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Abstract. Recently, Hom-structures have been widely investigated in
literature. In this paper, we introduce the conceptions of double Hom-
associative algebras and double Hom-Lie bialgebras, and give a neces-
sary and sufficient condition for double Hom-associative algebras to be
Hom-associative algebras. Meanwhile, we characterize a classical Hom—
Yang-Baxter equation in terms of both Hom-Lie algebra morphisms
and Hom-Lie coalgebra morphisms. Last but not least, we introduce
the notion of double Hom—Lie bialgebras, and prove that double Hom-
associative algebras are indeed quasi-triangular Hom—Lie bialgebras.
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1. Introduction

As a generalization of Lie algebras, Hom—Lie algebras were introduced from
the motivation for physics and deformations of Lie algebras, in particular
Lie algebras of vector fields. The notion of Hom-Lie algebras was firstly
introduced by Hartwig et al. [10] to describe the structure on certain g-
deformations of the Witt and the Virasoro algebras. Indeed, Hom—Lie alge-
bras are different from Lie algebras in the Jacobi identity, which is replaced
by the twisted form by using an endomorphism. This twisted Jacobi identity
is called Hom—Jacobi identity given by

[CV(x)ﬂ [y7 Z” + [Oz(y)7 [zvﬂ] + [a(z)v [.%', y” =0.
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Recently, Hom-Lie structures have been studied extensively and further in a
series of articles [1,2,4,11,12,17,23,25-27] by many scholars, such as Hom—
Lie bialgebras, quasi-Hom—Lie algebras, Hom—Lie superalgebras, Hom-Lie
color algebras, Hom—Lie admissible Hom-algebras, Hom—Nambu-Lie algebras
and so on.

This twisting manner was applied in other algebra structures naturally.
Then, many Hom-structures were introduced, such as Hom-associative alge-
bras, Hom—Hopf algebras, Hom-alternative algebras, Hom—Jordan algebras,
Hom—Poisson algebras, Hom—Leibniz algebras, infinitesimal Hom-bialgebras,
Hom-power associative algebras, and quasi-triangular Hom-bialgebras [6,8,
9,14-16,24].

The Yang-Baxter equation (YBE) was twisted to be Hom-type called
Hom-Yang-Baxter equation (HYBE) in [25]. The HYBE can be stated as

(a®@B)o(Ba)o(a® B)=(B®a)o(a® B)o(B® a),

where « is an endomorphism of the vector space V, and B : V&2 — V®2 is a
bilinear map that commutes with a®2. Meanwhile, Yau defined the CHYBE
in the same manner and studied Hom—Lie bialgebras in [27].

In [28], associative D-bialgebras were studied, and a necessary and suf-
ficient condition for an associative algebra A with comultiplication A into an
associative D-bialgebra was given by Zhelyabin. In the same article, relations
between some types of Jordan bialgebras and Lie bialgebras was investigated.
In [5], Drinfel’d showed that a Lie algebra L with a comultiplication is a Lie
bialgebra if and only if the double space D(L) = L* @ L is a Lie algebra.
Majid introduced the classical double Lie bialgebra which was proved to be
a quasi-triangular Lie bialgebra in [18].

Based on the above work and the close connection between Clifford
algebra and Hopf algebras in [19,22], we want to investigate double Hom-
associative algebras and double Hom-Lie bialgebras. This paper is organized
as follows. In Sect. 2, we recall some basic definitions and make a sum-
mary of the fundamental properties concerning Hom-structures. In Sect. 3,
we study the properties of Hom-associative algebras and introduce double
Hom-associative algebras D(A*, A). In addition, we discover a necessary and
sufficient condition for the double D(A*, A) to be a Hom-associative algebra.
In Sect. 4, we recall some concepts and results about Hom—Lie bialgebras
and show that Hom-Lie bialgebras are self-dual. Meanwhile, we character-
ize the CHYBE in terms of both Hom-Lie algebra morphisms and Hom-Lie
coalgebra morphisms. That is under what condition a coboundary Hom-—
Lie bialgebra is quasi-triangular. In Sect. 5, we introduce the conception of
double Hom-Lie bialgebras which generalizes double Lie bialgebras in [18§],
and prove that they are indeed quasi-triangular Hom—Lie bialgebras. As an
immediate application, by example, we investigate the quasi-triangular Hom—
Lie bialgebra structure on the Hom-Lie algebra sl(2),. Last, we discuss the
coquasi-triangular structure on the codouble Hom—Lie bialgebra D(L)*.

