
Adv. Appl. Clifford Algebras (2020) 30:27
c© 2020 Springer Nature Switzerland AG
0188-7009/020001-33
published online March 16, 2020
https://doi.org/10.1007/s00006-020-1053-1

Advances in
Applied Clifford Algebras

TbGAL: A Tensor-Based Library
for Geometric Algebra

Eduardo Vera Sousa∗ and Leandro A. F. Fernandes

Communicated by Leo Dorst

Abstract. Geometric algebra is a powerful mathematical framework that
allows us to use geometric entities (encoded by blades) and orthogonal
transformations (encoded by versors) as primitives and operate on them
directly. In this work, we present a high-level C++ library for geomet-
ric algebra. By manipulating blades and versors decomposed as vectors
under a tensor structure, our library achieves high performance even in
high-dimensional spaces (

∧
R

n with n > 256) assuming (p, q, r) metric
signatures with r = 0. Additionally, to keep the simplicity of use of our
library, the implementation is ready to be used both as a C++ pure
library and as a back-end to a Python environment. Such flexibility al-
lows easy manipulation accordingly to the user’s experience, without
impact on the performance.

Mathematics Subject Classification. Primary 99Z99; Secondary 00A00.

Keywords. Geometric algebra, Library, C++, Python, High dimension.

1. Introduction

Geometric algebra (GA) is a mathematical formalism with several applica-
tions in Physics [10,19,20], Engineering [27], and Computer Science [11]. By
considering linear subspaces (blades) and orthogonal transformations (ver-
sors) as primitives with a geometric interpretation, we can compute intersec-
tions and decompositions of subspaces, subspace spans, and transformations
in an intuitive way that allows us to focus on the problem by leveraging
the geometric meaning of the operations. An important feature of GA is its

This work was sponsored by CNPq-Brazil (Grant 311.037/2017-8) and FAPERJ (Grant
E-26/202.718/2018).

∗Corresponding author.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-020-1053-1&domain=pdf
http://orcid.org/0000-0003-3140-2195
http://orcid.org/0000-0001-8491-793X


27 Page 2 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

ability to encompass and generalize concepts that emerge in different math-
ematical formalisms. Quaternions and Plücker coordinates, for example, are
fundamental in Computer Graphics, and both can be easily translated to a
unified GA language or emerge from other concepts present in this toolset.

Many practical applications of GA demand the achievement of good
computational performance. Thus, most computational solutions are libraries
developed in C/C++ [7,12,24,31] or code generators that produce libraries
or source code optimized for those languages [2,6,8,15,21], sometimes consid-
ering also the use of parallelism with OpenCL and CUDA [6,21]. A common
strategy adopted by those solutions is the representation of data as multi-
vectors, i.e., the weighted sum of basis blades of the multivector space

∧
R

n.
This strategy, however, imposes restrictions over the maximum dimensions
n that the solutions support (usually, from n = 7 to n = 20) since the num-
ber of basis blades in

∧
R

n is 2n. Even considering the sparsity of blades
and versors in their multivector form, those primitives may include up to
n!/(�n/2�!)2 and 2n−1 components, respectively. Thus, handling hundreds of
dimensions becomes impractical by using conventional multivector-based li-
braries, library generators, and code optimizers. For instance, by assuming
n = 256, the multivector space has about 1.16 × 1077 dimensions, a blade
representing a subspace with 128 dimensions may have ∼ 5.77×1075 compo-
nents while a versor may have ∼ 5.79 × 1076 components. For an example of
a practical problem in high dimensionality, we can mention the application
of k-Discretizable Molecular Distance Geometry Problem (kDMDGP) [25] on
the classification of weighted graphs in machine learning [4].

The main contribution of this work is a flexible high-level library for
GA called TbGAL (Tensor-based Geometric Algebra Library). This library
represents blades (and versors) in their decomposed state as the outer prod-
uct (and geometric product), rather than using their representation as a
weighted summation of basis blades in

∧
R

n. This implementation strategy
is discussed by Fontijne [9, Chapter 5]. But to our surprise, it is not adopted
by existing libraries. The main advantage of the factorized approach is that
it is able to compute GA operations in higher dimensions, i.e., assume mul-
tivectors space

∧
R

n with n > 256. In terms of memory, TbGAL stores only
1 + n2 coefficients per blade or versor in worst case, while operations have
maximum complexity of O (

n3
)
. Figure 1 depicts the performance of our ap-

proach for four basic operations in
∧
R

256 under Euclidean metric: geometric
product, outer product, left contraction, and Hestenes’ inner product. In our
experiments, we compared TbGAL against other libraries, library generators,
and code optimizers designed for low dimensions: Gaalop [6], Garamon [2],
GluCat [24], and Versor [7]. They supported GAs defined on up to 16-, 20-,
16-, and 7-dimensional vector spaces, respectively.

In Sects. 2 and 3, we present basic GA concepts and discuss existing
implementations of them, respectively. In Sect. 4, we present the internal
structure of our library. The performance of the above-mentioned libraries is
compared to TbGAL in Sect. 5. Finally, we draw our conclusions in Sect. 6.



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 3 of 33 27

(A) Geometric Product

(B)

(C)

(D)

Outer Product

Left Contraction

Hestenes’ Inner Product

Figure 1. Mean execution times for some products imple-
mented by TbGAL for

∧
R

256 under Euclidean metric. Here,
lhs and rhs correspond, respectively, to the grade of the left
and right blades involved in the operations. Notice that the
geometric product execution times are presented on a differ-
ent scale from the other operations



27 Page 4 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

2. Background on GA Operations

In this section, we present some of the main operations associated with GA.
Please refer to [11,27] for a complete reference on the subject.

2.1. Multivector Space

To define the operations in GA, we first shall introduce the basis where this
algebra is defined. For this purpose, we are assuming a vector space R

n with
a set of basis vectors {ei}ni=1, where n = p + q + r. Here, (p, q, r) defines the
signature of the metric space, i.e.,:

ei · ej =

⎧
⎪⎨

⎪⎩

+1, i = j and 1 ≤ i ≤ p,

−1, i = j and p < i ≤ p + q,

0, otherwise.
(2.1)

In Eq. (2.1), · denotes the vector inner product.
Notice that the vector space R

n considers only of 1-dimensional prim-
itives (i.e., vectors). In GA we define from R

n the multivector space
∧
R

n,
where we can represent GA primitives as multivectors M . A multivector is the
linear combination of basis elements of

∧
R

n. The set of basis elements defined
in

∧
R

4, for example, is depicted in Table 1. The rightmost column refers to
the particular denomination used for the linear combinations of basis elements
from the 0-dimensional, 1-dimensional, 2-dimensional, (n − 1)-dimensional,
and n-dimensional spaces. Altogether, there are 2n basis elements (a.k.a ba-
sis blades) in the multivector space

∧
R

n. Formally, a k-vector is a linear
combination of basis elements of

∧k
R

n only.

2.2. Outer Product

The outer product (denoted by ∧) is a metric-free operation that corresponds
to the mapping:

∧ :
∧r

R
n ×

∧s
R

n →
∧r+s

R
n. (2.2)

It has the following properties:
antisymmetry: a ∧ b = −b ∧ a, thus a ∧ a = b ∧ b = 0
distributivity: a ∧ (b + c) = a ∧ b + a ∧ c

Table 1. Multivector space
∧
R

4

Space Basis blades Element name
∧0

R
4 ≡ R 1 Scalar

∧1
R

4 ≡ R
4 e1, e2, e3, e4 Vector

∧2
R

4 e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3,
e2 ∧ e4, e3 ∧ e4

2-Vector

∧3
R

4 e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4,
e2 ∧ e3 ∧ e4

Pseudovector

∧4
R

4 e1 ∧ e2 ∧ e3 ∧ e4 Pseudoscalar



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 5 of 33 27

associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c
scalar commutativity: a ∧ (αb) = α(a ∧ b)

Here, α ∈ ∧0
R

n is a real scalar value and a, b, c ∈ ∧1
R

n are vectors.
The outer product allows the definition of blades with higher dimen-

sionalities from low-dimensional blades. Therefore, it is clear that the outer
product implements the idea of a subspace span. For instance, the outer
product of two linearly independent 1-dimensional blades (i.e., vectors) de-
fines a 2-blade, while the outer product of three linearly independent vectors
defines a 3-blade, and so on. Formally, a k-blade A〈k〉 ∈ ∧k

R
n is any linear

subspace spanned as the outer product of k linearly independent vectors. Fur-
thermore, we say that A〈k〉 has grade k. It is important to emphasize that all
k-blades are also k-vectors, but not all k-vectors are k-blades. For instance,
e1 ∧ e2 + e3 ∧ e4 is a 2-vector but it is not a 2-blade. Under the Euclidean
metric, 1-blades can be interpreted as straight lines that include the origin
of Rn, 2-blades correspond to planes, 3-blades to volumes, and so on.

