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1. Introduction

The quaternion algebra is a four dimensional associative algebra over R with
generators 1, e1, e2, e3 satisfying e2

1 = e2
2 = e2

3 = −1, e1e2 = −e2e1 = e3,
e2e3 = −e3e2 = e1 and e3e1 = −e1e3 = e2 (see [1,2,4,6,10,27] and the
references given there). In what follows, we always denote the quaternion
algebra by H. For any q ∈ H, it can be written as these linear combinations of
1, e1, e2 and e3, namely, q = x0+x1e1+x2e2+x3e3, where x0, x1, x2, x3 ∈ R.

Our purpose is to deal with the following respects:

1.1. Quaternion Upper Half Planes

(1.1.a) Suppose the involution of H is

H � q = x0 + x1e1 + x2e2 + x3e3 → q̂ = x0 − x1e1 + x2e2 + x3e3 ∈ H.

The quaternion upper half plane is given by
˜H+ := {q = x0 + x1e1 + x2e2 + x3e3 ∈ H : x1 > 0} . (1.1)
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The group of linear fractional transformations on ˜H+ is given by

S :=
{(

α β
γ δ

)

∈ M2(H) :
(

α̂ γ̂
̂β ̂δ

) (

0 1
−1 0

)(

α β
γ δ

)

=
(

0 1
−1 0

)}

.

The upper half plane ˜H+ as in (1.1) has been studied since 1980’s, revealing
connections with geometric, the theory of numbers, harmonic analysis and
PDE. The geometric properties of ˜H+ were studied by Kähler [15]. Gritsenko
[12,13] made a detailed investigation about the theory of numbers in ˜H+,
and in a more general context in [17]. For a deeper discussion of harmonic
analysis and PDE on ˜H+ is due to Lax and Phillips [18–21].

(1.1.b) In [27, p. 201], Sudbery introduced the vector space R⊕H, where
H denotes an oriented three-dimensional manifold. Suppose the involution of
H is

H � q = x0 + x1e1 + x2e2 + x3e3 → q� = x0 − x1e1 − x2e2 − x3e3 ∈ H.

Narita [23, p. 641] considered the following form upper half plane

H+ = R+ ⊕ H := {q = x0 + x1e1 + x2e2 + x3e3 ∈ H : x0 > 0} . (1.2)

The group of linear fractional transformations on H+ is defined by

Q :=
{(

α β
γ δ

)

∈ M2(H) :
(

α� γ�

β� δ�

) (

0 1
1 0

)(

α β
γ δ

)

=
(

0 1
1 0

)}

.

Comparing (1.1.a) with (1.1.b), we find that there’s a big difference
between the Lie groups S and Q. Notice that H is the boundary of H+,
where H+ is as in (1.2). Because H has a simple structure, thus it is easy
to establish some analysis theories. The choice of H+ seems to be the best
adapted to our theory. In this paper, we are trying to follow the classical
harmonic analysis of Stein and Weiss [26] into the oriented three-dimensional
manifold H.

1.2. Fourier Transforms

We shall consider the Fourier transforms on H. Let N be the nilpotent sub-
group of Q as in (1.1.b). Since N � H, the definitions of left and right Fourier
transforms are unambiguous. The Fourier transforms are described by Kir-
illov’s orbit method [16] and Vergne’s polarizing subalgebra [28]. Motivated
by [25], we also obtain the Plancherel theorem adapted to these Fourier trans-
forms. The Plancherel theorem will turn to be important for Riesz transform.

1.3. Fueter Conjugates Harmonic Functions and Cimmino Systems

The investigation was mainly aimed at constructing Fueter conjugates har-
monic functions. This construction was motivated by [24]. In order to obtain
these functions, we recall the notions of two systems as follows:

(1.3.a) A R-differentiable function F = F0+e1F1+e2F2+e3F3 is Fueter
left regular at the neighborhood U of q ∈ H if and only if Fj for j = 0, 1, 2, 3
are differentiable functions and

∂F

∂x0
+

3
∑

j=1

ej
∂F

∂xj
= 0. (1.3)
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This is so-called Cauchy–Riemann–Fueter equations (see [9] or [27, Proposi-
tion 3]).

