
Adv. Appl. Clifford Algebras (2020) 30:29
c© 2020 Springer Nature Switzerland AG
0188-7009/020001-22
published online April 2, 2020
https://doi.org/10.1007/s00006-020-01055-x

Advances in
Applied Clifford Algebras

Factorization and Generalized Roots of Dual
Complex Matrices with Rodrigues’ Formula

Danail Brezov∗

Abstract. The paper provides an efficient method for obtaining powers
and roots of dual complex 2 × 2 matrices based on a far reaching gen-
eralization of De Moivre’s formula. We also resolve the case of normal
3 × 3 and 4 × 4 matrices using polar decomposition and the direct sum
structure of so4. The compact explicit expressions derived for rational
powers formally extend (with loss of periodicity) to real, complex or
even dual ones, which allows for defining some classes of transcendent
functions of matrices in those cases without referring to infinite series or
alternatively, obtain the sum of those series (explicit examples may be
found in the text). Moreover, we suggest a factorization procedure for
M(n,C[ε]), n ≤ 4 based on polar decomposition and generalized Euler
type procedures recently proposed by the author in the real case. Our
approach uses dual biquaternions and their projective version referred
to in the Euclidean setting as Rodrigues’ vectors. Restrictions to certain
subalgebras yield interesting applications in various fields, such as screw
geometry extensively used in classical mechanics and robotics, complex
representations of the Lorentz group in relativity and electrodynamics,
conformal mappings in computer vision, the physics of scattering pro-
cesses and probably many others. Here we only provide brief comments
on these subjects with several explicit examples to illustrate the method.

Mathematics Subject Classification. Primary 15A16, 15A23; Secondary
15A66, 20H25, 22E43.

Keywords. Dual complex matrices, Line geometry, Matrix roots and
powers, Rodrigue’s formula, Polar decomposition, Euler type factoriza-
tions.

This article is part of the Topical Collection on 2019 Alterman Conference on Geometric
Algebra/Kahler Calculus, edited by Harikrishnan Panackal.

∗Corresponding author.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-020-01055-x&domain=pdf


29 Page 2 of 22 D. Brezov Adv. Appl. Clifford Algebras

Introduction

Generalized Euler and Wigner decompositions began to emerge properly car-
ried out in scientific literature surprisingly late (see for example [3,5,7,14]).
Higher-dimensional extensions inevitably face the obstacle that invariant axes
are not available in the generic case (see [2] for a detailed study). However,
the complex vector-parameter construction introduced by Fedorov [10] as a
generalization of a much earlier idea due to Rodrigues, allows for a treatment
of the proper Lorentz group very similarly to the group of rotations in R

3.
We may extend this construction even further (see for example [1]) and take
advantage of the convenience it provides in both theoretical and practical
terms. In particular, here it is used as a base for generalizing the classical
Rodrigues’ rotation formula to the dual complex setting. The latter is then
used for the derivation of factorization results analogous to those provided
in [5,7]; dual axes and angles are interpreted geometrically in the spirit of
Plücker coordinates, ruled surfaces and abelian subgroups. Particular real
forms are discussed in the context of screw kinematics, quantum-mechanical
scattering and special relativity. We also use the famous Lie algebra isomor-
phism so4

∼= so3 ⊕ so3 in order to extend our results to the group O(4,C[ε]).
As far as rational powers are concerned this paper is inspired by a re-

cent study due to Özdemir [12] focused on the use of De Moivre’s formula
in the real setting. Here we point out that De Moivre’s formula is a spe-
cific case of Rodrigues’ rotation formula, which is more convenient to use in
this context as it allows uniform treatment and natural transition from R

to C and C[ε]. For the latter we resort once more on the dual extension of
the complex vector-parameter construction. The connection to the general-
ized Rodrigues’ rotation formula is given by Cayley’s transform and Euler’s
trigonometric substitution, both extended to dual complex axis-angle pa-
rameters. The formulas in all those cases, including the isotropic one which
is considered separately, are far more general and at the same time simpler
compared to previous studies confined only to the real setting. Concrete nu-
merical examples and a brief discussion on certain practical applications are
provided as well.

Preliminaries

In this short preliminary section we recall some basic facts about vectorial
parametrization of SO(3), ISO(3) and SO+(3, 1) transformations—the curious
reader may find more details in [1,10]. It is natural to begin our construction
with an invertible quaternion ζ = (ζ◦, ζ) ∈ H

×, where the scalar and bivector
parts are separated for convenience, after which perform the usual central
projection to obtain the Rodrigues’ parametrization1 for SO(3)

ζ = (ζ◦, ζ) ∈ H
× ∼= R

4 π−→ c =
ζ

ζ◦
∈ SO(3) ∼= RP

3. (0.1)

1Here we mean only topological isomorphisms.
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Quaternion multiplication then projects nicely on SO(3) and we have the
composition law of vector-parameters expressed as

〈 c2, c1〉 =
c2 + c1 + c2 × c1

1 − c2 · c1
(0.2)

where · and × denote respectively the dot and cross products in R
3. More

generally, for an arbitrary number of invertible quaternions ζi ∈ H
× we have

〈cn, cn−1, . . . , c1〉 =
〈ζnζn−1 . . . ζ1〉2
〈ζnζn−1 . . . ζ1〉0 (0.3)

where 〈·〉k denotes grade projection in the Clifford algebra. The corresponding
matrix representation in R

3 is given by means of the Cayley transform as2

R(c) =
I + c×

I − c× =
(1 − c2) I + 2 cct + 2 c×

1 + c2
· (0.4)

The above expressions remain valid for complex vector-parameters c ∈ CP
3,

which is linked with a similar construction to the even Liefschitz subgroup
GL(2,C) of the space-time algebra Cliff3,1(R) ∼= Cliff3(C), which yields the
complex representation of the proper Lorentz group in special relativity

SO+(3, 1) ∼= SO3(C) ∼= PSL2(C). (0.5)

The extension to the dual case is then performed using the transfer principle.

1. Powers and Roots of Complex Matrices

We begin by pointing out than the general linear group in C
2 decomposes

as C
×⊗ SL(2,C), so the proper Lorentz group is essential in factorization

problems for GL2 elements. In particular, the n-th root construction can be
applied separately for the numerical pre-factor using De Moivre’s formula and
the Lorentzian component by means of a generalized Rodrigues’ construction.

To proceed with the latter we recall that in the classical (real) case
the link is given by the famous Euler’s trigonometric substitution, namely
substituting

c = τn, τ = tan
ϕ

2
, n ∈ S

2

into the Cayley transform (0.4), one easily gets the familiar

R(n, ϕ) = cos ϕ I + (1 − cos ϕ)nnt + sinϕn× (1.1)

which may be written also as

R(n, ϕ) = P‖
n +

(
cos ϕ + sinϕn×) P⊥

n

where P‖
n = nnt and P⊥

n = I − nnt denote respectively the parallel and or-
thogonal projector in the direction determined by the unit vector n. Note that
since n× introduces a complex structure in the plane orthogonal to n (where
it squares to −I), fixing the invariant axis in (1.1) one obtains an action of S1

in C with the related De Moivre’s formula. Analogous construction may be
carried out in the complex setting as long as c2 	= 0. Generally speaking, in

2Here I denotes the identity in R3 and c× the Hodge dual to c, i.e., c×a = c×a ∀a ∈ R3.
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this case P‖
n and P⊥

n lose their neat geometric interpretation while preserv-
ing their algebraic definition. Similarly, n is no longer associated with a unit
sphere, but we still have n2 = 1 and finally, the “rotation angle” ϕ becomes
complex as well. In certain cases it may be real or purely imaginary, which
corresponds to the Wigner little groups associated with time-like and space-
like momenta, respectively, while the isotropic case c2 = 0 is linked to the
so-called “front form little group” E(2). A generic element of SO+(3, 1), how-
ever, would not be associated with an invariant plane and for its description
we may use an additional phase, say arg τ , which describes that transition.