2.3. Left and Right Contractions

Another important operation of GA is the left contraction (denoted by �). It
is a metric product that represents removing from the right-side operand the
portion that is most like the left-side operand in the metric sense (i.e., the
like portion of the right-side operand with respect to the left-side operand is
the subspace having the same dimensionality than the left-side subspace and
whose inner product between them is nonzero). Thus, it is the mapping:

� :
∧r

R
n ×

∧s
R

n →
∧s−r

R
n. (2.3)

As an embodiment of this mapping applied to blades we use:

A〈r〉 � B〈s〉 = C〈s−r〉. (2.4)

The left contraction has the following properties:
symmetry: A〈r〉 � B〈s〉 = B〈s〉 � A〈r〉, if and only if r = s

distributivity: A〈r〉 � (B〈s〉 + C〈t〉) = A〈r〉 � B〈s〉 + A〈r〉 � C〈t〉
scalar commutativity: A〈r〉 � (αB〈s〉) = α(A〈r〉 � B〈s〉)
Besides those properties, there are a few other useful relations between the left
contraction and the outer product, whose applications are better illustrated
in Sects. 2.5 and 4. The first relation is valid for any blade:

A〈r〉 � (B〈s〉 � C〈t〉) = (A〈r〉 ∧ B〈s〉) � C〈t〉. (2.5)

The second relation is:

A〈r〉 � (B〈s〉 � C〈t〉) = A〈r〉 ∧ (B〈s〉 � C〈t〉), (2.6)

and is valid if and only if A〈r〉 ⊆ C〈t〉.
The geometric intuition describing the left contraction is clearly asym-

metric for the general case, since A〈r〉 � B〈s〉 = 0 when r > 0. Symmetry is
obtained if and only if r = s. It is not difficult to imagine that the same in-
tuition of removing from one operand the portion that is most like the other
may applied in the definition of the right contraction A〈r〉 � B〈s〉, where the



27 Page 6 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

result is the portion in A〈r〉 that is “less like” B〈s〉 in the given metric of the
space. Thus, the right contraction is the mapping:

� :
∧r

R
n ×

∧s
R

n →
∧r−s

R
n, (2.7)

with the same properties than the left contraction. The relationship between
the two contractions is [11]:

A〈r〉 � B〈s〉 = (−1)s(r+1)B〈s〉 � A〈r〉. (2.8)

2.4. Other Metric Products

The Hestenes’ inner product is a metric product that has a different and
somewhat more symmetrical grade than the left and right contractions:

A〈r〉 •H B〈s〉 =

⎧
⎪⎨

⎪⎩

A〈r〉 � B〈s〉, r ≤ s and r �= 0,

A〈r〉 � B〈s〉, r > s and s �= 0,

0, otherwise.
(2.9)

The literature on applied GA that use the Hestenes’ inner product as their
only inner product, and it is usually denoted using the same symbol as the
vector inner product (Eq. 2.1). Here, we followed the notation •H adopted
by Dorst et al. [11].

Another metric product described in the literature is the dot product:

A〈r〉 • B〈s〉 =

{
A〈r〉 � B〈s〉, r ≤ s,

A〈r〉 � B〈s〉, otherwise.
(2.10)

The dot product is similar to the Hestenes’ inner product, except that when
one of the arguments is a scalar value (i.e., r = 0 or s = 0), the result of the
dot product is not necessarily zero.

Finally, the scalar product always returns a scalar value. It operates on
k-blades or k-versors as a contraction, otherwise the result is zero:

A〈r〉 ∗ B〈s〉 =

{
A〈r〉 � B〈s〉, r = s,

0, otherwise.
(2.11)

From Eqs. (2.8, 2.10), and (2.11) it is easy to see that:

A〈k〉 ∗ B〈k〉 = A〈k〉 � B〈k〉 = B〈k〉 � A〈k〉 = B〈k〉 • A〈k〉 ∀k. (2.12)

2.5. Dualization

The dualization is the operation denoted by �∗. It defines the mapping:

�∗ :
∧k

R
n →

∧n−k
R

n. (2.13)

The geometrical interpretation of A∗
〈k〉 is that it takes from the whole n-

dimensional space, i.e, from the unit pseudoscalar I〈n〉 = e1 ∧ e2 ∧ · · · ∧ en,
the (n − k)-dimensional portion that is orthogonal to the blade A〈k〉.

The dualization operation can be expressed using the left contraction:

A∗
〈k〉 = A〈k〉 � I−1

〈n〉 , (2.14)



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 7 of 33 27

Figure 2. Dualization operation. The vectors d is the dual
of a plane B〈2〉 in R

3 under Euclidean metric

where

X−1
〈r〉 =

1
‖X〈r〉‖2

X̃ 〈r〉 (2.15)

denotes the inverse of X〈r〉,

‖X〈r〉‖2 = X〈r〉 � X̃ 〈r〉 (2.16)

is the squared reverse norm, and

X̃ 〈r〉 = (−1)
r(r−1)

2 X〈r〉 (2.17)

denotes the reverse operation. The reverse operation is distributive over the
sum. Therefore, it can be applied to general multivectors, even to those having
mixed grade, and evaluated regarding the grade of their components.

Recall that the left contraction induces the geometric meaning of re-
moving from the pseudoscalar all that is similar to the given blade, keeping
only the blade that is orthogonal to it. Figure 2 exemplifies the dualization
operator. This image was originally available in [13]. In this example, I〈3〉
is the whole 3-dimensional space and d = B∗

〈2〉 is the vector dual to the
2-blade B〈2〉.

The dualization is invertible. The undualization operation is defined as:

A−∗
〈k〉 = A〈k〉 � I〈n〉. (2.18)

Such invertibility allows the retrieval of the original blade using the relation
defined by Eq. (2.6):

(A∗
〈k〉)

−∗ = (A〈k〉 � I−1
〈n〉) � I〈n〉 = A〈k〉 ∧ (I−1

〈n〉 � I〈n〉) = A〈k〉 ∧ 1 = A〈k〉.

(2.19)

Equations (2.5) and (2.6) also help to define universal relations between
the outer product and left contraction in terms of duality. The first relation
shows that the left contraction can replace the dual of the outer product:

(A〈r〉 ∧ B〈s〉)∗ = (A〈r〉 ∧ B〈s〉) � I−1
〈n〉 = A〈r〉 � (B〈s〉 � I−1

〈n〉) = A〈r〉 � B∗
〈s〉.

(2.20)



27 Page 8 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

The second relation, used in our implementation (Sect. 4.5), shows how the
dual of the left contraction and the outer product are connected:

(A〈r〉 � B〈s〉)∗ = (A〈r〉 � B〈s〉) � I−1
〈n〉 = A〈r〉 ∧ (B〈s〉 � I−1

〈n〉) = A〈r〉 ∧ B∗
〈s〉.

(2.21)

2.6. Geometric Product

The most important product in GA is the geometric product. In practice,
most of the other products can be extracted from it (see [11, Section 6.3] for
details). The geometric product consists of a mapping

∧
R

n ×
∧

R
n →

∧
R

n. (2.22)

Its properties include:

distributivity: A(B + C ) = AB + AC
associativity: A(BC ) = (AB)C

non-commutativity in general: ∃A,B ∈ ∧
R

n : AB �= BA

An embodiment of the mapping in Eq. (2.22) involving vectors and
general multivectors can be defined as:

aB = a � B + a ∧ B , (2.23)

where a is a vector and B is a multivector. From Eq. (2.23) and the properties
of the geometric product, it is possible to define the geometric product of any
pair of multivector operands. However, this definition is rather involving.
Refer to [11] for details.

Notice in Eq. (2.23) that the multivector resulting from the geometric
product aB has a portion that relies on the metric (a � B) and a metric-free
portion (a ∧ B). Such composition makes this product invertible, as long as
the right-hand side operand is also invertible, i.e.,

A / B = AB−1, (2.24)

where / denotes the inverse geometric product.
One of the main application of the geometric product is in the definition

of orthogonal (i.e., length-preserving) transformations like reflection, rotation
and translation, and other conformal (i.e., angle-preserving) transformations
like uniform scale. These transformations can be modeled as a sequence of
reflections in pseudovectors. In practice, given a pseudovector M〈n−1〉 and its
dual vector v = M ∗

〈n−1〉, the vector a reflected in M〈n−1〉 can be expressed
as

a ′ = −vav−1, (2.25)

where v−1 denotes the inverse of v (Eq. 2.15). An example of the application
of Eq. 2.25 is depicted by Fig. 3, originally available in [13].

Notice that reflections can be combined. Thus, one can apply a reflection
after another reflection, and so on:

a ′′ = ua ′u−1 = u(vav−1)u−1, (2.26)



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 9 of 33 27

Figure 3. Reflection of a vector a in a blade M〈n−1〉 pro-
ducing a vector a ′. In order to produce this reflection, one
shall use the vector v = M ∗

〈n−1〉

where a ′′ is the reflection of the vector a ′ on the blade N〈n−1〉 using its dual,
given by u = N ∗

〈n−1〉. Using the associativity of the geometric product, we
can write Equation 2.26 as:

a ′′ = u(vav−1)u−1 = (uv)a(v−1u−1) = (uv)a(uv)−1. (2.27)

In Eq. (2.27), uv is called a 2-versor. Formally, a k-versor V is defined as
the geometric product of k invertible vectors. Those mixed-grade primitives
encode orthogonal transformations.

