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Abstract. In this article, we provide a complete classification of left oc-
tonionic modules (finite or infinite dimensions) in terms of new notions
such as associative elements and conjugate associative elements. We give
a simple approach to determine the irreducible left O-modules by uti-
lizing the Clifford algebra C�7. We find that every left O-module has
a basis in some sense. This means that every left O-module is a “free”
module.
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1. Introduction

The theory of quaternion Hilbert spaces brings the classical theory of func-
tional analysis into the non-commutative realm (see [10,16,17,19,20]). It
raises some new notions such as spherical spectrum, which has potential ap-
plications in quantum mechanics (see [4,6]). All these theories are based on
quaternion vector spaces, or more precisely, quaternion modules, and quater-
nion bimodules. A systematic study of quaternion modules is given by Ng
[15]. It turns out that the category of (both one-sided and two-sided) quater-
nion vector spaces is equivalent to the category of real vector spaces.

It is a natural question to study the theory of octonionic spaces. Golds-
tine and Horwitz in 1964 [8] initiated the study of octonionic Hilbert spaces.
More recently, Ludkovsky [12,13] studied the algebras of operators in oc-
tonionic Banach spaces and spectral representations in octonionic Hilbert
spaces. Although there are few results about the theory of octonionic Hilbert
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spaces, it is not full developed since it even lacks of coherent definition of
octonionic Hilbert spaces.

We remark that Eilenberg [5] initiated the study of bimodules over
non-associative rings. Later, Jacobson studied the structures of bimodules
over a Jordan algebra or an alternative algebra [11]. One-sided modules over
octonions were investigated in [8] for studying octonionic Hilbert spaces.

The purpose of this article is to characterize the structure of O-modules
completely. The modules considered in this paper are the left-alternative
left-modules for the real algebra of octonions. Notice that these have been
considered, in a much greater generality, by several mathematicians. In par-
ticular, the irreducible ones are known to be isomorphic to the regular or
conjugate regular modules (see, for example, Chapter 11 of the monograph
by Zhevlakov, Slinko, Shirshov, and Shestakov [22]). However, in the case of
octonion algebra which is a normed algebra, we can give a much simpler way
to determine the irreducible modules and give a complete description of left
O-modules. It turns out that left O-modules are all free modules, looking
much like the vector spaces over other normed algebras.

The set O admits two distinct O-module structures. One is the canonical
one, denoted by O; the other is denoted by O (see Example 3.5). To charac-
terize any O-module M , we need to introduce new notions, called associative
elements and conjugate associative elements. Their collections are denoted
by A (M) and A −(M), respectively. The ordered pair of their dimensions as
real vector spaces is called the type of M . These concepts are crucial in the
classification of left O-modules.

Our main result is about the characterization of the left O-modules.

Theorem 1.1. Let M be a left O-module. Then there is a natural O-module
isomorphism:

O ⊗ (A (M) ⊕ A −(M)) ∼= M.

Its proof depends heavily on the isomorphism between the category
O-Mod and the category C�7-Mod. Since C�7 is isomorphic to M(8, R) ⊕
M(8, R), there are only two types of simple left O-modules, namely, O and
O up to isomorphism. Let M be a left O-module. Then

M = ⊕i∈ΛMi,

where Mi is a submodule isomorphic either to O or to O for each i ∈ Λ. With
some elementary properties of A (M) and A −(M), we can obtain a bijective
map:

O ⊗ (A (M) ⊕ A −(M)) → M.

We can show that this is an O-module isomorphism with respect to a natural
O-module structure of O ⊗ (A (M) ⊕ A −(M)).

Finally, we discuss the free property of left O-modules. It turns out that
every left O-module is “free” in some sense.
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Figure 1. Fano mnemonic graph

2. Preliminaries

In this section, we introduce some notations on octonions and some basic
properties.

2.1. The Algebra of the Octonions O

The algebra of the octonions O is a non-associative, non-commutative, normed
division algebra over R. Let e0, e1, . . . , e7 be its natural basis throughout this
paper, i.e.,

eiej + ejei = −2δij , i, j = 1, . . . , 7.