Coordinate Representation

Using the standard 2 × 2 matrix basis for Hamilton’s quaternion units

i =
(

i 0
0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i
i 0

)
(1.2)

and the entries {αij} in the SL(2,C) representation

ζ → N =
(

α11 α12

α21 α22

)
=

(
ζ◦ + iζ1 ζ2 + iζ3

iζ3 − ζ2 ζ◦ − iζ1

)

it is straightforward to determine the complex vector-parameter as (see [4])

c =
− i

α11 + α22

⎛

⎝
α11 − α22

iα12 − iα21

α12 + α21

⎞

⎠ · (1.3)

Certainly, (1.2) is equivalent to the basis of Pauli matrices over C, but we
choose to work with the former as it allows for borrowing the dot and cross
product from the real setting so that formulas (0.2) and (0.4) apply directly.
Next, we need to determine the complex axis and angle in the representa-
tion (1.1) corresponding to the orthogonal (with respect to the Killing form)
transformation X → ζXζ̄ in Mat(2,C). It is clear from (0.1) and (1.3) that
for a unimodular bi-quaternion ζ ∈ SL(2,C), i.e., ζ2

◦ + ζ2 = 1, we have

1 + c2 = ζ−2
◦ =

4
tr2ζ

=⇒ τ =
(
ζ−2
◦ − 1

) 1
2 =

(
4 tr−2ζ − 1

) 1
2

which yields for the generalized complex angle

ϕ = 2arctan τ = −i ln
1 + iτ

1 − iτ
· (1.4)

Note that the multi-valuedness of the complex logarithm may be ignored
as it does not lead to new solutions. However the double-valuedness of the
square root needs to be taken into consideration when determining the com-
plex vector n in analogy with the agreement of orientation in the real case.
Furthermore, we have a few very specific cases like the isotropic one τ = 0
(for c 	= 0) which is left for a separate treatment, or the infinite one τ = ∞
which in the real setting corresponds to a half-turn, while here it may also be
assigned to a tachyon (time-reversing) transforation in the analytic contin-
uation of (0.1) to the entire Lorentz group. There are also forbidden values
such as τ = ±i (or in the isotropic case τ = ∞) which has to do with the
well-posedness of (0.4), hence the causal structure of Minkowski space-time.
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Now, assuming τ 	= 0 it is straightforward to determine the complex
axis3

n = τ−1c =
(
1 − ζ2

◦
)− 1

2 ζ =
−iσ

(
4 − tr2ζ

) 1
2

⎛

⎝
α11 − α22

iα12 − iα21

α12 + α21

⎞

⎠ , σ = ±1.

(1.5)
Note that since n2 = 1, the real and imaginary part of the above vector
are normal to each other and this property is preserved in c as long as the
factor τ is real or purely imaginary, but then ζ◦ must be either real or purely
imaginary too, or in other words, the central element does not mix scalar and
pseudo-scalar components. These are the cases, in which one ends up with a
plane transformation in the induced R

3,1 representation of the proper Lorentz
group, i.e., elements of a Wigner “little group”, for which the corresponding
generator lies within the image of a Plücker embedding (see [10] or [2] for
details). In all other cases there are no proper invariant subspaces. These
details play an important role in the generalized Euler and Wigner decom-
position problems, but we shall first deal with the simpler task of applying
the Rodrigues’ formula for determining the fractional powers of an arbitrary
complex 2×2 matrix M, after which, obtain the dual extension of our results.

The Algorithm

The first step would be to write M = λQ with λ ∈ C
× and Q ∈ SL(2,C),

which allows us to apply the classical De Moivre’s formula

λγ
(k) = |λγ |eiγψεk

γ , ψ = arg λ

for the scalar factor, where the εk
γ ’s stand for the roots of unity

εk
γ = e2ikπγ , k = 0, 1 . . . Δγ − 1

and Δγ denotes the denominator of γ. Then, we use the construction de-
scribed above in order to express the Rodriges’ transformation (1.1) corre-
sponding to the unit biquaternion ζ. Certainly, it would be necessary to first
check whether the so-obtained vector-parameter in formula (1.3) has a van-
ishing square. If not, one may proceed with the observation that (1.1) acts
within the range of P⊥

n , where n× plays the role of a complex structure, as
mentioned before, and we may apply the De Moivre’s formula directly to
determine all solutions (as usual, k varies from 0 to Δγ − 1) in the form

R(k) = R(n, ϕk), ϕk = γ(ϕ + 2kπ)

with the obvious property RΔγ
(k) = RγΔγ(n, ϕ). Now, we only need to “trans-

late” the R(k)’s into SL(2,C) elements, say ζ(k), using the obvious relation

ζ◦
(k)
± = ±(1 + c2

(k))
− 1

2 , ζ
(k)
± = ζ◦

(k)
± c(k), c(k) = tan

ϕk

2
n

3The choice of complex root τ is linked to orientation via σ that is sgn trζ in the real case.
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where the sign of the square root is chosen to agree with tr ζ. The explicit
quaternion basis (1.2) allows for writing the above result in components as

ζ
(k)
± = ±

(
cos

ϕk

2
, sin

ϕk

2
n
)

→

Q(k) = csc
ϕ

2

⎡

⎣
sin

ϕ − ϕk

2
+ α11 sin

ϕk

2
α12 sin

ϕk

2
α21 sin

ϕk

2
sin

ϕ − ϕk

2
+ α22 sin

ϕk

2

⎤

⎦ (1.6)

where the parameter ϕ is given by (1.4) and one needs to be careful with
signs in order to remain in the correct orbit, finally obtaining the solutions

Mγ
(j,k) = λγ

(j)Q(k), j, k = 0, 1 . . . Δγ − 1. (1.7)

In the isotropic setting c2 =0 where the construction of n is pointless due to
scale invariance, instead we work directly with formula (0.4) that reduces to

R(c)c2=0 = exp(2 c×) = I + 2 c×+ 2(c×)2 (1.8)

emphasising on the fact that c× is a nilpotent element of order three, which
squares to cct. But then, all analytic functions of c× in the algebra generated
by it have their Taylor series expansions reduced to quadratic polynomials

f(c×) = f(0) I + f ′(0) c×+
1
2
f ′′(0) cct

and in particular, for power functions f = Rγ(c) the chain rule yields

Rγ
c2=0 = exp(2γ c×) = I + 2γ c×+ 2γ2cct, γ ∈ Q. (1.9)

Note that exp(a) exp(b) = exp(a+b) holds in the nilpotent case too, but the
exponential mapping loses its periodicity, so multiple roots in this setting
come only from the scalar factor λ and the general solution has the form

Mγ
(k) = λγ

(k)

⎡

⎣
γα11 − γ + 1 γα12

γα21 γα22 − γ + 1

⎤

⎦ (1.10)

where we take into account that in the isotropic case |trM| = 2 and the
vector-parameter of Rγ is simply γc. This completes the solution in the
regular case. For singular 2×2 complex matrices M ∈ Mat(2,C), on the other
hand, is rather straightforward to see, either by Hamilton–Cayley theorem
or using the proportionality of rows in a direct computation, that one has

M2 = (tr M) M ⇒ Mγ = (tr M)γ−1 M (1.11)

at least for γ positive integer. To prove that the above holds also for positive
rational powers it is sufficient to substitute γ =

p

q
in (1.11) and then

M p
q = (tr M)

p−q
q M ⇒ Mp = (tr M)p−q Mq = (trM)p−1 M.

