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1. Introduction

In this paper the Clifford-Dirac geometric algebra (also known as the Space
Time Algebra [1]) and the operator structure of the four unique division al-
gebras are used in a relatively straightforward way to construct the Riemann
curvature tensor. Conceptually why such a mathematical technique would
ever be of any interest for use in theoretical physics becomes evident in the
method’s development.

2. The Division-Algebraic Operator Structure

Composition algebras are algebras A such that for any two elements the
algebraic norm of their product equals the product of their norms [5,6,10,
16,19]: ‖xy‖ = ‖x‖ ‖y‖ ∀x, y ∈ A. These composition algebras exist in 1, 2,
4 and 8 dimensions, corresponding to K = {R,C,H,O} [6,11,16]. Only the
K are division algebras, that is, composition algebras without zero divisors
[6,16,19].
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The division algebras K have an interesting and unique binary coupling
operation ◦ which maps pairs of such K-structures into Euclidean structure,
given by [1,4–6,8,12,16]1

(A,A) ◦ (B,B) �−→ (AB − A · B, AB + AB + A × B) (1)

when acting within a space with local Euclidean metric δ
ab

permitting the
standard E

3 or E
7 dot and cross products on the RHS, and where the LHS

(A,A) and (B,B) are K-structures - with specific use in this paper of H

(quaternion) structures along with the E
3 dot and cross products. Since the

quaternions are subsumed by geometric algebra [1], when using the quater-
nions (1) can be seen as more fundamentally geometric-algebraic operator
structure.

Of notable interest in (1) is that LHS H-structure generates the RHS
mapping AB − A · B = AμBμ. This mapping thus signals a Lorentz metric
signature (1,−1,−1,−1). Therefore (1) with LHS H-structure is taken to
generate a mapping from a minimally H-structured space not simply into
Euclidean space E

3, but instead into the Minkowski space-time continuum
M.

3. The Clifford-Dirac Algebra

The symbols γ
β

will refer to the four Clifford-Dirac algebra elements having
the following pertinent properties [15,17,22,28]2

(γn)2 = −1; (γ0)
2 = 1 (n : 1 → 3)

γn = −γ
n
; γ

α
γ

β
= −γ

β
γ

α
(α �= β). (2)

Clifford algebras are structures naturally associated with quadratic forms
on vector spaces [1,15], such as a metric on a manifold with vector space struc-
ture. The γ

β
are specifically “Lorentzian” in structure [9,17], being associ-

ated with the vector space and metric structure of the Minkowski space-time
manifold (M,η), with Lorentz metric η ≡ ημν . This Lorentzian Clifford-Dirac
algebra structure is determined by the anti-commutator relation [13,15,17]

{
γ

α
, γ

β

}
= 2η

αβ
. (3)

Since according to the equivalence principle a locally flat space-time
inertial frame (M,η) is recoverable in a sufficiently small neighborhood N
of any space-time point p ∈ (B, g) of a general space-time manifold B with
general metric g

μν
[7,21], the γ

β
so locally exist via (3) in the tangent space

M = TpB.

1See, e.g., Ref. [16], p. 2; Ref. [1], p. 9.; Ref. [8], Eq. (3); Ref. [12], Eq. (5).
2Ref. [28], p. 89.
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4. Combining Sections 2 and 3

We would like to combine the Clifford-Dirac algebra elements and the quater-
nions into specific structures, and then make use of (1) on these combinations.
In that light we define the following structures:

η = 1γ0 + iγ1 + jγ2 + kγ3 ∂ = 1∂0 + i∂x + j∂y + k∂z (4)

with 1 the identity element, the ∂μ being the standard derivative operators,
and τn = {i, j,k} the imaginary quaternion elements with τ2

n = −1 [1,5]. An
over-bar, e.g., η̄, is the quaternion conjugate, and with γ = iγ1 + jγ2 + kγ3

and ∇ = i∂
x

+ j∂
y

+ k∂
z
.

