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Abstract. Let p and q be polynomials with degree 2 over an arbitrary
field F, and M be a square matrix over F. Thanks to the study of
an algebra that is deeply connected to quaternion algebras, we give a
necessary and sufficient condition for M to split into A + B for some
pair (A,B) of square matrices over F such that p(A) = 0 and q(B) = 0,
provided that no eigenvalue of M splits into the sum of a root of p and
a root of q. Provided that p(0)q(0) �= 0 and no eigenvalue of M is the
product of a root of p with a root of q, we also give a necessary and
sufficient condition for M to split into AB for some pair (A,B) of square
matrices over F such that p(A) = 0 and q(B) = 0. In further articles, we
will complete the study by lifting the assumptions on the eigenvalues of
M .
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1. Introduction

1.1. The Starting Point: A Strange 4-Dimensional Algebra

The main point of the article is the following. Starting from two monic poly-
nomials p and q of degree 2 over a field F, from a commutative unital F-
algebra R, and from an element x of R, we define an R-algebra, denoted
by W(p, q, x)R, which has an additional structure of 4-dimensional free R-
module. Precisely, W(p, q, x)R is isomorphic to the quotient algebra of the
unital free noncommutative R-algebra in two generators a and b by the two-
sided ideal generated by p(a), q(b) and a(μ1R − b)+ b(λ1R −a)−x 1R, where
p(t) = t2 − λt + p(0) and q(t) = t2 − μt + q(0); however, for convenience it
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turns out that it is better to define this algebra as a subalgebra of the alge-
bra M4(R) of 4-by-4 matrices with entries in R (see Sect. 2.2). It turns out
that there is a very specific anti-automorphism x �→ x� (the conjugation) of
W(p, q, x)R, and a norm N : W(p, q, x)R → R such that hh� = h�h = N(h).e
for all h ∈ W(p, q, x)R, where e stands for the unity of W(p, q, x)R (the
construction of those mappings will be carried out in Sect. 2.3).

This is of course very reminiscent of quaternion algebras, and indeed
it turns out that W(p, q, x)R is a quaternion algebra whenever R is a field
extension of F and unless x satisfies a very specific property with respect to
p and q. If R is a field extension of F, then the norm N is a 4-dimensional
quadratic form on W(p, q, x)R. The degeneracy of N has a simple character-
ization in terms of the triple (p, q, x) (see Proposition 2.3 in Sect. 2.4), but it
would be a distraction to state it now. Here is our first main result:

Theorem 1.1. Let L be a field extension of F. Let x ∈ L, and assume that
the norm of W(p, q, x)L is non-degenerate. Then W(p, q, x)L is a quaternion
algebra over L and its norm of quaternion algebra is N .

In particular, if the norm of W(p, q, x)L is both non-degenerate and
isotropic, then W(p, q, x)L is isomorphic to the L-algebra M2(L) of 2-by-2
matrices over L. Key to our article will be the following extension of this
result to the case where R is the local residue ring F[t]/(rn) for some monic
irreducible polynomial r over F:

Theorem 1.2. Let r be an irreducible monic polynomial of F[t], and n ∈ N
∗

be a non-zero integer. Set R := F[t]/(rn) and let x be the class of some
polynomial of F[t] in R, and x be the class of the same polynomial in the
residue field L := F[t]/(r). Assume finally that the norm of W(p, q, x)L is
non-degenerate and isotropic. Then, the R-algebra W(p, q, x)R is isomorphic
to M2(R).

At the point, the bottom line is that we start from a quirky 4-dimensional
algebra with a strange set of parameters and, in many interesting cases we
end up with the familiar situation of quaternion algebras, a special case of
our beloved Clifford algebras.

The W(p, q, x)R algebra is not an artificial construction: it appears nat-
urally in trying to solve two long-standing decomposition problems in linear
algebra. Not only will it help solve those problems, but it will unify many
special cases of those problems that, prior to this paper, had been given
scattered proofs, another tribute to the unifying power of Clifford algebras.
The full study of the W(p, q, x)R algebra is carried out in Sect. 2. In the
meantime, we turn to explain the decomposition problems we aim at solving,
along with a couple of basic technical issues that are not directly connected
to the W(p, q, x)R algebra (so the reader who is interested by the W(p, q, x)R

algebra for itself can directly jump to Sect. 2).

1.2. Quadratic Elements in an Algebra Over a Field

Let F be an arbitrary field and F be an algebraic closure of it. We denote by
char(F) the characteristic of F. We denote by Mn(F) the algebra of all square
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matrices with n rows and entries in F, and by In its unity. The similarity of
two square matrices A and B is denoted by A � B. We denote by N the set
of all non-negative integers, and by N

∗ the set of all positive ones. Given a
polynomial p ∈ F[t], we denote by Root(p) the set of all roots of p in F, and,
if p is non-constant and monic with degree n, we denote by tr(p) the opposite
of the coefficient of p on tn−1, which we call the trace of p.

An element of an F-algebra A is called quadratic when it is annihilated
by a polynomial of degree 2 of F[t]. Basic special cases of such elements are the
idempotents (a2 = a), the involutions (a2 = 1A) and the square-zero elements
(a2 = 0). Given an element a of an F-algebra A together with a polynomial
p ∈ F[t] with degree 2 such that p(a) = 0, we set a� := (tr p) 1A − a, which
we call the p-conjugate of a, and we note that aa� = a�a = p(0)1A (in
this notation, the polynomial should normally be specified because of the
possibility that a be a scalar multiple of 1A, but it will always be clear from
the context). Note that if p is irreducible then a and a� are its roots in the
quadratic extension F[a].

The following basic result will be used throughout the article so we state
it and prove it right away.

Lemma 1.3. (Basic Commutation Lemma). Let p and q be monic polynomials
of F[t] with degree 2. Let a, b be elements of an F-algebra A such that p(a) =
q(b) = 0, and denote respectively by a� and b� the p-conjugate of a and the
q-conjugate of b. Then, a and b commute with ab� + ba�.

Note also that

ab� + ba� = tr(q) a + tr(p) b − (ab + ba) = a�b + b�a.

Proof. On the one hand

(ab� + ba�)a = ab�a + p(0)b,

and on the other hand, ab� + ba� = b�a + a�b, whence

a(ab� + ba�) = a(b�a + a�b) = ab�a + p(0)b.

Thus, a commutes with ab� + ba�. Symmetrically, so does b. �

1.3. The (p, q)-Sums (or Difference) Decomposition Problem

Let p and q be monic polynomials of degree 2 over F. An element x of an
F-algebra A is called a (p, q)-sum (respectively, a (p, q)-difference) whenever
it splits as x = a + b (respectively, x = a − b) where a, b are elements of
A that satisfy p(a) = 0 and q(b) = 0. In particular, by taking A = Mn(F)
or A = End(V ) for some vector space V over F, we have the notion of
a (p, q)-sum and of a (p, q)-difference for square matrices over F and for
endomorphisms of V . Those two notions are easily connected: an element of
A is a (p, q)-sum if and only if it is a (p, q(−t))-difference.

We will focus only on (p, q)-differences, as many results turn out to
have a more elegant formulation when expressed in terms of (p, q)-differences
rather than in terms of (p, q)-sums. Here is the first problem we will address
here:
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When is a square matrix a (p, q)-difference?

Since the set of all matrices A ∈ Mn(F) such that p(A) = 0 is a union
of similarity classes, and ditto for q instead of p, the set of all matrices in
Mn(F) that are (p, q)-differences is a union of similarity classes. Hence, in
theory it should be possible to find necessary and sufficient conditions for
being a (p, q)-difference in terms of either the Jordan normal form or the
rational canonical form.

Special cases in the above problem were solved starting in the early
nineteen nineties. First, Hartwig and Putcha [11] solved the case where p =
q = t2−t over the field of complex numbers, i.e. they determined the matrices
that can be written as the difference of two idempotent complex matrices,
and they also determined those that can be written as the sum of two idem-
potent complex matrices (those problems are easily seen to be equivalent
by noting that a matrix A of Mn(F) is idempotent if and only if In − A is
idempotent). Later, Wang and Wu [18] obtained similar characterizations for
sums of two square-zero complex matrices, and Wang alone [16] obtained a
characterization of the matrices that are the sum of an idempotent matrix
and a square-zero one, again over the field of complex numbers. In all those
works, both the results and the methods can be generalized effortlessly to
any algebraically closed field with characteristic not 2.

More recently, the results of the above authors were extended to arbi-
trary fields, even those with characteristic 2. In [9], we managed to obtain a
description of all matrices that split into a linear combination of two idempo-
tents with fixed nonzero coefficients, over an arbitrary field. It is easily seen
that this yields a solution to the above problem in the slightly more general
case where both p and q are split polynomials with simple roots. Botha [4]
extended the classification of sums of two square-zero matrices to an arbi-
trary field (see also the appendix of [7] for an alternative proof). The case
where both polynomials p and q are split was finally completed in [10], where
Wang’s result on the sum of an idempotent matrix and a square-zero one was
extended to all fields.

Yet, to this day nothing was known on the case where one of the poly-
nomials p and q is irreducible over F. It is our ambition here to complete the
study by giving a thorough treatment of the remaining cases: in the present
article we will explain how this can be split into two subproblems, the regular
and the exceptional cases, and we will completely solve the regular case but
we will nevertheless state the results for the exceptional case (the proofs do
not rely on quaternion algebras: they involve more traditional linear algebra
along with basic Galois theory, and will be carried out in a subsequent article
in a journal specialized in linear algebra).

1.4. The (p, q)-Products (or Quotients) Decomposition Problem

Let p and q be monic polynomials of degree 2 over F. An element x of an
F-algebra A is called a (p, q)-product whenever it splits as x = ab where
a, b are elements of A that satisfy p(a) = 0 and q(b) = 0. In particular, by
taking A = Mn(F) or A = End(V ) for some vector space V over F, we have
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the notion of a (p, q)-product for square matrices with entries in F and for
endomorphisms of a vector space over F.

Here is the second problem we will tackle:

When is a square matrix a (p, q)-product?

Since the set of all matrices A ∈ Mn(F) such that p(A) = 0 is a union of
similarity classes, and ditto for q instead of p, the set of all matrices in Mn(F)
that are (p, q)-products is a union of similarity classes. Hence, in theory it
should be possible to find necessary and sufficient conditions for a matrix to
be a (p, q)-product in terms of either its Jordan normal form or its rational
canonical form.

Note that, in Mn(F), the (p, q)-products are the (q, p)-products, since it
is known that every square matrix over a field is similar to its transpose.

Before we go on, we also need to note that the problem remains es-
sentially unchanged should p or q be replaced with one of its homothetic
polynomials:

Notation 1. Given d ∈ F � {0}, we set

Hd(p) := d−2p(dt),

which is a monic polynomial of F[t] with degree 2.

Note also that if p(0)q(0) �= 0, then a (p, q)-product must be invertible.
The topic of (p, q)-products has a long history that started in the nine-

teen sixties:

• The first result was due to Wonenburger [19] who, over a field with
characteristic not 2, classified the (t2 −1, t2 −1)-products in Mn(F), i.e.
the products of two involutions. Her result was shortly generalized to
all fields by Djoković [6], and rediscovered independently by Hoffman
and Paige [12]. Famously, the solutions are the invertible matrices that
are similar to their inverse.

• Almost simultaneously, Ballantine [1] characterized the (t2 − t, t2 − t)-
products in Mn(F) (where F is an arbitrary field). In other words, he
classified the matrices that split into the product of two idempotents
(he even classified the ones that split into the product of k idempotents
for a given positive integer k).

• In a series of articles, Wang obtained an almost complete classification
of the remaining cases when the field is the one of complex numbers (his
proofs generalize effortlessly to any algebraically closed field). Wang and
Wu [17] and him solved the case where both p and q have a nonzero
double root (which reduces to the situation where p = q = (t − 1)2).
Wang [14,16] considered the more general situation where p(0)q(0) �= 0,
with some stringent restrictions in the case where p or q has a double
root (essentially, in that situation he only tackled the case where p has a
double root and q has opposite distinct roots, and over an algebraically
closed field with characteristic not 2). In [15], he tackled the case where
p(t) = t2 − t and q(0) �= 0.
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• Novak [13] solved the case where p(t) = q(t) = t2, over an arbitrary
field.

• Botha [3] solved the case where p(t) = t2 − t and q(t) = t2, over an
arbitrary field.

Thus, even over an algebraically closed field, the general problem of
classifying (p, q)-products is still partly open. Subsequent efforts were made
to extend some of the above results to arbitrary fields:

• Bünger et al. [5] characterized the (p, p)-products when p splits over F,
p(0) = 1 and no fourth root of the unity is a root of p.

• Botha [2] generalized Wang’s characterization of the ((t − 1)2, (t − 1)2)-
products to an arbitrary field.

Hence, before the present article no general solution to our problem was
known. Even a full solution to the case where both polynomials p and q are
split is missing from the literature. It is our ambition here to contribute to
the problem by giving a treatment of the case where p(0)q(0) �= 0, which
essentially amounts to determining the invertible (p, q)-products.

Assume now that p(0)q(0) �= 0. An element x of an F-algebra A is called
a (p, q)-quotient (in A) whenever there exist elements a and b of A such that
x = ab−1 and p(a) = q(b) = 0 (this is equivalent to x being a (p, q�)-product
where q� := q(0)−1t2q(t−1) is the reciprocal polynomial of q). It turns out
that the characterization of quotients is more easily expressed than the one of
products, in particular in the case where p and q are irreducible. Therefore,
in the remainder of the article we will only consider the problem of classifying
the (p, q)-quotients among the automorphisms of a finite-dimensional vector
space. From our results on quotients, giving the corresponding results on
products is an elementary task that requires no further explanation.

