T)U = U(/*\1 T) for any U €

,(,}q)’ In particular, this equation is true for any generator U = e, € gp @

a =1,...,n. Using Lemma 3.1, we get T~ T-17 ¢ A hence, T € P;,tfl\r by
Theorem 4.7.

Let us prove I‘,(,(,)a - qu - Suppose T' € Q’pxq , satisfies Tgp?% T-1 C

,(,(,2’ Then we get TUT' = (TUT-)" = TUT- T for any U € Qp7q7
Multiplying both sides of this s equation on the left by Jf\l on the right by
T, we obtain (T MU = U(T IT) for any U € gp q,r- Using Lemma 3.2, we
have T— r-iT ceN DGn Thus, T € P2 by Theorem 4.7.

p,q,7" p,q,r

Let us prove I‘I(,,()J, - P;,Eq - This statement is proved in the case r = 0

in the paper [26]. Consider the case 7 # 0. Suppose T' € G, . satisfies
76, 7= € GY°).,.. Then TUT' = (TUT-)" = TUT-! for any U €
,S?g,r. Multiplying both sides of this equation on the left by T—!, on the

right by T, we obtain T-TU = UT-T, ie. (I-'T)U = U(T-'T) for
any U € g,,qr Using (3.9), we get T-IT € ( ©) @Q;Lq,)x in the case

of even n and T~ 1T c Ay % in the case of odd n. Therefore, T € P;tq,

by (4.50) in the case of odd n and by (4.51) in the case of even n, since
A ®¢Gr,. C G0 ®rad G- O

Remark 6.2. In the particular case r = 0, we have by (4.7) and (4.23):

P;tq 0= PiAO = F(O) 0= F(l) 0= F(l) (6.7)
1 0 0 .
C Ppgo= Pp 7.0 = F; ()1)0 = F; ()1)0 = I‘; ()1 0, nisodd, (6.8)
and
0 1 1
P;QO_P;t;\O_F()O_F()O_F;;O (6.9)
=Ppgo= Pp a0 = T](Dlg 0= I‘](DO; 0= F](DO; 0, niseven. (6.10)

Remark 6.5. In the particular case of the Grassmann algebra Go o, = Ay,
we have three different groups:

PL,, = f‘é?()))n = ker(ad) = A, (6.11)
0 =(0 (1 =(1 ~
Phon=Pin, =T, =T, =18, =Tt =ker(ad) = A, (6.12)

AY @ AM* ifnis odd,

6.13
Ano)X ifnis even. ( )
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The Groups I'° r~ ,ror 10 r~ 1o
7. G P P,q,r’ " p,q,r? T p,q,r? T p,q,r? T p,q,r? T p,q,r?
FO

r" , and ron

D,q,T? T p,q,T

Let us use the following notation for the groups preserving the subspace of
the fixed grade k under ad (3.1):

Iy, ={T€qG),,: adr(G, ) =176 T7'Cg: } (7.1
under ad (3.3):
0k o= {Teg),,: adp(Gh,)=T¢k T71Cgk ). (12

p,q,T

p,q
and under ad (3.4):
oy ={T€Gg), = adr(GF,)CGr, .} (7.3)
The groups Fp q.r are related with the groups Fp g, and F’; ¢, in the following
way:

=k {F’%qr, kis odd,

par kis even, (7.4)

Lpam
since adp(G¥, ) = adr(GE ) in the case of even k by (3.6) and adr(GF ) =
adT(gp q) in the case of odd k& by (3.7). In this section, we consider only the

groups IV T7» 19 . Tn . T9, . and ngr (the cases of k = 0,n),

since these groups are related with the groups Pp qr and P;,trqaf discussed in

Sects. 4-6 above. The groups ' T and I‘Iqu s k=1,...,n—1, differ
significantly from the introduced groups even in the particular case of the

non-degenerate algebra G, 4.0 [26,48].
Theorem 7.1. We have

% .
FO _ 1—\0 _ g>< ™ o gp’q’r,'7 niis Odd7 (7 5)
Dsq,T Dsq,T D,q,T? D,q,T qu . p}ﬂ)trqag ., mis even,
I +rad
FO P:I: Fn _ F;L7q7 = Pp I(;IT , n 8 Odd, (7 6)
p.q,r p.q.r p.a.r X nis even. .
—_ 10 _T1"n
Proof. We obtain I‘p g = I'p . in the case of arbitrary n, Fp ar = LTpar
the case of even n, and Fp ar = ng , in the case of odd n, using (7.4). Now
it remains to consider only the groups I‘g’q,r, L g f‘p q,r» and I‘;}q .