Looking at (4), it is clear that ∂ is a local operator. It is in fact noth-
ing other than the generalization of the Cauchy-Riemann operator ∂x + i∂y

of complex analysis to (1, 3) dimensions used throughout Clifford algebraic
analysis [1].3 Since the Clifford-Dirac algebra elements are conceived as local
operators [17,28],4 which exist in M = TpB, η is also a local operator.

Thus a combination of η and ∂ using (1) will also yield new, coupled
operators - but now they will be coupled local space-time operators. In this
paper we will focus on the development of two coupled operators, η ◦ ∂ and
η̄ ◦ η.

4.1. The Operator η ◦ ∂

Applying (1) to η and ∂ and defining the result as φ
η∂

, we have

φ
η∂

≡ η ◦ ∂ = (γ0 ,γ) ◦ (∂0 ,∇)

= (γ0∂/∂t − γ · ∇, γ0∇ + γ∂/∂t + γ × ∇) = (φ0
η∂

, φ1
η∂

). (5)

There are two operators in (5), which are coupled together. The first is

φ0
η∂

≡ γ0∂/∂t − γ · ∇. (6)

This happens to be the well-known Dirac operator �∂, that is: φ0
η∂

≡ �∂, which
is known to operate on a spinor field ψ representing an elementary fermion
such as an electron [3,9,13,17,18,28].

The second operator

φ1
η∂

≡ γ0∇ + γ∂/∂t + γ × ∇ (7)

is not nearly as transparent.
Nevertheless, it has been shown that φ1

η∂
is a Clifford field operator ��Δ

which operates on a Clifford field �Φ [23]. 5 A Clifford field (using for our
purposes the Clifford-Dirac algebra) is a field given by: �Φ = Φab...

μ γμ, with
each Φab...

μ being a function or batch of functions attached to their assigned
Clifford element γμ.

Further, it happens that when φ1
η∂

≡ ��Δ operates on a Clifford field
identified with the gauge field of a Standard Model interaction, such as the
electromagnetic potential Aμ → �A = Aμγμ, the operation generates the

3Ref. [1], Ch. 3 & Sec. 3.3.
4Ref. [17], Secs. 11.5 & 24.6.
5See Ref. [23], Sec. III, for the step-by-step derivation, which results in Eq. (8) herein.
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linear portion of the field tensor associated with that gauge field interaction
[23].

Relabeling the Clifford field operator φ1
η∂

as ��Δ, we have the operation
on a general Clifford field �Φ given by the intrinsic expression [23]

��Δ�Φ = H (8)

where H is an anti-symmetric field tensor [23]. If �Φ is then set as the elec-
tromagnetic potential �Φ → �A = Aμγμ, H becomes the electromagnetic field
tensor F with components Fμν given in the local basis of vector fields {∂μ}
as [2,7,13,14]

F(∂μ, ∂ν) = Fμν ,

Fμν = ∂μAν − ∂νAμ. (9)

4.2. The Operator η̄ ◦ η

For (1) applied to η̄ and η we have

φ
η̄η

≡ η̄ ◦ η = (γ0 ,−γ) ◦ (γ0 ,γ)
= (C, γ0γ − γγ0 + γ × γ) (10)

where C is a constant irrelevant for the purposes of this paper. Thus focusing
on the second operator on the RHS and using [r, s] = r × s [9], we can write

φ
η̄η

= [γ0 ,γ] + [γ,γ] . (11)

Consider the commutator [γα , γ
β
], with α, β : 1 → 4. Comparing [γα , γ

β
]

with [γ,γ], the difference between the two resides within the commutator
[γ0 , γa

], with a : 1 → 3. The expression [γ0 , γa
] is identical to the first term

[γ0 ,γ] of (11), and therefore we may rewrite (11) as

φ
η̄η

=
[
γ

α
, γ

β

]
. (12)

Let us first focus on the operator [γ,γ] of (11). Interestingly enough,
this operator has been shown to generate the non-linear portions of the field
strength tensor for a Standard Model interaction [24].