Although Eqs. (2.25) and (2.26) only show vectors being transformed
by versors, it is important to emphasize that the sandwiching construction
of the versor product can be applied to any multivector since the geometric
product is distributive over the sum and versors preserves the structure of
the outer product, e.g,:

V(ei ∧ ej)V−1 = (VeiV−1) ∧ (VejV−1), (2.28)

where V is a versor and i �= j.

3. Related Work

Many libraries, library generators, and code optimizers implementing GA
concepts have been proposed in different programming languages. Table 2
present some of the most popular solutions. Notice that most of them are
available in C++ and Python.

A possible approach adopted by libraries and library generators is to
store multivectors as a collection of pairs representing the linear combination
of basis blades. In this case, each pair includes a bitset that identifies the
corresponding basis blade unequivocally and a real coefficient. Table 3 shows
the bitset representation of each of the basis blades in the multivector space∧
R

3. Notice that each bit corresponds to a basis vector. The on-bits indicate



27 Page 10 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

T
a
b
l
e

2
.

C
om

pa
ri

so
n

of
lib

ra
ri

es
(L

),
lib

ra
ry

ge
ne

ra
to

rs
(L

G
),

an
d

co
de

op
ti

m
iz

er
s

(C
O

)
fo

r
G

A
re

ga
rd

in
g

pr
og

ra
m

m
in

g
la

ng
ua

ge
s,

pr
ac

ti
ca

l
m

ax
im

um
di

m
en

si
on

al
it
y

of
th

e
ve

ct
or

sp
ac

e,
an

d
su

pp
or

te
d

m
et

ri
cs

So
lu

ti
on

T
yp

e
L
an

gu
ag

es
P

ra
ct

ic
al

m
ax

.n
=

p
+

q
+

r
Su

pp
or

te
d

m
et

ri
cs

p
,q

,r
C

on
fo

rm
al

G
en

er
al

C
l
i
f
f
o
r
d

[1
]

L
P

yt
ho

n
3

6
r

=
0

ad
.

–
G
a
a
l
e
t

[3
1]

L
C

+
+

N
ot

ve
ri
fie
d

r
=

0
–

–
G
a
a
l
o
p

[6
,2

1]
C

O
C

,
C

+
+

,
C

U
D

A
,

O
pe

nC
L
,
M

A
T

L
A

B
16

�
�

�

G
a
i
g
e
n

[1
5]

L
G

C
,
C

+
+

,
C

#
,
Ja

va
8

�
�

�
G
a
l
g
e
b
r
a

[3
,2

9]
L

P
yt

ho
n

2/
3

N
ot

ve
ri
fie
d

�
�

�
G
a
n
j
a
.
j
s

[8
]

L
G

C
+

+
,C

#
,J

av
as

cr
ip

t,
P

yt
ho

n
3,

R
us

t
16

�
ad

.
–

G
a
r
a
m
o
n

[2
]

L
G

C
+

+
20

�
�

�
G
A
T
L

[1
2]

L
C

+
+

7
�

�
�

G
a
l
l
a
n
t

[9
,1

4]
L

Ja
va

M
or
e
th
an

22
re
st
.

ad
.

re
st
.

G
r
a
s
s
m
a
n
n
.
j
l

[3
0]

L
Ju

lia
62

�
ad

.
–

G
l
u
C
a
t

[2
4]

L
C

+
+

,
P

yt
ho

n
2

16
r

=
0

ad
.

–
L
i
g
a

[5
]

L
Ju

lia
M
or
e
th
an

9
r

=
0

ad
.

–
T
b
G
A
L

L
C

+
+

,
P

yt
ho

n
2/

3
M
or
e
th
an

25
6

r
=

0
ad

.
ad

.
V
e
r
s
o
r

[7
]

L
C

+
+

7
r

=
0

�
–

ad
.
m

ea
ns

th
at

a
d
-d

im
en

si
on

al
co

nf
or

m
al

m
od

el
is

pr
ov

id
ed

by
ad

ap
ti

ng
th

e
(d

+
1,

1,
0)

m
et

ri
c

sp
ac

e
in

st
ea

d
of

by
as

su
m

in
g

th
e

nu
ll

po
in

t
at

th
e

or
ig

in
an

d
th

e
nu

ll
po

in
t

at
th

e
in

fin
it
y

as
ba

si
s

ve
ct

or
s

re
st
.
m

ea
ns

th
at

th
e

ge
om

et
ri

c
pr

od
uc

t
im

pl
em

en
te

d
by

th
e

so
lu

ti
on

is
re

st
ri

ct
ed

to
m

et
ri

c
sp

ac
es

ha
vi

ng
(n

,0
,0

),
(0

,n
,0

),
(n

−
1,

1,
0)

,
an

d
(n

,n
−

1,
0)

si
gn

at
ur

es
.
T

he
m

et
ri

c
pr

od
uc

ts
,
on

th
e

ot
he

r
ha

nd
,
w

or
k

un
de

r
an

y
m

et
ri

c



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 11 of 33 27

Table 3. Bitset representation of basis blades in
∧
R

3

Decimal Index 0 1 2 3 4 5 6 7

Bitset 000 001 010 011 100 101 110 111
Basis Blade 1 e1 e2 e1 ∧ e2 e3 e1 ∧ e3 e2 ∧ e3 e1 ∧ e2 ∧ e3

the basis vectors spanning the basis blades. By using the bitset approach,
some parts of operations like the outer and geometric products of basis blades
under orthogonal metrics can be reduced to, respectively, efficient OR and
XOR bitwise operations. For instance, lets consider that the basis blade e1 is
represented by the bitset 001, and the basis blade e2 is represented by the
bitset 010. The basis blade e1 ∧ e2 can be computed using the bitwise OR
operation between 001 and 010, which results in 011. The signal change of
the resulting coefficient is a consequence of the antisymmetry property of
the outer product. It is computed by checking whether there are common
on-bits in the given bitsets (resulting in zero) or by counting the number of
swaps necessary to arrange the basis vectors into the canonical order (even
amount of swaps leads to +1, while odd swaps count results on −1). We
believe that this kind of computational trick and the direct application of
typical multivector algebraic manipulations may have attracted developers
to the classical multivector representation.

In the following sections, we will briefly discuss each of the solutions
presented in Table 2, grouped according to their type.

3.1. Libraries

Leopardi [24] provided the template-based C++ library GluCat which sup-
ports algebras having (p, q, 0) metric signatures. GluCat includes two data
structures to represent GA primitives: the framed multi class is based on
an optimized version of the bitset approach described above, while the ma-
trix multi class implements a matrix-based approach. Thus, this library has
as its core a combination of bitsets and matrices in an adaptive form. It han-
dles low dimensionalities with dense matrix manipulations and (theoretically)
higher dimensionalities with sparse matrices. The amount of dimensions n
supported by Leopardi’s library is limited by the word size (in bits) assumed
by the compiler. It is important to comment that libraries like GluCat, which
is built to work with (p, q, 0) signatures, often provide a front-end that al-
lows the manipulation of elements in specific cases of non-orthogonal metric
spaces, like the conformal model of geometry (see the ad. note in Table 2).
For the user, the mapping between the general metric and the (p, q, 0) metric
space is transparent.

Colapinto created a C++ template-based library called Versor [7]. His
library assumes that the basis blades of the multivector components are
known in compile-time. By doing so, GA products and operations can be
specialized via template meta-programming while the program is compiled.
The meta-functions discard operations that lead to coefficients equal to zero



27 Page 12 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

and evaluate the remaining base blades operations on compilation-time while
keeping track of the operations to be applied to the remaining coefficients on
runtime. Gaalet, the C++ template-based library developed by Seybold [31],
extends the compile-time optimization capabilities of Versor by also imple-
menting the lazy-evaluation concept [23] on the expressions involving basis
blades. Such a concept allows compile-time algebraic manipulations beyond
the native routines of the library, performing optimizations on code snip-
pets implemented by the user in his/her application. However, Gaalet is not
capable of handling the coefficients of multivectors as labeled variables in
expressions. As a result, the possible optimizations are not as deep as the
algebraic manipulation that an expert would perform. Recently, Fernandes
made his C++ template-based library, GATL, public available [12]. In contrast
to Gaalet, not only basis blades but also coefficients are treated as variables
in algebraic manipulations performed by the lazy-evaluation scheme of GATL
in compilation time. Also, GATL allows the inclusion of compile-time defined
coefficients and the optimization of complete routines written by the user. In
theory, the number of dimensions n supported by Versor, Gaalet, and GATL
is limited by the compiler. According to our experience, n ≤ 7 for Versor
and GATL. Unfortunately, Due to technical issues, we were unable to verify
the Gaalet’s limits. GATL is the only of those three libraries that currently
support arbitrary metric spaces (i.e., assume any metric matrix, including
degenerated ones) as a ready-to-use feature (see Table 2).

Arsenovic et al. [1] presented a Python 3 library for GA called clifford.
Although the library uses a just-in-time compiler to improve the implementa-
tion’s performance (whose functionality was extended by the Gajit [18]), the
authors claim that the algebras over 6 dimensions have a bad impact on the
runtime, which is reasonable since the library aims pedagogical purposes or
proofs of concept. The symbolic GA module galgebra was originally devel-
oped by Bromborsky [3] for Python 2. The project’s fork maintained by the
Pythonic Geometric Algebra Enthusiasts supports Python 3 [29]. In contrast
to clifford, galgebra supports general metric spaces.

