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1. Introduction

This article is based on a talk given by the author at the 12th
International Conference on Clifford Algebras and their Applications in
Mathematical Physics. That talk’s focus was a generalization of a classical
Clifford algebra and a generalization of a graded Clifford algebra that were
introduced by Cassidy and the author in [3,4]. In particular, the talk de-
scribes behavior of the algebras determined by certain geometric data, viewed
through the lens of Artin et al. noncommutative algebraic geometry [1,2].
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In the second section of the article, the focus is graded skew Clifford
algebras as presented in [3]. To that end, the setting of graded Clifford
algebras is recalled, including a result (Theorem 2.4) that uses the existence
of base points of a certain quadric system to determine algebraic properties
of the algebra. In order to develop a “quantized” analogue of a graded Clif-
ford algebra, a generalization of the notion of symmetric matrix is given in
Definition 2.6. The notion of graded skew Clifford algebra is provided in Def-
inition 2.8. Section 2 also provides many examples, some of which are drawn
from the area of quantum groups.

Section 3 is concerned with describing a quantized version of the geom-
etry used in the theory of graded Clifford algebras. To this end, quadratic
forms, quadric systems and base points of a quadric system are generalized
to the noncommutative setting in the third section. This new terminology
allows Theorem 2.4 to be modified for the context of graded skew Clifford
algebras in Theorem 3.6. This result (Theorem 3.6) uses the existence of base
points of a certain quadric system (but, now, in the setting of noncommu-
tative algebraic geometry) to determine algebraic properties of the algebra,
like its commutative counterpart, Theorem 2.4. The results are applied to
the examples from Sect. 2, and, additionally, an example with Weyl algebras
is presented.

The fourth, and final, section of the article considers a “quantized” ver-
sion of the map that sends a graded Clifford algebra onto a classical Clifford
algebra. A “quantized” analogue, called a skew Clifford algebra, of a classical
Clifford algebra was introduced in [4], and is provided in Definition 4.2. This
definition is followed by some examples of skew Clifford algebras of various
finite dimensions. Theorem 4.9 shows that a skew Clifford algebra is the quo-
tient of a graded skew Clifford algebra that is generated by degree-1 elements.
It also shows that, under certain conditions, the graded skew Clifford algebra
can be taken to be quadratic with many of the properties that are satisfied
by polynomial rings.

Throughout this article, unless otherwise stated, k denotes a field where
char(k) �= 2, and M(n, k) denotes the ring of n×n matrices with entries in k.
Whenever any geometry is discussed, the field k is assumed to be algebraically
closed.

2. Graded Skew Clifford Algebras

In this section, we recall the notion of a graded skew Clifford algebra which
was introduced in [3] and which generalizes the notion of a graded Clifford
algebra.

We first recall the notion of a graded Clifford algebra, as presented in
[6].

Definition 2.1. [6] Let M1, . . . ,Mn ∈ M(n, k) denote symmetric matrices.
The graded Clifford algebra C(M1, . . . ,Mn), associated to M1, . . . ,Mn, is
defined to be the associative Z-graded k-algebra on degree-1 generators
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x1, . . . , xn and on degree-2 generators y1, . . . , yn with defining relations given
by:

(a) xixj + xjxi =
n∑

k=1

(Mk)ij yk for all i, j = 1, . . . , n, and

(b) the requirement that the subalgebra generated by y1, . . . , yn is a poly-
nomial ring contained in the center of C(M1, . . . ,Mn).

Example 2.2. Suppose n = 2 and let M1 =
[
2 1
1 0

]

and M2 =
[
0 0
0 2

]
. With

these data, the degree-2 defining relations of the associated graded Clifford
algebra C are:

2x2
1 = 2y1, 2x2

2 = 2y2, x1x2 + x2x1 = 1y1 + 0y2 ( = x2
1),

from which it follows that the subalgebra generated by y1 and y2 is a poly-
nomial ring contained in the center of C. Hence,

C = k〈x1, x2〉/〈x1x2 + x2x1 − x2
1〉,

where k〈x1, x2〉 denotes the free algebra generated by x1 and x2.

Since the degree-2 elements y1, . . . , yn are central of positive degree and
since the algebra C(M1, . . . ,Mn)/〈y1, . . . , yn〉 is noetherian, [1, Lemma 8.2]
implies that graded Clifford algebras are noetherian. One can associate geom-
etry to graded Clifford algebras C(M1, . . . ,Mn) via the symmetric matrices
M1, . . . ,Mn, which is illustrated as follows using the data in our previous
example.