1.5. Main Structure of the Article

The rest of the article is split into three parts. Section 2 is devoted to the
study of the W(p, q, x)R algebras and their connection to quaternion algebras.

The structural results for this algebra will then help us obtain the clas-
sification of so-called d-regular (p, q)-differences (Sect. 3) and of q-regular
(p, q)-quotients (Sect. 4) (in short, a (p, q)-difference is d-regular (the letter
d standing for “difference”) when it has no eigenvalue in Root(p) − Root(q),
and, when p(0)q(0) �= 0, a (p, q)-quotient is q-regular (the letter q standing
for “quotient”) when it has no eigenvalue in Root(p)Root(q)−1).

1.6. A Reminder on the Rational Canonical form of a Square Matrix Over
a Field

Throughout the article, we need some notation and standard results from the
representation theory for one endomorphism.

Let u be an endomorphism of a finite-dimensional vector space V (over
the field F). Then we can endow V with a structure of F[t]-module by putting
r x := r(u)[x] for all r ∈ F[t] and all x ∈ V . This is a torsion module of finite
type. By the classification of modules of finite type over a principal ideal
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domain, this yields a unique list (r1, . . . , rk) of monic polynomials in non-
increasing order for divisibility, such that V is isomorphic to the F[t]-module
F[t]/(r1)⊕· · ·⊕F[t]/(rk), and the elements r1, . . . , rk are called the invariant
factors of u.

Another way to see this is through the Frobenius canonical form, which
involves companion matrices: the companion matrix of a monic polynomial
r(t) = tn − ∑n−1

k=0 aktk of F[t] is defined as

C(r) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 (0) a0

1 0 a1

0
. . . . . .

...
...

. . . 0 an−2

(0) · · · 0 1 an−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Mn(F).

Classically, its minimal polynomial and characteristic polynomial equal r.
Conversely, every n-by-n matrix whose minimal polynomial equals r is similar
to C(r). Moreover, when r1, . . . , rp are pairwise coprime monic polynomials,
this observation leads one to see that

C(r1 · · · rp) � C(r1) ⊕ · · · ⊕ C(rp),

where ⊕ stands for the direct sum of two matrices, i.e. A⊕B =
[
A 0
0 B

]

. Then,

the invariants factors r1, . . . , rk of u are characterized by the combination of
the following three properties:

(i) They are non-constant monic polynomials.
(ii) The polynomial ri+1 divides ri for all i ∈ [[1, k − 1]].
(iii) The endomorphism u is represented in some basis by C(r1)⊕· · ·⊕C(rk).

We extend this finite sequence into an infinite one (ri)i≥1 by setting
ri := 1 whenever i > k, and convene that C(1) denotes the 0-by-0 matrix.

Another useful viewpoint is the primary decomposition: given a monic
polynomial r ∈ F[t], we can split r = tn1

1 · · · tnp
p into irreducible monic factors

(with t1, . . . , tp monic, irreducible, and pairwise distinct), to the effect that

C(r) � C(tn1
1 ) ⊕ · · · ⊕ C(tnp

p ).

Using this, one can prove that there exists a sequence (s1, . . . , s�) of non-
constant polynomials over F, each of which is a power of some monic ir-
reducible polynomial of F[t], such that u is represented in some basis by
C(s1) ⊕ · · · ⊕ C(s�). This sequence is uniquely determined by u up to a per-
mutation of its terms. The polynomials s1, . . . , s� are called the elementary
invariants of u. Once again, this is a special case of the primary decomposition
of a torsion module over a principal ideal domain.

2. The Key 4-Dimensional Algebra

Throughout this section, we let R be a commutative unital F-algebra, and
we let p(t) = t2 −λt+α, q(t) = t2 −μt+β be monic polynomials with degree
2 over F, and x be an element of R.
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2.1. Heuristics

Let us start from the associative unital R-algebra R{y, z} of polynomials in
two non-commuting indeterminates y and z, and let us consider the quotient
R-algebra A of R{y, z} by the two-sided ideal generated by the elements
p(y), q(z) and μ y + λ z − zy − yz − x 1R{y,z}. Denoting by a and b the
respective classes of y and z in A, we have the relations p(a) = 0, q(b) = 0
and ab + ba = μ a + λ b − x 1A. Setting a� := λ1A − a and b� := μ1A − b, the
third identity then reads ab� + ba� = x 1A, whereas the first and second one
read aa� = a�a = α 1A and bb� = b�b = β 1A.

Now, taking a small leap of faith and assuming that A is a free R-module
with basis B = (1A, a, b, ab), one finds from the relations aa = λa − α1A and
a(ab) = a2b = (λa − α1A)b = λab − αb that the matrix of the R-module
endomorphism u ∈ A �→ au ∈ A in the basis B equals

A :=

⎡

⎢
⎢
⎣

0 −α 0 0
1 λ 0 0
0 0 0 −α
0 0 1 λ

⎤

⎥
⎥
⎦ ∈ M4(R).

Likewise, we have b2 = μb − β1A, ba = μ a + λ b − x 1A − ab and

b(ab) = (ba)b = (λb − ba�) b = (λb + ab� − x 1A) b

= λb2 + βa − x b = λ(μb − β1A) + β a − x b.

Hence, the matrix of u ∈ A �→ bu ∈ A in the basis B equals

B :=

⎡

⎢
⎢
⎣

0 −x −β −λβ
0 μ 0 β
1 λ μ λμ − x
0 −1 0 0

⎤

⎥
⎥
⎦ .

We conclude that the matrix of u ∈ A �→ abu ∈ A in the basis B equals

C := AB =

⎡

⎢
⎢
⎣

0 −αμ 0 −αβ
0 λμ − x −β 0
0 α 0 0
1 0 μ λμ − x

⎤

⎥
⎥
⎦ .

Still taking the above leap of faith, we would deduce the relations p(A) =
0, q(B) = 0 and A(μI4 − B) + B(λI4 − A) = x I4 in the R-algebra M4(R).

2.2. Actual Definition of W(p, q, x)R

Here, we will put things differently and simply start from the above three
matrices of M4(R), that is

A :=

⎡

⎢
⎢
⎣

0 −α 0 0
1 λ 0 0
0 0 0 −α
0 0 1 λ

⎤

⎥
⎥
⎦ , B :=

⎡

⎢
⎢
⎣

0 −x −β −λβ
0 μ 0 β
1 λ μ λμ − x
0 −1 0 0

⎤

⎥
⎥
⎦
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and

C := AB =

⎡

⎢
⎢
⎣

0 −αμ 0 −αβ
0 λμ − x −β 0
0 α 0 0
1 0 μ λμ − x

⎤

⎥
⎥
⎦ .

From the previous heuristics, the reader will now be entirely confident in
believing that a routine check yields, with A� := λI4 −A and B� := μI4 −B,
the relations

AB� + BA� = xI4, p(A) = 0 and q(B) = 0. (1)

From these identities, the first of which can be read BA = −AB + μA +
λB − xI4, one derives that spanR(I4, A,B,C) is stable under multiplication.
Moreover, for all (u, v, w, t) ∈ R4, the first column of u I4 + v A + w B + t C
is the transpose of

[
u v w t

]
, which yields that spanR(I4, A,B,C) is a free

R-module with basis (I4, A,B,C).

Definition 2. We define W(p, q, x)R as the set spanR(I4, A,B,C) equipped
with its structure of R-algebra inherited from that of M4(R), and we will
simply write W(p, q, x) instead of W(p, q, x)R when the ring R under consid-
eration is obvious from the context.

It is noteworthy that W(p, q, x)R is precisely isomorphic to the quotient
algebra A we started from in building our heuristics:

Proposition 2.1. The R-algebra W(p, q, x)R is isomorphic to the R-algebra A
which is the quotient of R{y, z} by the two-sided ideal generated by p(y), q(z)
and yz� + zy� − x 1R{y,z}, where y� := λ1R{y,z} − y and z� := μ1R{y,z} − z.

Proof. Since the identities p(A) = 0, q(B) = 0 and A(μI4−B)+B(λI4−A) =
x I4 are satisfied, we obtain a homomorphism ϕ : A → W(p, q, x) of R-
algebras that takes the class a of y to A and the class b of z to B. Since
W(p, q, x) is a free-R-module with basis

(I4, A,B,AB) = (ϕ(1A), ϕ(a), ϕ(b), ϕ(ab)),

the bijectivity of ϕ will be obtained as soon as we know that (1A, a, b, ab)
generates the R-module A. Yet:

• We can use the identity ba = −ab+μa+λb−x 1A to obtain that every
n-word in a and b is a linear combination of k-words in a and b, with
k < n, and of words of the form a�bn−� with � ∈ [[0, n]].

• By using one of the identities a2 = λa − α1A and b2 = μb − β1A, every
word of the form ambn, with m ≥ 2 or n ≥ 2, can be turned into a linear
combination of k-words in a and b with k < m + n.

• Then, by induction on n, we deduce that every n-word in a and b is a
linear combination of 1A, a, b and ab.

Therefore, ϕ is an isomorphism of R-modules, and we conclude that it is also
an isomorphism of R-algebras. �
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2.3. Trace, Conjugation, and Norm in W(p, q, x)
We will now define the trace on W(p, q, x). An option would be to simply
consider the trace of the elements of W(p, q, x) seen as matrices of M4(R):
however, with this viewpoint the traces of I4, A,B,AB respectively equal
4.1R, 2λ, 2μ, 2(λμ − x), and all those traces equal zero if the characteristic of
F (and hence of R) equals 2, rendering the trace useless in that situation.

To obtain a more interesting object, we will “halve” those traces. This
is natural if we take the viewpoint of quadratic objects: indeed, if a denotes
a quadratic object in an F-algebra A, and a is no scalar multiple of 1A, we
naturally want to define the trace of a, as a quadratic object, as the trace of
the multiplication by a in the F-vector space F[a]: this trace equals the trace
of the unique monic polynomial r ∈ F[t] of degree 2 such that r(a) = 0. Here,
since A2 = λA − αI4 and B2 = μB − βI4, the trace of A and B should be λ
and μ, respectively. Finally

(AB)2 = AB(λI4 − A�)B = A(λB − BA�)B

= A(λB + AB� − xI4)B

= λAB2 + βA2 − xAB

= λA(μB − βI4) + β(λA − αI4) − xAB

= (λμ − x)AB − αβI4.

Hence, AB has trace λμ − x as a quadratic object.
From there, the following definition is entirely natural:

Definition 3. We define

Tr : W(p, q, x) → R

as the unique R-linear mapping such that Tr(I4) = 2.1R, Tr(A) = λ, Tr(B) =
μ and Tr(C) = λμ − x.

Our next step is the definition of the conjugation in W(p, q, x). Natu-
rally, and again from the viewpoint of quadratic objects, we want the con-
jugate of A to be λI4 − A and the conjugate of B to be μI4 − B. Now, let
us come back to the algebra Z := R{y, z} of polynomials in non-commuting
indeterminates y and z. On this algebra, we can define an anti-endomorphism
ψ that takes y to y� := λ1Z − y and z to z� := μ1Z − z. Note that
ψ(y�) = y and ψ(z�) = z. Noting that p(y) = −yy� +α1Z = −y�y+α1Z and
q(z) = −zz� + β1Z = −z�z + β1Z it is clear that ψ(p(y)) = p(ψ(y)) = p(y)
and ψ(q(z)) = q(ψ(z)) = q(z), whereas

ψ(yz� + zy� − x 1Z) = ψ(z�)y� + ψ(y�)z� − x 1Z = zy� + yz� − x 1Z .

It follows that ψ stabilizes the two-sided ideal generated by p(y), q(z) and
yz� + zy� − x 1Z . With the help of Proposition 2.1, we recover a (unique)
anti-endomorphism

h ∈ W(p, q, x) �→ h� ∈ W(p, q, x)

of the R-algebra W(p, q, x) that takes A to λI4 − A and B to μI4 − B. We
say that h� is the conjugate of the element h of W(p, q, x).
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Noting that (A�)� = A and (B�)� = B and that M �→ (M�)� is an
endomorphism of the R-algebra W(p, q, x) (being the product of two anti-
endomorphisms), we deduce that

∀h ∈ W(p, q, x), (h�)� = h.

Next, noting that

AB + (AB)� = AB + B�A�

= A(μI4 − B�) + (μI4 − B)A�

= μ(A + A�) − (AB� + BA�)

= (λμ − x) I4,

we find by linearity that

∀h ∈ W(p, q, x), h + h� = Tr(h) I4.

Applying this to h1h
�
2 yields the identity

∀(h1, h2) ∈ W(p, q, x)2, h1h
�
2 + h2h

�
1 = Tr(h1h

�
2) I4. (2)

Lemma 2.2. The mapping

h ∈ W(p, q, x) �→ hh�

takes its values among the scalar multiples of I4.

Proof. Denote by Φ the said mapping, and note that

Φ(h1 + h2) = Φ(h1) + Φ(h2) + Tr(h1h
�
2) I4

for all h1, h2 in W(p, q, x), whereas Φ(λh) = λ2Φ(h) for all λ ∈ R and all
h ∈ W(p, q, x). Combining this with identity (2), one sees that it suffices
to prove that Φ takes every element of {I4, A,B,C} to a scalar multiple of
I4. However, this is already known for I4, A and B (which are respectively
mapped to I4, αI4 and βI4). Finally, CC� = ABB�A� = A(βI4)A� = αβI4.
�

Definition 4. The norm of W(p, q, x) is defined as the unique mapping

NW(p,q,x) : W(p, q, x) −→ R

such that

∀h ∈ W(p, q, x), NW(p,q,x)(h).I4 = hh� = h�h. (3)

The norm will simply be denoted by N when the four-tuple (p, q, x,R) is
obvious from the context.