Reed [30] developed Grassmann.jl, a package for GA written in Julia.
Reed’s package is based on sparse tensor operations and uses staged caching
and precompilation, which allows it to support n = 62 dimensions under or-
thogonal (p, q, r) metric spaces. Liga [5] is a Julia package written by Caste-
lani. According to Castelani, Liga supports orthogonal (p, q, 0) metric spaces
and n > 9 dimensions. It’s practical limits have not yet been tested.

3.2. Library Generators

Fontijne presented the first version of Gaigen [15] in 2006. It is a software
that generates GA libraries. The current version of Gaigen generates C, C++,
C#, and Java libraries that are optimized for a given program after profiling.
To use Gaigen, first one has to write your program assuming full imple-
mentation of the GA library provided by Gaigen in one of the supported
programming languages. Then, one has to run the program using the profil-
ing functionalities of the library. Profiling data is then interpreted by Gaigen,
which produces an optimized version of the GA library by pruning unused



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 13 of 33 27

multivector components. Fontijne claims that, although the code generated
has an inferior performance when compared to a manually optimized code,
it is still better than a full GA library. Currently, Gaigen can handle, besides
Euclidean and Conformal metric spaces, GAs having arbitrary metric spaces.
According to our experience, when a pseudo-Euclidean metric is assumed, the
generator can work with up to n = 8 dimensions.

Breulis et al. [2] developed the library generator Garamon using as a
premise a precomputed algebra for lower dimensions (lower than 10) which
smoothly changes to a recursive scheme based on a prefix tree for higher di-
mensions. The prefix tree allows mapping the position of a node in a tree to
the key it is associated with. For Garamon, the level of a node in the prefix
tree defines the grade of the basis blade associated with it, i.e., nodes at level
k corresponds to k-blades. This approach allows resolving outer and geomet-
ric product in a recursive process that corresponds to going up or down in
the prefix tree. By construction, this library generator supports Euclidean,
Conformal and arbitrary metric spaces and dimensionality up to 32 dimen-
sions. Garamon supports n ≤ 18 dimensions for non-Euclidean and n ≤ 20 for
Euclidean spaces.

The ganja.js solution [8] is another GA generator that supports Eu-
clidean, conformal and arbitrary metric spaces. The libraries produced by
ganja.js does not explore the sparse nature of blades and versors in the
multivector space. As a result, the multivector data structure includes 2n

components. Also, products have to execute full multivector computations,
making the solution infeasible for large n. On the other hand, ganja.js
provides one of the most complete visualization mechanisms among existing
solutions.

3.3. Code Optimizers

CLUCalc is an interpreter for the GA script language called CLUScript,
developed by Perwass et al. [28]. When combined with CLUViz, this toolset
provides an environment for manipulating and visualizing elements from GA.

Gaalop [21] is a software to optimize GA procedures implemented using
CLUCalc scripts and convert them into C, C++, CUDA, OpenCL, or MAT-
LAB code. Recently, Charrier et al. [6] developed a Gaalop pre-compiler for
C++, CUDA, and OpenCL that takes CLUCalc scripts declared in pragma
directives and optimize them producing inline code for a given source file.
By performing algebraic manipulation of whole procedures, this code opti-
mizer can achieve good performance when compared to other solutions that
only optimize operations inside the library (e.g., Gaigen and Versor). Since
the pre-compiling process runs when the compiling process is triggered, it
does not show any performance issues in runtime. The limitation in terms
of compile-time performance is that higher dimensionalities require larger
configuration files and more challenging algebraic manipulations, which may
turn the compilation process unfeasible.

In contrast to the above mentioned libraries (Sect. 3.1), library gener-
ators (Sect. 3.2), and code optimizers (Sect. 3.3), TbGAL does not represent
blades and versors as multivectors described by the weighted sum of basis



27 Page 14 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

blades of
∧
R

n. The product of their vector factors represents such primi-
tives. As a result, TbGAL is less sensitive to the curse of dimensionality, al-
lowing operations between blades and versors on GAs defined over vector
spaces with hundreds of dimensions (n > 256). In our experiments, we were
able to run the implemented products with up to n = 1536 due to memory
restrictions. Runtime and numerical instability impose restriction for more
than n = 300 dimensions. For this reason, we report results up to n = 256.
Such high-dimensional support tackles part of the challenges involving the
kDMDGP problem [25], Clifford neural networks [26], hypercomplex Clifford
analysis [17], among others, as summarized by Hitzer et al. in [22].

Our solution is closed related to the paradigm employed by Fontijne in
implementing the Java package called Gallant [9,14]. The main difference
is that the evaluation of the geometric product performed by Gallant is re-
stricted to metric spaces having (n, 0, 0), (0, n, 0), (n−1, 1, 0), and (n, n−1, 0)
signatures [9, Section 5.4]. Our solution, on the other hand, accepts spaces
having (p, q, 0) metric signatures. The benchmarks presented in Fontijne’s in
[9] shows results up to n = 22, but we believe that his implementation can
go beyond. Gallant does not appear to be available in a public repository.

4. Proposed Architecture and Implementation

The proposed library was designed to operate blades and versors in multivec-
tors space

∧
R

n with arbitrary metric spaces having (p, q, 0) signature, where
n = p + q. We developed TbGAL in C++. We used Eigen and Boost.Python
for, respectively, matrix operations and Python 2 and Python 3 ports. The
main idea behind the Python ports is to make the library more accessible to
the community. The source code is available in our GitHub repository1.

A toy example of the usage of our library is provided in Fig. 4. In
this example, we present an embodiment of the reflection depicted in Fig. 3,
where the goal is to reflect the vector a = 0.5e1 + 0.5e2 (line 8 of Fig. 4)
over the plane M〈2〉 = 3e1 ∧ e2 (line 10 of Fig. 4) using its dual, the vector v
(line 11 of Fig. 4), producing the vector a ′ (line 13 of Fig. 4). It is important
to notice that the user of the TbGAL library doesn’t have to worry about the
way data is stored in variables, or the matrix operations performed during the
evaluation of library functions. He/she only needs to include the header that
determines which matrix library to use for processing (line 1 of Fig. 4) and
the header that indicates which geometry model is assumed (line 2 of Fig. 4).
Another possibility is to define his/her own geometry model by following one
of the existing tbgal/assuming ModelName .hpp files as example. Also, the
placeholder auto (available since C++11) helps to set the data type of each
variable (lines 8, 10, 11, and 13 of Fig. 4). With this placeholder, the type
of the variable that is being declared will be automatically deduced from its
initializer on the right-side of the assign operator.

1Source Code: https://github.com/Prograf-UFF/TbGAL

https://github.com/Prograf-UFF/TbGAL


Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 15 of 33 27

Figure 4. Code snippet of the usage of TbGAL. In this ex-
ample, we are reflecting the vector a onto blade M〈2〉 to
produce a ′. The comments in lines 8, 10, 11, and 13 show
the meaning of the content of each variable

Tables 4 and 5 enumerate some of the data structures and operations
implemented by our library. Implementation details are discussed in the fol-
lowing sections.

4.1. Data Structures

All metric spaces implemented by TbGAL are subclasses of the abstract class
BaseSignedMetricSpace. In its current version, TbGAL allows the user to
choose among n-dimensional models having arbitrary metric matrices (Gen-
eralMetricSpace class), orthogonal models with arbitrary (p, q, 0) metric
signatures (SignedMetricSpace class), n-dimensional Euclidean models (Eu-
clideanMetricSpace class), d-dimensional homogeneous models (Homoge-
neousMetricSpace class), and d-dimensional conformal models (Conformal-
MetricSpace class). The P, Q, D, and N template parameters presented in Ta-
ble 4 may be set by the user to non-negative integer values before compiling
his/her program, or set to Dynamic if he/she wants to define the dimension-
ality of the vector space in runtime. The MaxN and MaxD template parameters
are optional. In most cases, one just leaves these parameters to the default
values. These parameters mean the maximum number of dimensions that the
vector space may have. They are useful in cases when the exact numbers of
dimensions are not known at compile-time, but it is known at compile-time
that they cannot exceed a certain value.

For practical reasons, TbGAL evaluates the products and operations as-
suming a diagonal metric matrix M encoding the metric signature of the



27 Page 16 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

Table 4. Basic data structures implemented by TbGAL

Description Template class

Abstract superclass of
classes implementing the
MetricSpaceType
concept

BaseSignedMetricSpace<P, Q [, MaxN]>

Concrete classes
implementing the
MetricSpaceType
concept

ConformalMetricSpace<D [, MaxD]>
EuclideanMetricSpace<N [, MaxN]>
GeneralMetricSpace<N [, MaxN]>
HomogeneousMetricSpace<D [, MaxD]>
SignedMetricSpace<P, Q [, MaxN]>

Tag classes for the
FactoringProductType

GeometricProduct<MetricSpaceType>
OuterProduct<MetricSpaceType>

Concrete class
implementing
factorization using the
FactoringProductType

FactoredMultivector<ScalarType,
FactoringProductType>

space (Eq. 2.1). The actual metric defined by the user is only adopted exter-
nally. Therefore, TbGAL converts the inputs and outputs appropriately. The
conversion is implemented by subclasses of BaseSignedMetricSpace.

