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Abstract. Lyapunov stability theory for smooth nonlinear autonomous
dynamical systems is presented in terms of Geometric Algebra. The sys-
tem is described by a smooth nonlinear state vector differential equa-
tion, driven by a vector field in R

n. The level sets of the scalar Lyapunov
function candidate are assumed to be compact smooth vector manifolds
in R

n. The level sets induce an associated global foliation of the state
space. On any leaf of this foliation, a geometric subalgebra is naturally
attached to the corresponding tangent vector space of the smooth vector
manifold. The pseudoscalar (field) of this subalgebra completely charac-
terizes the tangent space. Asymptotic stability of the system equilibria
is described in terms of equilibria of, easily computable, rejection vector
fields with respect to the pseudoscalar field. Nonexistence of invariant
sets of the Lyapunov function directional derivative, along the defining
vector field, are also tested using a simple tangency condition. Several
illustrative examples are presented.
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1. Introduction

The practical and theoretical foundations of modern control theory rest on the
concept of system stability, established in the pioneering work of Lyapunov
[18]. The seminal work of Kalman and Bertram [13,14] first clarified the
implications of Lyapunov stability theory in the realm of automatic control
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systems. The authoritative books by LaSalle and Lefschetz [16], Lefschetz
[17], Hahn [9], as well as the remarkably well written textbooks by Khalil
[15] and Merkin [21], contain all the required background on the vast, and
rather well known, subject of stability of systems described by nonlinear
differential equations. We refer the reader to these works.

Geometric Algebra (GA) is a framework for studying the geometric
aspects of both mathematical and physical problems. Its impact in tech-
nological areas include: robotics, computer animation, molecular dynamics,
learning, quantum computing, data analysis, power line transmission systems
and many other fields. The literature on GA and its many applications has
vastly grown in recent years. The reader is referred to the seminal books by:
Hestenes and Sobczyk [11], Hestenes [10] and Macdonald [19], [20]. Fascinat-
ing application areas are advocated in Bayro-Corrochano [2–4], Ab�lamowicz
and Sobczyk [1], Dorst et al. [8], Lasenby and Doran [7] and Joot [12]. We
refer the reader to those sources for the required background on GA and on
Geometric Calculus.

In this article, we revisit Lyapunov’s stability theory from the perspec-
tive of GA. Initial steps are taken to identify the geometric meaning and
the corresponding GA procedures needed to assess the nature of the stability
of system equilibria, traditionally examined by use of Lyapunov’s stability
concepts and theorems. GA is shown to be an effective conceptual, yet in-
tuitive, mathematical tool to establish local and global asymptotic stability
of nonlinear system’s equilibria. The existence, or not, of invariant sets de-
termine stability, or alternatively, asymptotic stability. This issue enjoys a
simple geometric meaning that is easily assessed using GA.

In Sect. 2, we introduce a GA approach for the assessment of the na-
ture of stability of the system equilibrium points. Section 3 presents some
illustrative examples, along with graphical computer simulations. Section 4
is devoted to the conclusions and suggestions for further research.

2. A Geometric Algebra Approach to Stability

2.1. Definitions, Basic Assumptions and Main Results

Our developments rest on the following assumptions:
1. We are given a smooth system described by the set of non-linear differential
equations defined in R

n. To such a linear vector space, we associate the GA
Gn, with unit pseudoscalar I, and the choice of the state x as: x =

∑n
i=1 xiei,

where ei represents the unit directed length along the i-th coordinate axis.
Such a system is represented by:

ẋ = f(x), x ∈ Gn. (2.1)

For systems with a unique equilibrium point, without loss of generality, we
can assume that the system exhibits such a unique equilibrium point at the
origin 0, i.e., f(0) = 0.
2. We are given a scalar, smooth, Lyapunov function candidate, V (x), x ∈ R

n,
assumed to be positive definite, i.e., V (x) > 0 ∀ x ∈ R

n, with V (0) = 0.
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Figure 1. Regular foliation induced by Vc, c > 0 on R
n

3. The function V (x) has a nowhere vanishing gradient field, denoted by ∂xV ,
except at the origin, x = 0, where it is zero. This assumption means that
every smooth vector manifold in the collection:

{Vc} = {x ∈ R
n | V (x) = c, c > 0 }, V0 = 0. (2.2)

is orientable, i.e., it has a well defined (n − 1)-dimensional tangent space at
x, denoted by TxVc. We assume that each smooth manifold Vc is closed and
bounded for every real number, c > 0. The infinite collection {Vc} constitutes
a foliation of Rn (see Candel and Conlon [6]). Each member of the set {Vc}
is addressed as a leaf of the foliation (see Fig. 1).
4. As a linear vector space, the tangent space TxVc, shown in Fig. 2, may
be endowed with an (n − 1) dimensional GA: A(TxVc) ⊂ Gn−1, addressed as
the tangent sub-algebra, which is completely characterized by its well defined
pseudoscalar field: I(x) =

〈A(TxVc)
〉

n−1
. Notice that:

(∂xV (x))∗ = ∂xV (x)I = I(x), (2.3)

i.e., the dual to the gradient vector field coincides with the pseudoscalar of
the tangent subalgebra A(TxVc). Recall that I is the unit pseudoscalar in Gn.

Definition 2.1. The projection and the rejection at x of the vector field f(x),
with respect to the pseudoscalar I(x) of the tangent subalgebra associated
with the tangent space of the smooth manifold, Vc, are respectively denoted
by: f||(x) and f⊥(x). As shown in Fig. 3, these are given by:

f||(x) = [f(x) · I(x)]I−1(x), (2.4)

f⊥(x) = [f(x) ∧ I(x)]I−1(x) (2.5)

From the expressions (2.4)–(2.5), it is clear that if 0 is an equilibrium
point of f(x), it is also an equilibrium point of f⊥(x), and of f||(x). The
converse is not necessarily true.
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Figure 2. Tangent space Tx(Vc) of the foliation

Figure 3. Rejection and parallel components of f(x) on
Tx(Vc)

Definition 2.2. The rejection dynamics of the system, with respect to the
pseudoscalar field I(x), is defined as:

ẋ = f⊥(x) (2.6)

The following is a well known result (see Hestenes and Sobczyk [11]).
A vector field φ(x) ∈ Gn belongs to the tangent space TxVc, character-

ized by the pseudoscalar I(x) of its tangent subalgebra, if and only if,

[φ(x) ∧ I(x)] = 0. (2.7)

Proposition 2.3. The vector field: f⊥(x), is co-linear to the gradient field ∂xV
(see Fig. 3) i.e., there exist a smooth scalar function α(x) such that,

f⊥(x) = α(x)∂xV (2.8)
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Proof. One uses the identities: I(x) = ∂xV I and I−1(x) = I−1(∂xV )−1, on
the expression defining f⊥(x).

f⊥(x) = [f(x) ∧ I(x)] I−1 ∂xV
|∂xV |2 =

(
f(x)∧I(x)I−1

(∂xV )2

)
∂xV =: α(x)∂xV

(2.9)

A more adequate expression for the scalar function α(x) is obtained as
follows:

α(x) =
(
f(x) ∧ I(x)I−1

(∂xV )2

)

=
(
f(x) ∧ I(x)I−1I

(∂xV )2I

)

=
(

f(x) ∧ I(x)
(∂xV )(∂xV )I

)

=
(
f(x) ∧ I(x)
(∂xV )I(x)

)

=
(

f(x) ∧ I(x)
∂xV · I(x) + ∂xV ∧ I(x)

)

=
(
f(x) ∧ I(x)
∂xV ∧ I(x)

)

(2.10)

where we have used the fact that ∂xV · I(x) = 0.

Definition 2.4. The set of states x, other than the origin, where f(x) coincides
with f||(x) is addressed as the collection of invariance sets,

{ x ∈ Gn | f⊥(x) = 0, } = { x ∈ Gn | α(x) = 0 } (2.11)

The invariance sets may constitute of a finite union of disjoint smooth
vector sub-manifolds of Rn. Invariant sets may also constitute of isolated
points in Rn. Notice that the two sets in (2.6) are equal thanks to equation
(2.8) and the assumption that ∂xV is nowhere zero except at the origin.