For example, consider the components W i
μ, with i : 1 → 3, of the weak

interaction gauge field W μ. Taken as a Clifford field we have the isomorphism

W μ
∼= ��Wμ = γ1W

1
μ + γ2W

2
μ + γ3W

3
μ . (13)

These will be the entities that [γ,γ] operates on. Consider the ’3’ component
of [γ,γ]:

[γ1, γ2] = γ1γ2 − γ2γ1. (14)
This is a bilinear operator which will act on the (γ1W

1
μ , γ2W

2
ν ) components

of (13). We have

[γ1, γ2] (γ1W
1
μ , γ2W

2
ν ) = γ1γ2γ1W

1
μγ2W

2
ν − γ2γ1γ2W

2
μγ1W

1
ν

= − (
W 1

μW 2
ν − W 2

μW 1
ν

)
= −

∑

i,j

εij3W
i
μW j

ν

= − (W μ × W ν)k=3 = − [
W 1

μ ,W 2
ν

]
(15)

where the negative sign arises from multiplying the Clifford elements out
and using (2), εijk is the Levi-Civita symbol, and where the μν indices are
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understood as not operated on (switched) by the commutator in the last
expression.

We can write this more generally as

[γi, γj ] (γiW
i
μ, γjW

j
ν ) = γiγjγiW

i
μγjW

j
ν − γjγiγjW

j
μγiW

i
ν

= −
∑

i,j

εijkW i
μW j

ν = − (W μ × W ν)k = − [
W i

μ,W j
ν

]
. (16)

Thus we can write
[
γi,γj

]
(��W i

μ,��W j
ν)k = − [W μ,W ν ]k . (17)

This is the k-th component of the non-linear portion of the weak interaction’s
field strength tensor [3,15,18]6

Gμν = ∂μW ν − ∂νW μ + i [W μ,W ν ] (18)

where for purposes of analysis we have set any coupling constant to 1.
Combining (8)–(9) and (17) we can thus write the intrinsic expression

for the weak interaction field strength tensor G in Clifford field/field operator
formalism

��Δ��W − [γ,γ] (��W,��W ) = G,

G(∂μ, ∂ν) = Gμν . (19)

It has previously been shown that all three field strength tensors of the Stan-
dard Model interactions as well as that for the electroweak interaction can
be generated using this technique [23–26].

5. The Riemann Curvature Tensor

Given the above it is quite natural to inquire as to if the Riemann curvature
tensor, which is the analogous field strength tensor for the gravitational inter-
action as modeled in General Relativity theory [2,13,14,21], can be generated
using the selfsame method as used for the Standard Model and electroweak
interactions.

5.1. The Christoffel Connection Coefficients

We must first ask what fields are to be used in attempting to construct
the Riemann curvature tensor, such fields which would be mathematically
analogous to the gauge fields of the Standard Model.

Consider a vector bundle E over a manifold M with connection D and
associated covariant derivative Dν [2,15,21]. The covariant derivative Dνs
takes the derivative of a section s of E in the direction of a vector field ν on
an open subset U ⊂ M [2]. With basis vector fields ∂μ on M and basis ei

of sections of E and writing Dμ ≡ D∂μ
one can express Dμei uniquely as a

linear combination of the ei

Dμei = Aj
μiej (20)

with the Aj
μi being a batch of functions on U [2,7,13].

6See, e.g., Ref. [3], Eqs. (9.29)–(9.30).
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In abelian and non-abelian gauge theory for particle physics the connec-
tion coefficients Aj

μi become the coefficients of the gauge fields for a Standard
Model interaction, namely the gauge fields (vector potentials) Δμ having Δj

μi

in (20) as connection coefficients for the principal G-bundles with structure
Lie groups G = {U(1), SU(2), SU(3)} [2,7,13].

