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1. Introduction

Using spacetime algebra [7,10] in an essential way, Cambridge physicists
Lasenby, Doran and Gull have created an impressive new Gauge Theory of
Gravity (GTG) based on flat spacetime [1,15]. In my opinion, GTG is a
huge improvement over the standard tensor treatment of Einstein’s theory
of General Relativity (GR), both in conceptual clarity and in computational
power [11]. However, as the prevailing preference among physicists is for a
curved-space version of GR, a debate about the relative merits of flat-space
and curved-space versions will no doubt be needed to change the minds of
many. This paper aims to contribute to that debate by providing a concep-
tual and historical bridge between curved and flat space theories couched in
the unifying language of geometric algebra.
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This article sketches the extension of geometric algebra to a geometric
calculus (GC) that includes the tools of differential geometry needed for a
curved-space version of GR. My purpose is to demonstrate the unique ge-
ometrical insight and computational power that GC brings to GR, and to
introduce mathematical tools that are ready for use in research and teaching
[21]. I presume that the reader has some familiarity with standard treat-
ments of GR as well as with geometric algebra as presented in any of the
above references, so certain concepts, notations and results developed there
are taken for granted here. Additional mathematical tools introduced herein
are sufficient to treat any topic in GR with GC.

This article introduces three different formulations of GR in terms of a
unified GC that integrates them into a system of alternative approaches. The
first is a coordinate-based formulation that facilitates translation to and from
the standard tensor formulation of GR [25]. The second is a deeper gauge
theory formulation that is the main concern of this paper. The third is an
embedding formulation that deserves mention but will not be elaborated here.
Although our focus is on GR, it should be recognized that the mathematical
tools of GC are applicable to any problem in differential geometry.

Recognition that GR should be formulated as a gauge theory has been a
long time coming, and it is still relegated to a subtopic in most GR textbooks,
in part because the standard covariant tensor formalism is not well suited to
gauge theory. Still less is it recognized that there is a connection between
gravitational gauge transformations and Einstein’s Principle of Equivalence.
Gauge theory is the one strong conceptual link between GR and quantum
mechanics, if only because it is essential for incorporating the Dirac equation
into GR [4,13]. This is sufficient reason to bring gauge theory to the fore in
the formulation of GR.

This article demonstrates that GC is conceptually and computationally
ideal for a gauge theory approach to GR—conceptually ideal, because con-
cepts of vector and spinor are integrated by the geometric product into its
mathematical foundations—computationally ideal, because computations can
be done without coordinates. Much of this article is devoted to demonstrating
the efficiency of GC in computations.

On the foundational level, GC and gauge theory provide us with new
conceptual resources for reexamining the physical interpretation of GR, in
particular, the much-debated Principles of Relativity and Equivalence. The
analysis leads to new views on the notions of Special and General Relativity
as well as the relation of theory to measurement. The result is a new Gauge
Principle of Equivalence to serve as the cornerstone for the GC formulation
of GR. It is instructive to compare the GR formulation of gauge equivalence
given herein with the apparently quite different formulation in GTG [11] to
see how subtle is the difference between passive and active interpretations of
equivalent transformations.

Finally, to facilitate detailed comparison of flat space and curved space
formulations of differential geometry and GR with GC, the correspondence
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between basic quantities is summarized in an Appendix. The details are suffi-
cient to prove equivalence of these alternative formulations, though no formal
proof is given.

2. Spacetime Models

Every real entity has a definite location in space and time — this is the funda-
mental criterion for existence assumed by every scientific theory. In Einstein’s
Theory of Relativity, the spacetime of real physical entities is a 4-dimensional
continuum modeled mathematically by a 4D differentiable manifold M4. As
described in [10], in the Theory of Special Relativity M4 is identified with a
4D Minkowski vector space V4. This makes it a flat space model of spacetime.
In this model, spacetime points and vector fields are elements of the same
vector space. The Theory of General Relativity (GR) employs a curved space
model of spacetime, which places points and vector fields in different spaces.
Our primary task is to describe how to do that with GC.

In the standard definition of a differentiable manifold coordinates play
an essential role. Although GC enables a coordinate-free formulation, we
begin with a coordinate-based definition of the spacetime manifold, because
that provides the most direct connection to standard practice. Moreover,
coordinates are often useful for representing symmetries in vector fields.

To be specific, let x be a generic point in the spacetime manifold M4 =
{x}, and suppose that a patch of the manifold is parametrized by a set of
coordinates {xμ;μ = 0, 1, 2, 3}, as expressed by

x = x(x0, x1, x2, x3) . (1)

The coordinate frame of tangent vectors gμ = gμ(x) to the coordinate curves
parametrized by the {xμ} are then given by

gμ = ∂μx =
∂x

∂xμ
. (2)

At each point x the vectors gμ(x) provide a basis for a vector space
V4(x) called the tangent space to M4 at x. The vectors in V4(x) do not lie in
M4. To visualize that, think of a 2D surface such as sphere M2 embedded
in the 3D vector space V3. The tangent space V2(x) at each point x on the
surface is the 2D plane of vectors tangent to the surface at x [17].

At this point we part company with standard treatments of GR by
presuming that the tangent vectors at each point x generate a Minkowski
geometric algebra G4(x) = G(V4(x)) called the tangent algebra at x. Conse-
quently, the inner product of coordinate tangent vectors gμ = gμ(x) generates
the components gμν = gμν(x) of the usual metric tensor in GR, that is,

gμ · gν = 1
2 (gμgν + gνgμ) = gμν . (3)

Thus, all the rich structure of the spacetime algebra developed in [10] is
inherited by the tangent algebras on the spacetime manifold M4. This defines
a generalized spacetime algebra (STA) of multivector and spinor fields on the
whole manifold.
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Such fields are inherently geometrical, so they provide raw material for
representing real physical entities as geometric objects. It remains to be seen
if this material is sufficient for the purposes of physics. As demonstrated in
the following sections, the STA of the spacetime manifold carries us a long
way towards the ideal of inherently geometrical physics.

One great advantage of STA is that it enables coordinate-free formula-
tion of multivector fields and field equations. To relate that to the coordinate-
based formulation of standard tensor calculus, we return to our discussion of
coordinates. The inverse mapping of (1) is a set of scalar-valued functions

xμ = xμ(x) (4)

defined on the manifold M4. The gradient of these functions are vector fields

gμ = gμ(x) = �xμ , (5)

where � = ∂x is the derivative with respect to the spacetime point x. It
follows that

gμ · gν = δν
μ or gμ = gμνgν , (6)

where the standard summation convention on repeated indices is used. Ac-
cordingly, we say that the coordinate coframe {gν} is “algebraically recipro-
cal” to the coordinate frame {gμ}.