Example 2.3. To the matrices M1 and M2 in Example 2.2, we associate the
quadratic forms 2(t21 + t1t2) and 2t22, respectively. The points on which both
quadratic forms vanish in P

1 are called the base points of the quadric system
given by the two quadratic forms, and, since there are no such points in
P

1, we say that the quadric system associated to 2(t21 + t1t2) and 2t22 is
base-point free. This fact is of note since the next result implies that this
geometric observation is sufficient to conclude that C = k〈x1, x2〉/〈x1x2 +
x2x1 − x2

1〉 without having to check that y1 and y2 generate a polynomial
ring in k〈x1, x2〉/〈x1x2 + x2x1 − x2

1〉.
In fact, the next result implies that the property of being base-point free

is intimately tied to the graded Clifford algebra satisfying many properties
shared by polynomial rings, including some homological properties.

Theorem 2.4. [6] The graded Clifford algebra C(M1, . . . ,Mn) is quadratic,
Auslander-regular of global dimension n and satisfies the Cohen–Macaulay
property with Hilbert series equal to that of the polynomial ring on n vari-
ables if and only if the quadric system in P

n−1 associated to M1, . . . ,Mn is
base-point free; in this case, C(M1, . . . ,Mn) is Artin-Schelter regular and a
noetherian domain.



43 Page 4 of 12 M. Vancliff Adv. Appl. Clifford Algebras

Example 2.5. Suppose n = 2 and let M1 =
[

2 −1
−1 0

]
and M2 =

[
0 −1

−1 2

]
. The

graded Clifford algebra C associated to these data has defining relations:

2x2
1 = 2y1, 2x2

2 = 2y2, x1x2 + x2x1 + x2
1 + x2

2 = 0, x2
1x2 = x2x

2
1,

since the ambiguities given by Bergman’s Diamond Lemma from these rela-
tions are resolvable (so the subalgebra generated by x2

1 and x2
2 is a polynomial

ring). The quadric system associated to M1 and M2 is given by t21 − t1t2 and
t22 − t1t2, yielding the base point (1, 1) ∈ P

1 on which both quadratic forms
vanish. This example illustrates that graded Clifford algebras need not be
quadratic, and, clearly, C is not a domain as (x1 + x2)2 = 0.

The objective in [3] was to find a larger class of algebras to which The-
orem 2.4 (or an analogue thereof) applies. That work led to producing a
class of algebras in [3, Section 5.1] that solved a certain open problem in the
area of noncommutative algebraic geometry. In order to “skew” the algebras
and Theorem 2.4, the notions of symmetric matrix, graded Clifford algebra,
quadratic form, quadric system and base-point were generalized. We next
address the first of those constructions.

Definition 2.6. [3] For this definition, we temporarily allow k to denote an
arbitrary field. Let μ = (μij) ∈ M(n, k) be a matrix with the property that
μijμji = 1 for all i, j such that i �= j. A matrix M = (Mij) ∈ M(n, k) is
called μ-symmetric if Mij = μijMji for all i, j = 1, . . . , n.

Clearly, if μij = 1 for all i, j, then any μ-symmetric matrix is symmet-
ric. On the other hand, if char(k) �= 2 and μij = −1 for all i, j, then any
μ-symmetric matrix is skew symmetric. Hence, the notion of μ-symmetry
generalizes the notions of symmetry and skew symmetry.

Example 2.7. If n = 3, and if μkk = 1 for all k, then the matrix
⎡

⎣
a b c

μ21b d e
μ31c μ32e f

⎤

⎦ ∈ M(3, k)

is μ-symmetric.