Note that the commutation of h with h� is obvious from the formula
h� = Tr(h) I4 − h.

We can view the norm N as a quadratic mapping with polar form

bN : (h1, h2) ∈ W(p, q, x)2 �→ N(h1 + h2) − N(h1) − N(h2),
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so that

∀(h1, h2) ∈ W(p, q, x)2,

{
h1h

�
2 + h2h

�
1 = bN (h1, h2) I4

bN (h1, h2) = Tr(h1h
�
2).

Moreover, using the fact that h2h
�
2 is central in W(p, q, x) for all h2 ∈

W(p, q, x), we obtain that the norm is multiplicative, i.e.

∀(h1, h2) ∈ W(p, q, x)2, N(h1h2) = N(h1)N(h2).

In a certain way, every element of W(p, q, x) is R-quadratic: for all h ∈
W(p, q, x), we have indeed

h2 = h(Tr(h) I4 − h�) = Tr(h)h − hh� = Tr(h)h − N(h) I4.

In the prospect of studying (p, q)-differences and (p, q)-quotients, some special
cases will be interesting. For h = A − B, we have Tr(h) = Tr(A) − Tr(B) =
λ − μ and N(h) = N(A) + N(B) − bN (A,B) = α + β − x, leading to

(A − B)2 − (λ − μ)(A − B) = (x − α − β) I4. (4)

For h = AB−1, we have N(h) = N(A)N(B)−1 = αβ−1 and Tr(h) =
Tr(β−1AB�) = β−1bN (A,B) = β−1x, leading to

(AB−1)2 = −αβ−1I4 + β−1x (AB−1). (5)

We finish this section by giving an explicit formula for the norm of an
element of W(p, q, x). Let a, b, c, d in F. We can view the norm of M := aI4 +
bA+cB +dC as the entry of the matrix MM� at the (1, 1)-spot. Noting that
the first column of M� equals

[
a + λb + μc + (λμ − x)d −b −c −d

]T while
the first row of M equals

[
a −αb − xc − αμd −βc −λβc − αβd

]
, we obtain

N(aI4 + bA + cB + dC) = a
(
a + λb + μc + (λμ − x)d

)
+ b (αb + xc + αμd)

+c
(
βc + βλd

)
+ αβ d2. (6)

Remark 1. If one of the polynomials p and q splits over F, then N is isotropic,
i.e. it vanishes at some non-zero element of W(p, q, x). Indeed, if p has a root
z in F, then one checks that N(A− zI4) = 0 since, denoting by z′ the second
root of p, we see that

(A − zI4)(A − zI4)� = (A − zI4)(A� − zI4) = (A − zI4)(z′I4 − A)
= −p(A) = 0.

Likewise if q has a root y in F, then N(B − yI4) = 0.

2.4. A Deeper Study of the Algebra W(p, q, x): When R is a Field

Here, we assume that R is a field extension of F, and we denote it by L.
The norm of W(p, q, x)L is still denoted by N : it is a quadratic form on
the L-vector space W(p, q, x)L, and we will now analyze when this form is
degenerate.

Proposition 2.3. Consider an algebraic closure L of L. The quadratic form
N is degenerate if and only if there exist elements x1, x2, y1, y2 of L such that
p(t) = (t − x1)(t − x2), q(t) = (t − y1)(t − y2), and x = x1y1 + x2y2.
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Proof. Note from formula (6) that the matrix of bN in the basis (I4, A,B,C)
is unchanged when L is extended to L, and the invertibility of this matrix is
the same in M4(L) and in M4(L). Hence, it suffices to prove the statement
when L is already algebraically closed: in the rest of the proof we assume
that so is L.

Let us then split p(t) = (t − x1)(t − x2) and q(t) = (t − y1)(t − y2) in
L[t]. Then, take X := A − x1I4 and Y := B − y1I4 and note that XY =
AB−x1B−y1A+x1y1 I4. It is clear then that (I4,X, Y,XY ) is a basis of the
L-vector space W(p, q, x). Next, we see that N(X) = 0 and N(Y ) = 0 (see
Remark 1, at the end of Sect. 2.3), leading to N(XY ) = N(X)N(Y ) = 0.
Note finally that

bN (X,XY ) I4 = X(Y + Y �)X� = Tr(Y )N(X) I4 = 0

and

bN (Y,XY ) I4 = Y Y �X� + XY Y � = N(Y )Tr(X) I4 = 0.

It follows that the matrix of bN in the basis (I4,X, Y,XY ) reads
⎡

⎢
⎢
⎣

? ? ? bN (I4,XY )
? ? bN (X,Y ) 0
? bN (Y,X) 0 0

bN (XY, I4) 0 0 0

⎤

⎥
⎥
⎦ .

Therefore, bN is degenerate if and only if one of the four anti-diagonal ele-
ments vanishes, i.e. bN (I4,XY ) = 0 or bN (X,Y ) = 0. Next, we compute

bN (X,Y ) = bN (A,B) − y1bN (A, I4) − x1bN (I4, B) + x1y1bN (I4, I4)

= x − y1(x1 + x2) − x1(y1 + y2) + 2x1y1

= x − (x2y1 + x1y2).

Noting that Y � = Tr(Y ) I4 −Y = −(B−y2 I4), the same computation yields

bN (I4,XY ) = bN (Y �,X) = −bN (X,B − y2I4) = x1y1 + x2y2 − x.

We conclude that N is degenerate if and only if x equals x1y1 + x2y2 or
x1y2 + x2y1. The claimed result follows. �

Next, in the situation where N is non-degenerate, we further analyze
the structure of W(p, q, x)L. This restates Theorem 1.1:

Theorem 2.4. Assume that the quadratic form N is non-degenerate. Then,
W(p, q, x)L is a quaternion algebra over L and its norm of quaternion algebra
is N .

Proof. First of all, we note that the linear form Tr on W(p, q, x) is nonzero.
Indeed, if Tr = 0, we would find that char(F) = 2 and λ = μ = x = 0, but
then p(t) = (t − x1)2 and q(t) = (t − y1)2 for some scalars x1 and y1 in L,
leading to x = 0 = x1y1 + x1y1 and contradicting the non-degeneracy of N
(see Proposition 2.3).

Next, we consider the linear hyperplane H := Ker Tr of the L-vector
space W(p, q, x). The radical of the restriction of N to H has dimension at
most 1, whence we can find a 2-dimensional subspace P of H on which N
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is regular. It follows that ∀h ∈ P, h2 = −N(h) I4. Hence, the identity of P
yields a morphism ϕ : C(−N|P ) → W(p, q, x) of L-algebras whose domain
is the Clifford algebra C(−N|P ) over L, and whose range includes P . Yet,
since P has dimension 2 and N|P is non-degenerate, it is known (for fields
with characteristic not 2, see [8] p.528 Theorem 1.1.5, otherwise see [8] p.744
Theorem 2.2.3) that the L-algebra C(−N|P ) is simple. It follows that ϕ is
injective, and since dimL C(−N|P ) = 4 = dimL W(p, q, x), we deduce that ϕ
is an isomorphism. Hence, W(p, q, x) is a quaternion algebra.

Yet, in a quaternion algebra C over L, the set of all z ∈ C such that
z2 ∈ L1C splits uniquely as the union (L1C) ∪ H ′ for some linear hyperplane
H ′ of C whose elements are called the pure quaternions, and there is a unique
antiautomorphism h �→ h of the L-algebra C, called the conjugation, whose
restriction to H ′ is h �→ −h. Yet, in W(p, q, x), for every element h, we have
both hh� = Tr(h)h − h2 and hh� ∈ L1W(p,q,x), whence h2 ∈ L1W(p,q,x) if
and only if h ∈ L1W(p,q,x) or Tr(h) = 0. Hence, in the quaternion algebra
W(p, q, x), the pure quaternions are the elements of H. Since h� = −h for
all such quaternions, and h �→ h� is an antiautomorphism of W(p, q, x), we
conclude that h �→ h� is the conjugation of the quaternion algebra W(p, q, x).
Hence, Formula (3) entails that the norm of the quaternion algebra W(p, q, x)
is N . �

From the classification of quaternion algebras (for fields with character-
istic not 2, see [8] p.528 Theorem 1.1.5, otherwise see [8] p.744 Theorem 2.2.3),
we can conclude on the structure of W(p, q, x) when N is non-degenerate.

Corollary 2.5. Assume that the quadratic form NW(p,q,x) is non-degenerate.
If it is non-isotropic, then W(p, q, x)L is a skew field.
Otherwise, the L-algebra W(p, q, x)L is isomorphic to M2(L).

2.5. A Deeper Study of the Algebra W(p, q, x): When R is a Local Quotient
of F[t]

The following result generalizes the last statement of Corollary 2.5. This
restates Theorem 1.2:

Proposition 2.6. Let r be an irreducible polynomial of F[t], and n ∈ N
∗ be a

non-zero integer. Set R := F[t]/(rn) and let x be the class of some polynomial
of F[t] in R, and x be the class of the same polynomial in the residue field
L := F[t]/(r). Assume finally that the norm of W(p, q, x)L is non-degenerate
and isotropic. Then, the R-algebra W(p, q, x)R is isomorphic to M2(R).

Proof. Denote by ε the class of r in F[t]/(rn). With the construction from
Sect. 2.2, it is obvious that W(p, q, x)L is naturally isomorphic to the quo-
tient of W(p, q, x)R by the two-sided ideal εW(p, q, x)R, and we shall make
this identification throughout the proof. We will denote by N the norm of
W(p, q, x)L, while N still denotes the one of W(p, q, x)R.

By Corollary 2.5, we know that there exists an isomorphism

ϕ : W(p, q, x)L
�−→ M2(L)

of L-algebras. Moreover, such an isomorphism must be compatible with the
enriched structure of quaternion algebra (with its conjugation and norm).
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Yet, in M2(L) the conjugation is the classical adjunction M �→ Mad (where
Mad is the transpose of the comatrix of M), and the norm is the determinant.

Given an arbitrary commutative F-algebra M and an element u of it,
we say that a pair (X,Y ) of elements of W(p, q, u)M is adapted whenever it
satisfies the following two conditions:

(i) bN (I4,X) = bN (I4, Y ) = 0, N(X) = N(Y ) = 0 and bN (X,Y ) = −1.
(ii) (I4,X, Y,XY ) is a basis of the M-module W(p, q, u)M.

Denote by Ei,j the elementary matrix of M2(L) with zero entries ev-
erywhere except the entry at the (i, j)-spot, which equals 1. In the quater-
nion algebra M2(L), we see that I2E

ad
1,2 + E1,2I

ad
2 = −E1,2 + E1,2 = 0 and

likewise with E2,1 instead of E1,2. Moreover det(E1,2) = 0 = det(E2,1),
and finally E1,2E

ad
2,1 + E2,1E

ad
1,2 = −E1,2E2,1 − E2,1E1,2 = −I2. Finally,

(I2, E1,2, E2,1, E1,2E2,1) is a basis of the L-vector space M2(L). Hence, the
pair

(
ϕ−1(E1,2), ϕ−1(E2,1)

)
is adapted in W(p, q, x)L.

Assuming for a moment that we have an adapted pair (X,Y ) in the al-
gebra W(p, q, x)R, we claim that W(p, q, x)R is isomorphic to M2(R). Indeed,
first of all we note that bN (I4,X) = bN (I4, Y ) = 0 means that X� = −X
and Y � = −Y . Then, it follows from N(X) = N(Y ) = 0 that X2 = Y 2 = 0.
Finally, bN (X,Y ) = −1 reads XY � + Y X� = −I4, that is XY + Y X = I4.
Thus, condition (ii) yields an isomorphism ψ : W(p, q, x)R → M2(R) of R-
modules that maps I4,X, Y,XY respectively to I2, E1,2, E2,1, E1,1, and the
identities X2 = Y 2 = 0 and Y X = I4 − XY show that ψ is actually a ring
homomorphism.

It remains to prove that there exists an adapted pair in W(p, q, x)R. To
do so, we shall use Hensel’s method. Given M ∈ W(p, q, x)R, we denote by M
its class modulo ε, and we shall see M as an element of the ring W(p, q, x)L.
Let k ∈ [[1, n − 1]], and (Xk, Yk) ∈ W(p, q, x)2R be such that:

(a) bN (I4,Xk) = 0 mod εk, bN (I4, Yk) = 0 mod εk, N(Xk) = 0 mod εk,
N(Yk) = 0 mod εk and bN (Xk, Yk) = −1 mod εk.

(b) The family (I4,Xk, Yk,XkYk) is a basis of the L-vector space W(p, q, x)L.

Then, we construct a pair (Xk+1, Yk+1) ∈ W(p, q, x)R such that Xk+1 = Xk

mod εk, Yk+1 = Yk mod εk, and the pair (Xk+1, Yk+1) ∈ W(p, q, x)R satisfies
the above conditions at the step k +1. To do so, let Z ∈ W(p, q, x)R be arbi-
trary, and set Xk+1 := Xk + εkZ. We write bN (I4,Xk) = εkh1 and N(Xk) =
εkh2 for some h1, h2 in W(p, q, x)R. Then, bN (I4,Xk+1) = εk(h1 + bN (I4, Z))
and N(Xk+1) = εk(h2 + bN (Xk, Z)) mod εk+1. Since bN is non-degenerate
and I4,Xk are linearly independent over L, the linear forms bN (I4,−) and
bN (Xk,−) are independent, which shows that the linear system of equations

{
bN (I4, U) = −h1

bN (Xk, U) = −h2

has a solution U in W(p, q, x)L. Lifting U , we recover that Z ∈ W(p, q, x)R

can be chosen so as to have bN (I4, Z) = −h1 mod ε and bN (Xk, Z) = −h2

mod ε. We choose such a Z from now on, and hence we have bN (I4,Xk+1) = 0
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mod εk+1 and N(Xk+1) = 0 mod εk+1. Note that bN (Xk+1, Yk) = bN (Xk, Yk)
mod εk whence bN (Xk+1, Yk) = −1 mod εk.

