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Abstract. Multi-modal medical image fusion refers to the combination of
patient area images obtained under diverse or identical imaging modali-
ties, which improves the clinical applicability and provides more specific
disease information for diagnosis. However, most of the existing image
fusion algorithms usually divided color images into three channels of R,
G, B for processing separately, which ignores the correlation between the
channels and easily causes image information loss and blurring. This pa-
per proposes a multi-modal color medical image fusion algorithm based
on geometric algebra discrete cosine transform (GA-DCT). The GA-
DCT algorithm combines the character of GA, which represents the
multi-vector signal as a whole, can improve the quality of the fusion im-
age and avoid a large number of complex operations related to encoding
and decoding. Firstly, the source images are divided into several image
blocks and expressed in GA multi-vector form; Secondly, we extend the
traditional DCT to GA space and propose GA-DCT; Thirdly, we use
GA-DCT to decompose the image to obtain AC and DC coefficients and
finally a fusion algorithm are used to fuse the images. The experimental
results show that the proposed algorithm can get clear and compre-
hensive fusion image, which also has great advantages under different
compression ratios.
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1. Introduction

Image fusion has become an important part of image processing, which refers
to integrate multiple images of the same scene or different scenes into a
new image so that can provide more comprehensive help for a specific field
[43]. The fusion image can minimize information redundancy and contain
all useful information of the source image [5]. In recent years, image fusion
technology has received widespread attention and is widely used in multi-
focus images [34,61], medical images [10,60], infrared images [48] and remote
sensing images [19] in many areas.

Image fusion can be divided into three levels: data-level fusion, feature-
level fusion and decision-level fusion. The data-level fusion, also known as
pixel-level fusion, refers to the process of directly processing the data col-
lected by the sensor. The advantage of this fusion is to maintain as much raw
data as possible, providing subtle information that other fusion levels can not
provide. The feature-level fusion method first obtains the regional character-
istics from the acquired source image according to the feature extracted prin-
ciple, then analyzes the extracted feature information, summarizes the most
representative data characteristics, and the feature information is extracted
from the further integrated region again. The decision-level fusion method
requires first filtering processing and signal enhancement, and continues the
practice in feature-level fusion method for feature extraction. Decision-level
fusion approach focuses more on the information decisions brought by the tar-
get region itself. According to the characteristics of image fusion algorithm,
it is usually divided into two categories: image fusion algorithms based on
the space domain and image fusion algorithms based on the frequency do-
main. The former directly processes images in the spatial domain with the
advantage that pixels instead of transform domain coefficients can preserve
the different scale details of the image rather than the finite scale determined
by the decomposition layer, while also avoiding the additional computational
burden imposed by the multi-scale decomposition. The latter is to obtain the
fusion image in the frequency domain, extract the coefficients according to
the local features of the source image, select the appropriate fusion rules, and
use the coefficients to obtain the fusion image [2]. The common fusion meth-
ods based on frequency domain include: contourlet transform [25], discrete
wavelet transform [30,44], dual-tree complex wavelet transform [9], station-
ary wavelet transform [16], curvelet transform [6], slicelet transform [22] and
so on.

With the increasing application of image fusion, the research on image
fusion has become more and more extensive. Fusion algorithms based on dis-
crete cosine transform (DCT) and discrete wavelet transform (DWT) are the
most common fusion methods. Image fusion algorithm based on the wavelet
transform has been successful and widely used. For example, Naeem et al. [38]
used the discrete wavelet transform (DWT) to fuse the image with a small
number of details and another image with rich details which can change the
uniformity of the image with encrypted details. Yang [59] proposed a DWT-
based image fusion method, which uses the maximum coefficient fusion rule.
Haghighat [24] proposed an efficient multi-focus image fusion method based
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on wavelet domain variance, which improves the quality of the fused image
and reduces the computational complexity. Tang [52] proposed a new image
fusion method which based on local contrast measurement in the DCT do-
main. However, the fused image obtained by this method will cause image
blurring. In [21], the maximum pixel replacement and pixel average fusion
rules are proposed. Experimental results show that this method is more sen-
sitive to noise and artifacts. Abdollahzadeh et al. [1] proposed to calculate
Sum-Modified-Laplacian (SML) in the DCT domain.