A separate and special case of (20) arises when considering the torsion-
free, canonical Levi-Civita metric connection ∇ on the tangent bundle TM
of the semi-Riemannian space-time manifold M ≡ (B,g) and associated co-
variant derivative ∇μ [2,7,13]. In such a case the connection coefficients are
none other than the symmetric Christoffel connection coefficients Γμ

αβ = Γμ
βα

given through the metric as [2,7,13]

Γμ
αβ =

1
2
gμω

(
∂αg

ωβ
− ∂ωg

βα
+ ∂βg

αω

)
. (21)

Using the basis of coordinate vector fields eμ ≡ ∂μ we can thus write
(20) in this special case as [13,15]

∇
β
e

α
= Γμ

αβe
μ
. (22)

The Christoffel connection coefficients of (22) thus function analogously to
the Standard Model vector potentials, but specifically concern action in the
tangent space fiber TpB and how the basis {e

α
} changes from point to point

on (B,g).
Next consider the curvature tensor F(u, v) for some gauge theoretic

bundle, with vector fields u and v, which defines the curvature of a connection
on the bundle, and is given in component form by [2,7,13]7

F j
αβi = ∂αAj

iβ − ∂βAj
iα + Aj

kαAk
iβ − Aj

kβAk
iα. (23)

written with suppressed internal indices i, j and k as [2,7,13,15]

F(∂α, ∂β) = Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ ]. (24)

For the special case of (21)-(22) F is the Riemann curvature tensor Rμ
λβα

[13,21], which is given in component form as [2,7,13,14,21]8

Rμ
λβα = ∂αΓμ

λβ − ∂βΓμ
λα + Γμ

λαΓν
λβ − Γμ

λβΓν
λα. (25)

Given these well-known, deep relations between Γμ
αβ and Δμ we are

naturally led to attempt construction of the Riemann tensor within the new
formalism using the Γμ

αβ .

5.2. The Christoffel-Clifford Field

We construct a Clifford field containing the Γμ
αβ as components. As alluded to

above the Γμ
αβ are functions on some open set U ⊂ B. Once again appealing to

the the equivalence principle where (M,η) is recoverable in a sufficiently small
neighborhood N of any space-time point x ∈ (B, g), we have for x ∈ N ⊂ U
that (M,η) ⊂ U and thus can work with the Γμ

αβ in the tangent space
TpB ≡ M.

7Ref. [2], p. 246.
8See, e.g., Ref. [7], p. 404.
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Since Clifford fields may contain scalar field components such as the
connection coefficients of (20) and (22), we may define the Christoffel-Clifford
field γβΓμ

αβ as a local field in TpB flowing over TB for all applicable space-time
events x. We thus define the four component Clifford field

γβΓμ
αβ ≡ �Γ (26)

with each Γμ
αβ being a “batch of functions” on its β-term.9

In (26) we have the Clifford β-index, which is typically a flat (Lorentz)
space-time index, coupled to the Christoffel β-index, which is a curved (or
world) index. Thus for this field conception of �Γ flowing over U in TB to be
well-defined we must construct a frame field for the γβ over U [2,7]. This
frame field is also known as a trivialization of the tangent bundle TU ⊂ TB

of the open subset U of B,10 and for our 4-dimensional space-time continuum
is called a tetrad or a vierbein [2,7,13].

For every space-time point x ∈ U we have the trivialization [2]

e : U × R
1,3 −→ TU (27)

which is a vector bundle isomorphism sending each fiber {x} × R
1,3 of the

trivial bundle U ×R
1,3 to the tangent space TxU . This permits the mapping

of the standard basis vector fields {∂μ} and dual basis {dxμ} covector fields
of R1,3 at any x ∈ U to a basis of tangent vectors and dual covectors - for our
purposes the Clifford-Dirac basis at some space-time event x : γμ(x) ∀x∈ U
and their dual relations γμ(x) at x.