This algebraic reciprocity facilitates decomposition of a vector field a =
a(x) into its covariant components aμ = a · gμ or its contravariant components
aμ = a · gμ; thus,

a = aμgμ = aμgμ , (7)
Likewise, a bivector F = F (x) has the expansion

F = 1
2Fμνgμ ∧ gν , (8)

with its “scalar components” Fμν given by

Fμν = gμ · F · gν = gν · (gμ · F ) = (gν ∧ gμ) · F . (9)

Similarly, the gradient operator can be defined in terms of partial deriva-
tives by

� = gμ∂μ, (10)
or vice-versa by

∂μ =
∂

∂xμ
= gμ · � . (11)

The action of these operators on scalars is well defined, but differentiation of
vectors on a curved manifold requires additional considerations, to which we
now turn.

3. Coderivative and Curvature

On flat spacetime the vector derivative � = ∂x is the only differential oper-
ator we need. For curved spacetime, we introduce the vector coderivative D
as an intrinsic version of �. Operating on a scalar field φ = φ(x), the two
operators are equivalent:

Dφ = �φ . (12)
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Like the directional derivative ∂μ = gμ · �, the directional coderivative Dμ =
gμ · D is a “scalar differential operator” that maps vectors into vectors.
Accordingly, we can write

Dμgν = Lα
μνgα , (13)

which merely expresses the derivative as a linear combination of basis vectors.
This defines the so-called coefficients of connexion Lα

μν for the frame {gν}.
By differentiating (6), we find the complementary equation

Dμgα = −Lα
μνgν , (14)

When the coefficients of connexion are known functions, the coderivative of
any multivector field is determined.

Thus, for any vector field a = aνgν we have

Dμa = (Dμaν)gν + aν(Dμgν).

Then, since the aν are scalars, we get

Dμa = (∂μaα + aνLα
μν)gα . (15)

Note that the coefficient in parenthesis on the right is the standard expression
for a “covariant derivative” in tensor calculus.

The derivative of any sum or product of multivector fields is easily
computed by noting that Dμ is a scalar derivation, so it satisfies the usual
Leibnitz and distributive rules of a derivative. In fact, those rules were used
in computing the derivative in (15).

At last we are prepared to define the vector coderivative by

D = gμDμ . (16)

The “directional coderivative” with respect to any vector field a = a(x) can
now be defined by

a · D = aμDμ . (17)
Both differential operators D and a · D are coordinate free. Though they
have been defined with respect to coordinates, they can often be evaluated
without reference to coordinates.

Since D is a vectorial differential operator, we can use the coordinate
free algebraic operations of STA to manipulate it in precisely the same way
we did with � in [10]. Thus, the coderivative of any k-vector field F = F (x)
can be decomposed into a codivergence D · F and a cocurl D∧F , as expressed
by

DF = D · F + D ∧ F . (18)
If F is an electromagnetic bivector field, we have the obvious generalization
of Maxwell’s equation to curved spacetime:

DF = J . (19)

As done for the vector derivative in [10], this can be decomposed into the
vector and trivector equations

D · F = J , (20)
D ∧ F = 0 . (21)
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From the last equation it is tempting to conclude that F = D ∧ A, where A
is a vector potential, but that depends on a property of D that remains to
be proved.

To ascertain the geometric properties of the cocurl, we use (13) to obtain

D ∧ gμ = gα ∧ gβLμ
αβ . (22)

The quantity on the right side of this equation is called torsion. In the Rie-
mannian geometry of GR torsion vanishes, so we leave the interesting consid-
eration of nonzero torsion to another day. Considering the antisymmetry of
the outer product on the right side of (22), we see that the torsion vanishes
if and only if

Lμ
αβ = Lμ

βα . (23)
This can be related to the metric tensor by considering

Dμgαβ = ∂μgαβ = (Dμgα) · gβ + gα · (Dμgβ) ,

whence
∂μgαβ = gανLν

μβ + gβνLν
μα . (24)

Combining three copies of this equation with permuted free indices, we solve
for

Lμ
αβ = 1

2gμν(∂αgβν + ∂βgαν − ∂νgαβ) . (25)
This is the classical Christoffel formula for a Riemannian connexion.

To understand the geometric meaning of vanishing torsion, it is helpful
to define a torsion tensor

T (a, b) ≡ a · Db − b · Da − [a, b] , (26)

where [ a, b ] is the Lie bracket of vector fields a and b defined by

[ a, b ] ≡ a · �b − b · �a . (27)

For a coordinate frame the torsion tensor reduces to

T (gμ, gν) = gμ · Dgν − gν · Dgμ , (28)

because [ gμ, gν ] = (∂μ∂ν − ∂ν∂μ)x = 0. From (28) we see that vanishing
of the torsion tensor is equivalent to the symmetry condition (23) on the
coefficients of connexion. Thus, from (26) we can conclude that vanishing
torsion implies that

[ a, b ] = a · Db − b · Da (29)
This relation between Lie bracket and coderivative plays an important role
in the study of integrability on manifolds.

To look at the significance of vanishing torsion from another angle, note
that since gμ is the gradient of a scalar coordinate function, the equation

D ∧ gμ = 0 (30)

is equivalent to the following general property of the coderivative:

D ∧ Dφ = D ∧ �φ = 0 , (31)

where φ = φ(x) is any scalar field. This is actually an integrability condition
for scalar fields, as seen by considering

D ∧ Dφ = D ∧ gμ∂μφ = gμ ∧ �∂μφ = gν ∧ gμ∂ν∂μφ = 0 , (32)
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whence
∂ν∂μφ = ∂μ∂νφ . (33)

This commutativity of partial derivatives is the classical condition for inte-
grability.

To investigate the integrability of vector fields, we differentiate (14) to
get

[Dμ,Dν ]gα = Rα
μνβgβ , (34)

where the operator commutator has the usual definition

[Dμ,Dν ] ≡ DμDν − DνDμ , (35)

and
Rα

μνβ = ∂μLα
νβ − ∂νLα

μβ + Lα
νσLσ

μβ − Lα
μσLσ

νβ , (36)
is the usual tensor expression for the Riemannian curvature of the manifold.
Vanishing of the curvature tensor is a necessary and sufficient condition for
the manifold to be flat, in which case the coderivative reduces to the vector
derivative of [10].

Using (30) we can recast the curvature Eq. (34) in terms of the coderiva-
tive:

D ∧ Dgα = 1
2Rα

μνβ(gμ ∧ gν)gβ . (37)
This can be analyzed further in the following way:

D2gα = (D · D + D ∧ D)gα = D(D · gα + D ∧ gα) . (38)

Hence, using (30), we obtain

(D ∧ D)gα = D(D · gα) − (D · D)gα . (39)

The right hand side of this equation has only a vector part; hence the trivector
part of (37) vanishes to give us

D ∧ D ∧ gα = 1
2Rα

μνβ(gμ ∧ gν ∧ gβ) = 0 . (40)

This is equivalent to the well known symmetry property of the curvature
tensor:

Rα
μνβ + Rα

βμν + Rα
νβμ = 0 . (41)

However, its deep significance is that it implies

D ∧ D ∧ A = 0 . (42)

for any k-vector field A = A(x). This answers the question raised above
about the existence of a vector potential for the electromagnetic field. It is a
consequence of the condition (30) for vanishing torsion.