Next, let T ∈ W(p, q, x)R and set Yk+1 := Yk + εkT . We find three
elements h3, h4 and h5 of W(p, q, x)R such that bN (I4, Yk) = εkh3, N(Yk) =
εkh4 and bN (Xk+1, Yk) = −1+εkh5. As before, the linear system of equations

⎧
⎪⎨

⎪⎩

bN (I4, V ) = −h3

bN (Yk, V ) = −h4

bN (Xk+1, V ) = −h5

has a solution V in W(p, q, x)L, and hence T can be chosen as a representative
of it, in which case we find bN (I4, Yk+1) = 0 mod εk+1, N(Yk+1) = 0 mod
εk+1 and bN (Xk+1, Yk+1) = −1 mod εk+1. Hence, condition (a) is satisfied
at the rank k + 1 by (Xk+1, Yk+1). On the other hand, since condition (b)
is satisfied at the rank k by (Xk, Yk), while Xk and Xk+1 have the same
reduction modulo ε, and Yk and Yk+1 have the same reduction modulo ε, we
obtain that condition (b) is also satisfied by (Xk+1, Yk+1).

As we have shown that there exists an adapted pair in W(p, q, x)L, this
construction yields, by induction, a pair (X,Y ) ∈ W(p, q, x)2R that satisfies
condition (i) and for which (I4,X, Y ,XY ) is a basis of the L-vector space
W(p, q, x)L. Since R is a local ring with residue class field L and W(p, q, x)R

is a free R-module with dimension 4, this shows that (I4,X, Y,XY ) is a
basis of the R-module W(p, q, x)R. Therefore, (X,Y ) is an adapted pair in
W(p, q, x)R, and a previous remark helps us conclude that the R-algebra
W(p, q, x)R is isomorphic to M2(R). �

Having the above results, we are now ready to tackle the two decompo-
sition issues that were raised in Sects. 1.3 and 1.4 .

3. The Difference of Two Quadratic Matrices

3.1. The Basic Splitting

Let u be an endomorphism of a finite-dimensional vector space V over F. Let
p and q be monic polynomials with degree 2 over F, which we write

p(t) = t2 − λt + α and q(t) = t2 − μt + β.

Let us set

δ := λ − μ = tr(p) − tr(q).

Let us fix an indeterminate t, and consider the polynomials p(x) and q(x− t),
seen as monic polynomials with coefficients in the ring F[t] with respect to the
indeterminate x. Hence, we can consider their resultant resF[t]

(
p(x), q(x−t)

)
,

which is an element of the ring F[t]. The d-fundamental polynomial of the
pair (p, q) is defined as this resultant

Fp,q(t) := resF[t]

(
p(x), q(x − t)

) ∈ F[t],
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which is a polynomial of degree 4. More explicitly, if we split p(z) = (z −
x1)(z − x2) and q(z) = (z − y1)(z − y2) in F[z], then

Fp,q(t) =
∏

1≤i,j≤2

(
t − (xi − yj)

)
= p(t + y1) p(t + y2) = q(x1 − t) q(x2 − t).

We set

Ep,q(u) :=
⋃

n∈N

Ker Fp,q(u)n and Rp,q(u) :=
⋂

n∈N

Im Fp,q(u)n.

Hence, V = Ep,q(u)⊕Rp,q(u), and the endomorphism u stabilizes both linear
subspaces Ep,q(u) and Rp,q(u). The endomorphism u is called d-exceptional
with respect to (p, q) (respectively, d-regular with respect to (p, q)) whenever
Ep,q(u) = V (respectively, Rp,q(u) = V ). In other words, u is d-exceptional
(respectively, d-regular) with respect to (p, q) if and only all the eigenvalues
of u in F belong to Root(p) − Root(q) (respectively, no eigenvalue of u in F

belongs to Root(p) − Root(q)).
The endomorphism of Ep,q(u) (respectively, of Rp,q(u)) induced by u

is always d-exceptional (respectively, always d-regular) with respect to (p, q)
and we call it the d-exceptional part (respectively, the d-regular part) of u
with respect to (p, q).

Next, we expand

Fp,q(t) =
(
t − (x1 − y1)

) (
t − (x2 − y2)

) (
t − (x1 − y2)

) (
t − (x2 − y1)

)
.

Noting that
(
t − (x1 − y1)

) (
t − (x2 − y2)

)
= t2 − δt + (x1 − y1)(x2 − y2)

and
(
t − (x1 − y2)

) (
t − (x2 − y1)

)
= t2 − δt + (x1 − y2)(x2 − y1),

we find that

Fp,q(t) = Λp,q(t2 − δt), (7)

where

Λp,q(t) :=
(
t + (x1 − y1)(x2 − y2)

) (
t + (x2 − y1)(x1 − y2)

)
(8)

= t2 +
(
(x1 − y1)(x2 − y2) + (x2 − y1)(x1 − y2)

)
t + Fp,q(0). (9)

Finally,

(x1−y1)(x2 − y2) + (x2 − y1)(x1 − y2)=2 (x1x2 + y1y2)−(x1 + x2)(y1 + y2),

whence

Λp,q(t) = t2 +
(
2(α + β) − λμ

)
t + Fp,q(0) ∈ F[t],

and

Fp,q(u) = Λp,q(u2 − δu).
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Remark 2. Let A be an F-algebra, and let a, b be elements of A such that
p(a) = q(b) = 0. Denote by a� the p-conjugate of a and by b� the q-conjugate
of b. Then,

(a − b)2 = (a − b)(δ1A − a� + b�) = δ (a − b) + (ab� + ba�) − aa� − bb�,

and hence

(a − b)2 − δ(a − b) = ab� + ba� − (α + β) 1A. (10)

Our first basic result follows:

Proposition 3.1. The endomorphism u is a (p, q)-difference if and only if both
its d-exceptional part and its d-regular part are (p, q)-differences.

The proof of this result will use the following corollary of the Basic
Commutation Lemma (Lemma 1.3):

Lemma 3.2. (Commutation Lemma). Let p and q be monic polynomials of
F[t] with degree 2, and let a and b be endomorphisms of a vector space V
such that p(a) = q(b) = 0. Then, both a and b commute with (a − b)2 −
(tr(p) − tr(q))(a − b).

Proof. This follows from the Basic Commutation Lemma and from identity
(10). �

Proof of Proposition 3.1. The “if” part is obvious. Conversely, assume that u
is a (p, q)-difference, and split u = a− b where a and b are endomorphisms of
V such that p(a) = 0 and q(b) = 0. By the Commutation Lemma, both a and
b commute with v := u2−δu. Hence, a and b commute with Λp,q(v) = Fp,q(u),
and it follows that both stabilize Ep,q(u) and Rp,q(u). Denote by a′ and b′

(respectively, by a′′ and b′′) the endomorphisms of Ep,q(u) (respectively, of
Rp,q(u)) induced by a and b. Then, the d-exceptional part of u is a′ − b′,
and the d-regular part of u is a′′ − b′′. Obviously, p annihilates a′ and a′′,
and q annihilates b′ and b′′, which yields that both the d-exceptional and the
d-regular part of u are (p, q)-differences. �

From there, it is clear that classifying (p, q)-differences amounts to clas-
sifying the d-exceptional ones and the d-regular ones. The easier classification
is the latter: as we shall see, it involves little discussion on the specific poly-
nomials p and q under consideration (whether they are split or not over F,
separable or not over F, etc). In contrast, the classification of d-exceptional
(p, q)-differences involves a tedious case-by-case study which will not be car-
ried out in the present article: we will state the results for reference purpose,
but we will not prove them.

The following result will be useful for the study of the regular case:

Proposition 3.3. Let r ∈ F[t] be irreducible. The following conditions are
equivalent:

(i) No root of r(t2 − δt) belongs to Root(p) − Root(q).
(ii) For L := F[t]/(r) and y the class of t in L, the norm of W(p, q, y+α+β)L

is nondegenerate.
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Proof. Note first by (8) that the roots of Λp,q in F are −α − β + x1y1 + x2y2

and −α − β + x1y2 + x2y1.
Assume that some root of r(t2−δt) belongs to Root(p)−Root(q), choose

such a root and denote it by z. Then, z2 − δz is a common root of r with
Λp,q. Since r is irreducible, it follows that r divides Λp,q, and hence y is a
root of Λp,q. Consequently, y + α + β equals x1y1 + x2y2 or x1y2 + x2y1. By
Proposition 2.3, this yields that the norm of W(p, q, y+α+β)L is degenerate.

Conversely, assume that the norm of W(p, q, y + α + β)L is degenerate.
Then, y + α + β equals x1y1 + x2y2 or x1y2 + x2y1, and hence y is one of the
roots of Λp,q. We can choose z ∈ F such that z2 − δz = y, and it follows from
(7) that Fp,q(z) = Λp,q(y) = 0, to the effect that z ∈ Root(p) − Root(q). We
conclude that r(t2 − δt) has a root in Root(p) − Root(q) (namely, z). �

3.2. Statement of the Results

We are now ready to state our results. We shall frame them in terms of
direct-sum decomposability.

Let u be an endomorphism of a nonzero finite-dimensional vector space
V . Assume that V splits into V1 ⊕ V2, and that each linear subspace V1 and
V2 is stable under u and nonzero, and both induced endomorphisms u|V1

and u|V2 are (p, q)-differences. Then, u is obviously a (p, q)-difference. In the
event when such a decomposition exists we shall say that u is a decomposable
(p, q)-difference, otherwise and if u is a (p, q)-difference, we shall say that u
is an indecomposable (p, q)-difference. Obviously, if V is nonzero then every
(p, q)-difference in End(V ) is the direct sum of indecomposable ones. Hence,
it suffices to describe the indecomposable (p, q)-differences.

Moreover, if a (p, q)-difference is indecomposable then by Proposition 3.1
it is either d-regular or d-exceptional.

In each one of the following tables, we give a set of matrices. Each ma-
trix represents an indecomposable (p, q)-difference, and every indecomposable
(p, q)-difference in End(V ) is represented by one of those matrices, in some
basis. Throughout the classification, we set

δ := tr p − tr q.

We start with d-regular (p, q)-differences. In that situation the classifi-
cation is rather simple (Table 1).

Remember, by Remark 1, that the norm of the quaternion algebra
W(p, q, x)R is isotropic whenever one of p and q splits in F[t].

Next, we tackle the indecomposable d-exceptional (p, q)-differences. We
give these results only for future reference: they will not be proved here, but
in a future article. We start with the known classifications, in which both
p and q are split over F. The three situations are described in the following
tables (see [4] for Table 2, [9] for Table 3, and [10] for Table 4).

Now, we state new results on the d-exceptional (p, q)-differences. We
start with the case where p is irreducible but q is split. There are two cases
to consider, whether the two polynomials obtained by translating p along the
roots of q are equal or not (Tables 5, 6).
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Table 1. The classification of indecomposable d-regular
(p, q)-differences

Table 2. The classification of indecomposable d-
exceptional (p, q)-differences: When both p and q are
split with a double root

Representing matrix Associated data

C
(
(t − x)n

)
n ∈ N

∗, x ∈ Root(p) − Root(q)

Table 3. The classification of indecomposable d-
exceptional (p, q)-differences: When both p and q are
split with simple roots

Table 4. The classification of indecomposable d-
exceptional (p, q)-differences: When one of p and q is
split with a double root and the other one is split with simple
roots

Representing matrix Associated data

C
(
(t − x)n

) ⊕ C
(
(t − δ + x)n

)
n ∈ N

∗, x ∈ Root(p) − Root(q)

C
(
(t − x)n+1

) ⊕ C
(
(t − δ + x)n

)
n ∈ N, x ∈ Root(p) − Root(q)

C
(
(t − x)n+2

) ⊕ C
(
(t − δ + x)n

)
n ∈ N, x ∈ Root(p) − Root(q)
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Table 5. The classification of indecomposable d-
exceptional (p, q)-differences: When p is irreducible,
q = (t − y1)(t − y2) for some y1, y2 in F, and
p(t + y1) = p(t + y2)

Representing matrix Associated data

C
(
p(t + y)n

)
n ∈ N

∗, y ∈ Root(q)

Table 6. The classification of indecomposable d-
exceptional (p, q)-differences: When p is irreducible,
q = (t − y1)(t − y2) for some y1, y2 in F, and
p(t + y1) �= p(t + y2)

Representing matrix Associated data

C
(
p(t + y1)n

) ⊕ C
(
p(t + y2)n

)
n ∈ N

∗

C
(
p(t + y1)n+1

) ⊕ C
(
p(t + y2)n

)
n ∈ N

C
(
p(t + y2)n+1

) ⊕ C
(
p(t + y1)n

)
n ∈ N

Table 7. The classification of indecomposable d-
exceptional (p, q)-differences: When p and q are irreducible
with the same splitting field L

Note that there are cases where p(t+ y1) = p(t+ y2) even with y1 �= y2.
Indeed, it is not difficult to see that p(t + y1) = p(t + y2) if and only if either
one of the following conditions holds:

• y1 = y2

• F has characteristic 2 and tr p = tr q.