For the next definition, the reader should note that a normalizing
sequence of homogeneous elements in a Z-graded k-algebra A consists of
homogeneous elements f1, . . . , fm ∈ A \ k such that f1 is normal in A (that
is, Af1 = f1A) and, for each k ∈ {2, . . . , m}, the image of fk is nonzero and
normal in A/〈f1, . . . , fk−1〉.
Definition 2.8. [3] Recall that char(k) �= 2. Let μ = (μij) ∈ M(n, k)
satisfy μkk = 1 = μijμji for all i, j, k, and suppose M1, . . . ,Mn ∈ M(n, k)
are μ-symmetric matrices. A graded skew Clifford algebra A(μ,M1, . . . ,Mn),
associated to M1, . . . ,Mn and μ, is an associative Z-graded k-algebra on
degree-1 generators x1, . . . , xn and on degree-2 generators y1, . . . , yn with
defining relations given by:
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(a) xixj + μijxjxi =
n∑

k=1

(Mk)ijyk for all i, j = 1, . . . , n, and

(b) the existence of a normalizing sequence {y′
1, . . . , y

′
n} consisting of homo-

geneous degree-2 elements of A(μ,M1, . . . ,Mn) that span ky1+· · ·+kyn.

Clearly, graded Clifford algebras are graded skew Clifford algebras.

Example 2.9. Let n = 2, M1 =
[
2 0
0 0

]
and M2 =

[
0 0
0 2

]
. Both M1 and M2

are μ-symmetric matrices for any matrix μ that satisfies the properties given
in Definition 2.8. The degree-2 defining relations of a graded skew Clifford
algebra associated to these data are:

2x2
1 = 2y1, 2x2

2 = 2y2, x1x2 + μ12x2x1 = 0,

from which it follows that {y1, y2} is a normalizing sequence. Hence, up to
isomorphism, there is only one graded skew Clifford algebra associated to
these data, and it is the quadratic k-algebra on generators x1 and x2 with
one defining relation, namely x1x2 +μ12x2x1 = 0. It follows that this graded
skew Clifford algebra is the coordinate ring of the quantum affine plane [5].

Example 2.10. Generalizing the previous example, any skew polynomial ring
with generators x1, . . . , xn, with defining relations xixj +μijxjxi = 0 (where
μijμji = 1), for all i �= j, is a graded skew Clifford algebra. In particular, any
polynomial ring on a finite number of generators is a graded skew Clifford
algebra.

Example 2.11. Let n = 2, μ =
[

1 −1
−1 1

]
, M1 =

[
2 1

−1 0

]
and M2 =

[
0 0
0 2

]
. The

degree-2 defining relations of a graded skew Clifford algebra associated to
these data are:

2x2
1 = 2y1, 2x2

2 = 2y2, x1x2 − x2x1 = y1 = x2
1.

Since x2
1 is normal in the algebra A = k〈x1, x2〉/〈x1x2 −x2x1 −x2

1〉 and since
the image of x2

2 is normal in the algebra A/〈x2
1〉, it follows that {x2

1, x2
2}

is a normalizing sequence in A. Hence, up to isomorphism, there is only
one graded skew Clifford algebra associated to μ, M1 and M2, and it is the
quadratic algebra A. The algebra A is often called the Jordan plane.

It is perhaps worthwhile to make some observations before we continue.

Remarks 2.12. 1. For any graded skew Clifford algebra on 2n generators
as in Definition 2.8, there are n +

(
n
2

)
defining relations that are homo-

geneous of degree two, since

xjxi + μjixixj =
n∑

k=1

(Mk)ji yk =
n∑

k=1

μji(Mk)ij yk

= μji(xixj + μijxjxi),



43 Page 6 of 12 M. Vancliff Adv. Appl. Clifford Algebras

for all i, j = 1, . . . , n. Moreover, if the normalizing sequence that spans
ky1+ · · ·+kyn is not determined by the degree-2 defining relations, then
the algebra has degree-3 defining relations and possibly also degree-4
defining relations. Thus, in spite of the above examples, a graded skew
Clifford algebra is not, in general, a quadratic algebra, and this situation
mirrors that of graded Clifford algebras (cf. Example 2.5).

2. By [3, Lemma 1.13], a graded skew Clifford algebra is generated by
degree-1 elements if and only if the matrices M1, . . . ,Mn are linearly
independent.

3. Since the elements y′
1, . . . , y

′
n in Definition 2.8 are normalizing of positive

degree in the graded skew Clifford algebra A, and since A/〈y′
1, . . . , y

′
n〉 =

A/〈y1, . . . , yn〉 is a noetherian algebra, [1, Lemma 8.2] implies that
graded skew Clifford algebras are noetherian.

4. Given μ,M1, . . . ,Mn as in Definition 2.8, the definition of graded skew
Clifford algebra does not, in general, determine the graded skew Clif-
ford algebra uniquely, even up to isomorphism; there could, conceivably,
be different ways of obtaining a normalizing sequence satisfying (b) of
Definition 2.8. However, if a graded skew Clifford algebra is quadratic,
then the data μ,M1, . . . ,Mn determine the algebra up to isomorphism.