Remark: The rejection dynamics: ẋ = f⊥(x), and the system dynamics
ẋ = f(x), share the origin as a common equilibrium state. If the rejection
dynamics vector field, f⊥(x) does not vanish identically anywhere, i.e., if α(x)
does not vanish identically along the trajectories of the system dynamics, then
the stability of the origin for the rejection dynamics has the same nature as
the stability of the origin for the system dynamics.

The following theorem is the counterpart in GA terms of Lyapunov’s
first theorem (see Hahn[9]).

Theorem 2.5. Under the assumptions 1)–4) (Sect. 2.1), let the scalar quan-
tity:

α(x) =
f(x) ∧ I(x)
∂xV ∧ I(x)

(2.12)

be strictly negative everywhere except at the origin where it is zero, then the
origin is an asymptotically stable equilibrium point. Moreover, if V (x) → ∞,
as x → ∞, then the origin is a globally asymptotically stable equilibrium
point.

Proof. Consider the rejection dynamics:

ẋ = f⊥(x) = [f(x) ∧ I(x)]I−1(x) = α(x)∂xV (x) (2.13)

Let V (x) > 0 be a Lyapunov function candidate as defined in the as-
sumptions. We may use standard Lyapunov stability theory on the candidate
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V (x) to test the stability of the origin for the rejection dynamics (whose na-
ture coincides with that of the system dynamics). The time derivative of
V (x), along the trajectories of the rejection dynamics, yields:

d

dt
V (x) = α(x)∂xV (x) · ∂xV (x) = α(x)|∂xV (x)|2. (2.14)

Hence, sign ( d
dtV (x)) = sign (α(x)). It follows that if α(x) < 0, then the

origin is asymptotically stable. If V (x) is radially unbounded then, according
to Lyapunov stability theory, the origin is globally asymptotically stable.

In the context of GA, Lyapunov’s instability theorem reads,

Theorem 2.6. If α(x) is strictly positive in the region where V (x) is also
strictly positive, then the origin is an unstable equilibrium point.

Remark From the expression (2.12) for α(x), it follows that if the hyper-
volume represented by [f(x) ∧ I(x)] has different orientation than that rep-
resented by [(∂xV (x)) ∧ I(x)], then α(x) is negative. Otherwise, α(x) is pos-
itive. For stability, the vector field f(x) and, hence, f⊥(x) must both point
in the direction of decreasing values of the parameter c defining the compact
leaves of the foliation. Therefore, there must exist a component of f(x) in the
opposite direction of the gradient field ∂xV (x) i.e.,

[f(x) ∧ I(x)]∗ = f(x) · ∂xV (x) = |f(x)||∂xV (x)| cos θ < 0 (2.15)

i.e., for stability θ must be an obtuse angle (see Hahn [9]). This states that if
α(x) is positive, f(x) generically points in the direction of increasing values
of V (x), otherwise, if α(x) < 0 the trajectories of f(x), starting at x, evolve
towards leaves of Vc(x) defined with smaller values of c. In the context of
GA, Lyapunov’s Second Theorem is established as:

Theorem 2.7. Under the previously stated assumptions, let α(x) ≤ 0. Then,
if α(x) does not vanish identically along the trajectories of the system, the
equilibrium at the origin is globally asymptotically stable.

The proof invokes the fact that if {x ∈ R
n | α(x) = 0 } is ruled out as an

invariance set, then the origin is the equilibrium point where the trajectories
of the rejection field will be converging to. This as a result of the fact that,
along the system trajectories, the elements of Vc(x) will be shrinking to V0 =
0 as time goes on.

If the rejection field f⊥(x) vanishes identically at some compact set of
points in Rn, then {x ∈ R

n | f⊥(x) = α(x)∂xV = 0 } represents an invariance
set of the rejection field dynamics. Under such circumstances, the origin is
only a stable equilibrium point.

Let the tangent space to a set of the form

Vα0 = {x ∈ R
n | α(x) = 0 } (2.16)

be denoted by TxVα0 . The GA associated with this (n−1) dimensional linear
vector space is characterized by, say, the pseudoscalar Iα0(x). The test: [f(x)∧
Iα0(x)] 	= 0 suffices to discard invariance of the system trajectories on Vα0 .
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3. Some Illustrative Examples

3.1. Example 1

In this example, first appearing in the seminal work of Kalman [13,14], we
illustrate global asymptotic stability for the unique equilibrium point of a
linear system:

ẋ1 = x2, ẋ2 = −x1 − 3x2. (3.1)

which in GA terms is expressed as:

ẋ = f(x) = −xI − 3x2e2 (3.2)

where x = x1e1 + x2e2. The equilibrium point is located at the origin
x1 = x2 = 0 i.e., at x = 0.