For convenience, we denote e0 = 1.
In terms of the natural basis, every octonion can be written as

x = x0 +
7∑

i=1

xiei, xi ∈ R.

The conjugate octonion of x is defined by

x = x0 −
7∑

i=1

xiei,

and the norm of x equals |x| =
√

xx ∈ R, the real part of x is Rex = x0 =
1
2 (x + x).

The full multiplication table is conveniently encoded in the Fano mne-
mon-ic graph (see [2,21]). In the Fano mnemonic graph, the vertices are
labeled by 1, . . . , 7 instead of e1, . . . , e7. Each of the seven oriented lines gives
a quaternionic triple. The product of any two imaginary units is given by the
third unit on the unique line connecting them, with the sign determined by
the relative orientation.

The associator of three octonions is defined as

[x, y, z] = (xy)z − x(yz)

for any x, y, z ∈ O, which is alternating in its arguments and has no real
part. That is, O is an alternative algebra and hence it satisfies the so-called
R. Moufang identities [18]:
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(xyx)z = x(y(xz)), z(xyx) = ((zx)y)x, x(yz)x = (xy)(zx).

The commutator is defined as

[x, y] = xy − yx.

2.2. Clifford Algebra

We shall use the Clifford algebra C�7 to study left O-modules. In this subsec-
tion, we review some basic facts for Clifford algebras. The Clifford algebras
were introduced by Clifford in 1882. For their recent development, we refer
to [1,7,9,14].

Definition 2.1. ([9]) Given a Euclidean vector space (V, 〈·, ·〉) of signature
p, q, the Clifford algebra C�(V ) is the quotient

∑+∞
k=1 ⊗kV/I(V ), where I(V )

is the two-sided ideal in
∑+∞

k=1 ⊗kV generated by all elements:

x ⊗ x + 〈x, x〉 (2.1)

with x ∈ V .

We state the Fundamental Lemma for Clifford algebras.

Lemma 2.2. [9] Given a Euclidean vector space (V, 〈·, ·〉) and a linear map
φ : V → A from V into A, an associative algebra with unit. If

φ(x)φ(x) = −〈x, x〉 , for all x ∈ V, (2.2)

then φ has a unique “extension” (also denoted φ) to an algebra homomorphism
of C�(V ) into A:

C�(V ) A

V

φ

ι

φ

Let V = R
n be equipped with the usual Euclidean inner product. Denote

C�(V ) = C�n and denote by ι : V → C�n the embedding map. We need some
notations and conventions.

• x = (x1, . . . , xn) ∈ R
n, |x|2 =

∑n
i=1 x2

i .
• Let {fi}n

i=1 be the canonical orthonormal basis of R
n, i.e., fi = (0, . . . ,

0, 1, 0, . . . , 0) with 1 in the i-th slot. Denote gi = ι(fi) ∈ C�n.
• Let P(n) be the set of all the subsets of {1, . . . , n}.
• For any α ∈ P(n), if α 
= ∅, we write α = {α1, . . . , αk} with 1 ≤ α1 <

· · · < αk ≤ n and we set gα = gα1 · · · gαk
. Otherwise, we denote g∅ = 1.

The Clifford algebra C�n can be described alternatively with the above
notations as

(i) C�n is R-linearly generated by {gα | α ∈ P(n)};
(ii) gigj + gjgi = −2δij for any i, j = 1, . . . , n.
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Table 1. Isomorphism classes of C�n

n C�n

0 R

1 C

2 H

3 H ⊕ H

4 M(2, H)
5 M(4, C)
6 M(8, R)
7 M(8, R) ⊕ M(8, R)

At the last of this subsection, we give the following algebra isomorphism
of C�n (see for example [1]).

• C�n+8
∼= C�n ⊗ M(16, R) ∼= M(16, C�n);

• for n = 0, . . . , 7 we have Table 1

Here, we denote by M(k, F) the algebra of all k×k matrices with entries
in the algebra F.

3. O-Modules

We set up in this section some preliminary definitions and results on left
O-modules.