Next, we consider the situation where p and q are both irreducible in
F[t], with the same splitting field (Table 7).
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Table 8. The classification of indecomposable d-
exceptional (p, q)-differences: When p and q are irreducible
with distinct splitting fields and distinct discriminants

Representing matrix Associated data

C(Fn
p,q) ⊕ C(Fn

p,q) n ∈ N
∗

C(Fn+1
p,q ) ⊕ C(Fn

p,q) n ∈ N

Table 9. The classification of indecomposable d-
exceptional (p, q)-differences: When p and q are irreducible
with distinct splitting fields and the same discriminant

We finish with the case where p and q are both irreducible, with distinct
splitting fields. There are two subcases to consider, whether p and q have the
same discriminant or not. Note that the case where p and q have the same
discriminant and distinct splitting fields can occur only if F has characteristic
2 (Tables 8, 9).

3.3. An Example: The Difference of Two Quarter Turns Over the Reals

Here, we consider the case where F is the field R of real numbers, and p = q =
t2+1. In other words, we determine the endomorphisms of a finite-dimensional
real vector space V that split into the difference of two endomorphisms a and
b such that a2 = b2 = −idV .

Here, Root(p) − Root(q) = {2i,−2i, 0} and δ = 0. Let us consider the
indecomposable (p, q)-differences. Let r ∈ R[t] be an irreducible polynomial
such that r(t2 − δt) = r(t2) has no root in Root(p) − Root(q). We set L :=
R[t]/(r) and we note that the class t of t in L is a root of r. If r has degree
2, then L is isomorphic to C, which is algebraically closed, and it follows
that the norm of the quaternion algebra W(p, q, t+2)L is isotropic (as is any
quadratic form with dimension at least 2 over an algebraically closed field).

Assume now that r has degree 1, and denote by x its root. Since r(t2)
has no root in Root(p)−Root(q), we see that x �∈ {−4, 0}. Using formula (6)
(with here α = β = 1 and λ = μ = 0), we find that the norm of W(p, q, x+2)R
reads

aI4 + bA + cB + dC �→ a2 + b2 + c2 + d2 + (x + 2)bc − (x + 2)ad,

and hence it is equivalent to the orthogonal direct sum of two copies of the
quadratic form

Q : (a, b) �→ a2 + (x + 2)ab + b2.
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Table 10. The classification of indecomposable (t2 +1, t2 +
1)-differences over R

Representing matrix Associated data

C
(
(t2 − x)n

) ⊕ C
(
(t2 − x)n

)
n ∈ N

∗, x ∈ (−4, 0)

C
(
(t2 − x)n

)
n ∈ N

∗, x ∈ (−∞,−4) ∪ (0,+∞)

C
(
(t4 + αt2 + β)n

)
n ∈ N

∗, (α, β) ∈ R
2 with α2 < 4β

C(tn) ⊕ C(tn) n ∈ N
∗

C((t2 + 4)n) ⊕ C((t2 + 4)n) n ∈ N
∗

C((t2 + 4)n+1) ⊕ C((t2 + 4)n) n ∈ N

We have Q(1, 0) > 0, and the discriminant of Q equals (x+2)2−4
4 . Therefore,

either |x + 2| < 2 and hence Q is positive definite, or |x + 2| > 2 and Q is
isotropic. It follows that if x ∈ (−4, 0), then the norm of W(p, q, x + 2)R is
non-isotropic, otherwise it is isotropic.

Hence, Table 10 gives a complete list of indecomposable (t2 + 1, t2 + 1)-
differences, where the d-exceptional ones (given in the last three rows) are
obtained thanks to Table 7.

3.4. The Classification of d-Regular (p, q)-Differences

We start with a partial result on d-regular (p, q)-differences.

Proposition 3.4. Let p and q be monic polynomials with degree 2 over F, and
set δ := tr p − tr q. Let u be an endomorphism of a finite-dimensional vector
space V and assume that u is a d-regular (p, q)-difference. Then:

(a) Each invariant factor of u has the form r(t2 − δt) for some monic poly-
nomial r.

(b) In some basis of V , the endomorphism u is represented by a block-
diagonal matrix in which every diagonal block has the form C

(
rn(t2 −

δt)
)

for some irreducible monic polynomial r and some positive integer
n. We shall call such a matrix a (p, q)-reduced canonical form of u.

It can easily be shown that a (p, q)-reduced canonical form is unique up
to a permutation of the diagonal blocks.

Before we prove Proposition 3.4, we need the corresponding special case
where both polynomials p and q are split over F: this result can be obtained
by collecting various results from [4,9,10], but we give a synthetic proof here
(that uses the same technique as in those articles).

Proposition 3.5. Let p and q be split monic polynomials with degree 2 over
F and set δ := tr p − tr q. Let u be an endomorphism of a finite-dimensional
vector space V and assume that u is a d-regular (p, q)-difference. Then, each
invariant factor of u is a polynomial in t2 − δt.
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The proof requires the following basic lemma, which is proved in [9]
(see Lemma 14 there, in which the assumption that α and β be nonzero is
unnecessary):

Lemma 3.6. Let r ∈ F[t] be a monic polynomial with degree n, and let x and
y be scalars. Then,

[
xIn C(r)
In yIn

]

� C
(
r((t − x)(t − y))

)

Corollary 3.7. Let N be an arbitrary matrix of Mn(F), and let x and y be
scalars. Then, the invariant factors of

K(N) :=
[
xIn N
In yIn

]

are polynomials in (t − x)(t − y).

Proof of Corollary 3.7. We note that the similarity class of K(N) depends
only on that of N : indeed, for all P ∈ GLn(F), the invertible matrix Q :=
P ⊕ P satisfies QK(N)Q−1 = K(PNP−1). Next, if N splits into N = N1 ⊕
· · · ⊕ Nr for some square matrices N1, . . . , Nr then, by permuting the basis
vectors, we gather that K(N) � K(N1) ⊕ · · · ⊕ K(Nr). Considering the
rational canonical form N � C(r1) ⊕ · · · ⊕ C(rk), we obtain

K(N) � C
(
r1

(
(t − x)(t − y)

)) ⊕ · · · ⊕ C
(
rk

(
(t − x)(t − y)

))
.

Moreover, the polynomials r1

(
(t − x)(t − y)

)
, . . . , rk

(
(t − x)(t − y)

)
are all

monic and ri+1

(
(t − x)(t − y)

)
divides ri

(
(t − x)(t − y)

)
for all i ∈ [[1, k − 1]].

Hence, we have found the invariant factors of K(N), which proves the claimed
result. �

Proof of Proposition 3.5. Let a and b be endomorphisms of V such that
p(a) = q(b) = 0 and u = a − b. Denote by x (respectively, by y) an eigen-
value of a (respectively, of b) with maximal geometric multiplicity (the geo-
metric multiplicity of an eigenvalue is the dimension of the corresponding
eigenspace), and split p(t) = (t − x)(t − x′) and q(t) = (t − y)(t − y′). We
claim that

dim Ker(a − x idV ) ≥ n

2
·

Indeed, since p(a) = 0 we have Im(a − x′ idV ) ⊂ Ker(a − x idV ), which yields
dim Ker(a − x idV ) + dim Ker(a − x′ idV ) ≥ n. Since dim Ker(a − x idV ) ≥
dim Ker(a − x′ idV ), the claimed inequality follows.

Likewise, dim Ker(b − y idV ) ≥ n
2 · Since u is d-regular with respect to

(p, q), any eigenspace of a is linearly disjoint from any eigenspace of b. In
particular, Ker(a−xidV )∩Ker(b− y idV ) = {0}. It follows that dim Ker(a−
x idV ) = n

2 = dim Ker(b− y idV ), n is even and V = Ker(a−xidV )⊕Ker(b−
y idV ). Next, we deduce that n

2 = dim Im(a−xidV ) and dim Ker(a−x′idV ) ≤
n
2 by choice of x. However, Im(a−xidV ) ⊂ Ker(a−x′idV ), and hence it follows
that Im(a−xidV ) = Ker(a−x′idV ). Likewise, Im(b−yidV ) = Ker(b−y′idV ),
and it follows that x′ has geometric multiplicity n

2 with respect to a, and
ditto for y′ with respect to b. In turn, this shows that Im(a − x′idV ) =
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Ker(a − xidV ) and Im(b − y′idV ) = Ker(b − yidV ), and any eigenspace of a
is a complementary subspace of any eigenspace of b.

Let us write s := n
2 and choose a basis (e1, . . . , es) of Ker(b − yidV ).

Then, we have V = Ker(b − yidV ) ⊕ Ker(a − xidV ), whence (es+1, . . . , en) :=
((a−xidV )(e1), . . . , (a−xidV )(es)) is a basis of Im(a−xidV ) = Ker(a−x′idV ).
Since Ker(b − yidV ) ⊕ Ker(a − x′idV ) = V , we deduce that B := (e1, . . . , en)
is a basis of V . Obviously

MB(a) =
[
xIs 0
In x′Is

]

.

On the other hand, since Ker(b − yidV ) = Im(b − y′idV ), we find

MB(b) =
[
yIs N
0 y′Is

]

for some matrix N ∈ Ms(F). Hence,

MB(u) =
[
(x − y)Is −N

In (x′ − y′)Is

]

.

Since (t− (x− y))(t− (x′ − y′)) = t2 − δt+(x− y)(x′ − y′), we conclude from
Lemma 3.6 that all the invariant factors of u are polynomials in t2 − δt. �

Proof of Proposition 3.4. We start with point (a). Let us extend the field
of scalars to F. The resulting extension u of u is still a (p, q)-difference.
Hence, by Corollary 3.7 its invariant factors are p1(t2 − δt), . . . , pr(t2 − δt)
for some monic polynomials p1, . . . , pr of F[t] such that pi+1 divides pi for
all i ∈ [[1, r − 1]]. Yet, the invariant factors of u are known to be the ones
of u. Finally, given a monic polynomial h ∈ F[t] such that h(t2 − δt) ∈
F[t], we obtain by downward induction that all the coefficients of h be-
long to F: indeed, if we write h(t) = tN − ∑N−1

i=0 αi ti and we know that
αN−1, . . . , αk+1 all belong to F for some k ∈ [[0, N − 1]], then

∑k
i=0 αi

(t2 − δt)i = (t2 − δt)N − ∑N−1
i=k+1 αi (t2 − δt)i − h(t2 − δt) belongs to F[t], and

by considering the coefficient on t2k, we gather that αk ∈ F. It follows that
p1, . . . , pr all belong to F[t], which completes the proof of statement (a).

From point (a), we easily derive point (b): indeed, consider an invariant
factor r(t2 − δt) of u for some monic polynomial r ∈ F[t]. Then, we split
r = rn1

1 · · · rnk

k where r1, . . . , rk are pairwise distinct irreducible monic poly-
nomials of F[t], and n1, . . . , nk are positive integers. Then, the polynomials
rn1
1 (t2 − δt), . . . , rnk

k (t2 − δt) are pairwise coprime and their product equals
r(t2 − δt), whence

C
(
r(t2 − δt)

) � C
(
rn1
1 (t2 − δt)

) ⊕ · · · ⊕ C
(
rnk

k (t2 − δt)
)
.

Using point (a), we deduce that statement (b) holds true. �

We are now ready to complete our study of d-regular (p, q)-differences.
An additional definition will be useful in this prospect:

Definition 5. Let p and q be monic polynomials with degree 2 in F[t]. Set
δ := tr(p) − tr(q). Let r be an irreducible monic polynomial of F[t], and set
L := F[t]/(r). Denote by t the class of t in L. We say that r has:
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• Type 1 with respect to (p, q) if r(t2−δt) has no root in Root(p)−Root(q)
and the norm of the quaternion algebra W(

p, q, t + p(0) + q(0)
)
L

is
isotropic.

• Type 2 with respect to (p, q) if r(t2−δt) has no root in Root(p)−Root(q)
and the norm of the quaternion algebra W(

p, q, t + p(0) + q(0)
)
L

is
nonisotropic.

First of all, we use the structural results on W(p, q, x)R to obtain various
(p, q)-differences. Our first result is actually not restricted to d-regular (p, q)-
differences and will be used in a subsequent article.

Lemma 3.8. (Duplication Lemma). Let p and q be monic polynomials of F[t]
with degree 2, and set δ := tr p−tr q. Let r be a nonconstant monic polynomial
of F[t]. Then, C

(
r(t2 − δt)

) ⊕ C
(
r(t2 − δt)

)
is a (p, q)-difference.

Proof. We work with the commutative F-algebra R := F[C(r)], which is
isomorphic to the quotient ring F[t]/(r), and with the element x :=

(
p(0) +

q(0)
)
1R+C(r). Using q(B) = 0, it is easily seen that B := (I2, A−B,B, (A−

B)B) is still a basis of the free R-module W(p, q, x). Then, we consider the
endomorphisms a : X �→ AX and b : X �→ BX of W(p, q, x). Since p(A) = 0
and q(B) = 0, we get p(a) = 0 and q(b) = 0. Denote by A′ and B′ the
respective matrices of a and b in B. Using (A−B)2 = δ(A−B)+

(
x−p(0)−

q(0)
)
I4, we get that

A′ − B′ =

⎡

⎢
⎢
⎣

0 C(r) 0 0
1R δ 1R 0 0
0 0 0 C(r)
0 0 1R δ 1R

⎤

⎥
⎥
⎦ ,

whence the matrix A′ − B′ of M4d(F) (where d denotes the degree of r) is
similar to C

(
r(t(t− δ))

)⊕C
(
r(t(t− δ))

)
by Lemma 3.6. Since p(A′) = 0 and

q(B′) = 0, the conclusion follows. �

Our next result deals with certain companion matrices that are associ-
ated with irreducible polynomials of Type 1.

