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Abstract. In this paper, we prove the sharp Pitt’s inequality for a gen-
eralized Clifford-Fourier transform which is given by a similar operator
exponential as the classical Fourier transform but containing genera-
tors of Lie superalgebra. As an application, the Beckner’s logarithmic
uncertainty principle for the Clifford-Fourier transform is established.
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1. Introduction

In harmonic analysis the uncertainty principles play an important role, which
states that a function f and its Fourier transform Ff cannot be at the same
time simultaneously and sharply localized [19,25]. One of the most impor-
tant of these uncertainty principles is the well-known Beckner’s logarithmic
inequality [5], which is closely related to the logarithmic Sobolev inequality
and which implies, in particular, to the well-known Heisenberg-Pauli-Weyl
uncertainty principle [26].

W. Beckner in [5] showed that for every f ∈ S(Rd)
∫
Rd

ln(|x|)|f(x)|2dx +

∫
Rd

ln(|y|)|Ff(y)|2dy ≥
(
ψ

(d

4

)
+ ln 2

) ∫
Rd

|f(x)|2dx,

(1.1)
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where Ff is the classical Fourier transform of f defined through

Ff(y) = (2π)−d/2

∫
Rd

f(x)e−i〈x,y〉dx,

with 〈x, y〉 :=
∑d

j=1 xjyj , ψ is the logarithmic derivative of the Gamma
function Γ, and S(Rd) denotes the Schwartz space.

The key ingredient to prove Beckner’s logarithmic inequality (1.1) is the
following Pitt’s inequality for the Fourier transform [5]∥∥∥| · |−βFf

∥∥∥
2

≤ c(β)
∥∥∥| · |βf

∥∥∥
2

(1.2)

for f ∈ S(Rd), 0 ≤ β < d/2, with sharp constant

c(β) = 2−β
Γ
(

1
2

(
d
2 − β

))

Γ
(

1
2

(
d
2 + β

)) .

It it noted that by Parseval’s identity, Pitt’s inequality can be viewed as a
Hardy-Rellich inequality∥∥∥| · |−βf

∥∥∥
2

≤ c(β)
∥∥∥| · |βFf

∥∥∥
2

= c(β)
∥∥∥(−Δ)β/2f

∥∥∥
2
,

whose proofs and extensions can be found in [18,33].
The original proof of (1.2) by Beckner in [5] is based on an equivalent

integral realization as a Stein-Weiss fractional integral on R
d. In [33], Yafaev

used the following decomposition of L2(Rd) [32] to study inequality (1.2) on
the subsets of L2(Rd) which are invariant under the Fourier transform:

L2(Rd) =
∞∑

n=0

⊕Rn, (1.3)

where R0 denotes the space of radial functions, and Rn := R0 ⊗ Hn denotes
the space of functions on R

d which are products of radial functions and
spherical harmonics of degree n.

Following Yafaev’s idea, Gorbachev et al. in [22,23] recently proved the
sharp Pitt’s inequalities for the Hankel transform [11,13,17], Dunkl transform
[14,16] and (k, a)-generalized Fourier transform [6].

In this paper, following the idea in [22,23], and using the decomposi-
tion (1.3) of the space L2(Rd), we prove the sharp Pitt’s inequality for a
generalized Clifford-Fourier transform which is given by a similar operator
exponential as the classical Fourier transform but containing generators of
Lie superalgebra.

In signal processing, multiplexing which is originated in telegraphy and
now widely applied in the areas of electronic, telecommunications, digital
video and computer net works motivates us to develop the function the-
ory for multivector-valued functions f = (f1, . . . , fn). From a mathematical
point of view, the idea of multiplexing is to encode n independent functions
fj ∈ L2(Rd;C), j = 1, . . . , n, as a single function f that captures the informa-
tion of each component fj( [1,3,4,24]). It is well-known that Clifford algebra
Cl0,d, a noncommutative complex 2d-dimensional universal algebra generated
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by the orhthonormal basis {e1, . . . , ed}, provides an explicit way to present
the multivector-valued functions. And Clifford analysis [7,15] is a refinement
of harmonic analysis in R

d, in the sense that Lie algebra sl2 generated by
the Laplace operator Δ and the norm squared of a vector |x|2, x ∈ R

d, in
harmonic analysis (see, e.g. [28]) is refined to the Lie superalgebra osp(1|2)
(containing sl2 as its even subalgebra).