Equation (37) reduces to

D ∧ Dgα = (D ∧ D) · gα = Rα
βgβ , (43)

where
Rα

β = Rα
βμνgμν (44)

is the standard Ricci tensor. Comparing (43) with (39), we get the following
provocative form for the Ricci tensor:

R(gα) ≡ Rα
βgβ = D(D · gα) − (D · D)gα . (45)

We return to this later.
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4. Gauge Principle of Equivalence

General Relativity is a theory of spacetime measurement. Any measurement
of distance or direction in spacetime is a comparison of events with a stan-
dard, and for that purpose over an extended region a reference system is
set up. In Special Relativity theory that purpose is met by inertial reference
frames and encoded in the Principle of Relativity, which holds that the laws
of physics (or measurements, if you will) are equivalent with respect to all
inertial frames. A more precise formulation of this principle is that the equa-
tions of physics are Lorentz invariant, that is, invariant (or covariant) under
Lorentz rotations.

In creating GR, Einstein struggled to find a suitable generalization of
the Relativity Principle, and he formulated his conclusions in his Principle
of Equivalence. However, the theoretical significance and physical meaning
of the Equivalence Principle has remained intensely controversial to this day
[14]. We are speaking here about the socalled “Strong Principle of Equiva-
lence.” The “Weak Principle of Equivalence,” expressed by the equivalence
of gravitational and inertial mass, is not problematic. The Strong Principle
is vaguely described as equivalence of gravitational forces to accelerating sys-
tems. However, the tools of GC enable us to make a more general and precise
formulation of the Principle that preserves the spirit if not the content of
Einstein’s thinking.

Confusion about the Equivalence Principle can be traced to failure to
make crucial distinctions between reference frames and coordinate systems.
At a single spacetime point a reference frame can be unambiguously defined
as an orthonormal frame of vectors {γμ}, which serve as a local standard
for measurements of length and direction. This can be extended to a differ-
entiable field of orthonormal vectors {γμ = γμ(x)}, which I call a “fiducial
frame” or fiducial frame field to emphasize its role as a standard for mea-
surement [9,12]. It can be regarded as a generalization of “inertial frame” to
curved spacetime, and visualized as a field of idealized rigid bodies at each
point.

In contrast to the concept of a reference system as a fiducial frame field,
a coordinate system is merely a means for labelling events, so it does not
involve any spacetime geometry without additional assumptions. In Special
Relativity, the terms “inertial coordinates” and “inertial frames” are often
used interchangeably. Indeed, the standard choice of rectangular coordinates
satisfies both coordinate and frame criteria for a reference system. However,
this possibility is unique to flat spacetime. As can be proved with the math-
ematical apparatus developed below, on curved spacetime a fiducial frame
cannot be identified with a coordinate frame, because it is a nonintegrable
(or nonholonomic) system of vector fields. Vanishing of the curvature tensor
is a necessary and sufficient condition for integrability of fiducial frames. In-
deed, we shall see how to calculate the curvature tensor from inertial frames.

With identification of fiducial frames as the appropriate generalization
of inertial frames, the generalization of the Special Relativity Principle is now
fairly obvious. We simply require equivalence of physics with respect to all
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fiducial frames. To mathematize this idea, we note that any given fiducial
frame {γμ} is related to any other fiducial frame {γ′

μ} by a differentiable
Lorentz rotation R, which we know from [10] has the canonical form

γ′
μ = R(γμ) = RγμR̃ , (46)

where the underbar indicates that R is a linear operator, and R = R(x) is a
differentiable rotor field with the normalization

RR̃ = 1 . (47)

We can now formulate the
Gauge Principle of Equivalence (GPE): The equations of physics are

invariant under Lorentz rotations relating fiducial frames.
In other words, with respect to fiducial frames all physical measurements are
equivalent.

To justify its name we need to establish that the GPE is indeed a “gauge
principle” and that it is a suitable generalization of Einstein’s Principle of
Equivalence. First, in contrast to the Special Relativity Principle that it gen-
eralizes, the GPE is indeed a gauge principle because in requires invariance
under a position dependent symmetry group, the group of local Lorentz rota-
tions (46). We show below that this is just what is needed to determine the
form of gravitational interactions. Second, we note that the Lorentz rotation
in (46) can be chosen to be a position dependent boost to a frame that is
“accelerating” with respect to the inertial frame, just as Einstein had con-
templated in his version of the Equivalence Principle. Later we show how to
generalize the local cancellation of apparent gravitational effects noted in his
analysis.

We are now in position to conclude that Einstein’s analysis was deficient
in two respects: first, in overlooking the crucial distinction between reference
frames and coordinate systems; second, in analysis that was too limited to as-
certain the full gauge group. Still, we see here one more example of Einstein’s
astounding physical intuition in recognizing seeds of an important physical
principle before it is given an adequate mathematical formulation.

The above analysis of reference frames and the Equivalence Principle
suffices to motivate a reformulation of General Relativity with fiducial frames
and the GPE at the foundation. First, some definitions and conventions are
needed to streamline the formulation of basic formulas and theorems. The
orthonormality of a fiducial frame {γμ = γμ(x)} is conveniently expressed by

γμ · γν = ημδμν , (48)

where ημ = γ2
μ is the signature indicator. The reciprocal frame γμ is then

simply given by
γμ = ημγμ . (49)

Of course, we assume that the fiducial frame is right-handed, so

i = γ0γ1γ2γ3 (50)

where i = i(x) is the righthanded unit pseudoscalar for the tangent space at
x.
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Any specified fiducial frame {γμ} is related to a specified coordinate
frame {gμ} by a differentiable linear transformation h called the fiducial ten-
sor:

gμ = h(γμ) = hν
μγν . (51)

The matrix elements of the linear operator h are

hν
μ = γν · h(γμ) = γν · gμ = h̄(γν) · γμ = gν · γμ , (52)

which shows that the adjoint of h, denoted by h̄, is

gν = h̄(γν) = hν
μγμ . (53)

The fiducial tensor is related to the metric tensor by

gμν = gμ · gν = h(γμ) · h(γν) = hα
μηαhα

ν . (54)

Alternatively, we can write

gμν = γμ · h̄h(γν) = γμ · g(γν) , (55)

expressing the metric tensor as a symmetric linear transformation g = h̄h =
hh̄ on the fiducial frame. This shows that the metric tensor can be replaced
by the fiducial tensor as a fundamental geometric object on spacetime. In
the present formulation of GR, the role of the fiducial tensor is to tie fiducial
frames to the spacetime manifold by relating them to coordinate frames.

We are now ready to investigate implications of the GPE. To achieve
the gauge invariant equations required by the GPE, we need to define a
gauge invariant derivative or, as we shall say, a coderivative. It turns out
to be the same as the “coderivative” D defined in the last Section, but its
physical significance is clarified, and its mathematical form is significantly
improved. As before, it will be convenient to define the directional coderivative
Dμ = gμ · D first.