The Lyapunov function candidate, V (x), is proposed to be:

V (x) =
1
2
(x2

1 + x2
2) =

1
2
(x · x) =

1
2
x2 > 0 (3.3)

The gradient of V (x) is: ∂xV = x1e1 + x2e2 = x. The dual to this vector in
G2 is a vector representing the tangent space to Vc(x):

TxVc = span(−x2e1 + x1e2) = span(xI). (3.4)

The one-dimensional (1-D) vector algebra A(TxVc) is characterized by its
pseudoscalar element I(x), given by:

I(x) = x∗ = xI = −x2e1 + x1e2. (3.5)

The rejection field of, f(x), w.r.t. this 1-D blade is:

f⊥(x) = [f(x) ∧ I(x)]I−1(x)
= [(−xI − 3x2e2) ∧ (xI)](xI)−1

= [(x2e1 − (x1 + 3x2)e2) ∧ (−x2e1 + x1e2)](−x2e1 + x1e2)−1

= −3x2
2I(−x2e1 + x1e2)−1 = −

(
3x2

2

x2
1 + x2

2

)

x = −
(

3x2
2

x2
1 + x2

2

)

∂xV (x)

(3.6)

In other words,

α(x) =
f(x) ∧ I(x)

∂xV (x) ∧ I(x)
=

3x2
2I

x ∧ (−xI)
=

3x2
2I

−x2I
= − 3x2

2

|x|2 . (3.7)

Notice that the invariance of the manifold

Vα0 = { x ∈ R
2 | x2 = 0 } (3.8)

spanned in G2 by e1, w.r.t. the field f(x) is tested via the tangency condition:
[f(x) ∧ e1] = 0. This results in,

[f(x) ∧ e1] = (x1 + 3x2)e1e2, (3.9)

which is zero, along x2 = 0, only on x1 = 0, i.e., it is zero only at the origin.
The origin is globally asymptotically stable. The system trajectories and the
rejection field trajectories are depicted in Fig. 4.
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Figure 4. System trajectories and rejection field trajecto-
ries for Example 1

3.2. Example 2

In this example, we assess the global asymptotic stability of the origin for a
nonlinear system defined in R

2,

ẋ1 = −x2 − x1(x2
1 + x2

2), ẋ2 = x1 − x2(x2
1 + x2

2) . (3.10)

Defining the system state vector as: x = x1e1 + x2e2, we obtain the
following simpler description of (3.10) in G2:

ẋ = f(x) = xI − x|x|2 = x(I − x2) (3.11)

with equilibrium point: x = 0. Notice that I− x2 cannot be zero since I is a
pseudoscalar and x2 is a scalar in G2.

Consider the scalar Lyapunov function candidate and its gradient vector
field

V (x) =
1
2
x2, ∂xV (x) = x. (3.12)

The pseudoscalar of the tangent sub-algebra A(TxVc) of G2, defined in the
tangent space of the level sets: V (x) = c, c > 0, is described by:

I(x) = xI (3.13)

We evaluate the tangency expression:

(xI − x|x|2) ∧ (xI) = (xI) ∧ (xI) − x ∧ (xI)|x|2 = −|x|4I (3.14)

The orientation of the blade field is strictly negative in all of G2, except
at the origin, where the blade degenerates to zero. The origin is globally
asymptotically stable equilibrium point.
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The flows of the rejection field are governed by:

ẋ = f⊥(x) = [(xI − x|x|2) ∧ (xI)] (xI)−1

= −|x|2(x ∧ xI)
xI

|xI|2 = −|x|4I xI
|x|2 = −x|x|2

= −|x2|∂xV (x) (3.15)

Notice that the time derivative of V (x) along the trajectories of the system
is given by

d

dt
V (x) = x · ẋ = x · (xI) − x2|x|2 = −|x|4 < 0, (3.16)

ratifying, via standard Lyapunov stability theory, that the origin is a globally
asymptotically stable equilibrium.