Since the rational powers of the complex number trM are multi-valued by
De Moivre’s formula, one generally has q = Δγ solutions as long as tr M 	= 0.
If the trace vanishes, M becomes nilpotent and (1.11) is no longer relevant.
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The Dual Extension

Sometimes, e.g. in the screw formulation of kinematics, it is useful to add
another nilpotent element ε (the so-called dual unit such that ε2 = 0) as an
extension to the ring of scalars. Thus we have dual numbers C[ε] defined as

w = u + εv, u, v ∈ C

which immediately yields

wγ = uγ + εγuγ−1v (1.12)

at least for positive integer values of γ and can be extended to arbitrary
powers only for algebraically invertible elements, i.e., as long as u 	= 0. Fur-
thermore, whenever the righthand side is well-defined we can generalize the
above formula to Taylor series of analytic functions

f (w) = f (u) + εf ′ (u) v. (1.13)

Similarly, one may define dual quaternions H[ε] or dual matrices in general

M = M + εN , M, N ∈ Mat(n,C)

but the relation (1.12) only holds in the commutative case [M,N ] = 0.
Moreover, whether it works also for negative and rational values depends on
M, namely if detM = 0, then γ > 0 and if also trM = 0, the restriction is
γ ∈ N. This needs to be taken into account for the validity of (1.13) as well.

Next, we consider rational powers of M = M + εN with [M,N ] 	= 0,
first pointing out that in this more general setting instead of (1.12) one has

Mn = Mn + εMn−1 ◦ N , n ∈ N (1.14)

where the operation ◦ is given by the anti-commutator A ◦ B = {A,B} as

Mn ◦ N = {M, {M, {. . . {M
︸ ︷︷ ︸

n

,N}} . . .}

which may also be defined recursively (assuming as usual that M0◦ = id)

Mn ◦ N = M ◦ (Mn−1◦ N )
, M1 ◦ N = MN + NM

As long as M is invertible, the above can be expressed via the adjoint action

AdM : N → MNM−1

namely as

Mn ◦ N = Mn
(I + Ad−1

M
)n N = (I + AdM)n NMn

where we make use the symmetry in Newton’s binomial formula

Mn ◦ N =
n∑

k=0

(
n

k

)
MkNMn−k =

n∑

k=0

(
n

k

)
Mn−kNMk.

Extending this even only to negative powers is problematic, e.g. if −1 is in
the spectrum of AdM, and it yields the wrong result, e.g. for n = −1 one has

M−1 = M−1 − εM−1NM−1

which may be used to obtain

M−n =
(M−1

)n
= M−n − εM−1

(M−1
)n−1◦ N M−1 = (Mn)−1

.
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As for fractional powers, let us first begin with the n-th root

P + εQ = (M + εN )
1
n ⇔ (P + εQ)n = M + εN

that yields P = M 1
n and

Pn−1 ◦ Q =
(
I + Ad

1
n

M
)n−1

M1− 1
n Q=N

⇒ Q=M 1
n −1

(
I + Ad

1
n

M
)1−n

N
so we may write the result for γ = n−1 formally as

(M + εN )γ = Mγ + εMγ−1 (I + Adγ
M)1− 1

γ N . (1.15)

Since Adγ
M = AdMγ whenever Mγ exists and the adjoint action is norm-

preserving, we may use the binomial series expansion

(I + Adγ
M)α =

∞∑

k=0

(
α

k

)
Ad k

Mγ (1.16)

converging whenever �(α) > 0, or even for �(α) > −1 as long as −1 /∈ Adγ
M.

The Unit Dual Sphere and Screw Motion

Although we have formally resolved the problem of rational powers for dual
matrices (provided the solution for their real part is known), working with
infinite operator series is not always the most practical way to do things. One
particulary efficient alternative in the two-dimensional setting is to first fac-
torize the initial matrix into a scalar component and a unit dual quaternion,
in analogy with the real case

GL(2,C[ε]) � M = λQ, λ ∈ C[ε]/{0}, Q ∈ S
3[ε]

where the unit dual sphere is defined as the set

S
3[ε] = {Q ∈ H[ε], |Q|2 = QQ̄ = 1}

and one may parameterize it with pairs of unit and pure quaternions as

Q =
(

1 +
1
2
εt

)
r, |r|2 = 1, t̄ = −t

which guarantees both the proper normalization of QQ̄ and the vanishing of
the dual part. In mechanical context, r yields the rotational component of
a rigid displacement4, while t is related to the translation vector expressed
in the quaternion basis (1.2). Since the rational powers of λ are easily dealt
with using (1.12), we shall concentrate solely on the dual sphere resorting on
a generalized De Moivre’s formula (see [8] for detail), but for that we need to
first introduce the dual angle ϕ = ϕ+εd and axis vector n = n+εm ∈ S

2[ε],
i.e., n2 = 1 and m ⊥ n, associated with Q and consider grade projections

〈Q〉0 ⇔ r0 − 1
2
ε r · t = cos

ϕ

2
, 〈Q〉2 ⇔ r +

1
2
ε (r0t + t× r) = n sin

ϕ

2

4Assuming rotation is applied first, otherwise the two factors need to switch places.
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using the correspondence between vectors and pure quaternions 〈r〉2 ⇔ r.
The polar representation r0 = cos ϕ

2 , r = sin ϕ
2 n and trigonometric identities

sin(ϕ + εd) = sinϕ + εd cos ϕ, cos(ϕ + εd) = cos ϕ − εd sin ϕ (1.17)

provide the screw displacement d and moment m in terms of n, ϕ and t

d = t · n, m =
1
2

(
cot

ϕ

2
I − n×

)
P⊥
n t (1.18)

and thus, Plücker coordinates of the screw axis n given by Mozzi-Chasles
theorem (see [11]) and the dual angle that takes into account the n-projection
of the translation vector t. Now, the generalized Euler’s formula asserts that

(
cos

ϕ

2
, n sin

ϕ

2

)k

⇔
(

cos
kϕ

2
, n sin

kϕ

2

)
, k ∈ Z (1.19)

and as in the classical case, its extension to rational powers γ ∈ Q is obtained
by simply substituting kϕ above with ϕk = γ(ϕ+4kπ) for k = 0, 1, . . . Δγ−1.