Throughout the rest of this paper, let k be a field and char (k) = 0.
Unless otherwise specified, vector spaces, algebras, linearity, modules and ®
are all meant over k. Sum symbols are always omitted by Sweedler’s notation:
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we write A(z) = 1 ® x2 in which A is a comultiplication of the coalgebra
C, for x € C. Let & be the cyclic permutation (123), we denote the symbol
O by the sum over id, £, £2. Namely, we denote the Hom—Jacobi identity by
O [e(), [y, 2]] = 0 in place of [a(x), [y, z]] + [(y), [z, 2]] + [a(2), [z, y]] = 0.
Any unexplained definitions and notation may be found in [20].

2. Preliminaries

In what follows, by [3], we recall some concepts and results used in this paper
firstly.

Definition 2.1. A Hom-associative algebra is a triple (A, m,«) where A is a
vector space,
m:ARA— A, a®b— ab,
and o : A — A are k-linear maps satisfying
a(a)(be) = (ab)a(c) (Hom-associativity)

for any a, b, c € A.

The Hom-associative algebra (A, m,«a) is called a multiplicative Hom-
associative algebra if a(ab) = a(a)a(b), for any a,b € A, and called an invo-
lutive Hom-associative algebra if o = id.

Let (A,a,m) and (A’, o/, m’) be two Hom-associative algebras. A linear
map f: A — A is called a Hom-associative algebra morphism if

mo(f&f)=fom foa=dof.

It is obvious that the tensor product (A ® A’,a ® o’/,m @ m’) of two
Hom-associative algebras (A, a,m) and (A4’, o/, m’) is still a Hom-associative
algebra.

Definition 2.2. A Hom-coassociative coalgebra is a triple (C, A, §) where C'is
a vector space,
A:C—=C&®C, c—c®ec,
and 0 : C — C are linear maps satisfying
(BA)ocA=(AR3)0A, (Hom-coassociativity)
for any c € C.

Using Sweedler’s notation, the Hom-coassociativity can be restated as
B(c1) @ (e21 @ e22) = (€11 @ c12) @ B(c2).

The Hom-coassociative coalgebra (C, A, ) is called a comultiplicative
Hom-coassociative coalgebraif Ao = (BRB)oA, ie., f(c)1®06(c)2 = B(c1)®
B(ca), for all ¢ € C, and called an involutive Hom-coassociative coalgebra if
(3% = id.

A morphism f from a Hom-coassociative coalgebra (C, A, ) to another
Hom-coassociative coalgebra (C’, A’, ) is a linear map satisfying

(fefloA=Aof fof=p0f.
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In this paper, all considered Hom-associative algebras are without units and
all Hom-coassociative coalgebras are without counits. In addition, all Hom-
associative algebras considered are multiplicative Hom-associative algebras
and all Hom-coassociative coalgebras are comultiplicative Hom-coassociative
coalgebras.

Definition 2.3. Let (A, m,a) be a Hom-associative algebra. A left A-Hom
module (M, pi, 1) introduced in [19] is a vector space M together with linear
maps 4 : M — M and ¢ : AQ M — M; a®m +— a-m, satisfying the
following conditions

for any a,b € A and m € M.

Let (M, ), (N,v) be two left A-Hom modules. A morphism f: M — N
is called left A-linear if

fla-m)=a-f(m), fou=vof forac A me M.

Similarly, we can define a right A-Hom module and a right A-module mor-
phism.

Definition 2.4. Let (A, m, @) be a Hom-associative algebra, and (M, u) both
a left A-Hom module with the left action “ —" and a right A-Hom module
with the right action ¢ +—". We say the quadruple (M, u, —, <) is an A-Hom
bimodule if

(@ =m) < a(b) = ala) = (m = b),
for all a,b € A, m € M.
In fact, for any Hom-associative algebra (A, m, ), it is an A-Hom bi-

module on itself through its multiplication. The Hom-associativity is just the
compatibility condition of Hom-bimodule.

3. Double Hom-Associative Algebras

In this section, the Hom-associative algebras and Hom-coassociative coalge-
bras are all involutive. In the following, we introduce the definition of double
Hom-associative algebras D(A*, A), and provide a necessary and sufficient
condition for the double D(A*, A) to be a Hom-associative algebra.

Proposition 3.1. Let (C, A, 8) be a Hom-coassociative coalgebra. Consider the
dual space (C*, %) and define the multiplication on C* by setting

<fg,c>:<f,cl><g702>, ﬁ*<f):foﬁa

where A(c) = ¢1 Q ¢, for any f,g € C* and ¢ € C. Then, the space (C*, 3)
with the assigned multiplication is a Hom-associative algebra, which is called

the dual of (C, A, ().
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Proof. For any f,g € C*, ce C,

(B°(f)(gh), c) = (B*(f), c1){gh, c2)

= (£, B(c1)){g, ca1)(h, c22)

= (f, c11){g, cr2)(h, B(c2))
= ((f9)8"(h),c).