3.3. Example 3

In this example of physical character, we use the proposed GA approach to
determine parameter values of a Lyapunov function candidate that demon-
strate boundedness (i.e., stability) of the system solutions.

Consider Euler’s equations for describing the evolution of angular ve-
locities, around the principal axes, of a rigid body which is not subject to
external torques:

ẋ = f(x) =
(I2 − I3)

I1
ωyωze1 +

(I3 − I1)

I2
ωzωxe2 +

(I1 − I2)

I3
ωxωye3 (3.17)

where x = ωxe1 + ωye2 + ωze3. A Lyapunov function candidate of the form:

V (x) =
1
2

(
αω2

x + βω2
y + γω2

z

)
, α, β, γ > 0, (3.18)

has, as a gradient vector:

∂xV = αωxe1 + βωye2 + γωze3. (3.19)

The ellipsoidal level sets have a tangent space whose subalgebra A(TxV) in
G3 is characterized by the pseudovector (bivector):

I(x) = (αωxe1 + βωye2 + γωze3)I
= αωxe2e3 + βωye3e1 + γωze1e2 (3.20)

The tangency of f(x), w.r.t. I(x), is examined via, [(f(x)) ∧ I(x)], which is
translated into:

[f(x) ∧ I(x)] =

[(
(I2 − I3)

I1
ωyωze1 +

(I3 − I1)

I2
ωzωxe2 +

(I1 − I2)

I3
ωxωye3

)

∧
(

αωxe2e3 + βωye3e1 + γωze1e2

)]

= ωxωyωz

[

(
α(I2 − I3)

I1
) + (

β(I3 − I1)

I2
) + (

γ(I1 − I2)

I3
)

]

e1e2e3

(3.21)

Notice that if one sets: α = I1, β = I2, γ = I3, then [f(x) ∧ I(x)] ≡ 0. The
leaves of the foliation {Vc} become invariant with respect to f(x) for each
c > 0. The origin is stable since the system trajectories live in the level sets
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Vc represented by bounded ellipsoids. The trajectories of x ∈ R
3 are confined

to the unique ellipsoid containing the initial condition vector x(0).

3.4. Example 4

In this example, we use the GA form of Lyapunov’s stability theory to char-
acterize a limit cycle in the plane. Consider the following nonlinear system
with state, x = x1e1 + x2e2.

ẋ = [−x1(x2 − a2) + x2(x2 + a2)]e1
+[−x1(x2 + a2) − x2(x2 − a2)]e2 (3.22)

The Lyapunov function candidate is set to be: V (x) = 1
2x

2. The gradient of
V (x) is just, ∂xV = x. The global foliation Vc is constituted by an infinite
collection of concentric circles, parameterized by the real scalar: c > 0, and
all centered at the origin of R2.

The one-dimensional GA A(TxSc) is common to all leaves and charac-
terized by the pseudoscalar:

I(x) = xI ∈ G2. (3.23)

The flow of the rejection field, f⊥(x), is governed by:

ẋ = f⊥(x) = [f(x) ∧ (xI)](xI)−1 = −(x2 − a2)x = α(x)∂xV (x) (3.24)

i.e., α(x) = −(x2 − a2). In the open region: x2 > a2, α(x) < 0 and both
the trajectories of the system and those of the rejection dynamics cross the
leaves of the foliation pointing into compact disks of decreasing radius c > a.
The trajectories approach the disk V (x) = a. In the region x2 < a2, the
scalar function α(x) > 0, and thus it coincides in sign with the Lyapunov
function candidate V (x). This renders the origin as an unstable equilibrium
point. The circumference: x2 = a2 sets α(x) = 0. On this set, the system is
governed by: ẋ = −2a2(xI). The rejection field is therefore governed by

ẋ = [−2a2 (xI) ∧ (xI)](xI)−1 = 0 (3.25)

The circumference x2 = a2 is an invariance set representing a limit cycle,
shown in Fig. 5.