Definition 3.1. A real vector space M is called a (left) O-module if it is
equipped with a multiplication O × M → M , denoted by

(q,m) → qm,

such that the following axioms hold for all q, q1, q2 ∈ O, λ ∈ R and all
m,m1,m2 ∈ M :

(i) (λq)m = λ(qm) = q(λm);
(ii) (q1 + q2)m = q1m + q2m, q(m1 + m2) = qm1 + qm2;
(iii) [q1, q2,m] = −[q2, q1,m];
(iv) 1m = m.

Here, the left associator is defined by

[q1, q2,m] := (q1q2)m − q1(q2m).

Note that this definition is equivalent to the definition given in [12,13],
wherein the axiom (iii) is replaced by

q2m = q(qm), for all q ∈ O, m ∈ M.

The proof is trivial by polarizing the above relation. It also agrees with
the definition given in [8] where M needs to satisfy an additional axiom:
p(p−1x) = x, which can be deduced from the equation p(px) = p2x directly.

Let M,M ′ be left O-modules. The definition of the words submodule,
homomorphism, isomorphism, kernel of a homomorphism, which are familiar
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from the study of associative modules, do not involve associativity of multipli-
cation and are thus immediately applicable to O-modules. Let HomO(M,M ′)
denote the set of all O-homomorphisms from M to M ′ as usual. The nota-
tion JN means the subset of M spanned by all products rn with r ∈ J and
n ∈ N (J being an arbitrary non-empty subset of O and N being an arbitrary
nonempty subset of M). Namely,

JN := span{rn : r ∈ J ⊂ O, n ∈ N ⊂ M}.

Here we must of course distinguish between J1(J2N) and (J1J2)N . Let 〈N〉
O

denote the the smallest submodule that contains N . An element m ∈ M is
said to be associative if

[p, q,m] = 0 for all p, q ∈ O.

Denote by A (M) the set of all associative elements in M

A (M) := {m ∈ M | [p, q,m] = 0 for all p, q ∈ O}.

We call A (M) the nucleus of M . One useful identity which holds in any
O-module M is

[p, q, r]m + p[q, r,m] = [pq, r,m] − [p, qr,m] + [p, q, rm], (3.1)

where p, q, r ∈ O, m ∈ M . The proof is by straightforward calculations. In
particular, it provides a useful identity for associative elements as follows.

Lemma 3.2. For all associative element m ∈ A (M), we have

[p, q, rm] = [p, q, r]m, for all p, q, r ∈ O.

The following elementary property will be useful in the sequel. The proof
is trivial and will be omitted here.

Proposition 3.3. If f ∈ HomO(M,N), then f([p, q, x]) = [p, q, f(x)] for all
p, q ∈ O, x ∈ M . Therefore f(A (M)) ⊆ A (N). In particular, if M ∼=O N ,
then

A (M) ∼=R A (N).

We give several examples of left O-modules.

Example 3.4. It is easy to see that the real vector spaces O, O
n, M(n, O)

with the obvious multiplication are all left O-modules. Clearly, the nuclei on
these modules are R, R

n, M(n, R) respectively.

We can define a different O-module structure on the octonions O itself.

Example 3.5. (O) Define:

p ·̂ x := px, for all p ∈ O, x ∈ O.

It is easy to check that this is a left O-module. Indeed

p2 ·̂ x = p2x = p ·̂ (p ·̂ x).

We shall denote this O-module by O. By direct calculations, we obtain:

[p, q, x]
O

= [p, q, x] + [p, q]x.
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This implies that

A (O) = {0}.

Note that Proposition 3.3 demonstrates that

O � O.

However, the elements of R have a special property in O which leads to
the new concept of conjugate associative element.

Definition 3.6. An element m ∈ M is said to be conjugate associative if

(pq)m = q(pm), for all p, q ∈ O.

Denote by A −(M) the set of all conjugate associative elements.

Lemma 3.7. A −(O) = R.

Proof. For any x ∈ A −(O) and any p, q ∈ O, we have

0 = (pq) ·̂ x − q̂·(p ·̂ x) = [q, p, x].

This implies that x ∈ R. Clearly R ⊆ A −(O) and we conclude A −(O) = R.
�

Remark 3.8. Let M be a left O-module. We have defined a different left O-
module structure on M :

p ·̂ x := px, for all p ∈ O, x ∈ M.