Since the fiducial frame {γν} can only rotate under displacement, we
know from [10] that its directional derivatives necessarily have the form

Dμγν = ωμ · γν , (56)

where ωμ = ω(gμ) is a bivector-valued “rotational velocity” for displacements
in the gμ direction. Let us call it the fiducial connexion for the frame {γν}.
Sect. 7 will make it clear that ωμ is equivalent to the “spin connexion” in
conventional GR. Thus, the same connexion is used here for both vector and
spinor fields – a noteworthy simplification over conventional theory.

Generalizing (56), we define action of the operator Dμ on an arbitrary
multivector field M = M(x) by

DμM = ∂μM + ωμ × M , (57)

where the commutator product of A and B is defined by

A × B = 1
2 (AB − BA) , (58)

and it is assumed that
∂μγν = 0 , (59)

so the the partial derivative ∂μ = gμ · � operates only on scalar components
of M relative to the fiducial basis.



Vol. 30 (2020) Spacetime Geometry with Geometric Calculus Page 11 of 25 48

To manifest the relation of definition (57) to our previous definition, we
apply it to coordinate frame vectors gν = hα

ν γα and compare with (13) to get

Dμgν = Lα
μνgα = (∂μhα

ν )γα + hα
ν ωμ · γα . (60)

This equation establishes equivalence of the connexion for a coordinate frame
to the connexion for a fiducial frame, but we have no more need for the
coordinate connexion except to relate to literature that uses it.

Now the GPE requires invariance of Dμ under “change of gauge” to a
different fiducial frame, as specified by Eq. (46). To ascertain necessary and
sufficient conditions for gauge invariance, we differentiate (46) to get

Dμγ′
ν = (∂μR)γνR̃ + Rγν∂μR̃ + Rωμ × γνR̃

= [(∂μR)R̃ + 1
2RωμR̃] × (RγνR̃)2́, (61)

where we have used (∂μR)R̃ = −R∂μR̃, which follows from differentiating
RR̃ = 1. It follows that

Dμγ′
ν = ω′

μ × γ′
ν (62)

provided that
ω′

μ = RωμR̃ + 2(∂μR)R̃ . (63)
In other words, the directional coderivative Dμ is invariant under a change
of fiducial frame, as specified by the local Lorentz rotation (46), provided the
change of fiducial connection is given by Eq. (63).

This completes our definition of the coderivative to satisfy the GPE.
The definition refers to a coordinate frame only to exploit the well understood
properties of partial derivatives. That inessential reference is eliminated in
the following definition of the directional coderivative a · D with respect to
an arbitrary vector field a = a(x) = aμgμ:

a · DM = a · �M + ω(a) × M , (64)

where ω(a) = aμωμ is the connexion for any chosen fiducial frame {γμ}, and
a · � is the directional derivative of any scalar coefficients with respect to
that frame.

We are now mathematically equipped for a deeper analysis of Einstein’s
Strong Principle of Equivalence (SPE). Without attempting to parse its many
alternative formulations, we adopt the following formulation of the SPE: At
any spacetime point x there exists an inertial (i.e. fiducial) reference frame in
which the gravitational force vanishes. The nub of Einstein’s idea is that the
gravitational force can be cancelled by a suitable acceleration of the reference
frame. Mathematically, this means that there exists a fiducial frame for which
the connexion vanishes. In other words, the rotor field in the Eq. (46) for
change of frame can be chosen to make ω′

μ = 0 in (63), so that

ωμ = −2R̃∂μR . (65)

Read this as asserting that the gravitational force on the left is cancelled
by acceleration of the reference frame on the right. A simple counting of
degrees of freedom is sufficient to show that this condition can be satisfied
at a single point. However, if it is satisfied in a finite neighborhood of that
point, then, as established in the next Section, the curvature tensor vanishes
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and the manifold must be flat. Even so, the condition (65) can be imposed
along any curve in spacetime. Indeed, in Sect. 6 we impose it along timelike
curves to get an equation of motion for a test body. Therefore, a more precise
forumlation of the SPE is the following: Along any spacetime curve there
exists an inertial (i.e. fiducial) frame field in which the gravitational force
vanishes at each point of the curve.

In the present formulation of GR based on the GPE, the SPE is a the-
orem rather than a defining principle of the theory [14]. Evidently the SPE
played a heuristic role in Einstein’s thinking that helped him identify the
gravitational force with a Riemannian connexion, but it is time to replace
it with the deeper GPE. The necessity for this conclusion comes from rec-
ognizing that, to have physical content, any proposed relativity group must
be a symmetry group of the theory. Thus the GPE expresses equivalence
of observers (represented by fiducial frames) under local Lorentz rotations,
and the gauge invariant coderivative is the theoretical consequence of this
symmetry. Some such symmetry of observers seems to have been at the back
of Einstein’s mind, but the SPE is insufficient to designate a full symmetry
group.

Now let us turn to more practical matters about how to perform calcu-
lations in GR. We have introduced the full gauge invariant coderivative by
defining it in terms of directional derivatives with D = gμDμ. However, that
was merely for convenience, and it is worth noting that the operator D can
be regarded as more fundamental than Dμ, as illustrated by the following
important theorem:

ω(γμ) = 1
2 (γα ∧ D ∧ γα) · γμ − D ∧ γμ . (66)

This formula shows explicitly how to calculate a fiducial connexion from the
cocurl of the frame vectors. We shall see later that this is a practical method
for calculating the curvature tensor.

We can prove theorem (66) by solving the frame coderivative Eqs. (56)
for the connexion. First, we contract those equations to get

D ∧ γν = gμ ∧ [ω(gμ) · γν ] = γμ ∧ [ω(γμ) · γν ] ,

and we note that

[γμ ∧ ω(γμ)] · γν = γμ ∧ [ω(γμ) · γν ] + ω(γν) .

Hence
ω(γν) = −D ∧ γν + [γμ ∧ ω(γμ)] · γν . (67)

To express the last term on the right hand side of this equation in terms of
the cocurl, we return to (56) and observe that

(ωμ · γν)γν = (ωμ · γν) ∧ γν = 2ωμ = (Dμγν)γν ,

whence
2gμ ∧ ωμ = 2γμ ∧ ω(γμ) = (D ∧ γμ) ∧ γμ .

Inserting this into (67), we get the formula (66) as desired.
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Finally, it may be noted that the integrability condition (30) for gμ

enables us to calculate the fiducial cocurl from the fiducial tensor. Writing
γμ = h̄−1(gμ) = kμ

ν gν , we find

D ∧ γμ = ημ(�kμ
ν ) ∧ gν . (68)

5. Gravitational Curvature and Field Equations

We have seen in (34) that the curvature tensor derives from the commutator
of coderivatives. From the fiducial definition of the coderivative (57), we easily
derive a more transparent and useful result: For any multivector field M =
M(x) we have

[Dμ,Dν ]M = ωμν × M , (69)
where

ωμν ≡ ∂μων − ∂νωμ + ωμ × ων = R(gμ ∧ gν) (70)
is the curvature tensor evaluated on the bivector gμ ∧ gν . It must be remem-
bered that the partial derivatives here are given by

∂μων = 1
2 (∂μωαβ

ν )γα ∧ γβ , (71)

where the scalar coefficients are ωαβ
ν = γα · ων · γβ = ων · (γβ ∧ γα).