(1.3.b) For x = (x1, x2, x3) ∈ R
3 and ν(x) ∈ H, we consider the func-

tion F as in (1.3)

F (x0 + ν(x)) = F0(x0, x) +
3

∑

j=1

ejFj(x0, x).

Function F is a left Fueter conjugate harmonic function, if (F0, F1, F2, F3)
satisfy the first order linear partial differential equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂F0
∂x0

− ∂F1
∂x1

− ∂F2
∂x2

− ∂F3
∂x3

= 0;
∂F0
∂x1

+ ∂F1
∂x0

− ∂F2
∂x3

+ ∂F3
∂x2

= 0;
∂F0
∂x2

+ ∂F1
∂x3

+ ∂F2
∂x0

− ∂F3
∂x1

= 0;
∂F0
∂x3

− ∂F1
∂x2

+ ∂F2
∂x1

+ ∂F3
∂x0

= 0.

This is so-called left Cilmmino systems (see, for example, [3,5,8]).
By (1.3.a) and (1.3.b), we introduce Poisson integral (see Sect. 3).

Through the boundary behaviour of Poisson integral (see Proposition 3.10
below), we obtain the characterization of Fueter conjugates harmonic func-
tions via Riesz transforms (see Theorem 3.11 below). Then Riesz transform
provides a necessary and sufficient condition for Fueter conjugate harmonic
functions, where these functions satisfy left (and right, resp.) Cimmino sys-
tems.

Main results and structure of this paper The paper starts with Sect.
2, which contains the needed preliminaries. In particular, for a nilpotent Lie
group N , we introduce left and right Fourier transforms. Section 3 contains
a detailed study of set of characterization of the Poisson integral. Then the
Fueter conjugate harmonic systems of functions are obtained via Riesz trans-
forms. We can now formulate our main results. For any x0 > 0 and any
ν(x) ∈ H, let x0 + ν(x) ∈ H+, left and right Fueter conjugate harmonic
functions FL(x0 +ν(x)) and FR(x0 +ν(x)), respectively, are given by, for any
f ∈ L2(R3),

FL(x0 + ν(x)) =
1

(2π)3/2

∫

R3

(

1 +
ν(ξ)
|ν(ξ)| i

)

e−x0|ξ|
̂f(ξ)eix·ξ dξ

and

FR(x0 + ν(x)) =
1

(2π)3/2

∫

R3
eix·ξe−x0|ξ|

̂f(ξ)
(

1 + i
ν(ξ)
|ν(ξ)|

)

dξ,

where

̂f(ξ) =
1

(2π)3/2

∫

R3
f(x)e−iξ·x dx.

2. Harmonic Analysis on H
Let q = x0 + x1e1 + x2e2 + x3e3 ∈ H, where x0, x1, x2 and x3 ∈ R. The
involution of q is defined by q� := x0−x1e1−x2e2−x3e3. The Euclidean norm
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on H can be expressed in terms of this involution by |q|2 = qq� = x2
0 + x2

1 +
x2

2+x2
3. As usual, for q = x0+x1e1+x2e2+x3e3 and p = y0+y1e1+y2e2+y3e3,

we denote the product of two elements of H by

qp = Re〈q, p〉 +
3

∑

j=1

(x0yj + y0xj)ej + q̃ × p̃,

where

Re〈q, p〉 := qp� = x0y0 + x1y1 + x2y2 + x3y3

and

q̃ × p̃ :=

∣

∣

∣

∣

∣

∣

e1 e2 e3

y1 y2 y3

x1 x2 x3

∣

∣

∣

∣

∣

∣

.