We shall denote the set M with this new module structure by M−. Then one
can check that

A (M−) = A −(M) (3.2)

Obviously, if we are interested in associative elements, this shows that
we must also consider conjugate associative elements. It also shows that ev-
ery statement involving A (M) automatically brings a statement involving
A −(M) without any extra-proof.

Lemma 3.9. For any left O-module M , we have

A (M) ∩ A −(M) = {0}.

Proof. Obviously, 0 ∈ A (M) ∩ A −(M). If x ∈ A (M) ∩ A −(M), then for
any p, q ∈ O,

[p, q]x = (pq)x − (qp)x = (pq)x − p(qx) = [p, q, x] = 0.

This implies x = 0 since we can choose p, q ∈ O such that [p, q] 
= 0. This
proves the lemma. �

Remark 3.10. Clearly, both A (M) and A −(M) are real vector spaces. If M
is of finite dimension, we call the ordered pair

(dimR A (M), dimR A −(M))

the type of M . We shall use this notion to describe the structure of left
O-modules. It turns out that the type is a complete invariant in the finite
dimensional case.
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Let M be a left O-module. We shall now provide some properties of
associative elements and conjugate associative elements which will be used
in the sequel.

Lemma 3.11. Let {xi}n
i=1 be an R-linearly independent set of associative el-

ements of M . If
n∑

i=1

rixi = 0, ri ∈ O for i = 1, . . . , n,

then ri = 0 for i = 1, . . . , n.

Proof. The proof is by induction on n. For the case n = 1, we have rx = 0.
If r 
= 0, since x ∈ A (M), it follows that

0 = r−1(rx) = (r−1r)x = x,

a contradiction with our assumption x 
= 0. Assume that the lemma holds
for n = k, we will prove it for k + 1. Suppose

k+1∑

i=1

rixi = 0 and rk+1 
= 0.

This can be rewritten as

xk+1 =
k∑

i=1

sixi (3.3)

with si := −r−1
k+1ri. Since xk+1 ∈ A (M), for all p, q,∈ O we have

0 = [p, q, xk+1] =
k∑

i=1

[p, q, sixi] =
k∑

i=1

[p, q, si]xi,

where we have used Lemma 3.2 in the last identity. Hence by induction hy-
pothesis we have

[p, q, si] = 0

for all i ∈ {1, . . . , k} and all p, q ∈ O. This implies si ∈ R. Due to (3.3),
we conclude that {xi}n

i=1 is R-linearly independent, a contradiction to our
hypothesis. This completes the proof. �

Notice that we have actually proved a somewhat stronger assertion:

Corollary 3.12. Let S ⊆ A (M). Then S is O-linearly independent if and only
if it is R-linearly independent.

A similar statement also holds for conjugate elements.

Lemma 3.13. Let S = {xi}n
i=1 ⊆ A −(M) be an R-linearly independent set.

If
n∑

i=1

rixi = 0

for any ri ∈ O and i = 1, . . . , n, then ri = 0 for every i = 1, . . . , n.
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Proof. This can also be proved similarly by induction on n. Here we would
like to provide an alternative proof based on the relation between associative
and conjugate associative elements in (3.2).

Assume that
∑n

i=1 rixi = 0. Since

S = {xi}n
i=1 ⊆ A −(M) = A (M−)

is an R-linearly independent set, by Lemma 3.11, we conclude from
n∑

i=1

rixi =
n∑

i=1

ri ·̂ xi = 0

that ri = 0 for all i = 1, . . . , n. �

4. The Structure of Left O-Moudles

In this section, we are in a position to describe the structure of any left
O-module.

It is well-known (for example, [2,9]) that octonions have a very close
relationship with spinors in seven and eight dimensions. In particular, mul-
tiplication by imaginary octonions is equivalent to Clifford multiplication on
spinors in dimension seven. It turns out that the category of left O-modules
is isomorphic to the category of left C�7-modules.

For any left O-module M , since [ei, ej , x] = −[ej , ei, x], the left multi-
plication operator L satisfies:

Lei
Lej

+ Lej
Lei

= −2δijId.