Similarly, in the 3×3 representation we work with the dual extensions of
(0.4) and (1.1) that are rather straightforward if we use the screw axis-angle
notation (see [9,13] for details), e.g. for ϕ 	= 0 one has

c = tan
ϕ + εd

2
(n + εm) = tan

ϕ

2

(
1 +

ε d

sin ϕ

)
n (1.20)

with displacement d and moment m provided by (1.18). While the geometric
meaning of the former is pretty clear, for the latter we have a mechanical
analogy encoded in the identity m = r × n, where r denotes the radius-
vector of the screw line. Thus, it is easy to express r = n×m. Note, however,
that both the screw pitch p = d csc ϕ in (1.20) and the moment m in (1.18)
are ill-defined in the case of trivial rotation ϕ = 0. A pure translational screw
acts on lines in E

3 expressed with their Plücker coordinates as � = ν + εμ as
I + εt×, thus preserving the orientation ν and adds t× ν to the moment μ,
i.e., the radius-vector is altered with P⊥

ν t as it should be. So, one has

ϕ = 0 ⇔ c =
ε

2
t, n × t = m = 0 (1.21)

and with that clarification both the composition law (0.2) and Rodrigues’
rotational formula (1.1) apply for the dual vector-parameter (1.20) and re-
spectively, the dual axis-angle coordinates. So does the above described ap-
proach would work also in this case, keeping in mind the singularity (1.21).
Naturally, our construction works also over C[ε] although the kinematical
interpretation is not that straightforward: dual bi-quaternions do not param-
eterize the Poincaré group in the way Euclidean motions are represented in
the real setting. Note also that there are two nilpotent elements in the com-
plex isotropic setting: one is ε itself and the other is c× whenever c2 = 0.
Some of these cases are illustrated with examples at the end of this section.

A Hierarchy of Trigonometric Identities

The solutions (1.6) in the regular non-isotropic setting can be written also in
the form (for convenience of notation we have doubled all the angles)

Qγ = sin−1 ϕ (sin (ϕ − ϕl)I + sin ϕlQ) , ϕl = γ(ϕ + 2lπ).
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Denotind γ = m
n ∈ Q and applying Newton’s binomial formula to the equality

(Qγ)n = Qm yields for l = 0, 1, . . . n−1 a series of 2n trigonometric identities
in the form (here we assume m 	= 0 and n ≥ 2)

n∑

k=0

(
n

k

)
sinkϕl sinn−k(ϕ − ϕl) cos kϕ = sinnϕ cos mϕ

n∑

k=0

(
n

k

)
sinkϕl sinn−k(ϕ − ϕl) sin kϕ = sinnϕ sin mϕ (1.22)

obtained via separation of the real and imaginary parts and De Moivre’s
formula for the matrix Q ∈ SU(2). Note that some roots ϕl lead to identical
formulas, e.g. in the case n = 2 one has the same result for l = 0 and
l = 1. Finally, there is no problem in principle to apply the solutions (1.6)
in the case of arbitrary (real or complex) parameter γ 	= 0, 1. Thus we lose
the periodicity and are left with only ϕ0 = γϕ, leads to identities involving
infinite binomial series:

∞∑

k=0

(
α

k

)
sinkϕ0 sinα−k(ϕ − ϕ0) cos kϕ = sinαϕ cos ϕ

∞∑

k=0

(
α

k

)
sinkϕ0 sinα−k(ϕ − ϕ0) sin kϕ = sinαϕ sin ϕ (1.23)

with ϕ0 = α−1ϕ 	= ϕ, e.g. for α = −1 and ϕ ∈ R one has
∞∑

k=1

1
2k

cos kϕ

coskϕ
= cos 2ϕ,

∞∑

k=1

1
2k

sin kϕ

coskϕ
= sin 2ϕ, ϕ ∈

(
−π

3
,
π

3

)
·

Let us also point out that the above trigonometric identities may be extended
to the dual complex setting via the transfer principle: (1.22) and (1.23) apply
in the case ϕ, γ ∈ C[ε] and ϕ0 = γϕ, with the aid of (1.12) and (1.17), e.g.
one has xεd = 1 + εdx−1 for x 	= 0 etc., although 2π-periodicity is possible
only if γ ∈ Q[ε] or γ ∈ iQ[ε].

There are subtle questions around series convergence, analytic continu-
ation and multi-valuedness related to the general identities (1.23). Their de-
tailed treatment, however, although quite interesting, goes beyond the scope
of the present paper is therefore left to the reader’s curiosity.

Extension to 3×3 and 4×4 Normal Matrices

Next, we consider the 3D and 4D complex settings using (left) polar decom-
position that allows us to represent an arbitrary M ∈ Mat(n,C) as

M = SR, R ∈ SOn(C)

with R orthogonal and S =
√MMt-symmetric. Alternatively, we may use

the right decomposition M = RS ′ where S ′ =
√MtM. Although the very

definition of S and S ′ already involves fractional powers, one can easily obtain
it in their canonical bases. Moreover, if M is normal, i.e., [M,Mt] = 0, then
obviously S = S ′ and it is straightforward to proceed as

[M,Mt] = 0 ⇒ (SR)γ = SγRγ.
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The left factor is dealt with using eigenvalues and eigenvectors, while for
the right one we extract the angle ϕ and use (1.1) with ϕk = γ(ϕ + 2kπ),
k = 0, 1, . . . Δγ − 1, starting with (0.4), which in the case Rt 	= R yields

c× =
I − R
I + R =

R − Rt

1 + trR· (1.24)

Thus, one may derive c via Hodge duality, while the scalar parameter τ is
more directly given by the identity 1 + c2 = det(I − c×) and formula (1.4).
In the symmetric setting we clearly have an involution since Rt = R−1, so
the only possible eigenvalues are ±1 and the invariant axis is derived as an
eigenvector of R = 2nnt − I, while in the isotropic case c2 = 0 we simply
multiply c in (1.8) by γ, rather than dealing with the generalized angle ϕ.

The 4×4 setting still allows for using a vector-parameters technique due
to the direct sum structure of the corresponding Lie algebra so4

∼= so3 ⊕ so3,
which yields for the orthogonal group, at least locally c ⊗ c̃ ∈ CP

3 ⊗ CP
3.

The composition law (0.2) and Rodrigues’ formula (1.1) apply to each copy
in the tensor product and one can easily relate them to the 4×4 block-matrix

R(c ⊗ c̃) = χ−1

⎛

⎝
1 − c · c̃ + c c̃t + c̃ ct + (c + c̃)× c − c̃ + c̃×c

(c̃ − c + c̃×c)t 1 + c · c̃

⎞

⎠ (1.25)

with χ =
√

(1 + c2)(1 + c̃2) that may be obtained from the entries of the
skew-symmetric matrix R̃ = R − Rt in the form (see [4] for details)

c =
1

trR

⎛

⎝
R̃32 + R̃14

R̃13 + R̃24

R̃21 + R̃34

⎞

⎠ , c̃ =
1

trR

⎛

⎝
R̃32 − R̃14

R̃13 − R̃24

R̃21 − R̃34

⎞

⎠ · (1.26)

Finally, with the dual extension C → C[ε] one needs to first perform polar
decomposition in Mat(n,C[ε]) factorizing M = SR into a dual symmetric
and dual orthogonal factor, respectively. For the former we have from (1.14)

S = (MMt)
1
2 +

1
2
(MMt)− 1

2 ε(MN t+NMt).

while R is constructed using the eigenvector basis of the symmetric operator
MMt in the usual way. For computational purposes, however, it is convenient
to use Newton’s iterative method that yields the successive approximations

Rk+1 =
1
2

(Rk + R−t
k

)
, R0 = M

which afterwards gives also the symmetric part simply S = MRt.