Lemma 3.9. Let p and q be monic polynomials of F[t] with degree 2, and set
δ := tr p−tr q. Let r be an irreducible monic polynomial of F[t] of Type 1 with
respect to (p, q). Then, for all n ∈ N

∗, the companion matrix C
(
rn(t2 − δt)

)

is a (p, q)-difference.

Proof. Denote by d the degree of r. Let n ∈ N
∗. Set R := F[C(rn)], seen as a

subalgebra of Mnd(F), and set x := C(rn) +
(
p(0) + q(0)

)
Ind. The F-algebra

R is isomorphic to F[t]/(rn). By Proposition 2.6, it follows that W(p, q, x)R is
isomorphic to M2(R). We choose an isomorphism ϕ : W(p, q, x)R

�−→ M2(R),
and we set a := ϕ(A) and b := ϕ(B). Note that p(a) = q(b) = 0, whereas
c := a − b satisfies c(c − δI2) =

(
x − (p(0) + q(0))1R

)
I2.

Denote by L the residue field of R. The mapping X ∈ R2 �→ cX ∈ R2

yields an endomorphism c of L
2. Yet, c cannot be a scalar multiple of the

identity (otherwise, (I2, a, b, ab) would not be a basis of the R-module M2(R)).
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Hence, we find a vector e of L
2 such that

(
e, c(e)

)
is a basis of L

2. Lifting
e to a vector E of R2, we deduce that (E, cE) is a basis of the R-module
R2. Hence, composing ϕ with an additional interior automorphism of the
R-algebra M2(R), we see that no generality is lost in assuming that the first

column of c reads
[
0R

1R

]

. Then, c(c − δI2) =
(
x − (p(0) + q(0))1R

)
I2 yields

c =
[

0 C(rn)
1R δ1R

]

.

It follows that the matrix
[

0 C(rn)
Ind δInd

]

of M2nd(F) is a (p, q)-difference. By

Lemma 3.6, this matrix is similar to C
(
rn(t2 − δt)

)
, which completes the

proof. �
Combining Lemma 3.8 with Lemma 3.9, we conclude that the implica-

tion (iii) ⇒ (i) in the following theorem holds true.

Theorem 3.10. (Classification of d-regular (p, q)-differences) Let p and q be
monic polynomials of degree 2 in F[t]. Let u be an endomorphism of a finite-
dimensional vector space V over F. Assume that u is d-regular with respect
to (p, q) and set δ := tr(p) − tr(q). The following conditions are equivalent:

(i) The endomorphism u is a (p, q)-difference.
(ii) The invariant factors of u read p1(t2 − δt), . . . , p2n−1(t2 − δt), p2n(t2 −

δt), . . . where, for every irreducible monic polynomial r ∈ F[t] that has
Type 2 with respect to (p, q) and every positive integer n the polynomials
p2n−1 and p2n have the same valuation with respect to r.

(iii) There is a basis of V in which u is represented by a block-diagonal
matrix in which every diagonal block equals either C

(
rn(t2 − δt)

)
for

some irreducible monic polynomial r ∈ F[t] of Type 1 with respect to
(p, q) and some n ∈ N

∗, or C
(
rn(t2 − δt)

) ⊕ C
(
rn(t2 − δt)

)
for some

irreducible monic polynomial r ∈ F[t] and some n ∈ N
∗.

Note that this result, combined with the observation that C
(
rn(t2−δt)

)

is d-regular with respect to (p, q) for every monic polynomial r ∈ F[t] such
that r(t2 − δt) has no root in Root(p) − Root(q), yields the classification of
indecomposable d-regular (p, q)-differences as given in Table 1. Moreover, by
using the method from the last part of the proof of Proposition 3.4, it is
easily seen that conditions (ii) and (iii) are equivalent.

In order to conclude on Theorem 3.10, it only remains to prove that
condition (i) implies condition (ii), which we shall now do thanks to the
structural results on W(p, q, x)R.

Proof. (Proof of the implication (i) ⇒ (ii)) Let us assume that u is a (p, q)-
difference. Let r be an irreducible monic polynomial of F[t], with Type 2 with
respect to (p, q). Let n ∈ N

∗. All we need is to prove that, in the canonical
form of u from Proposition 3.4, the number m of diagonal blocks that equal
C

(
rn(t2 − δt)

)
is even.

Let us choose endomorphisms a and b of V such that u = a−b and p(a) =
q(b) = 0. By the Commutation Lemma (Lemma 3.2), we know that a and b
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commute with v := u2 − δu, and hence all three endomorphisms a, b, u yield
endomorphisms a, b and u of the vector space E := Ker

(
rn(v)

)
/Ker

(
rn−1(v)

)

such that u = a − b, and r annihilates v := u2 − δu. Again, a and b commute
with v, and hence they are endomorphisms of the F[v]-module E. Since r is
irreducible, we have F[v] � F[t]/(r), and L := F[v] is a field. We shall write
y := v, which we see as an element of L.

Besides, 2m deg(r) is the dimension of the F-vector space E, and hence
2m is the dimension of the L-vector space E.

Using the structure of L-vector space, we can write u2 −δu = y idE , and
hence a and b yield a representation of the L-algebra W(

p, q, y+p(0)+q(0)
)
L

on the L-vector space E. By Corollary 2.5, the algebra W(
p, q, y + p(0) +

q(0)
)
L

is a 4-dimensional skew-field over L, whence the L-vector space E is
isomorphic to a power of W(

p, q, y + p(0) + q(0)
)
L
, and it follows that its

dimension over L is a multiple of 4. Therefore, m is a multiple of 2, which
completes the proof. �

The classification of d-regular (p, q)-differences is now completed.

4. The Quotient of Two Invertible Quadratic Matrices

4.1. The Basic Splitting

Let u be an automorphism of a finite-dimensional vector space V over F. Let
p and q be monic polynomials with degree 2 over F, with p(0)q(0) �= 0, which
we write

p(t) = t2 − λt + α and q(t) = t2 − μt + β.

Taking an indeterminate x independent of t, we can view p(x) and β−1t2q(x/t)
as monic polynomials of degree 2 with coefficients in the ring F[t], with re-
spect to the indeterminate x. We can therefore define the q-fundamental
polynomial as their resultant

Gp,q(t) := resF[t]

(
p(x), q(0)−1t2q(x/t)

) ∈ F[t],

which is a monic polynomial of degree 4. More explicitly, if we split p(t) =
(t − x1)(t − x2) and q(t) = (t − y1)(t − y2) in F[t], then

Gp,q(t) =
∏

1≤i,j≤2

(
t − xiy

−1
j

)
= β−2p(y1t) p(y2t) = β−2 t4 q(x1t

−1) q(x2t
−1).

We set

E′
p,q(u) :=

⋃

n∈N

Ker Gp,q(u)n and R′
p,q(u) :=

⋂

n∈N

Im Gp,q(u)n.

Hence, V = E′
p,q(u)⊕R′

p,q(u), and the endomorphism u stabilizes both linear
subspaces E′

p,q(u) and R′
p,q(u). The endomorphism u is called q-exceptional

with respect to (p, q) (respectively, q-regular with respect to (p, q)) whenever
E′

p,q(u) = V (respectively, R′
p,q(u) = V ). In other words, u is q-exceptional

(respectively, q-regular) with respect to (p, q) if and only if all the eigenvalues
of u in F belong to Root(p)Root(q)−1 (respectively, no eigenvalue of u in F

belongs to Root(p)Root(q)−1).
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The endomorphism of E′
p,q(u) (respectively, of R′

p,q(u)) induced by u is
always q-exceptional (respectively, always regular) with respect to (p, q) and
we call it the q-exceptional part (respectively, the q-regular part) of u with
respect to (p, q).

Next, note that β2Gp,q(t) =
∏

1≤i,j≤2

(yjt − xi), and

(y1t − x1)(y2t − x2) = βt2 − (x1y2 + x2y1) t + α

= t
(
βt + αt−1 − (x1y2 + x2y1)

)

and likewise

(y1t − x2)(y2t − x1) = t
(
βt + αt−1 − (x1y1 + x2y2)

)
.

Hence,

β2Gp,q(t) = t2 Θp,q(βt + αt−1)

where

Θp,q :=
(
t − (x1y1 + x2y2)

)(
t − (x1y2 + x2y1)

)
.

We compute that

Θp,q = t2 − λμt + (x1y2 + x2y1)(x1y1 + x2y2)

and

(x1y2 + x2y1)(x1y1 + x2y2) = x1x2(y2
1 + y2

2) + y1y2(x2
1 + x2

2)
= α(μ2 − 2β) + β(λ2 − 2α).

We conclude that

Θp,q = t2 − λμt + (αμ2 + βλ2 − 4αβ) ∈ F[t]

and

β2Gp,q(u) = u2 Θp,q(βu + αu−1).

Remark 3. Let A be an F-algebra, and let a, b be elements of A such that
p(a) = q(b) = 0. Denote by a� the p-conjugate of a and by b� the q-conjugate
of b. Then, b� = β b−1 and a� = α a−1, whence

β ab−1 + α (ab−1)−1 = β ab−1 + α ba−1 = ab� + ba�.

Our first basic result follows:

Proposition 4.1. The endomorphism u is a (p, q)-quotient if and only if both
its q-exceptional part and its q-regular part are (p, q)-quotients.

The proof of this result will use the following basic lemma, which is a
straightforward corollary to the Basic Commutation Lemma (Lemma 1.3):

Lemma 4.2. (Commutation Lemma). Let a and b be endomorphisms of a
vector space V such that p(a) = q(b) = 0. Then, both a and b commute with
β (ab−1) + α (ab−1)−1.

Now, we are ready to prove Proposition 4.1.
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Proof of Proposition 4.1. The “if” part is obvious. Conversely, assume that
u is a (p, q)-quotient, and split u = ab−1 where a and b are automorphisms
of V such that p(a) = 0 and q(b) = 0. By the Commutation Lemma, both a
and b commute with v := βu + αu−1. Hence, a and b commute with Θp,q(v).
Since u commutes with v and is an automorphism, we see that Gp,q(u)n =
q(0)−2nu2nΘp,q(v)n = q(0)−2nΘp,q(v)nu2n for every positive integer n, and
it follows that KerGp,q(u)n = Ker Θp,q(v)n and Im Gp,q(u)n = Im Θp,q(v)n

for every such integer n. Hence, as a and b commute with v, we deduce that
both stabilize Ep,q(u) and Rp,q(u) (and of course they induce automorphisms
of those vector spaces). Denote by a′ and b′ (respectively, by a′′ and b′′) the
automorphisms of Ep,q(u) (respectively, of Rp,q(u)) induced by a and b. Then,
the q-exceptional part of u is a′(b′)−1, and the q-regular part of u is a′′(b′′)−1.
As p annihilates a′ and a′′, and q annihilates b′ and b′′, both the q-exceptional
and the q-regular part of u are (p, q)-quotients. �

From there, it is clear that classifying (p, q)-quotients amounts to classi-
fying the q-exceptional ones and the q-regular ones. The easier classification
is the latter: as we shall see, it involves little discussion on the specific poly-
nomials p and q under consideration (whether they are split or not over F,
separable or not over F, etc). In contrast, the classification of q-exceptional
(p, q)-quotients involves a tedious case-by-case study: it will be carried out in
a separate article.

4.2. The Rδ Transformation

Notation 6. Let r be a monic polynomial with degree d, and let δ be a nonzero
scalar. We set

Rδ(r) := tdr(t + δt−1),

which is a monic polynomial with degree 2d and valuation 0.

Some basic facts will be useful on the Rδ transformation:
• For all monic polynomials r and s, we have Rδ(r)Rδ(s) = Rδ(rs).
• Followingly, if r and s are monic polynomials such that r divides s, then

Rδ(r) divides Rδ(s).
• Let r and s be coprime monic polynomials. Then, Rδ(r) and Rδ(s)

are coprime: indeed if in some algebraic (field) extension of F those
polynomials had a common root z (necessarily nonzero) then z + δz−1

would be a common root of r and s.

In the study of q-regular (p, q)-quotients, the following lemma will be
useful.

Proposition 4.3. Let r ∈ F[t] � {t} be irreducible. Set δ := αβ−1. The follow-
ing conditions are equivalent:

(i) No root of Rδ(r) (in F) belongs to Root(p)Root(q)−1.
(ii) For L := F[t]/(r) and y the class of t in L, the norm of W(p, q, βy)L is

nondegenerate.

Proof. Assume that Rδ(r) has a root z in Root(p)Root(q)−1. Noting that
z is a root of Gp,q = β−1Θp,q(β(t + δt−1)), we deduce that z + δz−1 is a
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Table 11. The classification of indecomposable q-regular
(p, q)-quotients

common root of r and of Θp,q(βt). Since r is irreducible, it follows that r
divides Θp,q(βt), and hence y is a root of Θp,q(βt) in L, that is βy equals
x1y1 + x2y2 or x1y2 + x2y1. Hence the norm of W(p, q, βy)L is degenerate.

Conversely, assume that the norm of W(p, q, βy)L is degenerate. Then
βy equals x1y1 + x2y2 or x1y2 + x2y1, to the effect that Θp,q(βy) = 0. We
can choose z ∈ F � {0} such that z + δz−1 = y (it suffices to take a root of
t2 − yt + δ). Then, z is a common root of Rδ(r) and of Gp,q, whence Rδ(r)
has a root in Root(p)Root(q)−1. �

4.3. Statement of the Results

We are now ready to state our results. We shall frame them in terms of
direct-sum decomposability.