Let A be the associative subalgebra of EndRM generated by {Lei
| i =

0, 1, . . . , 7}. According to Lemma 2.2, there exist a ring homomorphism

C�7 → A ↪→ EndRM.

This yields a C�7-module structure on M . Denote this C�7-module by C�7M ,
or just M , and the C�7-scalar multiplication is given by

gαm := eα1(eα2(· · · (eαk
m)))

for any α ∈ P(n). Here,

gα = gα1 · · · gαk
:= Leα1

· · · Leαk
.

Let f ∈ HomO(M,M ′) be a left O-homomorphism, where M,M ′ are two left
O-modules. Then

f(Lei
x) = f(eix) = eif(x) = Lei

f(x).

and hence f(gαx) = gαf(x). This means f ∈ HomC�7(M,M ′).
Conversely, for any left C�7-module M , let {gi}7

i=1 be a basis in R
7.

Define:

eĩ·x := gix.

Then

eĩ·(ej ·̃x) = gi(gjx) = (gigj)x = (−2δij − gjgi)x = −2δijx − ej ·̃(eĩ·x)
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and by transposition of terms, we have

eĩ·(ej ·̃x) + ej ·̃(eĩ·x) = (eiej + ejei)̃·x
so that

[ei, ej , x] = −[ej , ei, x].

This yields [p, q, x] = −[q, p, x] for any p, q ∈ O. Consequently M is a left
O-module. For any f ∈ HomC�7(M,M ′),

f(eĩ·x) = f(gix) = gif(x) = eĩ·f(x)

Therefore f ∈ HomO(M,M ′). In summary, we get the following key result:

Theorem 4.1. The category of left O-module is isomorphic to the category of
left C�7-module. Moreover, the only two kinds of simple O-module are O and
O up to isomorphism.

Proof. We have two natural categories O-Mod and C�7-Mod. By the pre-
ceding construction, we have a bijection

T : O-Mod −→ C�7-Mod

OM → C�7M

and for any morphism ϕ ∈ HomO(M,N), it maps ϕ to T (ϕ) : C�7M → C�7N ,
which is given by

T (ϕ) : m → ϕ(m).

Clearly, this is an isomorphism by the above discussion. As is well
known, C�7 is a semi-simple algebra with the decomposition

C�7 ∼= M(8, R) ⊕ M(8, R),

and the simple C�7-modules are (R8, 0) and (0, R8) up to isomorphism [7].
Hence there also exist only two types of simple O-module. In view of Example
3.5, we thus conclude that O and O are the only two different types of simple
O-modules. This completes the proof. �

If R is a semi-simple associative and unital ring, every (left or right)
R-module is a direct sum of simple R-modules (see, for instance, [3, Section
I-4]); moreover, R is a finite direct sum of simple ideals, and the number of
these ideals is the number of types of simple R-modules.

Corollary 4.2. If M is a left O-module. Then

M = ⊕i∈ΛMi,

where Mi is a submodule isomorphic either to O or to O for each i ∈ Λ.

Let M be a left O-module. Then 〈m〉
O

is finite dimensional for any
m ∈ M . More precisely, the dimension is at most 128, because the O-
submodule generated by m is also the C�7-submodule generated by m. In fact,
this property has already appeared in [8]. However, the proof can be greatly
simplified in view of the relationship of left O-modules and C�7-modules. We
shall use this property to characterize the structure of left O-modules more
precisely.
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Theorem 4.3. Let M be a left O-module. Then there is a natural O-module
isomorphism:

O ⊗ (A (M) ⊕ A −(M)) ∼= M.

In particular,

O(A (M) ⊕ A −(M)) = M.

Proof. We introduce the natural mapping

φ : O ⊗ A (M) ⊕ O ⊗ A −(M) −→ M,⎛

⎝
n∑

i=1

ri ⊗ xi,
n′∑

i=1

pi ⊗ yi

⎞

⎠ →
n∑

i=1

rixi +
n′∑

i=1

piyi.