Applying the Transfer Principle

The transfer principle provides an efficient means of extending results to a
broader context. Initially formulated for the purposes of non-standard anal-
ysis, it was meant to justify well-known theorems of real calculus to the
hyperreal extension of R, where new (infinitely small and large) elements are
introduced. Although the case of dual numbers—R[ε] or C[ε], is slightly dif-
ferent, there are some similarities as well, e.g. the nilpotent element ε may
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be used in the definition and computation of the first derivative5 via formula
(1.13). Here we are going to use the transfer principle in a slightly different
manner: considering all results obtained so far as the zeroth-order term of a
Taylor series in a dual-valued functional equality. More precisely, the dual ex-
tensions of the matrices, quaternions, generalized rotational axes and angles
considered above need to satisfy the same relations as the classical ones, e.g.
(1.6), (1.10) and (1.11) extend nicely to the dual case M ∈ Mat(2,C[ε]) with
the geometric interpretation of the screw axis n and angle ϕ given above. A
similar approach proves fruitful also in the case of 3 × 3 and 4 × 4 normal
dual matrices if we combine it with polar decomposition as already explained.
Higher-dimensional generalizations of our technique, however, are not always
possible even in the normal setting and the reason is that orthogonal trans-
formations are usually not decomposable, i.e., there are non-trivial Plücker
relations to be satisfied. As discussed in [2], the vectorial parametrization al-
lows for expressing them as � c2 = 0 and standard projective-geometric inci-
dence relations allow for explicitly obtaining the embedding of the SL2 group
representation into higher-dimensional space. Yet, the construction applies
both to the real and complex settings, together with their dual extensions.
Consider for instance one such extension of formula (1.6) in the particular
case of a square root, in which it reduces to

√
M = ±1

2
sec

ϕ

4
(I + M) = ± 1

2 cos ϕ
4

[(
1 +

εd

4
tan

ϕ

4

)
(I + M) + εN

]

where we have in quaternion terms

M ∼
(
cos

ϕ

2
, sin

ϕ

2
n
)

, N ∼ d

2

(
− sin

ϕ

2
, cos

ϕ

2
n
)

+
(
0, sin

ϕ

2
m

)
·

Similarly, in the nilpotent case c2 = 0, (1.10) yields for the square root

√
M = ±

√
λ

2
(I + M)

while in the singular setting detM = 0 from (1.11) one has
√

M = ± (tr M)− 1
2 M.

Note that the pre-factor used for normalization is generally in C[ε], which is
not a division ring, so we face certain difficulties in cases such as det M = 0
with tr M ∈ C[ε]/C or det M ∈ C[ε]/C: the former is obviously nilpotent, so
only positive integer powers exist, while for the latter both the dual quater-
nion construction and the more general solution given by formula (1.15) fail.

Numerical Examples

We begin with the relatively simple square root: consider the matrix

M =
(√

3 + (3i − 4)ε 3i

3i
√

3 − (3i + 4)ε

)
, λ2 = det M = 12 − 8

√
3ε

5This approach is sometimes referred to in literature as “automatic differentiation”.
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which, upon division with λ = 2(
√

3 − ε), yields the unit dual biquaternion

Q =
1
2

(
1 + ε

√
3(i − 1) i(

√
3 + ε)

i(
√

3 + ε) 1 − ε
√

3(i + 1)

)

and we can use (1.3) to determine the Rodrigues’ vector in the basis (1.2)

c =
1

1 − ε
√

3

(
ε
√

3, 0, ε +
√

3
)t

, τ =
√

c2 =
√

3 + 4ε.

Hence, from (1.4) and (1.20) we easily retrieve the screw axis and angle

n = (ε, 0, 1)t
, ϕ =

2π

3
+ 2ε

which yields the solutions based on formula (1.6) explained in previous sec-
tion

√
M = ±

√
λ

2

[(√
3 i

i
√

3

)
+

ε

2

(
2i − 1 i

√
3

i
√

3 −2i − 1

)]
·

Next, we illustrate the isotropic setting with c = (−i, ε, 1)t and using (1.10)
obtain (note that the sine and cosine of the matrix logarithm appear below)

(
2 i + ε

i − ε 0

) 7
8

=
8
√

1
8

(
15 7i + 7ε

7i − 7ε 1

)

(
2 i + ε

i − ε 0

)−i

=
(

1 − i 1 − iε
1 + iε 1 + i

)

where k
√

1 are the complex roots given by the classical De Moivre’s formula.
Finally, let us consider a 4 × 4 dual complex orthogonal matrix in the

form6

R =

⎛

⎜
⎜
⎝

−1 −1 −i ε
1 −1 i
−i ε 1 1
ε i −1 1

⎞

⎟
⎟
⎠ ⇔ c ⊗ c̃ =

⎛

⎝
0
0
∞

⎞

⎠ ⊗
⎛

⎝
−i
ε
1

⎞

⎠

so the parametrization of R 1
3 is given by 1√

3
(0, 0, 1)t ⊗ 1

3 (−i, ε, 1)t since

c stands for a half-turn (ϕ = π) while c̃2 = 0. Hence, applying once more
formula (1.25) we easily obtain

3
√

R =
3
√

1
6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
√

3 − 1 −√
3 − 3 ε

√
3 − i i

√
3 + ε

√
3 + 3 3

√
3 − 1 i

√
3 + ε i − ε

√
3

−i − ε
√

3 ε − i
√

3 3
√

3 + 1 3 − √
3

ε − i
√

3 i + ε
√

3
√

3 − 3 3
√

3 + 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

6We use l’Hôpital’s rule since tr R = 0 and thus (1.26) cannot be applied directly here.
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2. Generalized Euler Decompositions

Although the generalized Rodrigues’ formula considered above is just one of
the many ways to approach the problem of rational powers, it really shines
beyond comparison when it comes to Euler-type decompositions considered
below in this section. We begin by briefly revising and extending the technique
used in [5,7] to the complex and dual settings, pointing out that apart from
the obvious similarities to the real case, there are significant differences as
well. For instance, in dimensions higher than three we talk about rotation
planes rather than rotation axes and their existence is ensured only on a
zero measure set given by the famous Plücker embedding (see [2]). As for
the complex case, where the geometric intuition may often be misleading,
we consider the linear span of a three-vector, which may be thought of as
a point in CP

2, and associate it with a commutative subgroup of SO(3,C)
given by (0.4) and (1.1). We shall assume for now that these axis vectors ai

are non-isotropic so one can normalize ai → âi with â2
i = 1 and of course, it

makes sense to demand also that a2 is not aligned with a1 or a3, although for
the latter two no such restriction holds. Moreover, we assign to the vectors âi

the Gram matrix G with entries gij = âi · âj and its adjoint G# with entries
gij equal to the co-factors of gij . We also define the adjoint system of vectors

âi = −1
2
εijkâj × âk

where εijk are the components of the skew-symmetric Levi–Civita symbol and
Einstein summation is assumed. Note that the âi’s defined in this manner
are not unit in general and one has gij = âi · âj . This construction resembles
the one used for conjugate bases but {âi} and {âi} may not be bases as the
volume forms ω = (â1, â2, â3) and ω# = (â1, â2, â3) are allowed to vanish.