Let u be an endomorphism of a nonzero finite-dimensional vector space
V . Assume that V splits into V1 ⊕ V2, and that each linear subspace V1 and
V2 is stable under u and nonzero, and both induced endomorphisms u|V1 and
u|V2 are (p, q)-quotients. Then, u is obviously a (p, q)-quotient. In the event
when such a decomposition exists we shall say that u is a decomposable
(p, q)-quotient, otherwise and if u is a (p, q)-quotient, we shall say that u is
an indecomposable (p, q)-quotient. Obviously, every (p, q)-quotient in End(V )
is the direct sum of indecomposable ones. Hence, it suffices to describe the
indecomposable (p, q)-quotients.

Moreover, if a (p, q)-quotient is indecomposable then it is either q-
regular or q-exceptional, owing to Proposition 4.1.

In each one of the following tables, we give a set of matrices. Each ma-
trix represents an indecomposable (p, q)-quotient, and every indecomposable
(p, q)-quotient in End(V ) is represented by one of those matrices, in some
basis. It is convenient to set

δ := p(0)q(0)−1.

We start with q-regular (p, q)-quotients. In that situation the classifica-
tion is rather simple (Table 11):

Remember (see Remark 1), that the norm of the quaternion algebra
W(p, q, x) is isotropic whenever one of p and q splits in F[t].
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Table 12. The classification of indecomposable q-
exceptional (p, q)-quotients: When both p and q are split
with a double root

Representing matrix Associated data

C
(
(t − x)n

)
x ∈ Root(p)Root(q)−1, n ∈ N

∗

Table 13. The classification of indecomposable q-
exceptional (p, q)-quotients: When both p and q are split
with simple roots

Table 14. The classification of indecomposable q-
exceptional (p, q)-quotients: When both p and q are split, p
has simple roots and q has a double root

Representing matrix Associated data

C
(
(t − x)n

) ⊕ C
(
(t − δx−1)n

)
x ∈ Root(p)Root(q)−1, n ∈ N

∗

C
(
(t − x)n+1

) ⊕ C
(
(t − δx−1)n

)
x ∈ Root(p)Root(q)−1, n ∈ N

C
(
(t − x)n+2

) ⊕ C
(
(t − δx−1)n

)
x ∈ Root(p)Root(q)−1, n ∈ N

Next, we tackle the q-exceptional indecomposable (p, q)-quotients. Here,
there are many cases to consider. We start with the one when both p and q
are split (Tables 12, 13, 14).

We now turn to the case where p is irreducible but q splits.
There are two subcases to consider, whether the two polynomials de-

duced from p by using the homotheties with ratio among the roots of q are
equal or not. Here, we refer to Notation 1 on page 4 for Hy(p) (Table 15, 16).

Next, we consider the situation where both p and q are irreducible in
F[t], with the same splitting field (Table 17).

We finish with the case where p and q are both irreducible, with distinct
splitting fields. There are two subcases to consider, whether both tr p and tr q
equal zero or not (Table 18, 19).
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Table 15. The classification of indecomposable q-
exceptional (p, q)-quotients: When p is irreducible,
q = (t−y1)(t−y2) for some y1, y2 in F, and Hy1(p) = Hy2(p)

Representing matrix Associated data

C
(
Hy(p)n

)
n ∈ N

∗, y ∈ Root(q)

Table 16. The classification of indecomposable q-
exceptional (p, q)-quotients: When p is irreducible,
q = (t−y1)(t−y2) for some y1, y2 in F, and Hy1(p) �= Hy2(p)

Representing matrix Associated data

C
(
Hy1(p)n

) ⊕ C
(
Hy2(p)n

)
n ∈ N

∗

C
(
Hy1(p)n+1

) ⊕ C
(
Hy2(p)n

)
n ∈ N

C
(
Hy2(p)n+1

) ⊕ C
(
Hy1(p)n

)
n ∈ N

Table 17. The classification of indecomposable q-
exceptional (p, q)-quotients: When p and q are irreducible
with the same splitting field L

Table 18. The classification of indecomposable q-
exceptional (p, q)-quotients: When p and q are irreducible
with distinct splitting fields and (tr p, tr q) �= (0, 0)

Representing matrix Associated data

C(Gn
p,q) ⊕ C(Gn

p,q) n ∈ N
∗

C(Gn+1
p,q ) ⊕ C(Gn

p,q) n ∈ N
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Table 19. The classification of indecomposable q-
exceptional (p, q)-quotients: When p and q are irreducible
with distinct splitting fields and tr p = tr q = 0

Representing matrix Associated data

C
(
(t2 − δ)n

)

⊕ n ∈ N
∗

C
(
(t2 − δ)n

)

4.4. An Example: The Quotient of Two Quarter Turns Over the Reals

Here, we consider the case where F is the field R of real numbers and p =
q = t2 + 1. In other words, we determine the automorphisms of a finite-
dimensional real vector space V that split into ab−1 for some automorphisms
a and b such that a2 = b2 = −idV (note that these automorphisms are
also the (t2 + 1, t2 + 1)-products). Here, Root(p)Root(q)−1 = {1,−1} and
δ := p(0)q(0)−1 equals 1.

Let us investigate the indecomposable (p, q)-quotients. Let r ∈ R[t] be
an irreducible monic polynomial. The fraction r(t + δt−1) = r(t + t−1) has
no root in Root(p)Root(q)−1 if and only if r(2) �= 0 and r(−2) �= 0.

From now on, we assume that r �= t−2 and r �= t+2. We set L := R[t]/(r)
and we denote by t the class of t in it. If r has degree 2, then L is isomorphic
to C, which is algebraically closed, and it follows that the norm of W(p, q, t)L
is isotropic. Note that, for all (a, b) ∈ R

2 such that a2 < 4b, we have

Rδ(t2 + at + b) = t2
(
(t + t−1)2 + a(t + t−1) + b

)

= t4 + at3 + (b + 2)t2 + at + 1.

Assume now that r has degree 1, and denote by x its root (so that
x �= ±2). The norm of W(p, q, x)R reads

aI4 + bA + cB + dC �→ a2 + b2 + c2 + d2 + xbc − xad

which is equivalent to the orthogonal direct sum of two copies of the quadratic
form

Q : (a, b) �→ a2 + xab + b2.

We have Q(1, 0) > 0, and the discriminant of Q equals x2−4
4 . Hence, either

|x| < 2 and Q is positive definite, or |x| > 2 and Q is isotropic. It follows
that if x ∈ (−2, 2), then the norm of W(p, q, x)R is non-isotropic, otherwise
it is isotropic.

Table 20 thus gives a complete list of indecomposable (t2 + 1, t2 + 1)-
quotients, where the q-exceptional ones – given in the last two rows – are
obtained thanks to Table 17.

4.5. The Classification of q-Regular (p, q)-Quotients

Proposition 4.4. Let p and q be monic polynomials with degree 2 over F such
that p(0)q(0) �= 0, and set δ := p(0)q(0)−1. Let u be an endomorphism of
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Table 20. The classification of indecomposable (t2 +1, t2 +
1)-quotients over R

Representing matrix Associated data

C
(
(t2 − xt + 1)n

) ⊕ C
(
(t2 − xt + 1)n

)
n ∈ N

∗, x ∈ (−2, 2)

C
(
(t2 − xt + 1)n

)
n ∈ N

∗, x ∈ (−∞,−2) ∪ (2,+∞)

C
(
(t4 + at3 + (b + 2)t2 + at + 1)n

)
n ∈ N

∗, (a, b) ∈ R
2 with a2 < 4b

C((t − 1)n) ⊕ C((t − 1)n) n ∈ N
∗

C((t + 1)n) ⊕ C((t + 1)n) n ∈ N
∗

a finite-dimensional vector space V and assume that u is a q-regular (p, q)-
quotient. Then:
(a) Each invariant factor of u has the form Rδ(r) for some monic polyno-

mial r.
(b) In some basis of V , the endomorphism u is represented by a block-

diagonal matrix in which every diagonal block has the form Rδ(r)n for
some irreducible monic polynomial r and some positive integer n. We
call such a matrix a (p, q)-reduced canonical form of u.

It is easily seen that a (p, q)-reduced canonical form is unique up to a
permutation of the diagonal blocks.

Before we prove Proposition 4.4, we need the corresponding special case
where both polynomials p and q are split over F: this result will be obtained
by following a similar method as for the study of (p, q)-differences.

Proposition 4.5. Let p and q be split monic polynomials with degree 2 over F

such that p(0)q(0) �= 0, and set δ := p(0)q(0)−1. Let u be an endomorphism
of a finite-dimensional vector space V and assume that u is a q-regular (p, q)-
quotient. Then, each invariant factor of u has the form Rδ(r) for some monic
polynomial r.

The proof requires the following basic lemma:

Lemma 4.6. Let r ∈ F[t] be a monic polynomial with degree n > 0, and δ be
a nonzero scalar. Then,

[
0n −δIn

In C(r)

]

� C
(
Rδ(r)

)
.

Before we give the proof, we recall some known results on palindromials.
Let δ ∈ F � {0}. Given a non-negative integer m, a (2m, δ)-palindromial is a
polynomial R(t) =

∑2m
k=0 aktk in F2m[t] such that R(t) = t2mδ−mR(δ/t) or, in

other words, a2m−k = δk−mak for all k ∈ [[0, 2m]]. The (2m, δ)-palindromials
obviously constitute a linear subspace P2m,δ(F) of F2m[t] with dimension
m + 1, and the mapping

U �→ tmU(t + δt−1)
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is a linear injection from Fm[t] into P2m,δ(F). Hence, because of the dimension
of the source and target spaces we get that this map is a linear isomorphism.

Finally, given a positive integer m, every polynomial R ∈ F2m[t] splits
(uniquely) into U +V for some (2m, δ)-palindromial U and some (2m−2, δ)-
palindromial V . Indeed:

• We see that dim P2m,δ(F)+dim P2m−2,δ(F) = (m+1)+m = dim F2m[t].
• On the other hand we have P2m,δ(F) ∩ P2m−2,δ(F) = {0}: indeed, if

∑2m
k=0 aktk is both a (2m, δ)-palindromial and a (2m−2, δ)-palindromial,

then, with the convention that ak = 0 for every integer k ∈ Z �

{0, . . . , 2m} we see that ak = δm−ka2m−k and ak = δm−1−ka2(m−1)−k

for all k ∈ Z, which shows that ak = δ−1ak−2 for all k ∈ Z. Since
(ak)k∈Z ultimately vanishes, we deduce that ak = 0 for all k ∈ Z.

It follows that every polynomial of F2m[t] has a (unique) splitting into

tmP (t + δt−1) + tm−1Q(t + δt−1)

for some polynomials P and Q with deg P ≤ m and deg Q ≤ m − 1.
With this result in mind, we can now prove the above lemma.

Proof of Lemma 4.6. Set

N :=
[
0n −δIn

In C(r)

]

.

By a straightforward computation, one checks that N is invertible and that

δN−1 =
[
C(r) δIn

−In 0n

]

,

whence

N + δN−1 =
[
C(r) 0n

0n C(r)

]

.

Hence, for every polynomial P ∈ F[t], we see that

P (N + δN−1) =
[
P

(
C(r)

)
0n

0n P
(
C(r)

)
]

and

NP (N + δN−1) =
[

0n −δP
(
C(r)

)

P
(
C(r)

)
C(r)P

(
C(r)

)
]

.

In particular, Rδ(r) annihilates N ; note that this polynomial is monic with
degree 2n.

Let u(t) ∈ F[t] annihilate N with deg u(t) < 2n. Then, as we have seen
before the start of the proof, u(t) = tnP (t+ δt−1)+ tn−1Q(t+ δt−1) for some
pair (P,Q) of polynomials such that deg P ≤ n and deg Q ≤ n − 1. Since
deg u(t) < 2n we must have deg P < n. Since N is invertible, we have

NP (N + δN−1) + Q(N + δN−1) = 0.

By looking at the upper-left and lower-left n-by-n blocks in this identity, we
get P

(
C(r)

)
= 0 and Q

(
C(r)

)
= 0, and hence r divides P and Q. Since

deg P < n and deg Q < n we obtain P = 0 = Q, whence u = 0.
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We conclude that Rδ(r) is the minimal polynomial of N , and since this
polynomial is of degree 2n we conclude that N is similar to the companion
matrix of Rδ(r). �

Corollary 4.7. Let N be an arbitrary matrix of Mn(F), and δ be a nonzero
scalar. Denote by r1, . . . , ra the invariant factors of N . Then, the invariant
factors of

K(N) :=
[
0n −δIn

In N

]

are Rδ(r1), . . . , Rδ(ra).

Proof. We note that the similarity class of K(N) depends only on that of
N : indeed, for all P ∈ GLn(K), the invertible matrix Q := P ⊕ P satisfies
QK(N)Q−1 = K(PNP−1). Hence,

K(N) � K
(
C(r1) ⊕ · · · ⊕ C(ra)

)
.

By permuting the basis vectors, we find

K
(
C(r1) ⊕ · · · ⊕ C(ra)

) � K
(
C(r1)

) ⊕ · · · ⊕ K
(
C(ra)

)
.

Hence, by Lemma 4.6, we conclude that

K(N) � C
(
Rδ(r1)

) ⊕ · · · ⊕ C
(
Rδ(ra)

)
.