We define the module structure of the tensor product as follows:

q ·
⎛

⎝
n∑

i=1

ri ⊗ xi,

n′∑

i=1

pi ⊗ yi

⎞

⎠ :=

⎛

⎝
n∑

i=1

qri ⊗ xi,

n′∑

i=1

piq ⊗ yi

⎞

⎠ .

Then φ is clearly an O-module homomorphism by the definition of associative
and conjugate associative elements.

We come to show that φ is injective. Assume that
n∑

i=1

rixi +
n′∑

i=1

piyi = 0

for some xi ∈ A (M) and yi ∈ A −(M). Without loss of generality we can
assume both {xi}n

i=1 and {yi}n′
i=1 are R-linearly independent. It follows from

Lemma 3.9 that
n∑

i=1

rixi = 0,

n′∑

i=1

piyi = 0.

In view of Lemmas 3.11 and 3.13, we conclude that ri = 0 and pj = 0 for all
i, j. This means that φ is injective.

To prove that φ is surjective, we let m ∈ M be arbitrary. Since 〈m〉
O

is finite dimensional, by Corollary 4.2, there are two non-negative integers n
and n′, such that

〈m〉
O

∼= O
n ⊕ O

n′
.

We thus have an expression

m =
n∑

i=1

rixi +
n′∑

i=1

piyi

for some xi ∈ A (M) and yi ∈ A −(M). This means

m = φ

⎛

⎝
n∑

i=1

ri ⊗ xi +
n′∑

i=1

pi ⊗ yi

⎞

⎠ .
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Since

O ⊗ A (M) ⊕ O ⊗ A −(M) = O ⊗ (A (M) ⊕ A −(M)),

we obtain the O-module isomorphism as desired. Note that the image of φ is
just O(A (M) ⊕ A −(M)), it follows that M = O(A (M) ⊕ A −(M)). �

Remark 4.4. Following the definition of Jacobson [11], we call a left O-module
M to be an O-bimodule if the associator is alternating. That is,

[p, q,m] = [q,m, p] = [m, p, q] (4.1)

for all p, q ∈ O and m ∈ M .
We point out that the O-vector space studied by Ludkovsky [12] may

not be an O-bimodule in general. By his definition [12], an O-vector space X
is defined to be an additive group for which the multiplication of the vectors
v ∈ X on scalars a, b ∈ O from the left and the right satisfies the axioms of
the alternativity and distributivity. Here the alternativity from the left means
that b(bv) = (b2)v for each b ∈ O and v ∈ X, the alternativity from the right
means that (vb)b = v(b2) for each b ∈ O and v ∈ X. From his definition, we
find that an O-vector space is actually referred to as a left O-module equipped
with an arbitrary right O-module structure without the assumption of (4.1).
This means that the left associator [p, q,m] and the right associator [m, p, q]
in an O-vector space are two independent and distinct notions.

We remark that if the right module structure of an O-vector space M
is incompatible with its left module structure in the sense of (4.1), then M
may fail to have the decomposition

M = A (M) ⊗ O.

However, this decomposition was used directly in the proof of Hahn-Banach
Theorem in [12, Theorem 2.4.1] and some other places. So there are some
gaps in the study of octonionic Hilbert space and Banach space before in the
literature.

Finally, we discuss the free property of left O-modules. It turns out that
every left O-module is “free” in some sense. To this end, we need to introduce
the notion of O-basis of an O-module.

Definition 4.5. Let M be a left O-module. A subset S ⊆ M is called a O-basis
if S is O-linearly independent and M = OS.

Theorem 4.6. Every left O-module M has an O-basis S. More precisely, we
can choose S to be an R-basis of the real vector space A (M) ⊕ A −(M).

Proof. Let S be an R-basis of the real vector space A (M)⊕A −(M). In view
of Lemmas 3.11 and 3.13, we know that S is also O-linearly independent.
Thanks to Theorem 4.3, we have

OS = O(RS) = O(A (M) ⊕ A −(M)) = M.

This completes the proof. �
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Remark 4.7. We have given the detail characterization of left O-modules in
terms of associative elements and conjugate associative elements. This will
be very useful for our further discussion on the theory of O-Hilbert space as
well as the O-Gelfand–Naimark theorem later.
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