Multi-modal medical image fusion can improve the clinical accuracy of
medical images. The two medical source images are fused through a certain
fusion algorithm so that the fused image can contain the effective information
in the source image. Medical image fusion based on the wavelet transform
has achieved good results. Vijayarajan [53] used the average principal compo-
nent fusion method based on DWT to fuse the computed tomography (CT)
image and magnetic resonance image (MRI) which decomposed the source
image into multi-scale input and obtain good experimental results. In [23],
the author proposed an image fusion algorithm based on DWT-DBSS and
used the maximum selection rule to obtain detailed fusion coefficients. Ra-
jarshi et al. [46] proposed to use the maximum local extrema fusion rule to
fuse the magnetic resonance images (MRI) and computed tomography (CT)
images. Experimental results show that the fused image obtained by DWT
algorithm retains most of the useful information of the source image. How-
ever, the DWT-based image fusion algorithm has low efficiency due to its high
computational complexity and long experimental time. Moreover, the fused
image will cause problems such as blocking effect and quality loss. Therefore,
the author [39] proposed a new multi-focus image fusion algorithm based on
correlation coefficients. In addition, the author used the singular value de-
composition (SVD) method to directly fuse multi-focus images in the DCT
domain [40]. The results show that the fusion image obtained by the DCT-
based image fusion algorithm is relatively clear, and the experiment takes
less time and is more efficient. However, the existing image fusion algorithms
based on DWT and DCT are mainly used for grayscale images. For color im-
ages, the three channels of the color image are usually processed separately. In
[7], the author used the DCT algorithm to fuse satellite images, processed the
multiple channels of satellite images separately and finally integrated them
to obtain the fused image. This method usually ignores the correlation be-
tween the various channels of the image, resulting in incomplete fusion image
information.

Fortunately, geometric algebra (GA) provides a computational frame-
work for multi-dimensional signal processing, which can treat multi-channel
images as a whole [20,42,51]. Wang et al. [57] proposed the Sparse Fast Clif-
ford Fourier Transform (SFCFT) theory, which selectively uses input data in
scalar and vector fields to deal with big data problems. Felsberg [18] used Clif-
ford Algebra to define the corresponding Clifford-Fourier transform (CFT).
Berthier et al. [8] focused on the use of geometric methods of group actions,
which performed a Clifford Fourier transform for spectral analysis of color im-
ages. Julia et al. [17] proposed the Clifford Fourier transform and extended
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the Fourier transform to include the general elements of Clifford Algebra.
DCT has been a basic tool for signal and image processing for many years.
It can directly perform experiments in the DCT domain and avoid the com-
plicated image encoding and decoding process which can save a lot of time
and improve efficiency. The Geometric Algebra Discrete Cosine Transform
(GA-DCT) represents the multi-modal medical image in a holistic way and
considers the correlation between channels, so we propose to extend the DCT
to the geometric algebraic domain to fuse the multi-modal medical images.

With the development of image fusion algorithms and the application of
GA in image fusion, a novel multi-vector image fusion algorithm is proposed.
Firstly, the source images are required to be divided into several blocks. Then,
the proposed image fusion algorithm represents each multi-modal medical im-
age block as a multi-vector by using the theory of GA algorithm and performs
GA-DCT on each block. By calculating the average value of the coefficients
of the corresponding GA-DCT block, the fusion coefficient is obtained by
using the fusion rule of the coefficient average value. The Inverse Geomet-
ric Algebra Discrete Cosine Transform (IGA-DCT) is applied for each block
and the fusion image is reconstructed by merging all the blocks. In order to
test the performance of the proposed algorithm, this paper conducts several
fusion experiments on four sets of multi-modal color medical images of the
brain. The experimental results show that the fusion image obtained by the
proposed image fusion algorithm in this paper has higher resolution and more
comprehensive information, and has a great advantage in subjective vision
and objective evaluation.

The rest of this paper is organized as follows. In Sect. 2, this paper
introduces the basic knowledge of geometric algebra. Section 3 introduces
the GA-DCT algorithm and the fusion steps of the proposed algorithm in
detail. Section 4 introduces the experimental analysis including subjective
and objective fusion image quality evaluations. Finally, we make a conclusion
in Sect. 5.

2. Geometric Algebra

Geometric algebra (GA) [26] was proposed by William K. Clifford, also known
as Clifford Algebra, which provides a new idea for the research and application
of image representation. It can perform the geometric operations and analysis
in high-dimensional space [12,15,27,32,50] and has become an important
research tool in theoretical mathematics, computer vision and physics [13,33].

In this section, we will introduce the relevant knowledge of GA in detail.

2.1. Fundamental of Geometric Algebra

Let Gn represents a n-dimensional GA. A set of orthogonal bases of Gn is
{1, β1, β2, . . . , βn} , which leads to a basis by geometric product.