3. Associating Geometry to Graded Skew Clifford Algebras

In this section, our goal is the main theorem of [3] which is a generalization
of Theorem 2.4. To this end, we associate geometric data to a μ-symmetric
matrix and describe analogues of the notions of quadratic form, quadric sys-
tem and base point in the noncommutative setting.

Definition 3.1. [3] To a μ-symmetric matrix M ∈ M(n, k), as given in Defi-
nition 2.6, we associate

(a) the skew polynomial ring S on generators z1, . . . , zn with defining rela-
tions zjzi = μijzizj for all i �= j (where we write Sd for the span of the
homogeneous elements of S of degree d), and

(b) the element [z1 · · · zn]M

⎡

⎢⎣
z1
...
zn

⎤

⎥⎦ ∈ S2.

We call the nonzero elements of S2 quadratic forms.

Example 3.2. To the matrices in Example 2.11, we associate the quadratic
forms

[z1 z2]M1

[
z1

z2

]
= 2z2

1 + z1z2 − z2z1 = 2z2
1 + 2z1z2 ∈ S2, (3.1)

[z1 z2]M2

[
z1

z2

]
= 2z2

2 ∈ S2, (3.2)

using μ12 = −1 in (3.1).
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One can associate geometry to quadratic forms and to defining relations
of S by applying them to elements of P(S1

∗) × P(S1
∗). In particular,

(zjzi − μijzizj)( (a1, . . . , an), (b1, . . . , bn) ) = ajbi − μijaibj ∈ {0, 1} ⊂ k,

and the element zizj + z2
k ∈ S2 would be evaluated as

(zizj + z2
k)( (a1, . . . , an), (b1, . . . , bn) ) = aibj + akbk ∈ {0, 1} ⊂ k.

Definition 3.3. [3] Define the quadric, Z(q), determined by any quadratic
form q to be the set of points in P(S1

∗) × P(S1
∗) on which q and all the

defining relations of S vanish.

In the commutative setting, that is μij = 1 for all i, j, we have that the
algebra S is the polynomial ring on n generators. In this case, the zero locus in
P(S1

∗)×P(S1
∗) of the defining relations of S is the graph of the identity map on

P(S1
∗). This implies that evaluation of quadratic forms on points of P(S1

∗)×
P(S1

∗) reduces to the traditional evaluation from the commutative case. For
instance, evaluation of zizj + z2

k on a point ( (a1, . . . , an), (b1, . . . , bn) ) in the
zero locus of the defining relations of S yields, in this case, aiaj +a2

k ∈ {0, 1}.
Moreover, in this case, the base points of a quadric system Q in P

n−1 = P(S1
∗)

are parametrized by graded modules N =
⊕∞

i=0 Ni over S/〈q : Z(q) ∈ Q〉
that are cyclic (generated by N0) and satisfy dimk(Ni) = 1 for all i. Hence,
Q is base-point free if and only if there are no such graded modules. We will
use certain modules analogous to these graded modules to extend the notion
of base point to the noncommutative setting.

Definition 3.4. [3] Let μ and S be as in Definition 3.1.
(a) If q1, . . . , qm ∈ S2 \ {0}, we call their span a quadric system.
(b) A quadric system Q is said to be normalizing if it is given by a normaliz-

ing sequence of S; that is, Q is spanned by elements q1, . . . , qm ∈ S2\{0}
such that q1 is normal in S, and, for each k ∈ {2, . . . , m}, the image of
qk is nonzero and normal in S/〈q1, . . . , qk−1〉.

(c) A right base point of a quadric system Q is a graded right S
〈Q〉 -module

N =
⊕∞

i=0 Ni that satisfies
(i) N = N0

S
〈Q〉 , and

(ii) there exists c ∈ N \ {0} such that dimk(Ni) = c for all i, and
(iii) dimk(N/N ′) < ∞ for all nonzero (graded) submodules N ′ of N .
A left base point of a quadric system is defined analogously.

(d) We say a quadric system is right (respectively, left) base-point free if it
has no right (respectively, left) base points.

It should be noted that, by [3, Proposition 10], a normalizing quadric
system is right base-point free if and only if it is left base-point free. Moreover,
in condition (c)(ii) of Definition 3.4, if c = 1 for any right base point, then
condition (c)(iii) is redundant for that base point.