That is, 8*(f)(gh) = (fg)8*(h). Meanwhile,

(8*(f9),c) = (fg,8(c))
= (£, B8(c1))(g, B(c2))
= (B*()B"(9). ).
So, (C*, ) is a Hom-associative algebra. In addition, the involutivity of 5*

is from the involutivity of [. O

Similarly, for any finite dimensional Hom-associative algebra, its dual is
a Hom-coassociative coalgebra.

Proposition 3.2. Let (C,A,3) be a Hom-coassociative coalgebra. The dual
(C*,8*) of (C,A, ) determines a C*-Hom bimodule on C, defined as fol-
lows

fAC:(31<f,C2>, Cgf:<f701>C2,
for f € C*,ce C. In addition,

(fg,e)=(f.g—=c)=(g,c = [),

for any f,g € C* and c€ C.
Proof. Firstly, the above actions “ —" and “ " define a left and right
C*-Hom module on C.

In fact, by the Hom-coassociativity, involutivity and comultiplicativity,
for any f,g € C*, c € C,

(fg) = B(c) = Blc1)(fyg, Blc2))
= Bler)(f, Bc21))(g, B(caz))
= cu(f, Ble12))(g, c2)
=0°(f) = (g = o),
B(f = ¢) = Ble1){f, c2)
= B(c1)(B7(f), Ble2))
=pB7(f) = B(o).
So, C'is a left C"*-Hom module. Similarly, C' is also a right C*-Hom module.

Next, the compatibility condition of Hom-bimodule holds: for any ¢ €
C, fecCr

B (f) = (c=g) = (g,c1)B"(f) = c2
= (g, c1)ea1(B*(f), c2)
= (8"(9), B(c1))ea1 (f, Bleaz))
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= (B%(9), crr)era(f, c2)
=(f =) =59
In addition, for any f,g € C*, c € C,
<fgac> = <f7g_\ C> = <gacl_ f> = <facl><g702>-
O
Conversely, we can define the Hom-bimodule on the dual space A* of
some finite dimensional Hom-associative algebra (A, m,«). The following
result and the proof are similar to the above proposition from the Hom-

associativity, involutivity and the multiplicativity of Hom-associative alge-
bras.

Proposition 3.3. Let (A, m,«a) be a finite dimensional Hom-associative alge-
bra, and (A*,a*) be it’s dual with the comultiplication A(f) = f1 ® fa. The
Hom-associative algebra A induces an A-Hom bimodule structure on A*, de-
fined by

a> f= fi{fea), f<a=(fi,a)f,
i.e.,
(av> f,b) = (f,ba), (f<a,b)=(f,ab),
for any a,be A, f € A*. That is, (A*,>,<, ") is an A-Hom bimodule.

Assume that (A, m,«) is a finite dimensional Hom-associative algebra
with a comultiplication A such that (A4, A, «) is a Hom-coassociative coalge-
bra and (A*, a*) is it’s dual. We consider the double space D(A*, A) = A*®A.
Define two linear maps the multiplication “4” and the endomorphism ap on
D(A*, A) by

(f+a)x(g+b) =(fg+ fab+avg)+(abt+ f—=b+a—y),

ap(f +a) = a*(f) + a(a),
for all f,g € A*,a,b € A, where the actions “ +—, —, <,b” are defined as in
Propositions 3.2 and 3.3.

In the following, we will provide a necessary and sufficient condition for

the double D(A*, A) to be a Hom-associative algebra.

Proposition 3.4. Under the assumption as in the above proposition,
(D(A*, A), %, ap)
is a Hom-associative algebra if and only if the following equalities hold:
(ed)1 @ ap((ed)2) = crap(d) ® ca + ap(di) ® cap(ds), (3.1a)
ie.,

ap((cd)1) @ (ed)2 = ap(c1)d @ ap(c) + dy @ ap(c)ds, (3.1b)

OéD(C)dl ® do — aD(dl) X aD(dg)c = CQO{D(d) X cp — QD(CQ) X dOéD(Cl),
(3.2)
for any ¢,d € D(A*, A).
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Proof. Assume that the above equalities (3.1) and (3.2) hold. By the above
propositions, for any f,g,h € A*, a,b,c € A, we have