{1, {βi}, {βiβj}, . . . , {β1β2 . . . βn}}. (2.1)
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The orthogonal basis introduced above is non-commutative and satisfies
the following formula,

β2
i = 1, i = 1, . . . , n, (2.2)
βiβij = βiβiβj = βj , i, j = 1, . . . , n, i �= j, (2.3)
βij = βiβj = −βjβi = −βji, i, j = 1, . . . , n, i �= j. (2.4)

It can be seen from the above formula that there are 2n orthogonal bases
of Gn. For example, the G2 contains four orthogonal bases and G3 contains
eight orthogonal bases. The struction of the orthogonal basis of G2 and G3
is shown below,

G2 : {1, {β1, β2}, β1β2} = {1, β1, β2, β12}, (2.5)
G3 : {1, {β1, β2, β3}, {β1β2, β2β3, β1β3}, β1β2β3}

= {1, β1, β2, β3, β12, β23, β13, β123}.
(2.6)

Just as vectors are the basic elements of linear algebra, the multi-vectors
are the basic elements of GA. By observing the forms of complex numbers,
quaternions and GA, we can find that the multi-vector structure of GA is
the n-dimensional extension of complex numbers and quaternions [36,49]. If
a multi-vector a ∈ Gn, then a can be represented as

a = a0 +
n∑

i=1

aiβi, (2.7)

where a0, a1, . . . , an ∈ Rn.

2.2. Basic Operation of Geometric Algebra

In fact, the product operation in GA space is called geometric product. The
geometric product calculation formula of GA is composed of inner product
and outer product. For vectors p and q, the geometric product is defined as
follows,

pq = p · q + p ∧ q, (2.8)

where p · q is the scalar part, which represents the inner product in the
geometric product. p∧q is the vector part, which represents the outer product
in the geometric product. Due to the outer product is non-commutative, that
is, p∧q = −q∧p, then the geometric product is also non-commutative. The
relationship among geometric products, inner products and outer products
is shown in the Eqs. (2.9) and (2.10).

p · q =
1
2
(pq + qp), (2.9)

p ∧ q =
1
2
(pq − qp). (2.10)

If p and q are first-order vectors (FOV), then p ∧ q can be called a
bivector, which is interpreted as a vector facet formed by two vectors in
geometric algebra, as shown in Fig. 1; the trivector p∧q∧m can be interpreted
as a volume element with the direction of the vector facet p ∧ q and the one-
dimensional vector m facing inward, as shown in Fig. 2.
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Figure 1. Bivectorgraph

Figure 2. 3D outer product space

2.3. Geometric Algebraic Representation of Multi-modal Image

As we know, a complex number is composed of a scalar part and a vector
part. A quaternion is composed of a scalar part and three vector parts. The
GA space Gn is a geometric extension of Rn. Therefore, any multi-vector
Z ∈ (Gn) can be expressed in Eq. (2.11).

Z = E0(Z) +
∑

1≤i≤n

Ei(Z)βi +
∑

1≤i<j≤n

Eij(Z)βij + · · · + E1...n(Z)β1...n.

(2.11)

The multi-modal image is expressed in the form of GA, and the image is
processed in an overall manner, which can take into account the correlation
between the channels of the color image, so it is widely used in image pro-
cessing [14,54–56]. Given a multi-modal image K ∈ (Gn) and its GA form
is

K = 0 +
∑

1≤i≤n

Ei(K)βi +
∑

1≤i<j≤n

Eij(K)βij + · · · + E1...n(K)β1...n,

(2.12)

where E(K) ∈ R, which represents the value of each channel of the multi-
modal image and βi represents the orthogonal basis of Geometric Algebra. All
spectral channels of multi-modal image are represented by a set of orthogonal
basis. Due to the scalar part is not used, the scalar part is zero.
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3. Our Proposed Algorithm

Discrete cosine transform (DCT) is an effective tool in signal and image pro-
cessing. As it becomes more widely used, researchers have tried to expand it
to process the higher-dimensional signals. For multi-modal images, the tradi-
tional method is to divide the multi-modal image into several channels firstly,
and DCT can be used for each spectral channel separately. However, the dis-
advantage of this implementation method is that it ignores the correlation
between the spectrum channels. Therefore, this paper proposes a geometric
algebra form of the discrete cosine transform, named the geometric algebra
discrete cosine transform (GA-DCT). The GA-DCT proposed in this paper
treats multi-modal image as a multi-vector, and processes the multi-modal
image in an overall method by mapping each spectral channel to each blade
of GA.