The FactoredMultivector class is the most important data struc-
ture declared in our library. It encodes k-blades and k-versors with k ∈
{0, 1, . . . , n}. Handling k-blades and k-versors with arbitrary k as multivec-
tors is too expensive when n is large. It is because handling the nonzero coeffi-
cients may become unfeasible by the amount of memory required. In the worst
case, multivectors encoding blades have n!/(�n/2�!)2 coefficients, while ver-
sors have 2n−1 coefficients. Therefore, in contrast to conventional implemen-
tations based on storing multivector components, the FactoredMultivector
class stores blades and versors as a scalar value of type ScalarType multi-
plying k unit vector factors (unit under the Euclidean metric). Thus, TbGAL
stores only 1 + n2 coefficients per blade or versor in worst case.

When the FactoringProductType parameter of the FactoredMulti-
vector class is set to OuterProduct (see Table 4), the class stores the factors
as the first k columns of a orthogonal second-order tensor under Euclidean
metric. The remaining n − k columns correspond to the orthogonal comple-
ment of the factors with respect to the unit pseudoscalar of the n-dimensional
space, also under Euclidean metric. For instance, the 2-blade C〈2〉 resulting
from the outer product of vectors a = e1 + 2e3 ∈ R

3 and b = 3e2 − 2e1 ∈ R
3

is encoded as:



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 17 of 33 27

Table 5. Some operations implemented by TbGAL, the re-
spective function prototypes, and overloaded operators

Operation Function prototype Overloaded
operator

Geometric product gp(arg1, arg2 [, · · · ]) arg1 ∗ arg2
Dot product dot(arg1, arg2) N/D
Hestenes’ inner

product
hip(arg1, arg2) N/D

Left contraction lcont(arg1, arg2) N/D
Right contraction rcont(arg1, arg2) N/D
Scalar product sp(arg1, arg2) N/D
Outer product op(arg1, arg2 [, · · · ]) arg1 ∧ arg2
Dualization dual(arg) N/D
Undualization undual(arg) N/D
Inversion inverse(arg) N/D
Reversion reverse(arg) ∼arg
Reverse norm rnorm(arg) N/D
Squared reverse

norm
rnorm sqr(arg) N/D

Addition addition(arg1, arg2 [, · · · ]) arg1 + arg2
Subtraction subtraction(arg1, arg2 [, · · · ]) arg1 − arg2
Unary plus unary plus(arg) +arg
Unary minus unary minus(arg) −arg

γ = 7.8102, and C =
[
c1 c2 c3

]
=

⎡

⎣
−0.5547 −0.3196 −0.7682
0.8320 −0.2131 −0.5121
0.0000 −0.9233 0.3841

⎤

⎦ .

Thus, C〈2〉 = a ∧ b = γc1 ∧ c2 = 3e1 ∧ e2 + 4e1 ∧ e3 − 6e2 ∧ e3 ∈ ∧2
R

3.
By setting the FactoringProductType parameter of the FactoredMul-

tivector class to GeometricProduct, the unit vector factors are stored as
the columns of a n× k matrix, but in this case the stored factors may not be
orthogonal under Euclidean metric. As an example, the 2-versor D = ab =
δd1d2 = −2+3e1∧e2+4e1∧e3−6e2∧e3 ∈ ∧

R
3, resulting from the geometric

product of vectors a and b, is encoded as:

δ = 8.0623, and D =
[
d1 d2

]
=

⎡

⎣
0.4472 −0.5547
0.0000 0.8320
0.8944 0.0000

⎤

⎦ .

The initialization of FactoredMultivector instances is performed as
result of the evaluation of products and other operations, like in lines 8, 10,
11, and 13 of Fig. 4, or by calling auxiliary functions defined for each model
of geometry. For instance, the vector(coord1, ..., coordN) function pro-
duces an instance of type:



27 Page 18 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

FactoredMultivector<ScalarType, OuterProduct<MetricSpaceType>>,

where ScalarType is deduced from the types of the given coordinates and
MetricSpaceType is the assumed model of geometry. All implemented models
include this function. The point(coord1, ..., coordD) function, on the
other hand, is declared with models where it makes sense to have finite points,
such as the homogeneous and the conformal models.

4.2. Outer Product

TbGAL implements the outer product in the op(arg1, arg2 [, ...]) func-
tion. This function expects conventional numerical values (e.g., int, float,
double, etc.) and instances of FactoredMultivector encoding blades as ar-
guments, and produces a new instance of FactoredMultivector by:

1. Concatenating the k factors encapsulated by the FactoredMultivector
arguments, producing the n × k input matrix A;

2. Verifying whether the rank of A is equal to k;
3. Producing, under Euclidean metric, a new set of orthonormal vector fac-

tors that span the same k-dimensional subspace than the input blades;
and

4. Computing the resulting scalar factor accordingly.

In our implementation, steps (2) and (3) are performed at the same time by
evaluating the Householder rank-revealing QR Decomposition [16] of the ma-
trix A with column-pivoting. This algorithm is based on Householder reflec-
tions, which are more stable than the Gram–Schmidt algorithm. The House-
holder method works by finding appropriate Householder reflection matrices
and multiplying them from the left by the original matrix A to construct
the upper triangular matrix R of the QR decomposition. The matrix Q and
the rank of A are byproducts of this operation at a smaller cost when com-
pared to the application of Singular Value Decomposition. If the rank of A
is smaller than k, the scalar value and the number of factors in the resulting
FactoredMultivector are set to zero. Otherwise, the new set of factors com-
puted in step (3) correspond to the first k columns of the resulting Q matrix.
It is clear that if one of the input blades is not a 0-blade (i.e., a scalar value)
then steps (1) and (3) are not necessary, and if one of the arguments is equal
to zero, then the resulting blade is also zero. The same happens when the
number of columns of A is bigger than the number of rows.

Describing the process by equations, we compute the decomposition:

A = Q R, (4.1)

and get the rank k of A as a byproduct. If the columns of A are linearly
independent then k is equals the number of columns of A because the outer
product of the vector factors will be different than zero. In this case, we set
the orthogonal matrix

Q =
[
q1 q2 . . . qn

]
,



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 19 of 33 27

with k ≤ n, as the orthogonal second-order tensor stored by the resulting
FactoredMultivector . The resulting stored scalar value is given by:

γ = α det
([

q1 q2 . . . qk
]T A

)
, (4.2)

where α is computed as the product of the scalar factors of the given argu-
ments, k is the grade of the resulting blade, �T denotes the transpose of a
matrix, and det (�) computes the determinant of a matrix.

4.3. Dualization

The computation of the dual of a blade is an important operation in TbGAL
since it is used as one of the steps of the implementation of the left contrac-
tion, as will be explained in Sect. 4.5. The use of the function dual(arg) can
be seen in the code snippet presented in Fig. 4 (line 11).

Consider an orthogonal second-order tensor A =
[
a1 a2 . . . an

]
and

a scalar value α representing the data stored by a FactoredMultivector
assuming OuterProduct as its FactoringProductType, and grade k. This
FactoredMultivector encodes a k-blade A〈k〉 spanned by the first k columns
of A. The orthogonal tensor D representing the orthogonal vector factors of
the dual of A〈k〉, i.e., D〈n−k〉 = A∗

〈k〉 (Eq. 2.13), can be computed as

D = M
[
ak+1 . . . an a1 . . . ak

]
, (4.3)

where M = M−1 = MT is a diagonal matrix encoding the (p, q, 0) metric
signature of the space. The scalar factor δ of D〈n−k〉 is computed as:

δ = (−1)
k(k−1)+n(n−1)

2 α det (A). (4.4)

The det (A) term in Eq. (4.4) is used to fix the orientation of the resulting
subspace with respect to the unit pseudoscalar under Euclidean metric (whose
factors define an identity matrix).

Undualization is implemented by undual(arg) in the TbGAL. Given
Eqs. (4.3) and (4.4), the computation of the undual U〈n−k〉 = A−∗

〈k〉 of a
k-blade A〈k〉 (Eq. 2.18) is straightforward. Using

B =
[
b1 b2 . . . bn

]
= M A, (4.5)

we compute the orthogonal second-order tensor encoding the vector factors
of U〈n−k〉 as:

U =
[
bk+1 . . . bn b1 . . . bk

]
, (4.6)

and the scalar factor as:

γ = (−1)
k(k−1)

2 α det (B). (4.7)

Notice that the dualization and undualization procedures presented in
this section do not work with (p, q, r) metric signatures when r �= 0. This is
because when some element in the main diagonal of M is zero, D (Eq. 4.3)
and B (Eq. 4.5) will not be orthogonal tensors (det (D) = det (B) = 0 in this
case). This issue was inherited from Eq. (2.14), since I〈n〉 is not invertible
when r �= 0.



27 Page 20 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

4.4. Geometric Product

The gp(arg1, arg2 [, ...]) function implements the geometric product of
conventional numerical values (e.g., int, float, double, etc.) and instances
of FactoredMultivector assuming GeometricProduct or OuterProduct as
FactoringProductType. However, each argument assuming OuterProduct
must be converted to its equivalent factorization using GeometricProduct
before the actual evaluation of gp because the factors of the latter may be
different of the factors of former on non-Euclidean metric signatures.