At this point it is worth noting that if the fiducial connection is derivable
from a rotor field, as specified by the equation ωμ = −2R̃∂μR from (65), then
the curvature tensor (70) vanishes, as is easily proved by direct substitution.
Thus, this is a sufficient condition for vanishing curvature. It is probably also
a necessary condition for vanishing curvature, but I have not proved that.

The rest of this Section is devoted to summarizing and analyzing prop-
erties of the curvature tensor using the coordinate-free techniques of GC to
demonstrate its advantages. For vector fields a = aμgμ and b = bνgν the
fundamental Eq. (69) can be put in the form

[a · D, b · D]M = R(a ∧ b) × M , (72)

provided [ a, b ] = 0. Vanishing of the Lie bracket is assumed here merely to
avoid inessential complications.

Equation (72) shows that curvature is a linear bivector-valued function
of a bivector variable that is defined in the tangent algebra at each spacetime
point. Thus, for an arbitrary bivector field B = B(x) we can write

R(B) ≡ 1
2B · (∂b ∧ ∂a)R(a ∧ b) = 1

2BνμR(gμ ∧ gν) , (73)

where ∂a is the usual vector derivative operating on the tangent space instead
of the manifold, and Bμν = B · (gμ ∧ gν). Note that this use of the vector
derivative supplants decomposition into basis vectors and summation over
indices, a technique that has been developed into a general method for basis-
free formulation and manipulation of tensor algebra [12]. To that end, it is
helpful to introduce the terminology traction, contraction and protraction,
respectively, for the tensorial operations

∂a R(a ∧ b) = gμR(gμ ∧ b) = γμR(γμ ∧ b) ,

∂a · R(a ∧ b) = gμ · R(gμ ∧ b) = γμ · R(γμ ∧ b) ,
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∂a ∧ R(a ∧ b) = gμ ∧ R(gμ ∧ b) = γμ ∧ R(γμ ∧ b) . (74)

that are employed below. These relations are easily proved by decomposing
the vector derivative with respect to any basis and using the linearity of
R(a ∧ b) as in (73). Of course, the replacement of vector derivatives by basis
vectors and sums over indices in (74) is necessary to relate the following
coordinate-free relations to the component forms of standard tensor analysis.

To reformulate (72) as a condition on the vector coderivative D, note
that for a vector field c = c(x) the commutator product is equivalent to the
inner product and (72) becomes

[a · D, b · D]c = R(a ∧ b) · c . (75)

To reformulate this as a condition on the vector coderivative, we simply
eliminate the variables a and b by traction. Protraction of (75) gives

∂b ∧ [ a · D, b · D ]c = ∂b ∧ [R(a ∧ b) · c ] = R(c ∧ a) + c · [ ∂b ∧ R(a ∧ b) ] .

Another protraction together with

D ∧ D = 1
2 (∂b ∧ ∂a)[ a · D, b · D ] (76)

gives
D ∧ D ∧ c = [ ∂b ∧ ∂a ∧ R(a ∧ b) ] · c + ∂a ∧ R(a ∧ c) . (77)

According to (42) the left side of this equation vanishes as a consequence of
vanishing torsion, and, because the terms on the right have different func-
tional dependence on the free variable c, they must vanish separately. There-
fore

∂a ∧ R(a ∧ b) = 0 . (78)
This constraint on the Riemann curvature tensor is called the Ricci identity.

The requirement (78) that the curvature tensor is protractionless has an
especially important consequence. The identity

∂b ∧ [B · (∂a ∧ R(a ∧ b))] = ∂b ∧ ∂aB · R(a ∧ b) − B · (∂b ∧ ∂a)R(a ∧ b) (79)

vanishes on the left side because of (78), and the right side then implies that

A · R(B) = R(A) · B . (80)

Thus, the curvature is a symmetric bivector function. This symmetry can be
used to recast (78) in the equivalent form

R
(
(a ∧ b ∧ c) · ∂e

) · e = 0 . (81)

On expanding the inner product in its argument, it becomes

R(a ∧ b) · c + R(c ∧ a) · b + R(b ∧ c) · a = 0 , (82)

which is closer to the usual tensorial form for the Ricci identity.
As noted in (44), contraction of the curvature tensor defines the Ricci

tensor
R(a) ≡ ∂b · R(b ∧ a) . (83)

The Ricci identity (78) implies that we can write

∂b · R(b ∧ a) = ∂bR(b ∧ a) , (84)
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and also that the Ricci tensor is protractionless:

∂a ∧ R(a) = 0 . (85)

This implies the symmetry

a · R(b) = R(a) · b . (86)

An alternative expression for the Ricci tensor is obtained by operating
on (75) with (76) and establishing the identity

1
2 (∂a ∧ ∂b) · [R(a ∧ b) · c ] = R(c) . (87)

The result is, in agreement with (43),

D ∧ D a = (D ∧ D) · a = R(a) . (88)

This could be adopted as a definition of the Ricci tensor directly in terms of
the coderivative without reference to the curvature tensor. That might lead
to a more efficient formulation of the gravitational field equations introduced
below.

Equation (88) shows the fundamental role of the operator D ∧ D, but
operating with it on a vector gives only the Ricci tensor. To get the full
curvature tensor from D ∧ D, one must operate on a bivector. To that end,
we take M = a ∧ b in (72) and put it in the form

D ∧ D(a ∧ b) = D ∧ D × (a ∧ b) = 1
2 (∂d ∧ ∂c) × [R(c ∧ d) × (a ∧ b) ] .

Although the commutator product has the useful “distributive property”
A × [B × C] = [A × B] × C + B × [A × C], a fair amount of algebra is needed
to reduce the right side of this equation. The result is

D ∧ D(a ∧ b) = R(a) ∧ b + a ∧ R(b) − 2R(a ∧ b) , (89)

or equivalently

2R(a ∧ b) = (D ∧ Da) ∧ b + a ∧ (D ∧ Db) − D ∧ D(a ∧ b) . (90)

This differential identity is the desired expression for the curvature tensor in
terms of D ∧ D.

Contraction of the Ricci tensor defines the scalar curvature

R ≡ ∂aR(a) = ∂a · R(a) . (91)

Since R(a ∧ b), R(a), and R can be distinguished by their arguments, there
is no danger of confusion from using the same symbol R for each.

Besides the Ricci identity, there is one further general constraint on
the curvature tensor that can be derived as follows. The commutators of
directional coderivatives satisfy the Jacobi identity

[a · D, [ b · D, c · D]]+[b · D, [c · D, a · D]]+[c · D, [a · D, b · D]] = 0 . (92)

By operating with this on an arbitrary nonscalar multivector M and using
(72), we can translate it into a condition on the curvature tensor that is
known as the Bianchi identity:

a · DR(b ∧ c) + b · DR(c ∧ a) + c · DR(a ∧ b) = 0 . (93)
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Like the Ricci identity (81), this can be expressed more compactly as

R̀[(a ∧ b ∧ c) · D̀] = 0 , (94)

where the accent serves to indicate that D differentiates the tensor R but not
its tensor arguments. “Dotting” by free bivector B, we obtain

R̀[ (a ∧ b ∧ c) · D̀] · B = (a ∧ b ∧ c) · (D ∧ R(B)) .