3.1. Geometric Algebra Discrete Cosine Transform

For a multi-modal image f(x, y) with size M × N , according to the non-
commutative nature of geometric algebra, GA-DCT can be defined in two
forms. Formulas (3.1) and (3.2) represent the GA-DCT on the left and right
sides respectively.

CL(u, v) = α(u)α(v)
M−1∑

x=0

N−1∑

y=0

λf(x, y) cos
[π(2x + 1)u

2M

]

cos
[π(2y + 1)v

2N

]
, (3.1)

CR(u, v) = α(u)α(v)
M−1∑

x=0

N−1∑

y=0

f(x, y) cos
[π(2x + 1)u

2M

]

cos
[π(2y + 1)v

2N

]
λ. (3.2)

The two forms of GA-DCT correspond to two inverse transforms re-
spectively. Formulas (3.3) and (3.4) represent inverse transformations for the
left-sided and right-sided respectively.

fL(x, y) = −
M−1∑

x=0

N−1∑

y=0

α(u)α(v)λC(u, v) cos
[π(2x + 1)u

2M

]

cos
[π(2y + 1)v

2N

]
, (3.3)

fR(x, y) = −
M−1∑

x=0

N−1∑

y=0

α(u)α(v)C(u, v) cos
[π(2x + 1)u

2M

]

cos
[π(2y + 1)v

2N

]
λ, (3.4)
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where λ is a GA multi-vector with unit magnitude having no scalar part, i.e.
λ holds the following properties,

λ =
∑

1≤i≤n

Ei(λ)βi +
∑

1≤i<j≤n

Eij(λ)βij + · · · + E1...n(λ)

β1...n, E(λ) ∈ R, (3.5)

|λ|2 = λ ∗ λ̃ = 1. (3.6)

Similar to the traditional DCT, α(u), α(v) are shown in formula (3.7),

α(u) =

{ 1√
M

, u = 0√
2
M , u �= 0

, α(v) =

{ 1√
N

, v = 0√
2
N , v �= 0

. (3.7)

3.2. Algorithm Details

For a multi-modal image F ∈ (Gn)M×N , which are divided into n × n pixel
blocks. Let {fi,j} be a n × n block in a source image and the GA-DCT
coefficients are {Du,v}. In this paper, the right-sided GA-DCT and IGA-
DCT are adopted for multi-model medical image fusion. The GA-DCT of an
image is shown in formula (3.8),

Du,v = α(u)α(v)
n−1∑

x=0

n−1∑

y=0

fi,j cos
[
π(2x + 1)u

2n

]
cos

[
π(2y + 1)v

2n

]
λ, (3.8)

where u, v = 0, 1, . . . ,n − 1.
The source image block {fi,j} can be recovered from the GA-DCT co-

efficients by employing the IGA-DCT as shown in formula (3.9),

fi,j = −
M−1∑

x=0

N−1∑

y=0

α(u)α(v)Du,v cos
[
π(2x + 1)u

2M

]
cos

[
π(2y + 1)v

2N

]
λ,

(3.9)

where i, j = 0, 1, . . . ,n − 1.
The GA-DCT coefficients of an image block of size n × n is shown in

Eq. (3.10). The source image is usually divided into 8×8 blocks. Each image
block is actually a 64-point discrete signal. GA-DCT takes these signals as
input and then decomposes it into 64 orthogonal base signals. Therefore, the
output of GA-DCT is the amplitude of 64 base signals, which is the GA-
DCT coefficient. The transform coefficients on the frequency domain are the
function of the two-dimensional frequency domain variables u and v. The co-
efficient corresponding to u = 0 and v = 0 is called DC component, which is
DC coefficient, and the remaining 63 coefficients are called AC components,
which are AC coefficients. Therefore, each data block is a matrix with 64
DCT coefficients. Among the 64 coefficients, the DC coefficient is located
in the upper left corner of the image block and is equal to the average of
64 samples; the remaining 63 coefficients represent AC coefficients. The far-
ther away from the DC component, the higher the frequency of the image
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Figure 3. Frequency band information of GA-DCT coeffi-
cients

AC component represented by the coefficient. The GA-DCT frequency band
coefficients distribution is shown in Fig. 3.