Several attempts have been considered to introduce the generalizations
of the classical Fourier transform to the setting of Clifford analysis (see
[2,9,10,20,21,27,29] and the references therein). In this paper we consider
the so-called Clifford-Fourier transform in literature first introduced in [8]
and further developed in [12], because it is given by a similar operator ex-
ponential as the classical Fourier transform but now containing generators
of osp(1|2). More precisely, denote ∂y :=

∑d
j=1 ej∂yj

to be the Dirac opera-
tor in Clifford analysis. The Clifford-Fourier transform can be written as the
following integral from

F±(f)(y) = (2π)− d
2

∫
Rd

K±(x, y)f(x)dx, (1.4)

here the kernel function K±(x, y) is given by

K±(x, y) = e∓i π
2 Γye−i〈x,y〉,

with Γy := (∂yy − y∂y)/2 + d/2. In [12], the authors give the algebra back-
ground and full discussion about the kernel and the corresponding Clifford-
Fourier transform. They obtain a completely explicit description of the kernel
in terms of a finite sum of Bessel functions when d is even, and for the odd
case they show that it is enough to identify the kernel in dimension 3, form
which kernels in higher odd dimensions can be deduced by taking suitable
derivatives. Moreover, they also express the kernel in dimension 3 as a single
integral of a combination of Bessel functions.

Our main goal is to study the Pitt’s inequality for the Clifford-Fourier
transform F−f of function f on Clifford-valued Schwartz space S(Rd; Cl0,d)∥∥∥| · |−βF−f

∥∥∥
2

≤ c(β)
∥∥∥| · |βf

∥∥∥
2

(1.5)

with sharp constant

c(β) = 2−β
Γ
(

1
2

(
d
2 − β

))

Γ
(

1
2

(
d
2 + β

)) ,

and the Beckner’s logarithmic uncertainty principle
∫
Rd

ln(|x|)|f(x)|2dx +

∫
Rd

ln(|y|)|F−f(y)|2dy ≥
(
ψ

(d

4

)
+ ln 2

) ∫
Rd

|f(x)|2dx,

(1.6)

provided that

0 ≤ β < d/2.
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This paper is organized as follows. The next section is devoted to re-
calling some definitions and basic properties of the Clifford analysis and the
Clifford-Fourier transform. In Sect. 3, based on the direct sum decomposition
(1.3) whose subspaces are also invariant under the Clifford-Fourier transform,
we prove the sharp Pitt’s inequality (1.5) and the Beckner’s logarithmic un-
certainty principle (1.6) for the Clifford-Fourier transform.

2. Preliminaries

Let {e1, e2, . . . , ed} be an orthonormal basis of R
d satisfying the anti-

commutation relationship

ejek + ekej = −2δjk, (2.1)

where δjk is the Kronecker symbol. The complex universal Clifford algebra
Cl0,d is defined as the 2d-dimensional associative algebra with basis given by
e0 = 1 and eA = eh1eh2 . . . ehn

, where A = {h1, h2, . . . , hn} ⊂ {1, 2, . . . , d},
for 1 ≤ h1 < h2 < · · · < hn ≤ d. Hence, each element x ∈ Cl0,d will be
represented by x =

∑
A xAeA, xA ∈ C, here C denotes the complex plane.

The complex Clifford algebra Cl0,d is a complex linear, associate, but non-
commutative algebra.

The typical element of Rd is denoted by vector x = x1e1 + x2e2 + · · · +
xded, xj ∈ R, j = 1, 2, . . . , d. The inner product and the wedge product of
two vectors x and y in R

d are defined as follows:

〈x, y〉 :=
d∑

j=1

xjyj = −1
2
(xy + yx),

x ∧ y :=
∑
j<k

ejek(xjyk − xkyj) =
1
2
(xy − yx).

Here the multiplication of vectors x and y is defined using the relation (2.1)
of the Clifford algebra. If we define the Clifford conjugate of any number
a ∈ Cl0,d as

ā :=
∑

|A|=n

āAēA, ēA = (−1)
n(n+1)

2 eA, aA ∈ C,

where āA denotes the conjugate of a complex number, then ab = b̄ā for any
a, b ∈ Cl0,d and x ∧ y = y ∧ x for any vectors x and y in R

d.
The above conjugate leads to the scalar part of the product fḡ for

f, g ∈ Cl0,d given by

[fḡ]0 :=
∑
A

fAḡA, fA, gA ∈ C. (2.2)