We have the non-singular linear combinations [2,7]

γμ(x) = eν
μ(x)∂ν ,

γμ(x) = eμ
ν (x)dxν (28)

with eν
μ(x) and eμ

ν (x) being smooth, non-singular matrices dependent on x
such that we have the following duality relations for all x [2,7]:

eμ
ν (x)eν

κ(x) = Aμ
κ → ημ

κ

eν
μ(x)eμ

λ(x) = Aν
λ → ην

λ, (29)

where Aμ
κ and Aν

λ are symmetric constant matrices at any point x, thus
allowing reproduction of (2) in TxU for all x ∈ U , with Aμ

ε → ηu
ε at x being

a general result of matrix theory.11

5.3. The Linear Portion of the Riemann Tensor

Inspection of (23)-(25) reveals what indices are to be used in constructing
the Riemann tensor, namely the exchange (αβ) → (βα) in (23)-(25). The ��Δ
action on �Γ is then identical in form to its operation on the Standard Model
gauge fields as given in (8) above, with ��Δ�Γ generating

��Δ�Γ −→ ∂αΓμ
λβ − ∂βΓμ

λα (30)

which comprises the first portion of the Riemann curvature tensor.

9Ref. [13], p. 224.
10Ref. [2], pp. 403–405.
11Ref. [20], Sec. 6.2, p. 155: Any symmetric matrix can be transformed into a diagonal
matrix with main diagonal ±1 entries.
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5.4. The Non-Linear Portion of the Riemann Tensor

For construction of the non-linear portion of the Riemann tensor the full
space-time operator [γ

α
, γ

β
] of (12) must be used vice the operator [γ,γ] of

(11) which was used above for generating the non-linear field strength tensor
terms for the weak interaction. Why is this?

The structural reason that [γ,γ] is not sufficient for generating gravita-
tional interaction terms is that �Γ is a 4-component field in the indices. This
distinguishes it from the 3-component weak gauge field W i

μ for which the 3-
component operator [γ,γ] is prescribed for generating the non-linear tensor
terms. Thus the��W -field requires only [γ,γ] to generate the weak interaction’s
non-linear field strength tensor terms. In contrast �Γ with four components
in the indices requires the full 4-component space-time operator [γ

α
, γ

β
] to

generate its non-linear field strength tensor terms.12

Now the same procedure above for generating the non-linear portions
of the Standard Model field strength tensors is used, with [γα , γ

β
] = [γ, γ]

replacing [γ,γ]. For some examples, on the (αβ) = (12) and (03) indices we
have

[γ1, γ2](γ1Γμ
ν1, γ

2Γν
λ2) = γ1γ2γ

1Γμ
ν1γ

2Γν
λ2 − γ2γ1γ

2Γμ
ν2γ

1Γν
λ1

= −Γμ
ν1Γ

ν
λ2 + Γμ

ν2Γ
ν
λ1,

[γ0, γ3](γ0Γμ
ν0, γ

3Γν
λ3) = γ0γ3γ

0Γμ
ν0γ

3Γν
λ3 − γ3γ0γ

3Γμ
ν3γ

0Γν
λ0

= −Γμ
ν0Γ

ν
λ3 + Γμ

ν3Γ
ν
λ0, (31)

and in general we can write
[
γ

α
, γ

β

] (
γαΓμ

να, γβΓν
λβ

)
= −

(
Γμ

ναΓν
λβ − Γμ

νβΓν
λα

)
. (32)

Combining (30) and (32) we arrive at the intrinsic expression for the Riemann
curvature tensor R derived from Clifford-Christoffel fields acted on by Clifford
field operators [7]13:

��Δ�Γ − [γ, γ] (�Γ,�Γ) = R,

R(∂α, ∂β)∂λ = Rμ
αβλ∂μ. (33)

6. Conclusion

This is the seminal result herein: General Relativity’s field strength ten-
sor used for modeling the gravitational interaction—the Riemann curvature
tensor—is generated using the same formalism as has been used to generate
the field strength tensors for the Standard Model interactions.

The result is promising, as it allows one to see all four interactions
of nature arising from the same mathematical formalism, and thus permits
visualizing them as emanating, presumably, from some underlying structure

12In like manner the 8-component strong interaction gauge field: Ga
µ | a : 1 → 8, requires

an analogous 8-component operator, which has been constructed (Ref. [26], Sec. 3.3).
13See, e.g., Ref. [7], p. 404, for the component expression of R in the {∂µ} basis.
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which generates the subject formalism. Indeed, such an underlying structure
has recently been postulated [25–27].
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