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d00 d01 d02 d03 d04 d05 d06 d07

d10 d11 d12 d13 d14 d15 d16 d17

d20 d21 d22 d23 d24 d25 d26 d27

d30 d31 d32 d33 d34 d35 d36 d37

d40 d41 d42 d43 d44 d45 d46 d47

d50 d51 d52 d53 d54 d55 d56 d57

d60 d61 d62 d63 d64 d65 d66 d67

d70 d71 d72 d73 d74 d75 d76 d77

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

According to the above introduction, a multi-modal medical image fu-
sion rule can be designed. At present, the more common fusion rules based on
discrete cosine transform include local energy maximum rule, image contrast
maximum rule and coefficient average rule. This paper uses the GA-DCT
based on the average value of coefficients. Let M1 and M2 are two source
color images of size M × N and suppose that it can be divided into n × n
blocks and each block is represented in GA multi-vector form. Let X = xi,j

and Y = yi,j be the GA form of two image blocks of the source color image
M1 and M2,

xi,j = xRβ1 + xGβ2 + xBβ12,
yi,j = yRβ1 + yGβ2 + yBβ12,

(3.11)

where xi,j and yi,j represent blocks of the two source image respectively.
Then, (3.8) can be applied to obtain the GA-DCT coefficients of xi,j

and yi,j . The GA-DCT coefficients of xi,j and yi,j are Dx = {dx,u,v} and
Dy = {dy,u,v}. Take the average of the block coefficients corresponding to
the DCT coefficient matrix of the two source images as the DCT coefficient
of the fused image. The formula is shown in (3.12),

Df,u,v = 0.5 × (dx,u,v + dy,u,v), (3.12)
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Figure 4. The framework of multi-modal image fusion
based on GA-DCT

where dx,u,v and dy,u,v are the corresponding AC and DC coefficient of the
input image block xi,j and yi,j respectively. Then, the fused image block is
obtained by using the IGA-DCT.

Repeat the above steps for all image blocks to obtain the fused image
blocks of the two source images, and then combine all fused image blocks to
get the final fused image.

In conclusion, the steps of the GA-DCT algorithm are:

1. Let M1 and M2 represent two source color images of size M × N and
suppose that they can be divided into n × n blocks;

2. Each divided image block will be represented into geometric algebra
form;

3. Perform GA-DCT on the image to obtain transform coefficients;
4. Use the fusion rule of the coefficient averaging method to calculate the

corresponding coefficients of the two source images to obtain the coeffi-
cients of the fusion image;

5. IGA-DCT is used to obtain the fusion image.

Figure 4 is the framework of the multi-modal image fusion based on the
GA-DCT.

4. Experimental Analysis

In order to test the effectiveness of the proposed algorithm, experiments are
conducted on four sets of multi-modal medical images of the brain in the mat-
lab environment. For comparison, we choose five fusion algorithms that are
commonly used and have better fusion effects including Laplacian Pyramid
[35], DWT-DBSS [23], SIDWT-Haar [58], Morphological Difference Pyramid
[37] and DCT based on variance [3] respectively. The source image sets are se-
lected from available medical images data base provided by Harvard Medical
School [11]. Each image set contains a SPECT-T1 image and a SPECT-TC
image which size are 256 × 256.
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4.1. Evaluation Standard

The performance of image fusion algorithms is usually evaluated using sub-
jective and objective indicators. For subjective measurement, we mainly com-
pare fused effect through visual observation. However, the objective indicator
of color fusion image quality evaluation usually requires ideal fusion image,
and it is difficult to unify the standard of ideal fusion image. In this article,
we take the two source image as the ideal fusion image. At present, the most
widely used fusion image quality evaluation indicators include Multi-scale
Structural Similarity (MSSSIM) [29], Peak Signal-to-Noise Ratio (PSNR)
[28], Root-Mean-Square-Error (RMSE) [47], Mutual Information (MI) [45],
Entropy [41], Correlation Coefficient (CC) [31] et al. This article chooses the
above six objective evaluation standards to quantify the fusion images.

SSIM measures the structural similarity between the source image and
the fused image. The value of SSIM is set between 0 and 1. The larger the
obtained SSIM value, the more similar between the fusion image and the
source image, and the better the fusion effect. The calculation formula of
SSIM is shown in formulas (4.1) and (4.2).

SSIM(x,y,f) = 0.5 × (
SSIM(x,f) + SSIM(y,f)

)
. (4.1)

In

SSIM(x,f) =
(2μxμf + C1) (2σxf + C2)(

μ2
x + μ2

f + C1

)(
σ2
x + σ2

f + C2

) ,

SSIM(y,f) =
(2μyμf + C1) (2σyf + C2)(

μ2
y + μ2

f + C1

) (
σ2
y + σ2

f + C2

) ,

(4.2)

μx, μy and μf represent the mean values of the source image x, y and the
fusion image f ; σ2

x, σ
2
y and σ2 represent the variance of the source image and

the fusion image respectively; σxf and σyf represent the covariance of the two
source images and the fusion image respectively; C1,C2 and C3 are constants
to avoid the denominator being 0 and maintain stability, C1 = (K1 × L)2,
C2 = (K2 × L)2, usually K1 = 0.01,K2 = 0.03, L = 255.