3.5. Example 5

The last example illustrates the characterization of several limit cycles in the
plane. Consider the nonlinear system:

ẋ1 = x1(a2 − x2
1 − x2

2)(b
2 − x2

1 − x2
2) − x2(b

2−x2
1−x2

2)√
x2
1+x2

2

ẋ2 = x2(a2 − x2
1 − x2

2)(b
2 − x2

1 − x2
2) + x1(b

2−x2
1−x2

2)√
x2
1+x2

2

(3.26)

where 0 < a < b. Letting, x = x1e1 + x2e2, one rewrites the system, in GA
terms, as:

ẋ = (b2 − x2)
(

(a2 − x2)x +
xI
|x|

)

(3.27)

An appropriate Lyapunov function candidate is: V (x) = 1
2x

2. Again, the
gradient of V (x) is just, ∂xV = x.



Vol. 32 (2022) Lyapunov Stability: A Geometric Algebra Approach Page 11 of 14 26

-2 -1 1 2

x1

-2

-1

1

2 x2

System trajectories and rejection field trajectories

>
>>

>

>

> >

>

> >

>

>>>

>

>

Figure 5. System trajectories and rejection field trajecto-
ries for Example 4 with a = 1

The corresponding GA A(TxVc), which is common to all leaves, is char-
acterized by the pseudoscalar:

I(x) = xI ∈ G2 (3.28)

The rejection field f⊥(x) is governed by:

ẋ = f⊥(x) = [f(x) ∧ xI](xI)−1 = (a2 − x2)(b2 − x2)x = α(x)∂xV (x) (3.29)

i.e., α(x) = (a2 −x2)(b2 −x2). In the open annular region: (x2 > a2)∩ (x2 <
b2), the scalar function α(x) is negative. The system trajectories, and those of
the rejection dynamics, cross the leaves of the foliation pointing into compact
disks of decreasing radius c while c ∈ [a, b]. Clearly, the trajectories approach
the circumference: x2 = a2. In the disjoint open regions: x2 < a2 and x2 > b2,
the scalar function α(x) is strictly positive and, as such, its sign coincides
with that of the Lyapunov function candidate V (x). This renders the origin
as a locally unstable equilibrium point in x2 < a2 and leads to unstable
trajectories in x2 > b2. The system trajectories -as well as the rejection
trajectories- cause the leaves of Vc(x) to have the value of c increase, along
such trajectories. On the circumferences: x2 = a2 and x2 = b2 the scalar
function α(x) is zero. On these 1-D sets, the system is governed, respectively,
by: ẋ = −2a2(a2 + b2)(xI) and ẋ = −2b2(a2 + b2)(xI). The corresponding
rejection fields are governed by,

ẋ = [−2a2(a2 + b2) (xI) ∧ (xI)](xI)−1 = 0 (3.30)
ẋ = [−2b2(a2 + b2) (xI) ∧ (xI)](xI)−1 = 0 (3.31)
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Figure 6. Phase plane trajectories for the system field and
for the rejection field for Example 5, with a = 1 and b = 2

The circumferences: x2 = a2 and x2 = b2 constitute invariance sets repre-
senting two limit cycles. The first one of radius a being attractive (i.e., stable)
and the second one, of radius b, being “repulsive” or unstable, as shown in
Fig. 6.

4. Conclusions

In this article, we have presented Lyapunov stability theory for smooth non-
linear systems, defined in R

n, in terms of fundamental GA notions. The
approach leads to an intuitive procedure which considers elementary GA op-
erations, such as: rejections and tangency conditions of vector fields, with
respect to specific geometric subalgebras defined on the nonlinear system’s
state space. Rejection fields are easily determined from the system’s defining
vector field and the GA associated with the tangent space of the Lyapunov
function candidate level sets. Tangency conditions, related to tangent spaces
of invariance sets, are also easily checked, establishing stability or asymptotic
stability (local or global) of the system’s equilibrium. Several non-trivial ex-
amples have been presented in full detail, along with computer generated
simulation graphs. The compactness and coordinate free style of the GA for-
mulation, without losing computability, is clear from the presented examples.
The results are easily extendable to the case of non-autonomous, nonlinear,
systems.

Multivector-valued Lyapunov functions candidates may be shown to
lead, in a natural manner, to a GA approach for vector Lyapunov stability
theory introduced by Bellman [5] and further explored by Perruquetti et al.
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[22]). The results of this particular application of GA might motivate the
development of appropriate computational software for stability assessment
in high dimensional dynamic systems. The mentioned areas are suggested as
topics for further contributions.
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