We have quT = gpxqr in the case of arbitrary n, since TGOT~ L c
GO is true for any T 6 gpxqr We obtain I‘pqr = prqr if n is odd, since
Tey T V=€ T ' =¢€1 € Gpgr forany T € Gy by €1 n € Zpgr.
We get qu, = Gy, if n is even, since Tey, T ' =¢, ,TT '=¢, ,€
Gp g forany T € GX ., since e, commutes with all even elements and
anticommutes with all odd elements

Let us prove Pp gr ©T9 .. Suppose T € Pp ar = r U gﬁ%, then
T = +T and TQOT 1 — :l:TgOT L' C @9 and the proof is completed. Let

+ ; To0m—1 0.

us prove quT C P, Suppose 1: S g;,q,, satisfies TG"T~" C G°; then
TT-! = ae, where a € F*, i.e. T = aT. Suppose T = Ty + Ty, where
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T € gp,q,r and T € gp,q,r, then we get Tp — 11 = a1y + o7, ie. Ty = aTp
and =11 =aoTy. lf a =1,then Ty =0and T € g,(,?g,i. Ifao=-1,thenTp =0
and T' € gzﬁ}q),x If « # 1,—1, then Ty =17 = 0, and we get a contradiction.

Thus, T € gé?(},i U gz(nl«;,x P;»t q.r

Let us prove I') . C P;tfff in the case of even n. Suppose T' € G, .
satisfies Te1. ,T~! = aey..,, where a € F*. Multiplying both sides of this

equation on the left by 7!, on the right by éT, we get éel._n =T"1e; ,T.

Then we obtain ey, T T = éelmn, where we use that e;._, commutes
with all even elements and anticommutes with all odd elements. Therefore,

T-1T € (G° drad G, 4)* and T € P24 by Theorem 4.6. Let us prove

S par
pirad C pn if nis even. Suppose T T-1T = ae + W € (G @rad Gpqr),
where o € F* and W € rad G, 4. Multiplying both sides of this equation on
the left by e;..,,, we obtain e;_,, 71T = ey, ,, where we use that ey, W =
0. Therefore, T~ 'e;. ,T = ae;...,. Multiplying both sides of the equation on
the left by 1T on the right by 77!, we get Te;. ,T~ ! = *61 € Gy

Thus, T € T, .

Let us prove I‘p @ P;,'Efff if n is odd. Suppose T' € G, . satisfies
Tel 2T = = ae1..n, where o € F*. Multlplymg both 51des of this equation
on the left by T 71 , on the right by 17", we get ey, =T- 161 1. Then we
obtain e nf\*lT = lel n, since €1, € Zy 4. Therefore, T~ T-1T ¢ (QO

rad Gy q,)* and T € Pffff} by Theorem 4.6. Let us prove that PEred c T

if n is odd. Suppose T—1T = ae+W € (G°@rad Gy 4.,)%, where a € FX and
W € rad G, 4. Multiplying both sides of the equation on the left by €.,
we obtain el__,nf;\lT = aeq.. . Therefore, f*\lel_,nT = aeq.. . Multiplying
both sides of this equation on the left by — L7, on the right by T—', we obtain
Tey ,T~'=1le, ,€Gr, . Thus, T €T 0

p,q,r*

Remark 7.2. In the case of the non-degenerate algebra G, 4 0, we have the fol-
lowing statements, which are proved in the papers [48] and [26] respectively:

Tk o=Trk Tk o=Imh k=1,...n-1 (7.7)

p,q,07 ,q,0 7 * p,q,0°

Note that in the case of the degenerate algebra G, 4., 7 # 0, the statements
(7.7) are not true. Let us consider the following example. In the case Gy 3,
n = r = 3, consider the element T' = e + e;, which is invertible, since
(e+er)e—er)=e.