PSNR is an indicator defined based on the mean square error. In the
fusion image, the higher the PSNR value obtained, the closer the fusion image
is to the source image. The PSNR calculation formula is shown in formula
(4.3),

PSNR = 10 × log10

(
L2

MSE

)
= 20 × log10

(
L

RMSE

)
. (4.3)

RMSE denotes the mean square error of the image, and the RMSE value
is inversely proportional to the quality of the fused image, that is, the lower
the RMSE value, the better the quality of the fused image. The calculation
formula is

RMSE =

√∑M
m=1

∑N
n=1[source(m,n) − fused(m,n)]2

M × N
. (4.4)
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MI represents the degree of interdependence between the source image
and the fused image. The greater the MI value, the better the fusion effect.

MI =
JE(x, f) + JE(y, f)

IEx + IEy
. (4.5)

In
JE(x, f) =

∑L−1
i=0

∑L−1
j=0 Px,f (i, k) log Px,f (i, k)/(Px(i) × Pf (k)),

JE(y, f) =
∑L−1

i=0

∑L−1
j=0 Py,f (i, k) log Py,f (i, k)/(Py(i) × Pf (k)),

(4.6)

JE(x, f) and JE(y, f) denote the joint entropy of the source image and the
fusion image respectively. IE denotes the information entropy of the image.

Entropy is a standard to reflect the richness of image information from
the perspective of information theory. The size of information entropy reflects
the amount of information carried by the image. The greater the information
entropy of the image, the richer its information and the better the quality.
The formula is

EN = −
L−1∑

L=0

Pi × log2 Pi, (4.7)

where L represents the image gray level. Pi represents the proportion of gray
value i pixels to the total pixels. The larger the EN, the larger the amount
of information in the fused image.

Correlation Coefficient reflects the degree of correlation between the
fused image and the source image. The larger the correlation coefficient, the
higher the similarity between the two images. The calculation formula is as
follow,

CC(X,Y ) =

∑M
i=1

∑N
j=1

(
Xi,j − X̄

) (
Yi,j − Ȳ

)
√(∑M

i=1

∑N
j=1

(
Xi,j − X̄

)2
) (∑M

i=1

∑N
j=1

(
Yi,j − Ȳ

)2
) ,

(4.8)

where X and Y represent the source image and the fused image respectively.

4.2. Subjective Fusion Image Quality Evaluations

The visual results of fusion experiments on image sets 1–4 are shown in
Figs. 5, 6, 7 and 8 respectively. The following four sets of pictures are the
brain medical source images and the fusion images obtained using Lapla-
cian Pyramid, DWT-DBSS, SIDWT-Haar, Morphological Difference Pyra-
mid, DCT-Variance and GA-DCT-Average algorithms.

Subjectively, Figs. 5, 6, 7 and 8c–f are the fused images obtained by
the Laplacian Pyramid, DWT-DBSS, SIDWT-Haar and Morphological Dif-
ference Pyramid algorithms. It can be clearly seen from the figures that the
boundary part of the fusion images is relatively complete, but the middle po-
sition is relatively dark as a whole. The sharpness and contrast of the fused
images are also very low, indicating that these four algorithms do not fuse
the two source images well, resulting in distortion of the fused image and
the information contained in the image is not comprehensive. From Figs. 5,
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Figure 5. Fusion results of image set1 a source image
SPECT-T1, b source image SPECT-TC, c Laplacian Pyra-
mid, d DWT-DBSS, e SIDWT-Haar, f Morphological Dif-
ference Pyramid, g DCT-Variance, h GA-DCT-Average

Figure 6. Fusion results of image set2 a source image
SPECT-T1, b source image SPECT-TC, c Laplacian Pyra-
mid, d DWT-DBSS, e SIDWT-Haar, f Morphological Dif-
ference Pyramid, g DCT-Variance, h GA-DCT-Average
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Figure 7. Fusion results of image set3 a source image
SPECT-T1, b source image SPECT-TC, c Laplacian Pyra-
mid, d DWT-DBSS, e SIDWT-Haar, f Morphological Dif-
ference Pyramid, g DCT-Variance, h GA-DCT-Average

Figure 8. Fusion results of image set4 a source image
SPECT-T1, b source image SPECT-TC, c Laplacian Pyra-
mid, d DWT-DBSS, e SIDWT-Haar, f Morphological Dif-
ference Pyramid, g DCT-Variance, h GA-DCT-Average