Finally, by the results of Sect. 4.2, we see that Rδ(ri+1) divides Rδ(ri)
for all i ∈ [[1, a−1]]. Therefore, the monic polynomials Rδ(r1), . . . , Rδ(ra) are
the invariant factors of K(N). �

Proof of Proposition 4.5. Let a and b be automorphisms of V that satisfy
p(a) = q(b) = 0 and u = ab−1. Denote by x (respectively, by y) an eigenvalue
of a (respectively, of b) with maximal geometric multiplicity, and split p(t) =
(t − x)(t − x′) and q(t) = (t − y)(t − y′).

We claim that

dim Ker(a − x idV ) ≥ n

2
·

Indeed, since p(a) = 0 we have Im(a − x′ idV ) ⊂ Ker(a − x idV ), which yields
dim Ker(a − x idV ) + dim Ker(a − x′ idV ) ≥ n. Since dim Ker(a − x idV ) ≥
dim Ker(a − x′ idV ), the claimed inequality follows. Likewise, dim Ker(b −
y idV ) ≥ n

2 ·
Since u is q-regular with respect to (p, q), any eigenspace of a is linearly

disjoint from any eigenspace of b: indeed if we had a common eigenvector of a
and b, with corresponding eigenvalues xi and yj , then this vector would be an
eigenvector of u with corresponding eigenvalue xiy

−1
j , thereby contradicting

the assumption that u has no eigenvalue in Root(p)Root(q)−1. In particular,
Ker(a−xidV )∩Ker(b−y idV ) = {0}. It follows that dim Ker(a−x idV ) = n

2 =
dim Ker(b−y idV ), that n is even and that V = Ker(a−xidV )⊕Ker(b−y idV ).
Next, we deduce that n

2 = dim Im(a − xidV ) and dim Ker(a − x′idV ) ≤ n
2 by

choice of x. However, Im(a−xidV ) ⊂ Ker(a−x′idV ), and hence it follows that
Im(a−xidV ) = Ker(a−x′idV ). Likewise, Im(b−yidV ) = Ker(b−y′idV ), and it
follows that x′ has geometric multiplicity n

2 with respect to a, and ditto for y′
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with respect to b. In turn, this shows that Im(a−x′idV ) = Ker(a−xidV ) and
Im(b − y′idV ) = Ker(b − yidV ), and any eigenspace of a is a complementary
subspace of any eigenspace of b.

Let us write s := n
2 and choose a basis (e1, . . . , es) of Ker(b − yidV ).

Then, we have V = Ker(b − yidV ) ⊕ Ker(a − xidV ), whence (es+1, . . . , en) :=(
y−1(a − xidV )(e1), . . . , y−1(a − xidV )(es)

)
is a basis of Im(a − xidV ) =

Ker(a − x′idV ). Since Ker(b − yidV ) ⊕ Ker(a − x′idV ) = V , we deduce that
B := (e1, . . . , en) is a basis of V . Obviously

MB(a) =
[
xIs 0
yIs x′Is

]

.

On the other hand, since Ker(b − yidV ) = Im(b − y′idV ), we find

MB(b−1) =
[
y−1Is N

0 (y′)−1Is

]

for some matrix N ∈ Ms(F).

Hence,

MB(u) =
[
xy−1Is xN

Is yN + x′(y′)−1Is

]

.

Setting

P :=
[
Is −xy−1Is

0 Is

]

,

we obtain

P MB(u)P−1 =
[

0 −(xx′)(yy′)−1Is

Is N ′

]

for some matrix N ′ ∈ Ms(F). Since δ = p(0)q(0)−1 = (xx′)(yy′)−1, the
claimed result is then readily deduced from Corollary 4.7. �

Proof of Proposition 4.4. We start with point (a). Let us extend the scalar
field to F. The corresponding extension u of u is still a (p, q)-quotient. Hence,
by Corollary 4.7 its invariant factors are Rδ(p1), . . . , Rδ(pr) for some monic
polynomials p1, . . . , pr of F[t] such that pi+1 divides pi for all i ∈ [[1, r − 1]].

Yet, the invariant factors of u are known to be the ones of u. Finally,
given a monic polynomial h ∈ F[t] (with degree N) such that Rδ(h) ∈ F[t],
we obtain by downward induction that all the coefficients of h belong to F:
indeed, if we write h(t) = tN −∑N−1

i=0 αi ti and we know that αN−1, . . . , αk+1

all belong to F for some k ∈ [[0, N − 1]], then
∑k

i=0 αi tN (t + δt−1)i =
tN (t + δt−1)N − ∑N−1

i=k+1 αi tN (t + δt−1)i − Rδ(h) belongs to F[t], and by
considering the coefficient on tN+k, we gather that αk ∈ F. It follows that
p1, . . . , pr all belong to F[t], which completes the proof of statement (a).

From point (a), we easily derive point (b): indeed, consider an invari-
ant factor Rδ(r) of u with some monic polynomial r ∈ F[t]. Then, we split
r = rn1

1 · · · rnk

k where r1, . . . , rk are pairwise distinct irreducible monic poly-
nomials of F[t], and n1, . . . , nk are positive integers. By a previous remark (see
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Sect. 4.2), the monic polynomials Rδ(rn1
1 ), . . . , Rδ(rnk

k ) are pairwise coprime
and their product equals Rδ(r), whence

C
(
Rδ(r)

) � C
(
Rδ(rn1

1 )
) ⊕ · · · ⊕ C

(
Rδ(rnk

k )
)
.

Using point (a), we deduce that statement (b) holds true. �

An additional definition will now be useful:

Definition 7. Let p and q be monic polynomials with degree 2 in F[t] such that
p(0)q(0) �= 0. Set δ := p(0)q(0)−1. Let r be an irreducible monic polynomial
of F[t], and set L := F[t]/(r). Denote by x the class of t in L. We say that r
has:

• Type 1 with respect to (p, q) if Rδ(r) has no root in Root(p)Root(q)−1

and the norm of the quaternion algebra W(
p, q, q(0)x

)
L

is isotropic.
• Type 2 with respect to (p, q) if Rδ(r) has no root in Root(p)Root(q)−1

and the norm of the quaternion algebra W(
p, q, q(0)x

)
L

is non-isotropic.

First of all, we use the structural results on W(p, q, x)R to obtain various
(p, q)-quotients. Our first result is actually not restricted to q-regular (p, q)-
quotients and will be used later in our study.

Lemma 4.8. (Duplication Lemma). Let p and q be monic polynomials of F[t]
with degree 2 such that p(0)q(0) �= 0, and set δ := p(0)q(0)−1. Let r be
a nonconstant monic polynomial of F[t]. Then, C

(
Rδ(r)

) ⊕ C
(
Rδ(r)

)
is a

(p, q)-quotient.

Proof. Denote by d the degree of r. We work with the commutative F-algebra
R := F[C(r)], which is isomorphic to the quotient ring F[t]/(r), and with the
element x := C(r). Then, we consider the endomorphisms a : X �→ AX
and b : X �→ BX of W(p, q, q(0)x)R. Since p(A) = 0 and q(B) = 0, we get
p(a) = 0 and q(b) = 0. Moreover, since B−1 = q(0)−1(tr q)I4 − q(0)−1B,
we have AB−1 = q(0)−1(tr q)A − q(0)−1 AB and hence (B,A, I4, AB−1) is a
basis B of the free R-module W(p, q, q(0)x)R.

Denote by A′ and B′ the respective matrices of a and b in B. Using
identity (5) from page 11, we find (AB−1)2 = −δI4 +x (AB−1), and it easily
follows that

A′B′−1 =

⎡

⎢
⎢
⎣

0 −δ 1R 0 0
1R x 0 0
0 0 0 −δ 1R

0 0 1R x

⎤

⎥
⎥
⎦ .

Therefore, A′B′−1, seen as a matrix of M4d(F), is similar to C
(
Rδ(r)

) ⊕
C

(
Rδ(r)

)
by Lemma 4.6. Since p(A′) = 0 and q(B′) = 0, the conclusion

follows. �

Our next result deals with certain companion matrices that are associ-
ated with irreducible polynomials with Type 1 with respect to (p, q).
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Lemma 4.9. Let p and q be monic polynomials of F[t] with degree 2 such
that p(0)q(0) �= 0, and set δ := p(0)q(0)−1. Let r be an irreducible monic
polynomial of F[t] of Type 1 with respect to (p, q). Then, for all n ∈ N

∗, the
companion matrix C

(
Rδ(rn)

)
is a (p, q)-quotient.

Proof. Denote by k the degree of r. Let n ∈ N
∗. Set R := F[C(rn)], seen as a

subalgebra of Mnd(F), and set x := C(rn). The F-algebra R is isomorphic to
F[t]/(rn). By Proposition 2.6, it follows that W(p, q, q(0)x)R is isomorphic to
M2(R). We choose an isomorphism ϕ : W(p, q, q(0)x)R

�−→ M2(R), and we
set a := ϕ(A) and b := ϕ(B). Note that p(a) = q(b) = 0, whereas d := ab−1

satisfies q(0)d + p(0)d−1 = q(0)x I2, whence d2 = xd − δI2.
Denote by L the residue field of R. The endomorphism X �→ dX of R2

induces an endomorphism d of the L-vector space L
2. Since (I2, a, b, ab−1) is

a basis of the R-module M2(R), the endomorphism d is not a scalar multiple
of the identity of L

2. This yields a vector e of L
2 such that

(
e, d(e)

)
is a basis

of L
2. Lifting e to a vector E of R2, we deduce that (E, dE) is a basis of the

R-module R2. Hence, composing ϕ with an additional interior automorphism
of the R-algebra M2(R), we see that no generality is lost in assuming that

the first column of d reads
[
0R

1R

]

. Then, the equality d2 = xd − δI2 yields

d =
[

0 −δ1R

1R x

]

.

It follows that the matrix
[

0 −δInk

Ink C(rn)

]

of M2nk(F) is a (p, q)-quotient. By

Lemma 4.6, this matrix is similar to C
(
Rδ(rn)

)
, which completes the proof.

�
Combining Lemma 4.8 with Lemma 4.9, we conclude that the implica-

tion (iii) ⇒ (i) in the following theorem holds true.

Theorem 4.10. (Classification of q-regular (p, q)-quotients) Let p and q be
monic polynomials of degree 2 in F[t] such that p(0)q(0) �= 0. Let u be an
endomorphism of a finite-dimensional vector space V over F. Assume that
u is q-regular with respect to (p, q) and set δ := p(0)q(0)−1. The following
conditions are equivalent:

(i) The endomorphism u is a (p, q)-quotient.
(ii) The invariant factors of u read Rδ(p1), . . . , Rδ(p2n−1), Rδ(p2n) . . . where,

for every irreducible monic polynomial r ∈ F[t] that has Type 2 with re-
spect to (p, q) and every positive integer n, the polynomials p2n−1 and
p2n have the same valuation with respect to r.

(iii) There is a basis of V in which u is represented by a block-diagonal
matrix where every diagonal block equals either C

(
Rδ(rn)

)
for some

irreducible monic polynomial r ∈ F[t] of Type 1 with respect to (p, q) and
some n ∈ N

∗, or C
(
Rδ(rn)

) ⊕ C
(
Rδ(rn)

)
for some irreducible monic

polynomial r ∈ F[t] and some n ∈ N
∗.

Note that this result, combined with the observation that C
(
Rδ(rn)

)

is q-regular with respect to (p, q) for every monic polynomial r ∈ F[t] such
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that Rδ(r) has no root in Root(p)Root(q)−1, yields the classification of in-
decomposable q-regular (p, q)-quotients as given in Table 11. Moreover, by
using the same method as in the last part of the proof of Proposition 4.4, it
is easily seen that condition (ii) is equivalent to condition (iii).

In order to conclude on Theorem 4.10, it only remains to prove that
condition (i) implies condition (ii), which we shall now do thanks to the
structural results on W(p, q, x)R.

Proof. (Proof of the implication (i) ⇒ (ii)) Let us assume that u is a (p, q)-
quotient. Let r be an irreducible monic polynomial of F[t] with Type 2 with
respect to (p, q), and let n ∈ N

∗. All we need is to prove that, in the canonical
form of u from Proposition 4.4, the number m of diagonal cells that equal
C

(
Rδ(r)n

)
is even.

Let us choose automorphisms a and b of V such that u = ab−1 and
p(a) = q(b) = 0. By the Commutation Lemma (i.e. Lemma 4.2), we know
that a and b commute with v := u+δu−1, and hence all three endomorphisms
a, b, u yield endomorphisms a, b and u of the vector space

E := Ker
(
rn(v)

)
/Ker

(
rn−1(v)

)
= Ker(Rδ(rn)(u))/Ker(Rδ(rn−1)(u))

such that u = ab
−1

, and r annihilates v := u+δu−1. Again, a and b commute
with v, and hence they are endomorphisms of the F[v]-module E. Since r is
irreducible, we have F[v] � F[t]/(r), and L := F[v] is a field. We shall write
y := v, which we see as an element of L. Using the structure of L-vector space,
we can write u + δu−1 = y idE ; by combining this with p(a) = q(b) = 0, we
deduce that a and b yield a representation of the L-algebra W(

p, q, q(0)y
)
L

on the L-vector space E.
Besides, 2m deg(r) is the dimension of the F-vector space E, and hence

2m is the dimension of the L-vector space E.
By Proposition 2.4, the algebra W(

p, q, q(0)y
)
L

is a 4-dimensional skew-
field over L, whence the L-vector space E is isomorphic to some power of
W(

p, q, q(0)y
)
L

and it follows that its dimension is a multiple of 4. Therefore,
m is a multiple of 2, which completes the proof. �

This completes the classification of q-regular (p, q)-quotients.
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