Let κ and K be, respectively, the scalar factor and the n×k matrix whose
orthonormal columns (under Euclidean metric) store the vector factors of a
k-blade K〈k〉 factored by the outer product. The vector factors of the same
blade factored by the geometric product are the columns of the matrix:

K′ = K QK, (4.8)

where the matrix QK is given by the QR Decomposition of the metric matrix
of the space spanned by the columns of K, i.e., KT M K = QK RK, and M is
the metric matrix encoding the metric signature of the n-dimensional space.
The scalar factor of K〈k〉 factored by the geometric product is:

κ′ = κ det
(
KT K′) . (4.9)

Assuming that all arguments of gp(arg1, arg2 [, ...]) are factored
by the geometric product (or were converted by TbGAL using Eqs. (4.8)
and (4.9), the evaluation of the geometric product consists on:

1. Multiply all scalar factors, producing a (temporary) scalar factor α for
the resulting FactoredMultivector;

2. Copy the vector factors of arg1 to the (temporary) matrix A stored by
the resulting FactoredMultivector; and

3. Decide which vector factors of arg2, arg3, etc. will be appended to A
and which ones will “consume” vector factors from it, leading to updated
α and A values.
Figure 5 presents the algorithm that evaluates step (3) considering:

A′ = Ab = αa1a2 . . . akb, (4.10)

where α and A =
[
a1 . . . ak

]
are the factors of the (temporary) resulting

multivector A factored by the geometric product, b is the current vector
factor to be considered while updating A, and A′ is the updated version
of A. The successive application of Eq. (4.10) (and hence of the algorithm
in Fig. 5) considering all vector factors from arg2, arg3, etc. is straightfor-
ward and lead to the computation of the final set of factors of the resulting
FactoredMultivector structure.

Notice that the algorithm in Fig. 5 receives two more arguments. MA

encodes the metric of the space spanned by the columns of A. FA encodes
the reciprocal frame of this space. In the first call of the algorithm, we set:

MA =

⎡

⎢
⎣

μ1,1 · · · μ1,k

...
. . .

...
μk,1 · · · μk,k

⎤

⎥
⎦ = AT M A, and FA =

[
f1 · · · fk

]
= AM−1

A .



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 21 of 33 27

Figure 5. The algorithm to evaluate the geometric product
of a multivector A factored by the geometric product and
a vector b. Here, the n-dimensional space has orthogonal
metric matrix M defined by its (p, q, 0) signature



27 Page 22 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

The subsequent calls of the algorithm use the updated versions of the α, A,
MA, and FA returned by the line 35.

Lines 5–8 handle the situation where the vector b is not linearly depen-
dent on the space spanned by the columns of A. In this case, the number
of factors in A increase by one unit and b becomes the new factors of the
resulting multivector (line 6). In line 7, the inverse of MA can be efficiently
computed using blockwise inversion. So, in practice, we also carry M−1

A as
part of the function arguments.

When b is linear dependent on the space spanned by A, the part of the
geometric product involving the exterior product is zero (Eq. 2.23). Thus, the
result is the contraction of a vector factor from multivector A. Lines 10–33
perform this contraction by transforming the factors in A in such a way that
the last factor become parallel to b. To do so, a set of k−1 transformations T
are applied to pairs of vectors ai, ai+1 in order to make the first k − 1 factors
orthogonal to b. In lines 12, 14, and 17, 0(m,n) and I(m) denote, respectively,
m×n zero matrices and m×m identity matrices. Our implementation explores
blockwise matrix multiplication since only two columns (or rows) of A, MA,
and FA are affected on each iteration.

The procedure in lines 10–33 is inspired by the equations presented
by Fontijne in his thesis [9, Section 5.4]. The difference is that we explore
the reciprocal frame in a slightly different way in order to avoid to transform
more than two columns of A when a non-Euclidean metrics is assumed. A key
observation in our procedure was that when ω = 0 (line 22), the vector ai+1

in the (i+1)th column of the updated matrix A (line 22) must be replaced by
its reciprocal vector. It is because the new factor ai+1 is a null vector in this
case, and ai · ai+1 = 0. In the correct factorization, ai · ai+1 = 1 is expected,
i.e., ai and ai+1 must be reciprocal to each other when one of them is null.
Since we are evaluating the geometric product using an orthogonal metric
matrix M defined by the metric signature of the space, the reciprocal of ai+1

can be easily computed as M ai+1 (line 24).
The reason for the metric signature (p, q, r) of the space have r = 0 in

TbGAL is that with r �= 0, the matrix MA may not be invertible, leading to
an invalid operation on line 7 of the algorithm.

4.5. Metric Products

The scalar product (Eq. 2.11) is implemented by the sp(arg1, arg2) func-
tion. Our implementation accepts blades as arguments and returns a scalar
value. When the arguments have a different number of factors the result is
zero. Otherwise, the resulting γ value is computed as:

γ = (−1)
k(k−1)

2 αβ det
([

a1 a2 . . . ak
]T M

[
b1 b2 . . . bk

])
, (4.11)

where α and {ai}ki=1 denote the scalar and vector factors stored in arg1, and
β and {bi}ki=1 denote the scalar and vector factors stored in arg2. The matrix
M in Eq. (4.11) is a diagonal matrix encoding the metric signature.

The other metric products implemented by TbGAL expect as input ar-
guments the blades arg1 and arg2 having grades r and s, respectively, and



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 23 of 33 27

return a FactoredMultivector encoding a blade factored by the outer prod-
uct. In the current version of TbGAL, the evaluation of the left contraction
rely on the duality relationship presented in Eq. (2.21) and the implementa-
tions described so far. By calculating the outer product between arg1 with
the dual of arg2, we get the dual of the left contraction. By undualizing this
result, we get the left contraction between the first and the second arguments.
In practice, it means that

lcont(arg1, arg2) ∼ undual(op(arg1, dual(arg2))).
It is clear that when r is bigger than s, the resulting blade can be set to zero
without the need to evaluate any operation.

The right contraction, Hestenes’ inner product, and dot product were
implemented following Eqs. (2.8), (2.9), and (2.10), respectively:

rcont(arg1, arg2) ∼ (−1)s(r+1) lcont(arg2, arg1),

hip(arg1, arg2) ∼

⎧
⎪⎨

⎪⎩

lcont(arg1, arg2), r ≤ s and r �= 0,

rcont(arg1, arg2), r > s and s �= 0,

0, otherwise,

dot(arg1, arg2) ∼
{
lcont(arg1, arg2), r ≤ s,

rcont(arg1, arg2), otherwise,

where r and s denote the grade of the blades encoded by arg1 and arg2,
respectively.

4.6. Other Operations

There are other important operations implemented by TbGAL that can be
derived from the basic ones presented so far, or by applying simple com-
putations. For example, the reverse of FactoredMultivector objects us-
ing the OuterProduct as FactoringProductType is implemented by the
reverse(arg) function as the multiplication of the stored scalar factor by
−1 according to the number of factors (Eq. 2.17). On the other hand, when
the FactoringProductType is set to GeometricProduct, the operation is
evaluated by explicitly reverting the order of the component vectors.

The rnorm sqr(arg) function computes the squared reverse norm of a
blade or versor as the product of the square of its scalar factor and the squared
(metric) norm of their vector factors assuming the geometric product as the
factoring product. Therefore, when arg is factored using the outer product,
it must be converted to the geometric product factoring representation using
Eqs. (4.8) and (4.9).

The inverse of blades and versors is efficiently evaluated by the function
inverse(arg) by simplifying the combination of the rnorm sqr(arg) and
reverse(arg) functions according to Eq. (2.15).

The implementation of the unary plus (unary plus(arg)) and unary
minus (unary minus(arg)) operations are also straightforward since those
operators return, respectively, a copy of the given argument and a copy of
the given argument having the signal of the stored scalar factor changed. The
use of unary minus is depicted in Fig. 4 (line 13).



27 Page 24 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

The addition and subtraction of blades and versors, however, is a chal-
lenging task in this factored approach because we are using a multiplicative
basis. Thus, addition and subtraction are only implemented in our library
for pairs of blade arguments having the same grade, and limited to k-blades
with k ∈ {0, 1, n − 1, n}. It is because those are the only cases where it is
guaranteed that adding or subtracting two blades will result in a blade.

5. Experiments and Discussion

Our experiments were performed to assess the execution time and the sup-
ported dimensionality of the presented library in comparison to other C++
libraries, library generators, and code optimizers. We performed the compar-
ison in a workstation running Ubuntu 16.04 operating system on bare metal.
The workstation was equipped with two Intel Core i7-4960X processors with
3.60 GHz (2 × 6 cores), and 64 Gb of RAM. The C++ source codes were
compiled using GCC 7 (single thread) with O3 optimization in release mode.