Therefore the Bianchi identity can be expressed in the compact form

D̀ ∧ R̀(a ∧ b) = 0 . (95)

This condition on the curvature tensor is the source of general conservation
laws in General Relativity.

Contraction of (95) with ∂a gives

R̀(D̀ ∧ b) − D ∧ R(b) = 0 . (96)

A second contraction yields the differential identity

G̀(D̀) = R̀(D̀) − 1
2DR = 0 , (97)

where
G(a) ≡ R(a) − 1

2aR (98)
is the Einstein tensor.

In General Relativity, for a given energy-momentum tensor T (a), the
spacetime geometry is determined by Einstein’s equation

G(a) = κT (a) , (99)

where κ is a constant. The contracted Bianchi identity (97) implies the gen-
eralized energy-momentum conservation law

T̀ (D̀) = 0 . (100)

As is well known, this is not a conservation law in the usual sense, because
it is not a perfect divergence and so is not convertible to a surface integral
by Gauss’s theorem.

To solve Einstein’s equation (99) for a given energy-momentum tensor,
Einstein’s tensor G(a) must be expressed in a form that makes (99) a differ-
ential equation that describes the dynamics of spacetime geometry. A direct
expression for G(a) in terms of a fiducial connexion and its derivatives is
very complicated and its structure is not very transparent. Let us consider
an alternative approach. Using (88), we can put Einstein’s equation (99) in
the form.

D ∧ Da = κ(T (a) + 1
2aTr T ) , (101)

where TrT = ∂aT (a).
As already noted in connection with Eq. (38), we can express this in

alternative forms with the identity

D2a = D ∧ Da + D · Da = D(D · a) + D(D ∧ a) . (102)

The last term vanishes if the vector field a is a gradient,

a = Dϕ = �ϕ , (103)
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in which case, (101) can be put in the form

D · Da − D(D · a) = −κ(T (a) + 1
2aTr T ) . (104)

This appears to be a simplification in the form of Einstein’s equation, and
it can be further simplified by adopting the “gauge condition” D · a = 0.
Indeed, in the linear approximation its left hand side reduces immediately
to the usual d’Alembertian wave operator. This formulation of Einstein’s
equation was first derived in ref. [7], but it has never been studied further to
see if its apparent simplicity leads to any practical advantages.

6. Curvature Calculations

Equations (68), (66), (71), and (70) provide us with an efficient method for
calculating curvature from the fiducial tensor in the following sequence of
steps

hμ
ν → D ∧ γμ → ωμ → ωμν . (105)

Conventional curvature calculations begin by specifying the metric tensor as
a function of coordinates by writing the “line element”

dx2 = dx · dx = gμνdxμdxν = hα
μηαhα

ν dxμdxν . (106)

Of course, we can take the same starting point for calculations with the fidu-
cial tensor. Details of the present method are illustrated by calculation of the
Schwarzschild solution in [9], which is demonstrably superior to the method
of Misner, Thorne and Wheeler [16] and other computational methods [20].

Gravitational Motion and Precession

The spinor equations of motion for classical particles and rigid bodies set
forth in [10] are now easily generalized to include gravitational interactions.
This gives us a general method for evaluating gravitational effects on the
motion and precession of a spacecraft or satellite, and thus a means for testing
gravitational theory.

We begin with the timelike worldline x = x(τ) of a material particle
with velocity v = v(τ) = dx/dτ ≡ ẋ, where, as usual, dτ = | dx | = | (dx)2 | 1

2 ,
so v2 = 1. We attach to this curve a (comoving orthonormal frame) or mobile
{eμ = eμ(x(τ)) = eμ(τ);μ = 0, 1, 2, 3}. The mobile is tied to the velocity
by requiring v = e0. Rotation of the mobile with respect to a given fiducial
frame {γμ} is described by

eμ = R γμR̃ , (107)

where R = R(x(τ)) is a unimodular rotor and {γμ} is any convenient fiducial
frame. As noted in [10], the spinor can be used to model the motion of a
small rigid body or a particle with intrinsic spin. In GR it is especially useful
for modeling gravitational effects on gyroscopic precession.

In accordance with (64), the coderivative of the mobile is

v · Deμ = ėμ + ω(v) · eμ , (108)
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where {μ = 0, 1, 2, 3}, ω(v) is the fiducial connection for the frame {γμ}, and
ėμ = v · �eμ. Note that (108) is equivalent to the spinor equation

v · DR =
( d

dτ
+ 1

2ω(v)
)
R , (109)

The coderivative (108) includes a gauge invariant description of gravitational
forces on the mobile. As explained in [10], effects of any nongravitational
forces can be incorporated by writing

v · Deμ = ėμ + ω(v) · eμ = Ω · eμ , (110)

where Ω = Ω(x) is a bivector field acting on the mobile; for example, Ω =
(e/m)F for an electron with mass m and charge e in a field F = F (x). The
four equations (110) include the equation of motion

dv

dτ
= (Ω − ω(v)) · v (111)

for the particle, and are equivalent to the single rotor equation
dR

dτ
= 1

2 (Ω − ω(v))R . (112)

For Ω = 0 the particle equation becomes the equation for a geodesic, and the
rotor equation describes parallel transfer of the mobile along the geodesic.
This equation has been applied to a detailed treatment of gravitational pre-
cession in [8]. It is noteworthy that this method works in Gauge Theory
Gravity [11] with no essential differences.

7. Dirac Equation with Gravitational Interaction

Recall from [10] that a real Dirac spinor field ψ = ψ(x) determines an or-
thonormal frame of vector fields eμ = eμ(x) defined by

ψγμψ̃ = ρeμ , (113)

where scalar ρ = ρ(x) is interpreted as electron probability density, and
ψγ0ψ̃ = ρe0 is the Dirac current. We can adopt this relation without change
by interpreting {γμ} as a fiducial frame and writing

eμ = RγμR̃ , (114)

where R = R(x) is a rotor field. This equation has exactly the same form as
the Eq. (46) for a change of fiducial frame. Therefore, the Dirac wave function
determines a unique, physically significant fiducial frame {eμ} on spacetime.
Accordingly, its gauge invariant directional coderivative is given by

Dνeμ = ∂νeμ + ων · eμ, (115)

where ων is the fiducial connexion for the frame {γμ}. This is consistent with
defining the coderivative of the Dirac spinor by

Dνψ = (∂ν + 1
2ων)ψ , (116)

which exhibits ων as equivalent to the “spin connexion” in conventional for-
mulations of GR [25].
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The spinor coderivative (116) is form invariant under the spinor gauge
transformation

ψ → ψ′ = Λψ , (117)
where Λ = Λ(x) is a rotor field. This induces a transformation of (116) to

Dνψ′ = (∂ν + 1
2ω′

ν)ψ′ , (118)

where
ω′

ν = ΛωνΛ− 2(∂νΛ)Λ. (119)
We could have used this spinor gauge transformation to define the spinor
coderivative. But note that it is not (explicitly, at least) related to the gauge
equivalence of fiducial frames, so it raises new issues of physical interpretation.
It is an active transformation that changes the fields on spacetime, rather
than a passive transformation that changes the reference system but leaves
fields unchanged. We shall return to this issue in the sequel to this paper.