Next, we denote rij = âi ·Râj and similarly rij = âi ·Râj . For the mixed
entries, however, one needs to be careful in the way indices are ordered since
R is neither symmetric, nor skew-symmetric, so to avoid confusion, we shall
use proper spacing, e.g. ri

j = âi · Râj and r j
i = âi · Râj . We also consider

the system of invariant vectors {â′
i} for a given decomposition in the body

rotating frame. The two are linked by a curious relation (see [7] for details)

R = R3R2R1 = R′
1R′

2R′
3

where Ri and R′
i leave invariant âi and â′

i, respectively. Applying the trans-
formations consecutively we obtain for the vectors â′

i defining the frame in
motion (note that, as shown in [7], we have for the scalar parameters τ ′

i = τi)

â′
3 = â3, â′

2 = R1 â2, â′
1 = R â1

so the associated Gram matrix G̃ has the same entries as G except for

g̃13 = g̃31 = r31.

We also denote g = det G with the obvious relation ω =
√

g, which holds also
for g̃ and ω̃ as well. Next, following [5,7], one may express different matrix
entries of R in the {âi} frame using formula (0.4), thus obtaining a system
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of quadratic equations for the scalar parameters τi of the Ri’s, starting with

(g31 + g̃31)τ2
2 − 2ωτ2 + g31 − r31 = 0

where the discriminant is 4ω̃2 and we apply the identities

g̃ − g = (ω̃ − ω)(ω̃ + ω) = (r31 − g31)(g̃31 + g31)

to obtain the two solutions (assuming in the second equality r31 	= g31)

τ±
2 =

ω ± ω̃

g31 + g̃31
=

g31 − r31

ω ∓ ω̃

at least for the regular case, in which both the numerator and the denomina-
tor above are non-vanishing. For the other two parameters it is convenient to
use respectively r32 and r21 noting that the Gramm matrix G̃ can actually
be obtained equivalently if in the system of vectors {âi} we only substitute
â1 → R2â1. Similarly, changing instead â3 → Rtâ3 or â1 → Râ1 one obtains
respectively G(1) and G(3) used below

(g23 + g23
(1))τ

2
1 + 2ω̃τ1 + g32 − r32 = 0

(g12 + g12
(3))τ

2
3 + 2ω̃τ3 + g21 − r21 = 0

and with the notation ω1 = r 3
3 and ω3 = r1

1 (note that ω2
i = g(i)) we have

g(1) − g̃ = (ω1 − ω̃)(ω1 + ω̃) = (r32 − g32)(g32
(1) + g̃32)

g(3) − g̃ = (ω3 − ω̃)(ω3 + ω̃) = (r21 − g21)(g21
(3) + g̃21).

Next, we denote for convenience gij
(2) = gij (as well as ω2 = ω) and using a

simple continuity argument (see [5] for details) obtain the solutions7

τ±
i =

ωi ∓ ω̃

gjk
(i) + g̃jk

= εijk gjk− rjk

ωi ± ω̃
, j > k. (2.1)

Note that the necessary and sufficient condition from the real case g̃ ≥ 0
can be dropped here, while the calculations remain identical. There are some
specific cases, for which the proper solution needs to be discussed separately,
e.g. assuming R=I from the first expression in formula (2.1) we easily obtain

τ−
i =

ω

gjk
, τ+

i = 0, j > k

that yields only the trivial solution in the case ω = 0 unless â1 and â3 are
proportional, which might be important if one wishes to consider infinitesimal
transformations as it has been done in [6]. Similarly, whenever

rjk = gjk, j > k

one may decompose as R = RjRk with scalar parameters

τj = εijk ςi

gj[jςk]
, τk = εijk ςi

gk[kςj]
(2.2)

7The indices i, j, k are assumed different and summation is not implied.
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where ςi = c · âi and ςj = c · âj , while a[ibj] = aibj − ajbi denotes the usual
alternator of indices. In the gimbal lock setting, on the other hand

â3 = ±Râ1

formula (2.1) yields indefinite expressions for τ1 and τ3 but their sum or
difference is determined, namely

τ2 =
ς3

g2[1ς2]
,

τ1 ± τ3

1 ∓ τ1τ3
=

ς3

g1[2ς1]
(2.3)

or in other words, for the generalized angles one has

ϕ2 = 2arctan
ς3

g2[1ς2]
, ϕ1 ± ϕ3 = 2arctan

ς3

g1[2ς1]
·

Note that since we work in a projective space it possible to hit the plane
at infinity every now and then. In these cases one may use l’Hôpital’s rule
to determine the corresponding complex direction, e.g. whenever ωk = ±ω̃,
one of the solutions lives on the complex plane at infinity. The corresponding
quaternion is given as (ζ◦, ζ) = (0, n) and as mentioned earlier, this is an an-
alytic continuation of a real-valued half-turn expressed as R(∞n) = 2nnt−I.
We shall denote such transformations associated with infinite elements with
O(n) since they resemble reflections, e.g. one has the involution property
O−1 = O and like in the real case, generate the whole group. Since they are
purely symmetric, however, the vector n can no longer be derived from the
matrix coefficients in the usual way (1.24), but should be obtained as the
eigenvector, corresponding to the only unit eigenvalue, i.e., n ∈ ker(O − I).

The Isotropic Singularity

One major distinction from the real setting is related to the presence of
isotropic directions, for which the rules seem to be somewhat different: on
the one hand, it is not possible to normalize and on the other, a proper
invariant subspace appears—an effect that may be referred to as isotropic
singularity (see Lemma 1 in [5]), namely

Lemma 2.1. For each null vector c◦ (c2
◦ = 0) the normal complement

c⊥
◦ = {c ∈ CP

3 : c · c◦ = 0}
is an invariant subspace for all orthogonal transformations (0.4) with c ∈ c⊥

◦ .
Moreover, the linear span {c◦} is closed under (0.2) and in particular

〈c◦, ·〉 : c̃ → c̃ + λc◦, ∀ c̃ ∈ c⊥
◦ .

Proof. To see this, one only needs to show first that c ∈ c⊥
◦ ⇒ c× c◦ ∼ c◦,

which is quite obvious since on the one hand the cross product lies in c⊥
◦ and

on the other, it is isotropic itself, but {c◦} is the only isotropic direction in c⊥
◦

as it is of complex dimension two. But then, since c ∈ c⊥
◦ ⇒ cct : c◦ → 0,

we have that R(c) indeed preserves {c◦}. Now, since for an arbitrary c̃ ∈ c⊥
◦

c̃ = λc◦ + μc ⇒ R(c) : c̃ → λ′c◦ + μc ∈ c⊥
◦
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so c⊥
◦ is an invariant subspace. Finally, suppose that c1,2 ∈ c⊥

◦ , then we can
express c2 = λc◦ + μc1 and thus

〈c2, c1〉 =
λ(c◦+ c◦× c1) + (1+μ)c1

1 − μc2
1

= λ′c◦ + μ′c1 ∈ c⊥
◦

and in particular, for μ = 0 one has μ′ = 1, which completes the proof. �

With this in mind we are now ready to approach the decomposition
problem:

Proposition 2.2. Let âj ∈ c⊥
◦ for some isotropic c◦ ∈ C

3. The decomposition

R(c) = Rk · · ·R1, k ≥ 2

exists if and only if c ∈ c⊥
◦ , while the solutions depend on k − 2 parameters.