Assuming k is algebraically closed, if S is commutative, then any right
base point corresponds to a base point in the traditional sense, which can be
seen as follows. The definition of N implies that there exists i ∈ {1, . . . , n}
such that zi ∈ S1 does not annihilate N . Let R denote the subring of degree-0
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elements of the localization of S formed by inverting the powers of zi. The def-
inition of N guarantees the existence of a c-dimensional simple R-module, but
the Nullstellensatz implies that c = 1. The statement now follows from the
previous paragraph and the comments immediately preceding Definition 3.4.

Definition 3.5. (a) [3] If a normalizing quadric system Q is right base-point
free, then we say it is base-point free.

(b) [1] If c = 1 in Definition 3.4(c), then the module N is called a point
module.

With this new terminology, we can now say that if Q is a normalizing
quadric system, then the isomorphism classes of point modules over S/〈Q〉
are parametrized by the points of

⋂
q∈Q Z(q). This mirrors precisely the sit-

uation in the commutative case. We are now ready to state the promised
generalization of Theorem 2.4.

Theorem 3.6. [3] Let μ and M1, . . . ,Mn ∈ M(n, k) be as in Definition 2.8. A
graded skew Clifford algebra A(μ,M1, . . . ,Mn) is quadratic, Auslander regular
of global dimension n and satisfies the Cohen-Macaulay property with Hilbert
series equal to that of the polynomial ring on n variables if and only if the
quadric system associated to M1, . . . ,Mn is normalizing and base-point free;
in this case, A(μ,M1, . . . ,Mn) is Artin-Schelter regular and a noetherian
domain.

Example 3.7. Referring to Example 2.9, the quadric system Q associated to
the matrices M1 and M2 in that case is kz2

1 ⊕kz2
2 , and S = k〈z1, z2〉/〈z2z1 −

μ12z1z2〉. Since each of z2
1 and z2

2 is normal in S, the quadric system Q is
normalizing in this case. Suppose N =

⊕∞
i=0 Ni = N0S/〈Q〉 is a right base

point. Since dimk(N) = ∞ and dimk(N0) < ∞, it follows that dimk(S/〈Q〉) =
∞. However,

S

〈Q〉 =
k〈z1, z2〉

〈z2z1 − μ12z1z2, z2
1 , z2

2〉 ,

which has dimension 4 �= ∞, so such a module N does not exist. Hence,
Q is normalizing and base-point free, and, by Theorem 3.6, the graded skew
Clifford algebra associated to these data is quadratic, Auslander regular etc.

Example 3.8. Referring to Example 2.11, the quadric system Q associated
to the matrices M1 and M2 in that case is k(z2

1 + z1z2) ⊕ kz2
2 , and S =

k〈z1, z2〉/〈z2z1 +z1z2〉. In this case, {z2
2 , z2

1 +z1z2} is a normalizing sequence
in S since z2

2 is normal in S and

(z2
1 + z1z2)z1 = (z1 − 2z2)(z2

1 + z1z2),
z1(z2

1 + z1z2) = (z2
1 + z1z2)(z1 + 2z2),

(z2
1 + z1z2)z2 = z2(z2

1 + z1z2)

in S/〈z2
2〉. Hence, Q is a normalizing quadric system. Since S/〈Q〉 has dimen-

sion four, an argument similar to that used in the preceding example implies
that Q has no base points. Thus, Q is normalizing and base-point free, and,
by Theorem 3.6, the graded skew Clifford algebra associated to these data is
quadratic, Auslander regular etc.
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Example 3.9. The author is grateful to Michael Reed, of Crucial Flow
Research, for asking a question during the talk on which this article is based
as to whether or not Weyl algebras are related to graded skew Clifford alge-
bras. In this example, we will show that the Nth Weyl algebra is a quotient
of a quadratic graded skew Clifford algebra on 2N + 1 generators that sat-
isfies the properties stated in Theorem 3.6. Let N be a positive integer and
write n = 2N + 1. Let μ ∈ M(n, k), where μkk = 1 for all k and μij = −1
for all i �= j. For each k ∈ {1, . . . , n − 1}, let Mk ∈ M(n, k) denote the
matrix with kk-entry equal to 2, and 0 in all other entries. Moreover, we
define Mn ∈ M(n, k) by taking its ij-entry to be:

(Mn)ij =

⎧
⎨

⎩

2 if j = i = n,
(−1)i if j = i + (−1)i+1, i �= n �= j,
0 otherwise.