For f = g in (2.2), we have the modulus |f | of any f ∈ Cl0,d defined as

|f | :=
√

[ff̄ ]0 =
√∑

A

|fA|2 = |f̄ |. (2.3)
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We note that the square of a vector x ∈ R
d is scalar-valued and equals to the

norm squared up to a minus sign, i.e., x2 = −|x|2. For any a, b ∈ Cl0,d, there
has |ab| ≤ 2d|a||b| and |a+ b| ≤ |a|+ |b|. But if a ∈ R

d and b ∈ Cl0,d, it holds(
[34]):

|ab| = |a||b|. (2.4)

Denote the space Lp(Rd; Cl0,d) as the module of all Clifford-valued func-
tions f : R

d → Cl0,d with finite norm

‖f‖p =

⎧⎨
⎩

( ∫
Rd |f(x)|pdx

) 1
p , 1 ≤ p < ∞,

ess supx∈Rd |f(x)|, p = ∞,

(2.5)

where dx = dx1 . . . dxd represents the usual Lebesgue measure in R
d. In

particular, the L2-norm for L2(Rd; Cl0,d) is introduced by the scalar inner
product

〈f, g〉 :=
∫
Rd

[f(x)g(x)]0dx. (2.6)

We remark here that the definition of the scalar inner product, defined
by (2.6), is reduced to the standard one in L2(Rd;C) which is a subset of
L2(Rd; Cl0,d), where f, g ∈ L2(Rd;C) leads to [f(x)g(x)]0 = f(x)g(x).

Finally, we recall some definitions and results of the Clifford-Fourier
transform from [12]:

Definition 2.1. On the Schwartz class of Clifford-valued functions S(Rd; Cl0,d),
we define the Clifford-Fourier transform as

F±f(y) := (2π)− d
2

∫
Rd

K±(x, y)f(x)dx, (2.7)

and their inverses as

F−1
± f(y) := (2π)− d

2

∫
Rd

K̃±(x, y)f(x)dx, (2.8)

where

K±(x, y) := e∓i π
2 Γye−i〈x,y〉, (2.9)

and

K̃±(x, y) := e±i π
2 Γyei〈x,y〉, (2.10)

are the corresponding kernel functions, Γy := (∂yy − y∂y)/2 + d/2 =
−∑

j<k ejek(yj∂yk
− yk∂yj

) is the so-called Gamma operator([15]).

We note that the above kernel functions are not symmetric, in the
sense that for example K−(x, y) 
= K−(y, x) (see [12]). Hence, we adopt
the convention that we always integrate over the first variable in the ker-
nels. Throughout this paper, we only focus on the derivation of the kernel
K−(x, y) = ei π

2 Γye−i〈x,y〉. The other ones can be derived similarly.
From [12], we have the following explicit form of the kernel by using

Gegenbauer polynomials Cλ
k (ω) and Bessel functions Jα(t):

K−(x, y) = Aλ + Bλ + (x ∧ y)Cλ, (2.11)
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with

Aλ = 2λ−1Γ(λ + 1)
∞∑

k=0

(id + (−1)k)(|x||y|)−λJk+λ(|x||y|)Cλ
k (〈x′, y′〉),

Bλ = −2λ−1Γ(λ)
∞∑

k=0

(id − (−1)k)(|x||y|)−λJk+λ(|x||y|)Cλ
k (〈x′, y′〉),

Cλ = −(2λ)2λ−1Γ(λ)
∞∑

k=0

(id + (−1)k)(|x||y|)−λ−1Jk+λ(|x||y|)Cλ+1
k−1 (〈x′, y′〉),

where x′ = x/|x|, y′ = y/|y|, and λ = (d − 2)/2.
Note that when the dimension d is even, Aλ, Bλ and Cλ are real-valued.

In particular, when d = 2, the Clifford-Fourier kernel is given by

K−(x, y) = ei π
2 Γye−i〈x,y〉 = cos(x1y2 − x2y1) + e1e2 sin(x1y2 − x2y1).

We note that, as (e1e2)2 = −1, the above formula implies that, upon substi-
tuting e1e2 by the imaginary unit i, the kernel is equal to the kernel of classical
Fourier transform. But this is clearly not the case for higher dimensions. For
instance, the authors in [12] show that K−(x, z)K−(y, z) 
= K−(x + y, z) if
the dimension d is even and d > 2.