Define a Lie algebra g by
{

X ∈ M2(H) : X�Q + QX = 0, Q =
(

0 1
1 0

)}

,

where M2(H) is a quaternion 2×2-matrix and 0 denotes a zero 2×2-matrix.
Let τ be the Cantan involution of g defined by τ(X) = −tX� ∈ g, where
X ∈ g. Then the Cartan decomposition is given by g = k ⊕ p, where k =
{X ∈ g : τ(X) = X} and p = {X ∈ g : τ(X) = −X}. Let exp(g) = Sp(1, 1)
and Sp∗(1) = {p ∈ H : pp� = 1}. From [23, p. 641], it follows that the
symmetric space Sp(1, 1)/Sp∗(1) × Sp∗(1) can be realized as the quaternion
upper half plane:

H+ = {p ∈ H : Re(p) > 0}, where Re(p) =
p + p�

2
.

The group Sp(1, 1) acts transitively on H+ by g · p = a1p+b1
a2p+b2

, where g =
(

a1 b1

a2 b2

)

∈ Sp(1, 1); see, for example, [12,13]. In order to describe the Iwa-

sawa decomposition of g, we need the restricted root of g, which is of C1-type.
Let H := diag(1, −1). Then a := RH forms a maximal abelian subalgebra of
p. Let α be the element in a∗ such that α(H) = 1. The root system Δ(a, g)
of (g, a) is then given as {±2α} and the positive root spaces are

g2α = R

(

0 e1

0 0

)

⊕ R

(

0 e2

0 0

)

⊕ R

(

0 e3

0 0

)

.

Write n = g2α. We see at once that

n =
{(

0 p
0 0

)

: p = x1e1 + x2e2 + x3e3, x1, x2, x3 ∈ R

}

. (2.1)

By this, we obtain the Iwasawa decomposition g = n ⊕ a ⊕ k. Let

N = exp(n). (2.2)

The subgroup N can be realized as:

H := {p ∈ H : Re(p) = 0} = {p ∈ H : p� = −p}.
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Suppose {e1, e2, e3} now is an orientation of H, that is, H:=(H, {e1, e2, e3})
is an oriented vector space. Motivated by [11, p. 9], a normal oriented map ν
from R

3 to H can be defined as

ν : x 	→ ν(x). (2.3)

The following definition implies that the between vector spaces H and
R

3 are isomorphism (see [14] for more details).

Definition 2.1. The pair (H, |ν(·)|) is said to be an oriented 3-dimensional
manifold for (R3, | · |), where | · | denotes the usual Euclidean norm in R

3,
when

(i) H is generated as a vector space by {ν(x) : x ∈ R
3};

(ii) |ν(x)|2 = |x|2 for any x ∈ R
3.

Definition 2.2. Let (H, |ν(·)|) be as in Definition 2.1. Then, for any ν(x) ∈ H,
the volume element on H (the invariant measure of N) is defined by dν(x) =
dx1 ∧ dx2 ∧ dx3.

Remark 2.3. For the general case, we define the oriented map ν from R
3 to

H by

ν : (x1, x2, x3) 	→
3

∑

j=1

xj(x1, x2, x3)ej .

Define a positive chart of (H, |ν(·)|) by (φ, U), where U is an open subset
of H and φ is C∞ diffeomorphism maps from U to φ(U) ⊂ R

3. Let (φ, U)
be a positive chart with φ = (x1, x2, x3). Then, for any p =

∑3
j=1 xjej ∈ H,

the volume element on H is defined by dp
∣

∣

U
=

√
M dx1 ∧ dx2 ∧ dx3, where

M := det[mst]1≤s, t≤3 ∈ C∞(U) denotes the Gram determinant and mst is
an Euclidean inner product given by mst(p) := tr(∂s

∣

∣

p
, ∂t

∣

∣

p
), for 1 ≤ s, t ≤ 3

and p ∈ U . We only restrict our the discussion

mst(p) := tr
(

∂s

∣

∣

p
, ∂t

∣

∣

p

)

=
{

1, if s = t;
0, otherwise.

In this case, we have M = 1 and dp is as in Definition 2.2.

Definition 2.4. Mapping f : H → H is a quaternion-valued function of the
form, for any x ∈ R

3,

f(ν(x)) = f0(x) +
3

∑

j=1

fj(x)ej , (2.4)

where ν(x) ∈ H is as in (2.3), and the component functions f0, fj are real-
valued functions.