We have T' & T 5, since TeoT™' = (e 4 e1)ea(e — e1) = ez + 2e10 ¢
Go.0.3- We obtain T € T'§ 5, since Teqp 7! = eqy € Gj g3 for a,b = 1,2,3,
a<b. Thus, Ty . #T2 ..

We have T' € F07073, since Te;T~! = (e — e1)ea(e — €1) = €4 € Goo3
for a = 1,2,3. We get T & '3 4, since Tess T~ = (e — e1)eas(e — e1) =

(623 — 6123)(6 — 61) = €923 — 26123 ¢ QO 0,3 Thus Fp qr 75 Fp q,r*
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Let us consider the groups preserving the direct sum of the subspaces
G and G, under ad (3.1) and ad (3.3) respectively:

o ={Teqg), .. adGy,) =16y T-'cgr } (78
Lo ={T g\, adgy, ) =16 171 cgim . (7.9
Also we consider the groups preserving the subspace gg;;m under ad (3.4):

0n . Oon on
L ={Tregy,, ad(gpq ») € Gyt (7.10)

X . n —1 Oon
= { {T S g;;(,q,r ngzﬂ ) - go r}a nis Odd (711)
{Teg)e,: TG, T~ CG T} nis even.
Theorem 7.3. We have

on _pn_ J Gy g misodd,
Lolar = Toar = {P%%af , nis even, (7.12)
sz » = Ppgrs (7.13)
= P nis odd andr =0

on . 2,q,05 ,

P {P;,tfff , in the other cases. (7.14)

Proof. Let us prove (7.12). In the case of odd n, the statement 1"8’2 =G

0o _ -
follows from T') . =T7 . =G, . (Lemma 7.1). Consider the case of even

n.1f r = 0, then we have I')? | = P* = Pf;ag by Lemma 2 [26]. Consider the

+rad —1 0 .
case 1 # 0. Let us prove Fp v © P Suppose TG) , T~ C(G°©G), )
thenTer T~ ! =e1 TT! = ae+fBer. n, a, € F, where we use that e,
commutes with all even elements and anticommutes with all odd elements.

Since (e1. ., X)o = 0 for any X € G, 4., we get (1., nfT_1>0 = 0; hence,

a=0,ie TGy, T-1CGr, . Thus, T el  =Pd (Lemma 7.1) and

the proof is completed. Let us prove Pifff C FO" . Since P;)tzaf = FZ, g, and
— +rad _

LY or =G5, by Lemma 7.1, we get P24ad = ng =0, Ny crom

and the proof is completed.
Now let us prove (7.13). First let us prove Pp or €T In the case of

D
— _ 70  _ {0 n on
even n, we have Pp, , . = Pp ar Fp ar I‘ P ﬂFp ar © Fp q.r» Where we use

Lemma 7.1. Consider the case of odd n. Suppose T' = XY € P, 4. r, Whers where X €

O X UGSIX, Y € Z%. For a, B € F, we get T(ae+ Bey. )T ! = (XY)(ae+
Ber.n)(XY)™t = :I:XY(ozeJrﬂel“_n) “IX = (et Per. )X X-lyy-!
= +(ae + Ber.)YY ! € (G0 @ Gy ) where we use X = :I:X Thus,
T e Fg’f” Let us prove I‘g’ﬁ” C P,.q.r- Suppose TGOT1 C (GGl
ie. TT™! = ae + Ber.n € (GO® ggqr) where o, 5 € F. Mult1ply1ng both
bldes of the equation on the left by T'— 71 , on the right by T', we get a1~ T-1iT +
BT~ 161 T = e. Consider the case of even n. We obtain oT—1T = e —
Bei.n € (G° @G}, )< hence, T € P* _ =P,,, by Lemma 4.8. Consider

P
the case of odd n. We get (ae + Bey. )T T-1T = ¢. Since T—1T € Gy, and
e € G, we have (ae + fer ) € G, . Then T-1T = ae — fer., €

(G° @Gy, .)%; therefore, T € Py, 4 by Lemma 4.8.
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Finally, let us prove (7.14). In the case of even n, we obtain Fg’; .=
ron = Pad using (7.11) and (7.12). Let us consider the case of odd n.