Proof. The necessity follows from the fact that c⊥
◦ is closed under group

composition. To prove the sufficiency we note that unless c ∼ c◦ one has

âk = λkc◦ + μkc ⇒ R(c) âk = λ′
kc◦ + μkc

but as c◦ gives zero contribution to the scalar product in c⊥
◦ , the condition

rjk = gjk holds for any pair of different âi’s. For R(c◦) = I + 2 c×
◦ + 2 c◦ct

◦
we use a different, non-isotropic c above and the action on the ck’s remains
the same. Since we can always decompose in two factors, c = 〈c3, c2, c1〉 =
〈c̃, c1〉 with c̃ = 〈c3, c2〉 holds for a one-parameter subgroup determining the
arbitrary in c⊥

◦ direction of c̃. For k > 3 the result follows easily by induction
using the same technique. �

Note that the above lemma and proposition follow closely a result ob-
tained in [5] for the real hyperbolic case and so does the following construc-
tion. Although the existence of a given decomposition in the isotropic setting
is quite easy to prove, obtaining the particular solutions for the scalar pa-
rameters if not trivial. The problem is that if we apply the methods used so
far, ultimately based on carefully chosen projections, we always end up with

undetermined expressions of the type
0
0
· To avoid this inconvenience in the

two-axes setting, we express the decomposition using (0.2) in the two forms

c1 = 〈−c2, c〉, c2 = 〈c,−c1〉
after which, act on the first equality on the left with â×

1 and on the second
one—with â×

2 . Finally, we take the hermitian scalar product of the result with
the isotropic vector in this subspace c◦ (as the usual one vanishes). Finally,
denoting x◦ = x · c̄◦ for each vector x ∈ c⊥

◦ we can express the solutions as

τ1 =
(c × â2)◦

(â1× â2)◦ + ς2â◦
1 − g12c◦ , τ2 =

(â1 × c)◦

(â1× â2)◦ + ς1â◦
2 − g12c◦ (2.4)

where the numerators are non-vanishing unless one of the âi’s is proportional
to c, in which case the decomposition is trivial. As for the case of three
factors, one may proceed in a similar manner this time with

c1 = 〈−c2,−c3, c〉, c3 = 〈c,−c1,−c2〉
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left-multiplying respectively with â1 and â3, then taking the hermitian prod-
uct with c◦ to obtain the scalar expressions for τ1,3 as fractional–linear func-
tions of the free parameter τ2 (as a generalization of formula (61) in [5])

τ1 =
(σ23 − g23c◦ + ς3â◦

2)τ2 + ρ3

(g3[1â◦
2] + σ3[1ς2] − g12ρ3)τ2 − ς3â◦

1 + g31c◦ + σ31

τ3 =
(σ21 + g21c◦ − ς1â◦

2)τ2 + ρ1

(g1[2â◦
3] + σ1[3ς2] − g23ρ1)τ2 + ς1â◦

3 − g13c◦ + σ13

where we denote σij = (âi× âj)◦ and ρk = (âk× c)◦. Naturally, each pair of
parameters τi, τj can be expressed in a similar way from the third one and
when it is set to zero, we obtain the usual two-factor decomposition, as long
as âi × âj 	= 0. Such fractional–linear relations hold in the general case as
well, but there are no free parameters there except in the singular gimbal
lock setting (see [5,7] for more details).

Note also that we might have some isotropic vectors in the general set-
ting as well, e.g. c ∼ c◦ or âk ∼ c◦, one can still use the standard construction
in these cases and in particular, formula (2.1). However, the normalization
along null direction is arbitrary, e.g. we could use the hermitian one to set
n◦ = 1 or â◦

k = 1 respectively. Another major difference is the trigonometric
interpretation of the scalar parameter τ as in this case Euler’s substitution
yields ϕ = 2τ rather than ϕ = 2arctan τ .

Other Decomposition Schemes

Other factorizations, such as the ones due to Iwasawa, Wigner and Bargman,
are broadly used as a means of group parametrization in geometry and
physics, similarly to Euler angles. We begin with a straightforward complex
generalization of a decomposition into a pair of transformations R = R2R1

proposed in [3], pointing out that the necessary and sufficient condition for it
r21 = g21 is always satisfied if we chose âj arbitrary and (as long as r11 	= 0)

â2 = λ â1×R(c) â1, λ = (1 − r2
11)

−1/2 (2.5)

which together with formula (2.2) yields the solutions

τ1 = ς1, τ2 = ς2 =
√

1 − r11

1 + r11
(2.6)

that may easily be expressed in terms of the corresponding generalized angles

φ1 = 2arctan ς1, φ2 = arccos r11.

Note that similar solutions may be constructed with an arbitrary g12 as

φ1 = 2arctan
(

ς1 − g12τ2

1 + g12ς1τ2

)
, φ2 = arccos

(
r11 − g2

12

1 − g2
12

)
(2.7)

where the second axis is determined from â2 = τ−1
2 〈c,−τ1â1〉 provided that

| arccos r11| ≤ 2| arccos g12|
is satisfied, which in the orthogonal case is by default. Finally, r2

11 = 1 means
that Râ1 = ±â1, which for the positive sign yields a trivial decomposition
and for the negative one—a symmetric form of R with n ⊥ â1 that allows
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for choosing â2 ∈ â⊥
1 arbitrary so that R1 is expressed as a product of

two symmetric transformations (half-turns in the real case), namely R1 =
O(â2)O(n). As pointed out in [3], this might be viewed as an analogue of
the well-known gimbal lock singularity in the Euler-type decompositions. As
for the isotropic singularity, it is clear that as long as both â1 and n belong
to c⊥

◦ for some null vector c◦ ∈ C
3, the construction yields that â2 ∈ c⊥

◦
unless â1 is aligned with the isotropic direction, in which case â2 cannot be
determined from (2.5), so we may choose â2 ∈c⊥

◦ arbitrarily and obtain the
solutions via formula (2.4).

Note that except for the isotropic singularity, the solutions in the com-
plex case are derived in the same way as the real ones. For the applications
it is often preferable to choose the first transformation to be decomposable,
i.e., representing an element of the corresponding Wigner little group that
preserves an elementary particle’s relativistic momentum. To do so, however,
we need to make sure that ς2

1 ∈ R, which gives us three separate cases: R1 is
a rotation for ς2

1 > 0, a hyperbolic Lorentz boost (ς2
1 < 0) and an isotropic

transformation, i.e., an element of the light-cone preserving (so-called “front
form”) little group, that is known to be isomorphic to the group of Euclidean
motions in the plane, for ς2

1 = 0. This, however, does not guarantee that the
second transformation in (2.6) will be decomposable as well, but if we use the
more general construction (2.7) instead, it is possible to choose the param-
eter g12 in such a way, that we end up with both τ2

1 and τ2
2 real. A similar

choice is provided in the singular isotropic setting as well. This is straight-
forward algorithm to present an SO+(3, 1) pseudo-rotation as a composition
of two decomposable transformations, which in theory is known to be always
possible. There are variations to the factorization problem proposed above,
demanding a given fixed value for φ2 without imposing any restrictions on
â2.