Furthermore, the explicit representation (2.11) of the kernel K−(x, y)
allows the authors in [12] to study the following Bochner-type identities for
the Clifford-Fourier transform:

Proposition 2.2. Let Mn := ker ∂x ∩ Pn denote the space of spherical mono-
genics of degree n, here Pn is the space of homogeneous polynomials of degree
n. Then

(1). for functions of type f(x) = Mn(x′)f0(r) with x = rx′, Mn ∈ Mn

and f0(r) ∈ S(Rd) being real-valued radial function, there has

F−(f)(y) = (−1)nMn(y′)ρnHn+λ(f0(r)r−n)(ρ), y = ρy′; (2.12)

(2). for functions of type f(x) = x′Mn−1(x′)f0(r) with Mn−1 ∈ Mn−1 and
f0(r) ∈ S(Rd), there has

F−(f)(y) = −idy′Mn−1(y′)ρnHn+λ(f0(r)r−n)(ρ), (2.13)

where Hλ denotes the Hankel transform (see (3.1) in the next section).

3. Pitt’s inequality and logarithmic uncertainty principle for
the CFT

Before we prove the Pitt’s inequality for the Clifford-Fourier transform, let
us recall some known results for Hankel transform. The Hankel transform is
defined through

Hλ(f)(ρ) =
∫ ∞

0

f(r)jλ(ρr)dνλ(r) (3.1)

where jλ(t) := 2λΓ(λ + 1)t−λJλ(t) denotes the normalized Bessel function
with λ ≥ −1/2, the normalized Lebesgue measure dνλ(r) := bλr2λ+1dr with
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constant bλ = (2λΓ(λ + 1))−1. From [22,31,33], the Pitt’s inequality for the
Hankel transform is given as

‖(·)−βHλf‖2,dνλ
≤ c(β, λ)‖(·)βf‖2,dνλ

(3.2)

for f ∈ S(Rd), 0 < β < λ + 1 and λ > −1, with sharp constant

c(β, λ) = 2−β
Γ
(

1
2

(
λ + 1 − β

))

Γ
(

1
2

(
λ + 1 + β

)) , (3.3)

where the above weight L2-norm is defined through

‖f‖2,dνλ
:=

( ∫ ∞

0

|f(r)|2dνλ(r)
)1/2

.

We are now in a position to prove the Pitt’s inequality (1.5) for the
CFT.

Theorem 3.1. Let 0 ≤ β < d/2. For any f ∈ S(Rd; Cl0,d), the following Pitt’s
inequality

∥∥∥| · |−βF−f
∥∥∥

2
≤ c(β)

∥∥∥| · |βf
∥∥∥

2
(3.4)

holds with the sharp constant

c(β) = 2−β
Γ
(

1
2

(
d
2 − β

))

Γ
(

1
2

(
d
2 + β

)) . (3.5)

Proof. For β = 0 we have c(β) = 1 and the Pitt’s inequality (3.4) becomes
the Parseval’s identity (see [30]). In the rest of the proof, we assume that
0 < β < d/2. From the direct decomposition (1.3), we let ln be the dimension
of Hn, and denote by {Y j

n : j = 1, . . . , ln} the real-valued orthonormal basis
Hn. Then for f ∈ S(Rd), we have

f(x) =
∞∑

n=0

ln∑
j=1

fnj(r)Y j
n (x′), x = rx′, (3.6)

where

fnj(r) =
∫

Sd−1
f(rx′)Y j

n (x′)dσ(x′).

Furthermore, there has

∫
Sd−1

|f(rx′)|2dσ(x′) =
∞∑

n=0

ln∑
j=1

|fnj(r)|2,
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and
∫
Rd

|x|2β |f(x)|2dx =
∫ ∞

0

r2β+d−1

∫
Sd−1

|f(rx′)|2dσ(x′)dr

=
∫ ∞

0

r2β+d−1
∞∑

n=0

ln∑
j=1

|fnj(r)|2dr

=
∞∑

n=0

ln∑
j=1

∫ ∞

0

|fnj(r)|2r2βb−1
λ dνλ(r). (3.7)

Now, due to the following Fisher decomposition:

Hn = Mn ⊕ x′Mn−1, (3.8)

the expression (3.6) of f and Bochner-type identities (2.12) and (2.13), there
holds for y = ρy′