We compared TbGAL against the four most used GA solutions developed
for scientific purposes. The compared solutions are: Gaalop [6], Garamon [2],
frame-based version of GluCat [24], and Versor [7]. The decision of not in-
cluding the matrix-based version of GluCat is based on the higher execution
times achieved by this version of the library. Since both matrix and frame-
based versions belong to the same library, we used the one with better perfor-
mance. In this paper, we do not include results for GATL [12] because its per-
formance regarding the operations considered in our analysis is equivalent to
Versor’s. It is important to emphasize that we did not consider handcrafted
solutions in our experiments, even though they would allow higher dimen-
sionalities. Therefore, the libraries, library generators, and code optimizers
where evaluated as is.

We orchestrated the solutions to load blades having grade 0 ≤ k ≤ n
defined for

∧
R

n with n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32, 64, 128, 256} under
Euclidean metric, and measured the mean execution times of 10 evaluations
of the geometric product, outer product, left contraction, and Hestenes’ inner
product. The only exceptions were Gaalop and Versor, which do not imple-
ment, respectively, the left contraction and Hestenes’ inner product as native
functions. In those cases, we performed the execution-time analysis only for
the operations that are implemented.

We used sets of k-blades defined by k linearly independent vectors.
Double-precision floating-point values represented the coefficients of the fac-
tor vectors. They were randomly generated using a normal distribution.

In this section, we discuss the results related to
∧
R

4,
∧
R

7,
∧
R

16, and∧
R

256. The full set of results is available as Supplementary Material. We have
chosen to discuss the results for n = 4 (Fig. 6) because this is the dimension-
ality of the vector space in the 3-dimensional homogeneous/projective model
of GA. In our opinion, this is the smallest useful dimensionality in practi-
cal geometric problems. We present results for n = 7 (Fig. 7) because this
is the largest dimensionality supported by all compared solutions. Besides



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 25 of 33 27

Figure 6. Histograms of mean execution times for the com-
pared solutions assuming n = 4, Euclidean metric, and all
possible combinations of grades



27 Page 26 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

Figure 7. Histograms of mean execution times for the com-
pared solutions assuming n = 7, Euclidean metric, and all
possible combinations of grades



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 27 of 33 27

that, we present results for n = 16 (Fig. 8) because this is a relatively high
dimensionality, when considering the libraries in general. Finally, this section
also discusses results regarding n = 256 (Fig. 1) because it is the maximum
practical dimensionality supported by TbGAL. Runtime and numerical insta-
bility restrict the workstation used in the experiments for more than n = 300
dimensions. The maximum dimensionality were TbGAL was capable to eval-
uate the implemented procedures was n = 1536. The bottleneck for higher
dimensionalities is the amount of RAM available.

For the geometric product in n = 4 (leftmost column of Fig. 6), Gaalop
and Versor showed the same behavior, with low execution times distributed
nearby zero. It was expected, since the operations of both libraries are re-
solved, each one in its way, in compilation time. For the same operation
and dimensionality, the execution time of GluCat is concentrated around
0.0015 ms. The execution times of Garamon, on the other hand, are scattered
along the time axis between 0.001 and 0.005 ms. TbGAL shows a scattered
histogram with values ranging from 0.002 to 0.013 ms. We believe that such
behavior is related to the overhead of performing matrix operations. Such
overhead is proportionally less expressive at higher dimensionalities.

The second column of Fig. 6 shows the execution times for the outer
product in n = 4. Here, we notice the similarity between Gaalop and Versor
again. For Garamon, the times are scattered between 0.0007 and 0.0016 ms,
while the range of GluCat is larger and slightly right-shifted on the his-
togram, ranging from 0.0013 to 0.0030 ms. TbGAL shows a bimodal distribu-
tion on the histogram. The distribution refers to the evaluations of the outer
product when there is linear dependency between the operands. When this
happens, the operation returns zero as a result without performing any other
computation. When there is no linear dependency, the execution time of the
operations range from 0.0024 to 0.0037 ms.

The execution times for the left contraction in n = 4 are depicted in the
third column of the Fig. 6. Versor, similarly to its results for the geometric
product, shows small execution times concentrated in one bin, i.e., the ex-
ecution times are not scattered along the time axis of the histogram. Since
Gaalop does not implement this operation directly, its histogram is empty.
Garamon and GluCat show similar results for this, while TbGAL presents small
but distributed execution times. It is important to notice the concentration
of values close to zero in TbGAL results. Those executions are associated to
a grade checking of the blades being operated, i.e., if the grade of the right-
hand side (rhs) argument is smaller than the grade of the left-hand side (lhs)
then the operation returns zero without performing any extra computation.
This result can also be seen in Fig. 1 as the blue upper triangle w.r.t. the
anti-diagonal of the heatmap that summarizes the execution times.

As depicted in Fig. 6, there is a bimodal distribution for TbGAL for
Hestenes’ inner product in n = 4. Garamon and GluCat shows less scattered
distributions, with execution times up to 0.0044 and 0.0022 ms, respectively.
In this dimensionality, TbGAL has execution times from 0.0065 to 0.0087 ms,
which leads to a higher concentration of the bars on the right side of the plot.



27 Page 28 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

When increasing the dimensionality of the space, we notice that Gaalop
and Versor still very similar when considering n = 7 and the geometric
product (Fig. 7, first column). The execution times for both libraries is smaller
than 0.0034 ms for all the grade combinations. Although the execution times
are slightly different, the distribution of execution times for Garamon and
GluCat is very similar. Both are less scattered along the time axis than TbGAL.
This behavior is inverted for when n ≥ 8, i.e., TbGAL has a less distributed
and a smaller execution time than GluCat and Garamon, respectively. Please
refer to Supplementary Material in order to view this information.

For the outer product in n = 7 (Fig. 7, second column) we notice that
most of TbGAL executions times are between 0 and 0.0067 ms, while mostly of
execution times of Garamon and GluCat, which are very similar, are between
0 and 0.0034 ms. In this experiment, we noticed that Garamon is slightly
faster than Glucat but the difference, just like the difference between Gaalop
and Versor, can be neglected.

For the left contraction in n = 7, depicted in Fig. 7 (third column),
we notice execution times for Versor close to zero. Both GluCat and TbGAL
avoids computations where the difference of the grades for each operand leads
to zero. Their histogram, however, shows smaller execution times for GluCat
with times ranging from 0.001 to 0.0055 ms while the execution times for
TbGAL ranges from 0.0025 to 0.0087 ms, when ignoring execution times close
to zero. Garamon, despite not performing a pre-checking of the grades before
computing the left contraction, achieved good execution times, ranging from
0.001 to 0.008 ms. the empty histogram for Gaalop is due to the fact that
this operation is not directly implemented in this library.

Differently from n = 4, Hestenes’ inner product in n = 7 shows that
TbGAL outperforms Garamon with a less scattered distribution on the left
portion of the histogram. On the other hand, it is outperformed by GluCat
(Fig. 7, fourth column). Besides that, while the operation between scalars is
computed with an execution time close to zero for GluCat and TbGAL, it seems
to be linearly increased in Garamon. For Gaalop, as expected, the execution
times are close to zero.

We were able to run the experiments for n = 16 for only three libraries:
Garamon, GluCat, and TbGAL. For Gaalop, the size of the configuration file
assuming n = 16 is about 96.6 Gb, making the pre-compilation impossible for
n ≥ 16 in our current setup. We present the results of Garamon in a different
scale for n = 16 due to its higher execution times.

In Fig. 8 (top and middle), the time histograms for GluCat and TbGAL
show that the bars are higher on the left portion of the plot, which indi-
cates smaller execution times. Notice, however, that Glucat distribution has
a longer tail than TbGAL. This means that, although the execution times are
reduced for both implementations, GluCat presents more variation in execu-
tion times. Garamon has the highest execution times for this dimensionality
(Fig. 8, bottom), with most operations taking about 37 s to run.

For the outer product in n = 16 (second column of Fig. 8), similarly to
the geometric product histograms, GluCat presents more occurrences scat-
tered across the time axis, which shows that for some operands the execution



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 29 of 33 27

Figure 8. Histograms of mean execution times for the com-
pared solutions assuming n = 16, Euclidean metric, and all
possible combinations of grades. For the sake of clarity, re-
sults for Garamon are on a different scale

time can reach 1.2 ms, while TbGAL concentrates its execution times in only
one bin that goes up to 0.15 ms.

For the left contraction in n = 16 (Fig. 8), about a half of the operations
has execution time lesser than 0.002 ms) for TbGAL due to the grade checking
before the operations. The other half of the operations are performed in times
between 0.006 and 0.026 ms, which led to all those operations concentrated
in one bin. GluCat, on the other hand, has execution times between 0 and
0.2855 ms.



27 Page 30 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

For the Hestenes’ inner product, whose results for n = 16 are depicted
in the fourth column of Fig. 8, we notice that Glucat has one extra bin
when compared to TbGAL. For both libraries, the operation when one of the
operands is a scalar value has the shortest execution times.

Figure 1 shows the execution times of TbGAL for n = 256. The left
plot refers to execution times of each pair of operands, while the right plot
corresponds to the histogram of the execution times. The execution time
of the geometric product (a) is deeply related to the grade of the left-hand
side operand. Notice that the execution times vary more when increasing the
grade of the lhs operand. This behavior can also be observed for other cases
of n (refer to the Supplementary Material for details). The reason for the
lack of symmetry on the processing time is that the cost of the algorithm
implemented by TbGAL is cubic on the number of factors in lhs when the
current factor in rhs is linear dependent on the space spanned by the vector
factors in lhs (see the algorithm in Fig. 5).