If » = 0, then e;. , is invertible; therefore, we obtain I‘ vo=1T€G 0"

g;}qOTT Lcgim i} = {T € G0 TT-* € g } ={T € G ,0:

P:q,0 P:2,0
ngz’ gt =T o = Ppgo, where we use (7.13). If  # 0, then

(elmnX>0 = 0 for any X € G, 4,; therefore, we get I‘pqr ={T € Gpar
gg,m 7! < ggr:”} = {T € Gpar - gg7q77'TT te Opa, o =AT € Oparr *
Tg;‘q LTt C Grart =10 00 = P#ad where we use Theorem 7.1, and the

P,
proof is completed. O

Remark 7.4. In the particular case of the Grassmann algebra Gy o, = Ay,
we get from Theorems 7.1 and 7.3:

I‘00 1= gOX C F0 0,1 — I10 0,1 — F(1),0,1 = f[1)7071 = fé,m (7-15)
r001*F001*F001 Af, n=1; (7.16)
F00 n= F0 0,n = A(O)X c Iy 0,0,n = fg,om =T0o, = IV170AL70,71 (7.17)
FOO”—FOOn—I‘OOn—AX nis even; (7.18)
[00, =AM Ity , =AY e A 0y, =T00,=T0o, (7.19)
FOOn—FOOn_FOOn_FOOn—Aer n > 3 is odd, (7.20)

where we use Remark 4.5.

Remark 7.5. In the particular case of the non-degenerate geometric algebra
Gp.q,0, We obtain the statements from the papers [26] and [48]:

x .
0 =0 om _ J Gy 40 misodd,
Fp,q, Fp,q, - gpx,q,07 p,q 0 Fp,q, {PI:)IE(Z nis even, (7.21)
p+ nis odd
0 n :|: ) )
r 9.4,0 =T pa0 =P quO _quO =P, quO - { ;,q,07 nis even,
(7.22)
i.e. we have
n _ 1N + n
quO 74,0 — *p,q,0 =P CquO quO P,q,0 (7.23)
quO_quO_quO P:gxqo, n=1, (7.24)
0 n n on on + _
Fp,q, Fp q,0 Fp q,0 Fp q,0 Fp q,0 Fp 7,0 — =bP==P (7'25)
CIy 0= quo pqozg .00 Mis even, (7.26)
3 _ +
quo quo—Fp’q’O—P C]."pq0 ]."pq0 P (7.27)
Cly0=Tps0=Tp,0=T000=G 10 n=>3isodd.  (7.28)
8. The Corresponding Lie Algebras
Let us denote the Lie algebras of the Lie groups P P Pi{l\m’ ngqyr,

+rad +rad :
and P70 by pp @ Pp.ayrs pp P pp,q - and pitt respectively.
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Theorem 8.1. We have the Lie algebras

Poar = Gpars (8.1)
Pogr = o © ALY, (8:2)
Poas = Gpgr ©1ad G115 (8.3)
(0) n :
Gr ®GY . ., nis odd;
Pp.gr = { ](10% P . (8.4)
Gp.4,rs nis even;

pA _ g;?g,r @ Agl) &Gy g nisodd, n £,
P ;(;?q),r o A, in the other cases
of the following dimensions:

: + n—1,
dimpy, . = 2"

. +A on—l 4 or—l r>1;
dlmpp,q,r = {271—1 ’ r=0:
dimp:trad — 2" — 2p+q717 p+q > 1;
p.ar o, p=q=0;
. 2"~ 41, nis odd;
dimpp.q.r» = gn—1 nis even;
vt 427" 41, nisodd, n#r, r>1;
PR | nis odd, 1 =0;
: A _ 5 5 )
dim py g, = on—1 nis even, 1 =0;
on—l 4 or—1 in the other cases.

The sets on the right-hand sides of (8.1)—(8.5) are considered with respect to
the commutator [U, V] =UV = VU.