The generalization of the real Dirac equation in [10] to include gravi-
tational interaction is obtained simply by replacing the partial derivative ∂μ

by the coderivative Dμ. Thus, we obtain

gμDμψγ2γ1� = gμ(∂μ + 1
2ωμ)ψγ2γ1� = eAψ + mψγ0 . (120)

This is equivalent to the standard matrix form of the Dirac equation with
gravitational interaction, but it is obviously much simpler in formulation and
application. This is not the time and place for solving the real gravitational
Dirac equation (120). However, comparison of the spinor coderivative (116)
with the rotor coderivative (109) tells us immediately that gravitational ef-
fects on electron motion, including spin precession, are exactly the same as
on classical rigid body motion.

With the spinor coderivative in hand, the rest of Dirac theory in [10] is
easily adapted to gravitational interactions [1,15].

8. Vector Manifolds

The spacetime manifold M4 = {x} was introduced as a vector manifold in
Sect. 2, and a coordinate frame {gμ = gμ(x)} was generated from partial
derivatives of a parametrized point in the manifold, as expressed by

gμ = ∂μx . (121)

At each spacetime point x the coordinate frame provides a basis for the
tangent space V4(x) and generates the tangent algebra G4(x) = G(V4(x)).

The reader may have noticed that the role of M4 itself in subsequent
developments is hardly more than a shadow. All the geometry and physics—
the vector, multivector and spinor fields, the connexion and the curvature—
occur in the tangent algebra. It could be argued that even the spacetime
points {x} are superfluous, as coordinates are sufficient to index points of the
manifold. This argument is taken to the extreme in most recent mathematical
works on differential geometry, where the x is eliminated and (121) is replaced
by

gμ = ∂μ . (122)
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In other words, vectors in a coordinate frame are identified with coordinate
partial derivatives; consequently, all vectors {a = aμgμ} in the tangent space
are identified with the directional derivatives {aμ∂μ}.

The purported problem with (121) is that it is deficient in mathematical
rigor, because the partial derivative is defined as the limit of a difference
quotient

∂μx =
�x

�xμ
, (123)

and the difference vector �x requires subtraction of one point from another,
which is not well defined unless they are vectors in a vector space of higher di-
mension. In other words, it is argued that the Eq. (123) presumes embedding
of M4 in a vector space of higher dimension, whereas GR is concerned with
intrinsic properties of manifolds irrespective of any embedding in a higher
dimensional space. The definition (122) of tangent vectors as differential op-
erators finesses this issue with a “don’t ask, don’t tell” approach that doesn’t
specify what is to be differentiated. Nevertheless, it has been argued that
(121) has great heuristic value [18].

It has been almost universally overlooked in the mathematics and physics
literature that the identification (122) of tangent vectors with differential op-
erators precludes assigning them the algebraic properties of vectors in geomet-
ric algebra as done in this paper. Such conflation of vectors with differential
operators has enormous drawbacks. It is sufficient to note that if tangent vec-
tors are not allowed to generate a geometric algebra in the first place, then
the algebra must be artifically imposed on the manifold later on, because it
is absolutely essential for spinors and quantum mechanics. Indeed, standard
practice [19,25] is to attach the Dirac algebra to the spacetime manifold as an
afterthought, and the elaborate formalism of fibre bundles has been employed
for that [4]. To avoid all that unnecessary gymnastics, it is necessary to re-
turn mathematical respectability to Eq. (121)—that requires reconsidering
the concept of a differentiable manifold.

The standard definition of a differentiable manifold employs coordinates
to impose differentiable structures on a set [4]. Alternatively, the definition of
a vector manifold has been expressly designed to incorporate differentiability
directly into the structure of the set [6,12]. This entails regarding the vecto-
rial difference quotient (123) as a well-defined quantity with the well-defined
limit (121). Contrary to common belief, it does not require any assumptions
about embedding the spacetime manifold in a (flat) vector space of higher
dimension. Indeed, no mention of an embedding space appears in this paper.
However, if one insists that an embedding vector space must be assumed to
make vectorial operations like (123) meaningful, there is still no loss of gener-
ality in representing the spacetime manifold as a vector manifold, because it
has been proved that every Riemannian manifold can be embedded in a flat
manifold of sufficiently high dimension [5]. Indeed, the theory of vector man-
ifolds may be the ideal venue for investigating embedding theorems, because
it offers a powerful new method for differential geometry that efficiently coor-
dinates characterization and analysis of the intrinsic and extrinsic properties
of a manifold without presumptions about embedding [12]. As that method
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is based on the same concept of vector manifold employed here, it is an at-
tractive alternative to the method in this paper, and the two methods can be
regarded as complementary. Sobczyk has taken the first steps in the use of
GC for an embedding approach to spacetime manifolds [23]. The main inter-
est of physicists in studying extrinsic geometry of spacetime manifolds is the
possibility of relating it to fundamental interactions that have not yet been
given a satifactory geometric interpretation. There has been little research
in that direction [5], but for those who are interested, the theory of vector
manifolds with GC can be recommended as providing ideal mathematical
tools [12].

With the above brief background on vector manifolds, we are better
able to assess the significance of Eq. (121). We can read that equation as
extracting the algebraic structure of a Minkowski tangent space from the
manifold M4. However, in the intrinsic approach to manifold geometry taken
in this paper, the differentiable structure connecting neighboring tangent
spaces is not extracted from the manifold, it is imposed on the manifold by
defining a connexion and curvature. Consequently, differential computations
throughout the present paper involve only the STA at a single point, and
all the tangent algebras are isomorphic. This leads one to wonder if we can
simplify the theory and get by with a single copy of the STA. The answer is
yes, and the result is the flat space theory of spacetime geometry in [1,10,15].
Finally, one should note that all the geometry can be extracted from M4 itself
only if it is an embedded manifold.

9. Historical notes

The present approach to GR was initiated in 1966 by my book Space-Time
Algebra [7]. The crucial innovation there was to reduce the standard represen-
tation of spacetime geometry by the metric tensor gμν to representation by a
coordinate frame of vectors gμ that generate a real geometric algebra at each
spacetime point, as described in Sect. 2. I also introduced the local Lorentz
transformations of Eq. (46) and translated Utiyama’s gauge formulation of
GR [24] into the real STA. However, the gauge concept was not given the
central role it has here. My purpose then was just to incorporate the real
Dirac equation into GR. I could not have anticipated the rise of gauge theory
to the supreme status that it enjoys in theoretical physics today [13].