F−(f)(y) =
∞∑

n=0

ln∑
j=1

(
(−1)nZj

n(y′) + (−id)y′W j
n−1(y

′)
)
ρnHn+λ(fnj(r)r

−n)(ρ),

where Zj
n ∈ Mn and W j

n−1 ∈ Mn−1.
Thus, using spherical coordinates, the direct sum decomposition of

L2(Rd) (1.3) and the Fisher decomposition (3.8), we have
∫
Rd

|y|−2β |F−f(y)|2dy

=
∫ ∞

0

ρ−2β+(d−1)dρ

∫
Sd−1

∣∣∣∣
n∑

n=1

ln∑
j=1

ρnHn+λ(fnj(r)r−n)(ρ)Ỹ j
n (y′)

∣∣∣∣
2

dy′

≤
∞∑

n=0

ln∑
j=1

∫ ∞

0

|Hn+λ(fnj(r)r−n)(ρ)|2ρ−2(β−n)b−1
λ dνλ(ρ), (3.9)

where Ỹ j
n (y′) = (−1)nZj

n(y′) + (−id)y′W j
n−1(y

′).
Furthermore, by using the Pitt’s inequality (3.2) for the Hankel trans-

form, we have
∫ ∞

0

|Hn+λ(fnj(r)r−n)(ρ)|2ρ−2(β−n)b−1
λ dνλ(ρ)

=
∫ ∞

0

|Hn+λ(fnj(r)r−n)(ρ)|2ρ−2(β−n) bλ

bn+λ
dνn+λ(ρ)

≤ c2(β, λ)
∫ ∞

0

|fnj(r)r−n|2r2β bλ

bn+λ
dνn+λ(r)

= c2(β, λ)
∫ ∞

0

|fnj(r)r−n|2r2βdνλ(r). (3.10)
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Since λ = (d − 2)/2, then using (3.7), (3.9) and (3.10), we arrive at
∫
Rd

|y|−2β |F−f(y)|2dy ≤
∞∑

n=0

ln∑
j=1

c2(β, λ)
∫ ∞

0

|fnj(r)r−n|2r2βdνλ(r)

= c2(β)
∫
Rd

|x|2β |f(x)|2dx. (3.11)

�

Using the Pitt’s inequality (3.4) we obtain the Beckner’s logarithmic
uncertainty principle for the CFT.

Theorem 3.2. Suppose that 0 ≤ β < d/2. Then the inequality
∫
Rd

ln(|x|)|f(x)|2dx +

∫
Rd

ln(|y|)|F−f(y)|2dy ≥
(
ψ

(d

4

)
+ ln 2

) ∫
Rd

|f(x)|2dx,

(3.12)

holds for any f ∈ S(Rd), here ψ(t) = Γ′(t)/Γ(t) being the psi function.

Proof. To simplify our proof, we rewrite the Pitt’s inequality (1.5) in the
following form∫

Rd

|y|−β |F−f(y)|2dy ≤ c2(β/2)
∫
Rd

|x|β |f(x)|2dx,

here 0 ≤ β < d. Now for β ∈ (−d, d), we define the function

ϕ(β) :=
∫
Rd

|y|−β |F−f(y)|2dy − c2(β/2)
∫
Rd

|x|β |f(x)|2dx.

The Pitt’s inequality (1.5) and Parseval’s identity for the CFT imply
that ϕ(β) ≤ 0 for β > 0 and ϕ(0) = 0, respectively. Hence,

ϕ′
+(0) = lim

β→0+

ϕ(β) − ϕ(0)
β

≤ 0. (3.13)

Since f,F−f ∈ S(Rd), then for any |β| < d,∫
|x|>1

|x|β ln(|x|)|f(x)|2dx

and ∫
|y|>1

|y|β ln(|y|)|F−f(y)|2dy

are well-defined. Furthermore, by spherical coordinates,∫
|x|≤1

|x|β | ln(|x|)|dx =
∫ 1

0

rβ+d−1| ln r|dr

∫
Sd−1

dx′ < ∞,

which gives

|x|β ln(|x|)|f(x)|2 ∈ L1(Rd) and |y|β ln(|y|)|F−f(y)|2 ∈ L1(Rd).
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Thus,

ϕ′(β) = −
∫
Rd

|y|−β ln(|y|)|F−f(y)|2dy

−c2(β/2)
∫
Rd

|x|β ln(|x|)|f(x)|2dx

−dc2(β/2)
dβ

∫
Rd

|x|β |f(x)|2dx. (3.14)

In addition, from (3.5) we have

− dc2(β/2)
dβ

= ψ
(d

4

)
+ ln 2. (3.15)

Combining (3.14), (3.14) and (3.15), we conclude the proof of (3.12). �
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