Proof. We use the well-known facts about the relation between an arbitrary
Lie group and the corresponding Lie algebra in order to prove the state-
ments. We calculate the dimensions of the considered Lie algebras using
dimGyy, = 271, dimAY = 271 if r > 1, dimAYY = 0, dimG7,, = 1,
dim(rad G),) = dimG{y, = 2"!, dim(rad Gyl,) = 2"~1 — 2pte-L if
p+q=>1. O
Remark 8.2. In the particular case of the non-degenerate algebra G, ;0, we
obtain

+ +A Frad 0
Pp.a,0 = Ppg0 = Ppg0 = (]1(77;70, (8.6)
G @gn,,, nisodd;
pp7q’0 = p;}’q’o = { 1()6%70 p,q,0 ] (87)
Gp.q.0° nis even.

Remark 8.3. In the case of the Grassmann algebra Gy, = A,, we obtain
from Theorem 8.1

Poon =AY b3, =050 =pd0., = A, (8.8)

A%O) @A, nis odd,;
Po.o,n = (0) .
Ay, nis even.

(8.9)
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9. Conclusions

In this paper, we introduce and study the five families of Lie groups Pi{“,

Pp.g.rs Pi{;’“ Pﬁﬁq’m and Pifﬁ‘f in the real and complex degenerate Clifford
geometric algebras G, ; , of arbitrary dimension and signature:

PE L =00xuglx P, =P 7% . PEM =P AX (9.)

P,q,T D4, P,q,7=p,q,r D,q,T D,q,T
A _ pt X X trad _ p* 0 X
Pp,q,r - Pp,q,rzp,q,rAr ’ Pp,q,r - Pp,q,r(g @ rad gp,q,r) . (9'2)

These groups preserve several fundamental subspaces under the adjoint rep-
resentation and the twisted adjoint representation. The groups (9.1)—(9.2)
are closely related to the spin groups, the Lipschitz groups, and the Clif-
ford groups in the degenerate case, and that is why they are interesting for
consideration.
We provide several equivalent definitions of the groups Piqw Ppgrs
+A  pA

pars Ppgr and Pifﬁf in Theorems 4.6-4.8. We prove that some of these

groups preserve the even and odd subspaces under ad (P, , = F](;,)N -

Plor = Tias) ad (P, = Ty, € PR, = Thar), and ad (Ph3, =
f‘,(,}?],r c Pg,q,r = f‘z(,?()”) in Theorem 6.1. We also prove that some of these
groups leave invariant the grade-0 and grade-n subspaces and their direct sum
t}nder ad (PFrad =T9" =T7  inthe case of even n), unfler ad (Pfrad —
I} 4., in the case of odd n and pt =10 ,, CPygr=T0" in the case
of arbitrary n), and under ad (Pi;‘f‘f =I7 . Ppgo=T0",, and Pifﬁf =

fgzﬂ_ in the case r # 0) in Theorems 7.1 and 7.3. We study the Lie algebras
of the introduced Lie groups and calculate their dimensions in Theorem 8.1.
In future, we plan to study the relation between the results of this paper
and such concepts as root systems and universal enveloping algebras. Note
that the groups preserving the other fundamental subspaces under ad, ad,
and ad differ significantly from the groups introduced in this paper (it can
be seen in the particular case of the non-degenerate algebra [26,48]). In the
further research, we are going to consider the groups preserving the subspaces
determined by the grade involution and the reversion under the adjoint and
twisted adjoint representations in the degenerate geometric algebras G, ..
Also we are going to study normalized subgroups of these groups, which can
be interpreted as generalizations of the spin groups in the degenerate case
and can be used in applications.

The well-known Clifford and Lipschitz groups [1,3,10,12,42] preserve
the grade-1 subspace under the adjoint and twisted adjoint representations
respectively. The groups (9.1)—(9.2) contain the degenerate Clifford and Lip-
schitz groups as subgroups and can be considered as their analogues. The
groups (9.1)—(9.2) are closely related to the higher-dimensional Heisenberg
groups (see, for example, [4,30]) in the cases of the low-dimensional algebras
(Sect. 5). The introduced groups may be useful for applications in physics [11-
13,21, 33], engineering [9,23,25], quantum mechanics and computing [11,52],
computer science [6,23,24,35,36], spinor image processing [5], spinor neural
networks [37], and other sciences.
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Appendix A: Summary of Notation

According to the reviewer’s recommendation, we provide an overview of no-
tation used throughout the paper in Table 1. We write out the notation, its
meaning, and the place where it is mentioned for the first time.
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