6, 7 and 8g, we can seen that the resolution and contrast of the fused im-
age obtained by using the DCT-Variance algorithm have improved. However,
comparing the white frame of each image in Figs. 5 and 6, it obvious that



Vol. 32 (2022) Multi-modal Medical Image Fusion Based on... Page 15 of 23 19

Table 1. Qualitative results of image-set 1

Fusion algorithms Quality indicators
SSIM PSNR RMSE MI Entropy CC

Laplacian Pyramid 0.7428 17.442 0.1342 2.4771 3.4538 0.6923
DWT-DBSS 0.7136 17.5662 0.1323 2.2140 3.4572 0.6284
SIDWT-Haar 0.7335 17.7478 0.1296 2.3689 3.3152 0.6481
Morphological Dif-
ference Pyramid

0.7400 17.0234 0.1409 2.4890 3.4986 0.6842

DCT-Variance 0.7675 15.4078 0.1697 2.9203 3.7252 0.6550
GA-DCT-Average 0.7617 18.2066 0.1229 2.8111 3.7578 0.7564

Table 2. Qualitative results of image-set 2

Fusion algorithms Quality indicators
SSIM PSNR RMSE MI Entropy CC

Laplacian Pyramid 0.7211 16.3629 0.1520 2.9663 3.9194 0.6556
DWT-DBSS 0.7092 16.5158 0.1494 2.7613 3.7748 0.5840
SIDWT-Haar 0.7149 16.7125 0.1460 2.8395 3.7609 0.602
Morphological Dif-
ference Pyramid

0.7105 15.8303 0.1616 2.9390 3.9974 0.6400

DCT-Variance 0.7310 14.3654 0.1913 3.1356 3.9848 0.6445
GA-DCT-Average 0.7263 17.3021 0.1364 3.0591 4.0404 0.7367

the image (g) contains a large red area, which obscures the original informa-
tion and may provide wrong information to medical workers. The four sets
of images obtained by the DCT-Variance algorithm have lost the key areas
of the source image (a), as shown in the red frame in each group of image
(g), which means that the DCT-Variance algorithm cannot accurately fuse
the information in the source image, which is likely to cause confusion in
subjective judgments, and it is not conducive to the doctors to obtain accu-
rate information. Figures 5, 6, 7 and 8h are the fusion images obtained by
the GA-DCT-Average algorithm. We can see that the fusion result obtained
by GA-DCT-Average is generally clearer than other images, and the fused
image basically contains all the key information of the source image.

4.3. Objective Fusion Image Quality Evaluations

The Tables 1, 2, 3 and 4 respectively show the objective quality evaluation of
the results obtained by fusing the four groups of images with different fusion
algorithms. The bold symbols in each table represent the algorithm with the
best index among the six algorithms.

Objectively, the four groups of fused images obtained based on the GA-
DCT-Average algorithm have absolute advantages in the two indicators of
PSNR and RMSE, which shows that the fusion results are closer to the
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Table 3. Qualitative results of image-set 3

Fusion algorithms Quality indicators
SSIM PSNR RMSE MI Entropy CC

Laplacian Pyramid 0.7297 16.8556 0.1436 2.7364 3.6714 0.7046
DWT-DBSS 0.6958 16.7812 0.1449 2.4450 3.7782 0.6472
SIDWT-Haar 0.7261 17.0263 0.1408 2.6281 3.5535 0.6665
Morphological
Difference Pyramid

0.7210 16.6019 0.1479 2.6193 3.5208 0.6737

DCT-Variance 0.7561 14.8700 0.1805 3.2540 4.2182 0.6483
GA-DCT-Average 0.7489 17.5884 0.1320 3.1056 4.1520 0.7635

Table 4. Qualitative results of image-set 4

Fusion algorithms Quality indicators
SSIM PSNR RMSE MI Entropy CC

Laplacian Pyramid 0.6059 17.0485 0.1405 1.9266 3.6212 0.6510
DWT-DBSS 0.5519 17.0083 0.1411 1.3367 3.6904 0.5897
SIDWT-Haar 0.5920 17.1788 0.1384 1.6988 3.4017 0.6267
Morphological
Difference Pyramid

0.6207 16.5814 0.1482 2.2669 3.9315 0.6235

DCT-Variance 0.7067 16.5906 0.1481 2.8305 4.9492 0.5338
GA-DCT-Average 0.6531 17.5681 0.1323 2.7516 4.4941 0.6483