Thus, for instance, if n = 5, then

M5 =

⎡

⎢⎢⎢⎢⎣

0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 2

⎤

⎥⎥⎥⎥⎦
.

The matrices M1, . . . ,Mn are μ-symmetric, and the degree-2 defining
relations of the graded skew Clifford algebra A(μ,M1, . . . ,Mn) are:

(i) x2
k = yk for all k, and

(ii) xixj − xjxi = 0 for all i �= j where either j �= i + (−1)i+1 or n ∈ {i, j},
and

(iii) xixj − xjxi = (−1)iyn = (−1)ix2
n for all i, j where j = i + (−1)i+1 and

i �= n �= j.
The quadric system Q determined by M1, . . . ,Mn is

Q = kz2
1 ⊕ · · · ⊕ kz2

n−1 ⊕ k( z2
n +

∑

i∈I

zi+1zi ),

where I = {1, 3, 5, . . . , n − 2}. The elements z2
1 , . . . , z2

n−1, z
2
n +

∑
i∈I zi+1zi

form a normalizing sequence in S, since the image of each element is central in
the factor ring given by the preceding elements in the sequence. Moreover, the
ring S/〈Q〉 has finite dimension over k, since S/〈Q〉 has a basis that is a subset
of {zi11 · · · zinn : ik ∈ {0, 1} for all k}. It follows that Q is base-point free (by
an argument similar to that used for the previous two examples). Hence, by
Theorem 3.6, A(μ,M1, . . . ,Mn) is a graded skew Clifford algebra that satisfies
the properties stated in that theorem. In particular, the algebra is generated
by x1, . . . , xn with defining relations given by (ii) and (iii) above. In order
to see that A(μ,M1, . . . ,Mn) maps onto the Nth Weyl algebra, we define a
homomorphism χ from A(μ,M1, . . . ,Mn) to a k-algebra on 2N generators
by

xi 	→ X(i+1)/2 for all i ∈ 2Z + 1, i �= n,
xi 	→ di/2 for all i ∈ 2Z,
xn 	→ 1.
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The image of χ is the k-algebra on generators X1, . . . , XN , d1, . . . , dN with
defining relations

dkXk − Xkdk = 1 for all k ∈ {1, . . . , N},
XiXj − XjXi = 0 = didj − djdi for all i, j,
Xidj − djXi = 0 for all i �= j

(where χ(0) = χ(xixn − xnxi) = 0 for all i). It follows that
A(μ,M1, . . . ,Mn)

〈xn − 1〉
is isomorphic to the Nth Weyl algebra.

We close this section by noting that if a graded skew Clifford algebra
A(μ,M1, . . . ,Mn) is quadratic, then its Koszul dual is isomorphic to S/〈Q〉,
where Q is the quadric system given by M1, . . . ,Mn.

4. Skew Clifford Algebras

Until now, our discussion has centered on graded skew Clifford algebras, from
[3], which are Z-graded algebras that can be viewed as quantized analogues
of graded Clifford algebras. Since a graded Clifford algebra maps onto a
classical Clifford algebra, our goal in this section is to replicate an analogue
of this mapping in the setting of graded skew Clifford algebras. To this end,
a quantized analogue of a classical Clifford algebra will be presented as in [4].

Remark 4.1. The reader should note that the algebra defined in Definition 4.2
below can, sometimes, depending on the data, be the zero algebra. This can
be seen by comparing

k〈x1, x2〉
〈x2

1, x2
2, x1x2 + x2x1 − 1〉 and

k〈x1, x2〉
〈x2

1, x2
2, x1x2 − x2x1 − 1〉 ;

the first algebra is a Clifford algebra of dimension four, whereas the second
algebra is the zero algebra and not a Clifford algebra.

Definition 4.2. [4]
(a) Let V be a vector space with ordered basis B = {x1, . . . , xn} and let

μ be as in Definition 2.8. We call a bilinear form φ : V × V → k

μ-symmetric (relative to B) if φ(xi, xj) = μijφ(xj , xi) for all i, j.
(b) Let V be a vector space with ordered basis B = {x1, . . . , xn}, and

let φ be a μ-symmetric bilinear form (relative to B). The skew Clif-
ford algebra sCl(V, μ, φ) associated with φ is the quotient of the ten-
sor algebra on V by the ideal generated by all elements of the form
xi ⊗ xj + μijxj ⊗ xi − 2φ(xi, xj) · 1 for all i, j.