In 1966 I was blissfully unaware of similar work decades before. Perhaps
that was all to the good, as it might have been intimidating or discourag-
ing. At any rate it would have been an unnecessary distraction, because, as
I believed then and know now, all my predecessors had missed a key point,
namely, the geometric significance of the Dirac algebra. Thus, Schroedinger
[22] and others made the Dirac matrices spacetime dependent and related
their products to the metric tensor, as in Eq. (3), in order to incorporate
the Dirac equation into GR. To the same end, Fock and Iwanenko [2,3] and,
independently, Weyl[26] in his seminal paper on gauge theory, were evidently
the first to introduce the “spin connexion” (119) expressed in terms of Dirac
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matrices. To do that they were forced to introduce orthonormal frames called
vierbeins or tetrads, which are equivalent to fiducial frames represented by
matrix elements. However, they all failed to recognize the Dirac matrices as
representations of vectors, so they interpreted their constructions as essen-
tially quantum mechanical rather than fundamentally geometrical. At the
same time, their treatment of tetrads as mere auxiliary quantities, shows
that they failed to recognize the primary physical significance that we have
attributed to fiducial frames.

The main limitation of my 1966 book was the lack of mathematical
methods to solve field equations that take advantage of simplifications intro-
duced by GA. To remedy that deficiency I embarked on the development of a
Geometric Calculus that culminated in publication of a monograph [12] that,
among other things, first formulated the theory of vector manifolds.

The STA formulation of GR in the present paper was developed by
1976, but not published until 1986 [8,9], because I had originally intended to
include it in the GC monograph. The claim in those papers that my method is
more efficient than Cartan’s exterior calculus in geometric computations was
soon supported by direct comparison of computer calculations [20]. However,
the most important consequence of that work was stimulating creation of the
flat-space gauge theory of gravity by Lasenby, Doran and Gull [1,15]. That,
in turn, stimulated emphasis on gauge theory and the Equivalence Principle
in the present paper. Finally, the present approach has been coordinated with
the flat-space theory in a predecessor to this paper [11], with details discussed
in the Appendix.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Appendix. Comparison of flat and curved space formulations

This appendix is for readers who wish compare the gauge theory formulation
of GR for curved space given in this paper with the flat space formulation
given in [11].

The flat space and curved space theories differ primarily in their use
of coordinates. Corresponding quantities are listed in Table 1. I have delib-
erately used the same symbol h for the fiducial tensor in curved space and
for the gauge tensor in flat space to facilitate comparison. In surveying Ta-
ble 1 it will be noticed that the fiducial tensor corresponds to the inverse of
the gauge tensor. That trivial difference has been introduced for notational
reasons, but it emphasizes that the two tensors map most naturally in op-
posite directions. The really significant difference is that the fiducial tensor
is coordinate dependent whereas the gauge tensor is not. This comes about
because {γμ = h−1(∂μx)} is necessarily an orthonormal frame in the fidu-
cial case, whereas in the gauge case, {eμ = ∂μx} is an arbitrary coordinate
frame that is completely decoupled from the gauge tensor. In other words,
the remapping of events in spacetime is completely decoupled from changes
in coordinates in the gauge theory, whereas the curved space theory has no



Vol. 30 (2020) Spacetime Geometry with Geometric Calculus Page 23 of 25 48

Table 1. Coordinate frames for flat and curved spacetime

Flat spacetime Curved spacetime

x = x(x0, . . . , x3) x = x(x0, . . . , x3)
eμ = ∂μx gμ = ∂μx

gμ ≡ h−1(eμ) gμ = h(γμ)
xμ = xμ(x) xμ = xμ(x)
gμ = h̄(eμ) gμ = �(xμ)
eμ = �xμ gμ = h̄−1(γμ)
gμ · gν = δμ

ν gμ · gν = δμ · δν = δμ
ν

gμ · gν = eμ · (h̄−1h−1eν) = gμν gμ · gν = γμ · (h̄hγν)
∂μ = eμ · � = (hgμ) · � = gμ · �̄ ∂μ = gμ · �
� = eμ∂μ � = gμ∂μ

�̄ = h̄(�) = gμ∂μ � = gμ∂μ

Table 2. Comparison of coderivatives and connexions

Flat spacetime Curved spacetime

g′
μ = Rgμ = h′−1(eμ) γ′

μ = Rγμ = RγμR̃
ωμ = ω(gμ) ωμ = ω(gμ) = gμ · γνω(γν)

Dμγν ≡ ωμ · γν , ∂μγν ≡ 0
DμM = ∂μM + ωμ × M DμM = ∂μM + ωμ × M

ω′
μ = RωμR̃ − 2(∂μR)R̃ ω′

μ = RωμR̃ + 2(∂μR)R̃
D ∧ gμ = D ∧ �̄xμ = 0 D ∧ gμ = D ∧ �xμ = 0
H ≡ gμ ∧ ωμ = − 1

2gμ ∧ H(gμ) H ≡ gμ ∧ ωμ = 1
2γμ ∧ (D ∧ γμ)

ωμ = H(gμ) + gμ · H ω(γμ) = −D ∧ γμ + H · γμ

Dμgν = Lα
μνgα Dμgν = Lα

μνgα

means to separate passive coordinate changes from shifts in physical config-
urations. This crucial fact is the reason why in Gauge Theory Gravity the
Displacement Gauge Principle has clear physical consequences, whereas in
the curved space theory Einstein’s General Relativity Principle does not.

Mathematical features of the coderivative for flat and curved spacetime
are compared in Table 2. Note, in particular, that expressions for DμM have
the same form in each case. However, they behave differently under rota-
tion gauge transformations. Whereas the “curved version” simply changes its
functional form, the “flat version” transforms according to

L̄ : DμM → L̄(DμM) = D′
μM ′ = ∂μM ′ + ω′

μ × M ′ , (124)

induced by the active rotation gauge transformation

L̄ : M → M ′ = L̄M ≡ LML . (125)

In other words, rotation gauge transformations are represented as passive in
the curved version but active in the flat version. This difference translates
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to a difference in physical interpretation. In this paper we have interpreted
passive rotations as expressing equivalence of physics with respect to dif-
ferent inertial reference frames. In the flat theory, however, covariance un-
der active rotations expresses physical equivalence of different directions in
spacetime. Thus, “passive equivalence” is an equivalence of observers, while
“active equivalence” is an equivalence of states. This distinction generalizes
to the interpretation of any relativity (symmetry group) principle: Active
transformations relate equivalent physical states; passive transformations re-
late equivalent observers.

As Table 2 shows, the use of common tools of Geometric Calculus for
both curved and flat space versions of GR has enabled us to define a coderiva-
tive with the same form on both versions, despite differences in the way that
fields are attached to the base manifold. It follows that all computations with
coderivatives have the same mathematical form in both versions; this includes
the curvature tensor and all its properties as well as the whole panoply of
GR. Accordingly, all such results in this paper and in [11] are identical, so
further discussion is unnecessary. By the way, this fact can be regarded as
a proof of equivalence of Einstein’s curved space GR with flat space Gauge
Theory Gravity.
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