Together with Definition 2.2 and (2.4), we introduce the Lebesgue spaces
L2(H, H). For a similar definition we refer the reader to [22, p. 174]. A quater-
nionic valued function f belongs to L2(H, H) if

‖f‖2
L2(H,H) =

∫

H
|f(ν(x))|2 dν(x) =

3
∑

j=0

∫

R3
|fj(x)|2 dx < ∞,



32 Page 6 of 13 X. Fan Adv. Appl. Clifford Algebras

where fj ∈ L3(R3) for each j ∈ {0, 1, 2, 3}. The space L2(H, H) is a Hilbert
space with inner product

〈f, g〉 =
∫

H
f(ν(x))g(ν(x))� dν(x) =

3
∑

j=0

∫

R3
fj(x)gj(x) dx.

Moveover, for any ν(ξ) ∈ H and any f in L2(H, H), we define the left and
right Fourier transforms by

FL(f)(ν(ξ)) :=
1

(2π)3/2

∫

H
e−iν(ξ)ν(x)�

f(ν(x)) dν(x) (2.5)

and

FR(f)(ν(ξ)) :=
1

(2π)3/2

∫

H
f(ν(x))e−iν(ξ)ν(x)�

dν(x). (2.6)

For that same definitions will be applied by the left and right inverse Fourier
transforms, the details being omitted.

Remark 2.5. (i) Because of the non-commutativity of quaternions, the left
Fourier transform is unequal to right Fourier transform as in (2.5) and
(2.6), namely,

e−iν(ξ)ν(x)�

f(ν(x)) �= f(ν(x))e−iν(ξ)ν(x)�

.

(ii) Moveover, these Fourier transforms (2.5) and (2.6) are described by
Kirillov’s orbit method (see [7,16] for more details). For the sake of
argument, that it is necessary to have the details. Let n be as in (2.1). We
note that [X, X] = 0 for any X ∈ n, then n is abelian. Denote the dual of
n by n∗. It is easy to see that n∗ = n. Let N be as in (2.2). The product of
elements of N are given by n(x)n(y) = n(x+ y), where n(x), n(y) ∈ N .
Then N also is abelian. N acts on n∗ the coadjoint map Ad∗, namely, for
any X ∈ n, � ∈ n∗ and n(x) ∈ N , ((Ad∗n(x))�)(X) = �((Adn(x)−1)X).
Similar to the construction of [28], we also have the Vergne polarizing
subalgebra by n. In fact, for any n(x) ∈ N and X ∈ n, we obtain

(

Ad(n(x))−1
)

X =
(

1 −n(x)
0 1

)

X

(

1 n(x)
0 1

)

= X.

One see that R� = {n(x) ∈ N : (Ad∗(n(x)))� = �} is a stabilizer of
N associated with � ∈ n∗. For any � ∈ n∗, by using [7, Lemma 1.3.1],
we have N = R�, which implies that the Vergne polarizing subalgebra
must be n. For some ξ ∈ n∗ and any X ∈ n, we let �ξ ∈ n∗ satisfy
�ξ(X) = ξX�. Then we have a one-dimensional representation N → S

1

(since �[n, n] = 0) defined as ei�ξ(x) ∈ {z ∈ C : z · z̄ = 1}. Notice that
Ad∗ is the identity map for all n(x) ∈ N , n∗/Ad∗(N) = H. Furthermore,
let ̂N be the dual of N . From [16, Theorems 5.1 and 5.2], it follows that
there is a bijection such that ̂N � {�ξ : ξ ∈ H}. Hence, for any ηξ ∈ ̂N ,
we get the characters ei�ξ(·). By using Remark 2.5(i), we obtain Fourier
transforms of the classical function f as in (2.5) and (2.6), respectively.

The following Plancherel theorem is just [25], which is a slight modifi-
cation.
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Theorem 2.6. For any f ∈ L2(H, H), we have

‖FL(f)‖L2(H,H) =
1

(2π)3/2
‖f‖L2(H,H).