Example 4.3. The skew Clifford algebra associated to the data V = k
2 with

ordered basis B = {x1, x2},

μ =
[

1 −1
−1 1

]
and (φ(xi, xj)) =

[
0 1/2

−1/2 0

]

is the second algebra in Remark 4.1, which is the zero algebra.
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Example 4.4. Any Clifford algebra is a skew Clifford algebra.

Example 4.5. If we take V and μ as in Definition 4.2, and let φ = 0, then the
skew Clifford algebra sCl(V, μ, 0) is the quantum exterior algebra Λµ(V ). In
this case, we have dimk(sCl(V, μ, 0)) = 2dim(V ). Moreover, the Koszul dual
of Λµ(V ) is the algebra S, where S1

∗ = V and {z1, . . . , zn} is the dual basis
to B.

Example 4.6. Suppose dimk(V ) = 3 and let

μ =

⎡

⎣
1 a 1

1/a 1 a
1 1/a 1

⎤

⎦ and (φ(xi, xj)) =

⎡

⎣
0 0 b
0 0 0
b 0 0

⎤

⎦ ,

where a, b ∈ k with a �= 0. In this case, dimk(sCl(V, μ, φ)) = 8.

Example 4.7. Suppose dimk(V ) = 4 and let

μ =

⎡

⎢⎢⎣

1 μ12 μ13 1
μ21 1 μ23 1
μ31 μ32 1 1
1 1 1 1

⎤

⎥⎥⎦ and (φ(xi, xj)) =

⎡

⎢⎢⎣

0 0 0 a
0 0 0 b
0 0 0 c
a b c 1

⎤

⎥⎥⎦

where a, b, c ∈ k, such that abc �= 0. If μ23 = μ13 = 1 �= μ12, then we have
that dimk(sCl(V, μ, φ)) = 8. On the other hand, if μ23 �= 1 or μ13 �= 1, then
dimk(sCl(V, μ, φ)) = 4.

Let g : V → sCl(V, μ, φ) denote the composition

V ↪→ T (V ) −�sCl(V, μ, φ),

where T (V ) denotes the tensor algebra on V . For Clifford algebras, g is always
injective, but, as seen in Example 4.3, for arbitrary sCl(V, μ, φ), g need not
be injective. Nevertheless, using g, there is a universal mapping property
analogous to that for Clifford algebras ([4, Theorem 2.6]). The next result
determines when g is injective.

Theorem 4.8. [4] For V , μ and φ as in Definition 4.2, the following are
equivalent:
(a) the map g : V → sCl(V, μ, φ) is injective;
(b) dimk(sCl(V, μ, φ)) = 2dim(V );

(c) the quadratic form
[
z1 · · · zn

]
(φ(xi, xj))

⎡

⎢⎣
z1

...
zn

⎤

⎥⎦ ∈ S2,

determined by φ, is central in S.

In contrast, if the map g is not injective for some nonzero skew Clifford
algebra sCl(V, μ, φ), then, by [4, Corollary 3.13], dimk(sCl(V, μ, φ)) = 2j for
some j ∈ {1, . . . ,dimk(V ) − 1}.

We conclude by relating skew Clifford algebras to graded skew Clifford
algebras.

Theorem 4.9. [4] Let V , μ and φ be as in Definition 4.2. Write n = dimk(V )
and suppose φ �= 0.
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(a) The skew Clifford algebra sCl(V, μ, φ) is a quotient of a graded skew
Clifford algebra A(μ,M1, . . . ,Mn), for some μ-symmetric matrices M1,
. . . ,Mn ∈ M(n, k), where A(μ,M1, . . . ,Mn) is generated by degree-1
elements.

(b) If dimk(sCl(V, μ, φ)) = 2n, then there exists a quadratic graded skew
Clifford algebra A(μ,M1, . . . ,Mn), for some μ-symmetric matrices M1,
. . . ,Mn ∈ M(n, k), that satisfies the properties of Theorem 3.6, where
A(μ,M1, . . . ,Mn) maps onto sCl(V, μ, φ) if and only if μ2

ij = 1 for
all i, j.
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