Similarly, in the 4 × 4 matrix case one uses formula (1.26) to determine
the two separate vector-parameters. This time the half-turn setting is rec-
ognized by the infinite value of the corresponding scalar parameter—τ or τ̃ .
Then, we use formula (1.4) for the angles ϕ and ϕ̃, which we later multiply
with γ in order to obtain the scalar (respectively vector-) parameters that
provide us with the solution using the corresponding matrix representation
above. Next, fixing the orbits in both copies of SO3, we may consider the
decomposition

c ⊗ c̃ = 〈c3⊗ c̃3, c2⊗ c̃2, c1⊗ c̃1〉 = 〈c3, c2, c1〉⊗ 〈c̃3, c̃2, c̃1〉
using the technique described in the previous section and then translate back
the results into matrix form with the above formula. The results obtained in
[4] for the real forms SO(4), SO(3, 1), SO(2, 2) and SO∗(4) can be derived
from the complex case using different involutions. For instance, the first two,
which are most common, correspond to narrowing the field of scalars to R and
fixing c̃ = c̄, respectively. Note, however, that even in the real case one can-
not associate invariant planes in R

4 or R
3,1 to the commutative subgroups

determined by the generalized axes {ck} ⊗ {c̃k} unless the Plücker embed-
ding relation, namely ck ⊥ c̃k, is satisfied (see [2] for details). This remark
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refers also to representations of SL2 in higher-dimensional spaces studied in
[2], where the embedding is realized via plane transformations satisfying the
Plücker conditions mentioned above and a geometric construction determin-
ing the invariant subspaces is available both in the real and complex settings.
Moreover, it is well-known that an arbitrary special orthogonal transforma-
tion in R

n or Rp,q with p+q = n may be decomposed into
[n

2

]
plane rotations

or pseudo-rotations. The invariant subspaces may be derived from the Jor-
dan decomposition of the compound transformation and one can perform the
procedure described above in each of them separately. Needless to say, this
holds also in the complex and dual settings with only minor changes.

Back to the transfer principle: As it was pointed out in [15], the trans-
fer principle applies also in the decomposition setting. However, like in the
case of generalized powers, singular configurations, such as gimbal lock or
isotropic singularity cannot be resolved directly by this method if they have
a non-vanishing dual part, e.g. c2 =ε. Here one needs to be careful also with
conditions for parallel and orthogonal vectors which hold only modulo ε, but
the kinematical interpretation, for which we refer to [9,13], is quite helpful.

More Examples

Let us begin this time with a regular 3×3 dual complex matrix, to which we
apply polar decomposition into a symmetric and orthogonal component

⎛

⎝
−3ε i(2 + ε) 1 + 3ε
iε 1 − 3ε i(2 − ε)
−1 iε ε

⎞

⎠ =

⎛

⎝
1 + ε 2i ε

2i 1 − ε 0
ε 0 1

⎞

⎠

⎛

⎝
0 iε 1
iε 1 −iε
−1 iε 0

⎞

⎠

and then use formula (1.24) to determine the Rodrigues’ parametrization for
the latter as c = (iε, 1, 0)t. Suppose we want to decompose the orthogonal
factor into three consecutive transformations Q = Q3Q2Q1 with generalized
screw axes given by the unit dual complex vectors

â1 = (ε, 0, 1)t, â2 = (1, 0, iε)t, â3 = (0, −iε, 1)t.

A straightforward application of formula (2.1) and substitution in (0.4) yields

Q =

⎛

⎝
−iε −1 ε
1 −iε −ε
ε ε 1

⎞

⎠

⎛

⎝
1 iε iε

−iε (i − 1)ε 1
iε −1 (i − 1)ε

⎞

⎠

⎛

⎝
ε 1 iε

−1 ε −iε
−iε −iε 1

⎞

⎠

and the other solution takes the form Q =
⎛

⎝
−iε 1 ε
−1 −iε ε
ε −ε 1

⎞

⎠

⎛

⎝
1 −iε iε
iε −(1+i)ε −1
iε 1 −(1+i)ε

⎞

⎠

⎛

⎝
(1+2i)ε −1 −iε

1 (1+2i)ε −iε
iε −iε 1

⎞

⎠·

Our next example illustrates the decomposition (2.5) in a 2×2 setting, namely

M =
1√
2

(
1 + iνε i − νε
i + νε 1 − iνε

)
∈ SL(2,C[ε]), ν =

1 + i

2

from which we easily derive c = (νε, −νε, 1)t and choosing the direction
vector â1 = (1, 0, iε)t, work as in the 3 × 3 representation (0.4) ending
up with r11 = 0, so from (2.5) and (2.6) it is straightforward to see that
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τ1 = (ν + i)ε and τ2 = 1 with â2 = (−iε, −(2ν + i)ε, 1)t, which allows for
decomposing into a pair of dual complex matrices in the following way

M =
1√
2

(
1 + ε −(2ν + i)ε

(2ν + i)ε 1 − ε

)(
1 + (iν − 1)ε 0

0 1 + (1 − iν)ε

)
·

We encourage the reader to try other examples while being on the alert for
pseudo-singularities (modulo ε), in which the complex and dual parts of the
decomposition disagree, so the above construction cannot be applied directly.
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I am grateful to Professor Mustafa Özdemir at Akdeniz University for drawing
my attention to the subject of rational powers and to the organizers of the
Fourth Alterman Conference in Manipal, India, for their kind invitation.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Brezov, D.: Projective bivector parametrization of isometries in low dimensions.
Geom. Integr. Quant. 20, 91–104 (2018)

[2] Brezov, D.: Higher-dimensional representations of SL 2 and its real forms via
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Lenarčič, J., Wenger, P. (eds.) Advances in Robot Kinematics: Analysis and
Design, pp. 193–202. Springer, Dordrecht (2008)

[14] Piovan, G., Bullo, F.: On coordinate-free rotation decomposition euler angles
about arbitrary axes. IEEE Trans. Robot. 28, 728–733 (2012)

[15] Wittenburg, J., Lilov, L.: Decomposition of a finite rotation into three rotations
about given axes. Multibody Syst. Dyn. 9, 353–375 (2003)

Danail Brezov
Department of Mathematics
UACEG
1 Hristo Smirnenski Blvd
1046 Sofia
Bulgaria
e-mail: danail.brezov@gmail.com

Received: December 22, 2019.

Accepted: March 20, 2020.


	Factorization and Generalized Roots of Dual Complex Matrices with Rodrigues' Formula
	Abstract
	Introduction
	Preliminaries
	1. Powers and Roots of Complex Matrices
	Coordinate Representation
	The Algorithm
	The Dual Extension
	The Unit Dual Sphere and Screw Motion
	A Hierarchy of Trigonometric Identities
	Extension to 3times 3 and 4times 4 Normal Matrices
	Applying the Transfer Principle
	Numerical Examples

	2. Generalized Euler Decompositions
	The Isotropic Singularity
	Other Decomposition Schemes
	More Examples

	Acknowledgements
	References