The same is true of right Fourier transform.

3. Main Results

First, we recall the concepts of R-linear, R-differentiable and Fueter regular
function.

Definition 3.1. A function � : H → H is said to be R-linear if:
(i) �(q + p) = �(q) + �(p) for all q, p ∈ H;
(ii) �(λq) = λ�(q) for all q ∈ H and all λ ∈ R.

Any R-linear function in H has the form

�(q) = αq + βq�, where α, β ∈ H.

Definition 3.2. A function F : U → H, where U is a neighborhood of q ∈ H,
is said to be R-differentiable at q if

F (q + h) = F (q) + �(h) + o(h),

where � is as in Definition 3.1 and o(h)/|h| → 0 as h → 0.

The following Cauchy–Riemann–Fueter condition is just [27, Proposi-
tion 3].

Definition 3.3. Let q = x0+x1e1+x2e2+x3e3 ∈ H, where x0, x1, x2, x3 ∈ R.
A R-differentiable function F = F0 +e1F1 +e2F2 +e3F3 is Fueter left or right
regular at the neighborhood U of q if and only if Fj for j = 0, 1, 2, 3 are
differentiable functions and

∂F

∂x0
+

3
∑

j=1

ej
∂F

∂xj
= 0 or

∂F

∂x0
+

3
∑

j=1

∂F

∂xj
ej = 0.

Definition 3.4. A Hilbert space H2(H+, H) is said to be Hardy space if it is
the set of all Fueter left (or right) regular functions F satisfying

‖F‖2
H2(H+,H) = sup

x0>0

∫

H
|F (x0 + ν(x))|2 dν(x) < ∞.

Another approach aries from the observation that a function, for x ∈ R
3

and ν(x) ∈ H,

F (x0 + ν(x)) = F0(x0, x) +
3

∑

j=1

ejFj(x0, x)

and

F (x0 + ν(x)) = F0(x0, x) +
3

∑

j=1

Fj(x0, x)ej
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are Fueter type left and right conjugate harmonic functions, respectively, if
F satisfies left and right Cilmmino systems (see [3] for more details). The left
and right Cilmmino systems, respectively, are given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂F0
∂x0

− ∂F1
∂x1

− ∂F2
∂x2

− ∂F3
∂x3

= 0;
∂F0
∂x1

+ ∂F1
∂x0

− ∂F2
∂x3

+ ∂F3
∂x2

= 0;
∂F0
∂x2

+ ∂F1
∂x3

+ ∂F2
∂x0

− ∂F3
∂x1

= 0;
∂F0
∂x3

− ∂F1
∂x2

+ ∂F2
∂x1

+ ∂F3
∂x0

= 0,

and

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂F0
∂x0

− ∂F1
∂x1

− ∂F2
∂x2

− ∂F3
∂x3

= 0;
∂F0
∂x1

+ ∂F1
∂x0

+ ∂F2
∂x3

− ∂F3
∂x2

= 0;
∂F0
∂x2

− ∂F1
∂x3

+ ∂F2
∂x0

+ ∂F3
∂x1

= 0;
∂F0
∂x3

+ ∂F1
∂x2

− ∂F2
∂x1

+ ∂F3
∂x0

= 0.

(3.1)

Moveover, we also assume that there exists a positive constant C such that

‖F‖2
H2(H+,H) =

3
∑

j=0

∫

R3
|Fj(x0, x)|2 dx ≤ C < ∞.

Thus, an equivalent formulation of the spaces H2(H+, H) as in Definition 3.4
is obtained.

Definition 3.5. Let f ∈ L2(H, H). For any x0 > 0, x ∈ R
3 and ν(x) ∈ H, the

Poisson integral of f is defined by,

F (x0 + ν(x)) = Px0 ∗ f (ν(x)) =
23/2

√
π

∫

H

x0

(x2
0 + |ν(x) − p|2)2 f(p)dp. (3.2)

Remark 3.6. (i) By Definition 2.1(ii), for any x0 > 0, x ∈ R
3 and ν(x) ∈ H,

we have

Px0 (ν(x)) =
23/2

√
π

x0

(x2
0 + |ν(x)|2)2 =

23/2

√
π

x0

(x2
0 + |x|2)2 = Px0 (x) .