Table 5. Time consumption of different fusion algorithms

Fusion algorithms Time consumption(s)
Set 1 Set 2 Set 3 Set 4

Laplacian Pyramid 0.976 1.004 0.998 1.020
DWT-DBSS 1.062 1.032 1.030 1.031
SIDWT-Haar 1.131 1.142 1.123 1.114
Morphological Difference Pyramid 1.489 1.633 1.628 1.608
DCT-Variance 2.539 2.597 2.569 2.535
GA-DCT-Average 2.779 2.736 2.785 2.737

source images and the fusion effect is better than other algorithms in terms
of these two indicators. The correlation coefficients of images obtained by GA-
DCT-Average are significantly higher than other algorithms in the Tables 1,
2 and 3, while in Table 4, the results obtained by GA-DCT-Average are
only slightly lower than the Laplacian Pyramid algorithm. It shows that
the image obtained based on GA-DCT-Average has the highest correlation
with the source image, and the two are the most similar. From Tables 1, 2,
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Figure 9. Fusion performance of the first group medical
image under various compression ratios

3 and 4, we can also see that the result image obtained by the GA-DCT-
Average algorithm is close to the best in terms of SSIM indicator, and there
is only a slight gap between the DCT-Variance algorithm. Entropy indicates
the amount of information carried by the image and the richness of image
information. It can be seen from Tables 1 and 2 that the fusion image obtained
by the GA-DCT-Average algorithm has the highest Entropy, which indicates
that the image has the most information and the image quality is better
than others. Tables 3 and 4 show that the image obtained by the GA-DCT-
Average algorithm is only slightly lower than the DCT-Variance algorithm
in the entropy indicator. In general, the proposed algorithm also occupies an
advantage in objective evaluation indicators.

4.4. Time Consumption with Different Fusion Algorithms

The time-consuming is one of the important issue to evaluate the performance
of the algorithm. Table 5 shows the comparison of the time-consuming by the
six algorithms applied to the four sets of medical images. Since the consumed
time of the six algorithms is very short, there will be a little error in the time
of each experiment. In order to ensure the accuracy of the data, the average
of the time obtained from ten experiments is taken as the time consumed by
the algorithm. It can be seen from Table 5 that the algorithm proposed in
this article takes longer than other algorithms because of some complicated
calculations in geometric algebra. In general, the six algorithms mentioned
in this article require relatively short experimental time and are relatively
efficient.

4.5. Fusion Performance with Different Compression Ratios

The Figs. 9, 10, 11 and 12 show the PSNR values of four groups of color
medical images fused by six different fusion algorithms under different com-
pression ratios [4]. The compression ratio is defined as the ratio between the
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Figure 10. Fusion performance of the second group medi-
cal image under various compression ratios

Figure 11. Fusion performance of the third group medical
image under various compression ratios

compressed image and the source image. It can be seen from Figs. 9, 10, 11
and 12 that the PSNR value of the GA-DCT-Average is significantly higher
than other algorithms under different ratio. With the continuous increase
of compression ratio, the PSNR values of GA-DCT-Average algorithms are
constantly increasing and higher than other algorithms. It means that the
proposed algorithm has great advantages under different compression ratios.

Therefore, we can find that the algorithm proposed in this paper oc-
cupies comparative advantages in multi-modal medical image fusion subjec-
tively and objectively. The fusion effect is better than several common fusion
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Figure 12. Fusion performance of the fourth group medical
image under various compression ratios

algorithms comprehensively, which can provide great help for medical staff
in diagnosing the cause.

5. Conclusion

This paper proposes a multi-modal medical image fusion algorithm based on
the GA-DCT and conducts fusion experiments on four groups of brain med-
ical color images. Considering the connection between the color image chan-
nels, we use multi-vector to represent the source image as a whole. Firstly, the
source image is divided into several blocks and expressed them as the multi-
vector in the GA form; then GA-DCT is used to process the image block.
The DC and AC coefficients of the corresponding blocks of the source image
are averaged as the coefficients of the fused image; finally perform IGA-DCT
to obtain the results. Experimental results show that the proposed algorithm
can overcome the problem of image blur and has a considerable improvement
in sharpness and contrast. Under different compression ratios, the PSNR of
the fused image obtained by the proposed algorithm is better than other al-
gorithms. So it can be used as an effective method for multi-modal medical
image fusion.

According to the research results, we can learn that the performance of
the proposed algorithm has been improved compared with traditional algo-
rithms, but it does not occupy a great advantage in some objective evaluation
indicators. Therefore, the algorithm needs to be continuously improved, and
the application of sparse representation and neural network based on geo-
metric algebra in image fusion will be studied in subsequent research.
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