The geometric product is the most costly operation in our library, with a
histogram of execution time scattered along the time axis with values ranging
from 0 to 2100 ms. That is the reason why it is presented on a different scale
from the other operations. The outer product (b), left contraction (c), and
Hestenes’ inner product (d) have the distribution of execution times slightly
shifted to the left or the right. For both outer product and left contraction,
there are about half of the operations concentrated in bins close to zero
(represented on the heatmaps as the blue triangular portions). It is because
the grade of operators and the expected grade of the result are checked. The
execution times for the outer product (without considering the values close
to zero), ranges from 2 to 13 ms. Both left contraction and Hestenes’ inner
product have execution times ranging from 5 to 16 ms.

6. Conclusions and Future Work

We presented TbGAL, a C++ library for GA and its front-end for Python 2
and 3. Our solution is based on blades and versors factorizations. It can
handle higher dimensionality when compared to other existing GA libraries,
library generators, and code optimizers. As limitations, we consider the max-
imum practical limit of n = 256 dimensions, even though we were able to run
the library in higher dimensionalities at the cost of longer processing time
and round-off error. Besides that, for now, our library is limited to arbitrary
metric spaces having (p, q, 0) signatures. As expected, general multivectors
are not handled by TbGAL. However, in practice, it is not a limitation when
one is working with GA. As pointed by Dorst et al. [11, Section 7.7.2], in
contrast to Clifford algebra, GA permits exclusively multiplicative construc-
tions and combinations of elements. The only exceptions are the addition
and subtraction of scalar values, vectors, pseudovectors, and pseudoscalars.
It is because all results produced by multiplication using any of the products
derived from the geometric product do have a geometrical interpretation. A
practical interpretation of general multivectors is not known.



Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 31 of 33 27

We are currently working on the implementation of TbGAL as a full-
parallel library for real-time processing on GPU, and extending its capabil-
ities to arbitrary (p, q, r) metric spaces with r �= 0. Also, our library does
not include visualization routines. We believe that this capability is well per-
formed by other solutions, like ganja.js. Therefore, we are planning to call
ganja.js from a sub-module of our Python ports to render GA objects.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Arsenovic, A., Hadfield, H., Antonello, J., Kern, R., Boyle, Mike: Numeri-
cal geometric algebra module for Python. https://github.com/pygae/clifford,
(2018)

[2] Breuils, S., Nozick, V., Fuchs, L.: Garamon: a geometric algebra library gener-
ator. Adv. Appl. Clifford Algebras 29(4), 69 (2019)

[3] Bromborsky, A.: Symbolic geometric algebra/calculus package for SymPy.
https://github.com/brombo/galgebra, (2015)

[4] Camargo, V.S., Castelani, E.V., Fernandes, L.A.F., Fidalgo, F.: Geometric al-
gebra to describe the exact discretizable molecular distance geometry problem
for an arbitrary dimension. Adv. Appl. Clifford Algebras 29(4), 75 (2019)

[5] Castelani, E.V.: Library for geometric algebra. https://github.com/
evcastelani/Liga.jl, (2017)

[6] Charrier, P., Klimek, M., Steinmetz, C., Hildenbrand, D.: Geometric algebra
enhanced precompiler for C++, OpenCL and Mathematica’s OpenCLLink.
Adv. Appl. Clifford Algebras 24(2), 613–630 (2014)

[7] Colapinto, P.: Versor: spatial computing with conformal geometric algebra.
Master’s thesis, University of California at Santa Barbara, (2011)

[8] De Keninck, S.: Javascript geometric algebra generator for Javascript, C++,
C#, Rust, Python

[9] Dijkman, D.H.F.: Efficient implementation of geometric algebra. Ph.D. thesis,
Universiteit van Amsterdam, (2007)

[10] Doran, C., Lasenby, A., Lasenby, J.: Geometric Algebra for Physicists. Cam-
bridge University Press, Cambridge (2003)

[11] Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science:
An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc,
Burlington (2009)

[12] Fernandes, L.A.F.: GATL: geometric algebra template library. https://github.
com/laffernandes/gatl, (2019)

[13] Fernandes, L.A.F., Lavor, C., Oliveira, M.M.: Álgebra geométrica e aplicações,
Notas em Matemática Aplicada, vol. 85, SBMAC, 2017, (In Portuguese) (2017)

[14] Fontijne, D.: Implementation of Clifford algebra for blades and versors in O(n3)
time. In: Talk at International Conference on Clifford Algebra, May 19–29,
(2005)

https://github.com/pygae/clifford
https://github.com/brombo/galgebra
https://github.com/evcastelani/Liga.jl
https://github.com/evcastelani/Liga.jl
https://github.com/laffernandes/gatl
https://github.com/laffernandes/gatl


27 Page 32 of 33 E. V. Sousa and L. A. F. Fernandes Adv. Appl. Clifford Algebras

[15] Fontijne, D.: Gaigen 2: a geometric algebra implementation generator. In: Pro-
ceedings of the 5th International Conference on Generative Programming and
Component Engineering, pp. 141–150 (2006)

[16] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins,
Baltimore (1996)

[17] Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane
and n-Dimensional Space. Springer Science & Business Media, New York (2007)

[18] Hadfield, H., Hildenbrand, D., Arsenovic, A.: Gajit: symbolic optimisation and
JIT compilation of geometric algebra in Python with GAALOP and Numba,
Advances in Computer Graphics – Computer Graphics International Confer-
ence (CGI) (M. Gavrilova, J. Chang, N. Thalmann, E. Hitzer, and H. Ishikawa,
eds.), Springer, (2019)

[19] Hestenes, D.: New Foundations for Classical Mechanics, vol. 15. Springer Sci-
ence & Business Media, New York (2012)

[20] Hestenes, D., Lasenby, A.N.: Space-Time Algebra. Springer, New York (1966)

[21] Hildenbrand, D., Pitt, J., Koch, A.: Gaalop–high performance parallel comput-
ing based on conformal geometric algebra. In: Bayro-Corrochano, E., Scheuer-
mann, G. (eds.) Geometric Algebra Computing, pp. 477–494. Springer, London
(2010)

[22] Hitzer, E., Nitta, T., Kuroe, Y.: Applications of clifford’s geometric algebra.
Adv. Appl. Clifford Algebras 23(2), 377–404 (2013)

[23] Hudak, P.: Conception, evolution, and application of functional programming
languages. ACM Comput. Surv. 21(3), 383–385 (1989)

[24] Leopardi, P.C.: GluCat: Generic library of universal Clifford algebra templates.
http://glucat.sourceforge.net/, (2007)

[25] Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geom-
etry and applications. SIAM Rev. 56(1), 3–69 (2014)

[26] Nitta, T.: Complex-Valued Neural Networks: Utilizing High-Dimensional Pa-
rameters. IGI Global, Hershey (2009)

[27] Perwass, C., Edelsbrunner, H., Kobbelt, L., Polthier, K.: Geometric Algebra
with Applications in Engineering. Springer, Berlin (2009)

[28] Perwass, C., Gebken, C., Grest, D.: CluViz: interactive visualization. http://
cluviz.de, (2004)

[29] Pythonic Geometric Algebra Enthusiasts.: Symbolic geometric alge-
bra/calculus package for SymPy. https://github.com/pygae/galgebra, (2017)

[30] Reed, M.: Leibniz–Grassmann–Clifford–Hestenes differential geometric algebra
multivector simplicial-complex. https://github.com/chakravala/Grassmann.jl,
(2017)

[31] Seybold, F.: Gaalet: Geometric algebra algorithms expression templates.
https://sourceforge.net/projects/gaalet/, (2010)

http://glucat.sourceforge.net/
http://cluviz.de
http://cluviz.de
https://github.com/pygae/galgebra
https://github.com/chakravala/Grassmann.jl
https://sourceforge.net/projects/gaalet/


Vol. 30 (2020) TbGAL: A Tensor-Based Library for Geometric Algebra Page 33 of 33 27

Eduardo Vera Sousa and Leandro A. F. Fernandes
Instituto de Computação
Universidade Federal Fluminense
Av. Gal. Milton Tavares de Souza, São Domingos
Niterói Rio de Janeiro 24210-346
Brazil
e-mail: eduardovera@ic.uff.br

Leandro A. F. Fernandes
e-mail: laffernandes@ic.uff.br

Received: August 12, 2019.

Accepted: March 2, 2020.


	TbGAL: A Tensor-Based Library  for Geometric Algebra
	Abstract
	1. Introduction
	2. Background on GA Operations
	2.1. Multivector Space
	2.2. Outer Product
	2.3. Left and Right Contractions
	2.4. Other Metric Products
	2.5. Dualization
	2.6. Geometric Product

	3. Related Work
	3.1. Libraries
	3.2. Library Generators
	3.3. Code Optimizers

	4. Proposed Architecture and Implementation
	4.1. Data Structures
	4.2. Outer Product
	4.3. Dualization
	4.4. Geometric Product
	4.5. Metric Products
	4.6. Other Operations

	5. Experiments and Discussion
	6. Conclusions and Future Work
	References