Moveover, it is easy to check that

̂e−x0|·|(x) =
23/2

√
π

x0

(x2
0 + |x|2)2 = Px0(x),

where ·̂ is the classical Fourier transform. Then

̂e−x0|·|(x) = FL(e−x0|ν(·)|)(ν(x)) = FR(e−x0|ν(·)|)(ν(x)),

where FL and FR denote as in (2.5) and (2.6), respectively.
(ii) The study of Cauchy–Fueter formulae was initiated by the celebrated

paper of Fueter in 1934 (see [9] or [27] for the definition of Cauchy–
Fueter formulae), which is a generalization of the classical Cauchy for-
mula for holomorphic functions. Because of the non-commutativity of
quaternions, the Cauchy–Fueter formulae comes in two versions, one for
each analogue of the complex holomorphic functions. For any q ∈ H, the
Cauchy–Fueter kernel is given by

K(q) =
1

2π2

q�

|q|4 . (3.3)
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The Cauchy–Fueter integral on H+ is defined by, for any q ∈ H+, F is
Fueter left or right regular function on H+ and f is a quaternion-valued
function square integral function on H,

FL(q) =
∫

H
K(q − p)f(p)dp and FR(q) =

∫

H
f(p)K(q − p)dp,

(3.4)

where K(·) is as in (3.3). Here we remark that it may be found other
weaker boundary condition than L2(H, H). In this paper, we only con-
sider the boundary condition as in (3.4) for function f ∈ L2(H, H). Let
x0 > 0, ν(x) ∈ H and q = x0 + ν(x) ∈ H+. Then, by (3.3), we obtain

K(q) =
1

2π2

x0

|q|4 − 1
2π2

ν(x)
|q|4 ,

which, together with (3.4) and the left convolution

f ∗L g(p) =
∫

H
f(p − p′)g(p′) dp′ for all p ∈ H,

implies that

FL(q) =
1

2π2

∫

H

q� − p�

|q − p|4 f(p)dp = cPx0 ∗L f (ν(x)) + cQx0 ∗L f (ν(x)) ,

where c ≡ 1
2(2π)3/2 ,

Px0 (ν(x)) =
23/2

√
π

x0

(x2
0 + |ν(x)|2)2 and Qx0 (ν(x)) =

23/2

√
π

ν(x)
(x2

0 + |ν(x)|2)2 .

Similarly, we also consider the right situation as in (3.4), the details
being omitted.

Proposition 3.7. Let F be as in (3.2). Then, for any f ∈ L2(H, H),

lim
x0→0+

‖F (x0 + ·) − f(·)‖L2(H,H) = 0.

Proof. We only need to show that

lim
x0→0+

F (x0 + ν(x)) = f (ν(x)) a.e. ν(x) ∈ H. (3.5)

By using (2.4), we have f(ν(x)) = f0(x) +
∑3

j=1 fj(x)ej and

Px0 ∗L f(ν(x)) = Px0 ∗ f0(x) +
3

∑

j=1

Px0 ∗ fj(x)ej ,

which, together with fj ∈ L2(R3) and

lim
x0→0+

Px0 ∗ fj(x) = fj(x) a.e. x ∈ R
3, (3.6)

implies that (3.5) holds. Moveover, we note that (3.6) holds in the sense of
L2-Lebesgue points, and hence (3.5) also holds almost everywhere on H. �

Let Qx0(ν(x)) be as in Remark 3.6(ii). Then, as x0 → 0+, we have the
following definition:



32 Page 10 of 13 X. Fan Adv. Appl. Clifford Algebras

Definition 3.8. For any x = (x1, x2, x3) ∈ R
3, let

K(x) :=
3

∑

j=1

Kj(x)ej , (3.7)

where, for j ∈ {1, 2, 3},

Kj(x) =
(2π)3/2

π2

xj

|x|4 . (3.8)

Then the Riesz transform R(g) is defined by, for the real-valued function
g ∈ L2(R3),

R(g)(x) := K ∗L g(x) = p.v.

∫

R3
K(x − y)g(y) dy. (3.9)

This integral exists in the sense of Cauchy principal value.

Lemma 3.9. Let K be as in (3.7). Then, for ν(ξ) ∈ H,

FL (K) (ν(ξ)) = − ν(ξ)
|ν(ξ)| i (3.10)

and

FR (K) (ν(ξ)) = −i
ν(ξ)
|ν(ξ)| (3.11)

hold in the sense of the distribution of principal value.

Proof. For j ∈ {1, 2, 3}, we let Kj be as in (3.8). Similar to the proof of [26,
Theorem 2.6, Chapter VI], we have

ej
̂Kj(ξ) = −ej

ξj

|ξ| i and ̂Kj(ξ)ej = −i
ξj

|ξ|ej ,

where ·̂ denotes the classical Fourier transform in the sense of the distribution
of principal value. From this and (3.7), it follows that

FL(K)(ν(ξ)) =
3

∑

j=1

ej
̂Kj(ξ) = −

3
∑

j=1

ej
ξj

|ξ| i = − ν(ξ)
|ν(ξ)| i,

where FL is as in (2.5). And hence (3.10) holds. Similarly, we see that (3.11)
holds. �

Proposition 3.10. Let R be as in (3.9). Then, for any g ∈ L2(R3),

‖R(g)‖L2(R3) = ‖g‖L2(R3).

Proof. For any g ∈ L2(R3), by using (3.9), (3.10) and (3.11), we obtain

FL(R(g))(ν(ξ)) = − ν(ξ)
|ν(ξ)| iĝ(ξ) and FR(R(g))(ν(ξ)) = −iĝ(ξ)

ν(ξ)
|ν(ξ)| .

From this and Theorem 2.6, it follows that ‖R(g)‖L2(R3) = ‖g‖L2(R3). �
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Theorem 3.11. Let f = f0 +
∑3

j=1 fjej, where f0, f1, f2 and f3 ∈ L2(R3).
Suppose F is the Poisson integral of f as in (3.2). Then F is a Fueter con-
jugate harmonic function in H+ if and only if, for any x ∈ R

3,

3
∑

j=1

fj(x)ej = −R(f0)(x), (3.12)

where R is as in (3.9).

Proof. Let f0 ∈ L2(R3). Then, by using Remark 3.6(i), for any x0 > 0, we
have

1
(2π)3/2

∫

R3
e−x0|ξ|

̂f0(ξ)eix·ξ dξ =
∫

R3
Px0(x − ξ)f0(ξ) dξ := F0(x0, x).

(3.13)

For j ∈ {1, 2, 3}, by (3.7), (3.8), (3.9) and (3.12), we see that

fj(x)ej = −c

∫

R3

xj − yj

|x − y|4 ejf0(y)dy,

where c = (2π)3/2

π2 . From this, (3.13) and e2
j = −1, it follows that,

Fj(x0, x) := 1
(2π)3/2

∫

R3 e−x0|ξ|
̂fj(ξ)eix·ξ dξ

= i
(2π)3/2

∫

R3
ξj

|ξ|e
−x0|ξ|

̂f0(ξ)eix·ξ dξ, (3.14)

which, together with (3.1), implies that (F0, F1, F2, F3) satisfies the first
equation of Cilmmino systems as in (3.1). We also discuss similarly to the
second equation of Climmino systems as in (3.1), the details being ommited.
Thus F = F0 +

∑3
j=1 Fj is a Fueter conjugate harmonic function.

Conversely, we let (F0, F1, F2, F3) satisfy the first equation of Cilmmino
systems (3.1) and (3.14). By this, (3.1) and the uniqueness of the classical
Fourier transform, we obtain (3.12). This finishes the proof of Theorem 3.11.

�
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