((f +a)(g+b))(a”(h) + alc) — (& (f) + ala))((g + b)(h + ¢))
= (fg)a"(h) + (f ab)a™(h) + (a>g)a”(h) + (fg) <ac)
+ (fab)<ale) + (a>g)<alc) + (ab) > a™(h) + (f = b)>a™(h)
+ (a = g)>a”(h) + (ab)alc) + (f = b)a(c) + (a = g)a(c)
+ (fg) = ale) + (f <b) = a(c) + (a>g) = alc) + (ab) — o (h)
+ (f = b) = a"(h) + (a = g) = a*(h) — " (f)(gh) — a"(f)(g <c)
— " (f)(b>h) —a™(f) < (bc) —a™(f) <(g =~ ¢) —a™(f) < (b h)
— a(a)> (gh) — ala)> (g<c) — ala) > (b>h) — ala)(be)
— afa)(g = ¢) —a(a)(b— h) —a*(f) = (bc) = " (f) = (g = ¢)
— o (f) = (b= h) —ala) = (gh) — ala) — (g 2c) — a(a) « (b>h)
= (fab)a’(h) + (a>g)a™(h) + (fg) 2a(c) + (f = b)>a”(h
+ (a=g)pa”(h) + (f = ba(c) + (a < g)alc) + (f 9b) = a(c)
+ (a>g) = alc) + (ab) — a*(h) —a*(f)(gac) —a™(f)(b>h)
— o (f)a(g =) = a"(f) < (b= h) — ala) > (gh) — a(a)(g =
— afa)(b = h) —a”(f) = (be) — aa) — (g <c) — afa) — (
The equality (3.1a) implies that
(f = b)ale) + (f 9b) = alc) — " (f) — (bc) =0,
(a>g)a®(h) + (a <= g)>a’(h) — ala) > (gh) = 0,
and the equality (3.1b) implies that
(ab) — a*(h) — a(a)(b — h) — a(a) — (b>h) =0,
(fg)qalc) —a*(f)(g<c) —a™(f)a(g —c) = 0.
Meanwhile, the equality (3.2) implies that
(fab)a”(h) + (f = b)>a*(h) —a"(f)(b>h) —a™(f) (b~ h) =0,
(a = g)a(c) + (a>g) = a(c) — ala)(g = ) — ala) ~— (g<c) = 0.
So, ((f +a)(g +b))(a”(h) + alc)) = (a*(f) + a(a))((g + b)(h +¢)) = 0.

Conversely, since (D(A*, A) is a Hom-associative algebra, we have
(fxa) x a(b) = a*(f) x (a %),
for all f € A*, a,b € A. This implies that
(f<a) = ab) + (f = a)a(b) = a*(f) — (ab).
Let g, f be arbitrary elements in A*. Then
{p(g ® f), (ab)y @ ap((ab)2)) = (g, (f) — (ab))

= (g, (f 2a) = a(b) + (f = a)a(b))
= (g, a(b1)(f, aa(b2)) + a1x(b)(f, az))
= (p(g ® [), a(br) ® ac(bs) + ara(b) ® az),

c)
b h).



8 Page 8 of 25 Y. Chen et al. Adv. Appl. Clifford Algebras

where p: A*® A* — (A® A)* is dense. So,
(ab); ® ap((ab)2) = a1a(b) ® as + a(br) ® ac(bs),

which is the equality (3.1a) restricted on A. In the same way, we can get the
equality (3.1a) restricted on A* from (a * f) x a*(g) = a(a) * (f * g), for any
a€ A, f,ge A*.

Similar to the equality (3.1a), (3.1b) holds because of a(a) x (b* f) =
(axb)xa*(f) and a*(f) x (g*xa) = (f xg) xa(a). The third equality (3.2) is
obtained by using the similar argument to (a x f) x a(b) = a(a) x (f *b) and
(fxa)*a*(g) = a*(f) * (axg), for any a,b € A, f,g € A*. O

4. Hom-Lie Bialgebras

In this section, we mainly recall some concepts and results about Hom-Lie
bialgebras and discuss the dual of Hom—Lie bialgebras. We characterize the
CHYBE in terms of both Hom-Lie algebra morphisms and Hom-Lie coalge-
bra morphisms.

Definition 4.1. A Hom-Lie algebra in [10] is a triple (L, [—, —], &) consisting

of vector space L, bilinear map [—, —] : L®? — L and linear endomorphism
a: L — L satisfying

[I, y] + [ya ‘T] = 07 (anti—symmetry)

O [a(x), [y, 2] =0, (Hom-Jacobi identity)

for any z,y,z € L.

These Hom—Lie algebras with additional property that « is a Lie-algebra
homomorphism, i.e.,
a([z,y]) = [a(z), aly)],
are called multiplicative Hom-Lie algebras. In the rest of the paper, all the
Hom-Lie algebras considered are multiplicative Hom—Lie algebras. Further-
more, if o? = id, we call them the involutive Hom-Lie algebras.

A subspace M of L is a sub-Hom—Lie algebra of L if M is also a Hom—Lie
algebra with the restricted maps

[_7_]|M:M®M—>M, Oé‘M:M—>M.

A morphism of Hom-Lie algebras

f : (L7 [_a _]a Oé) - (L/a [_7 _ya Oé/)
is a linear map such that o’ o f = foa and f([—,—]) = [, —] o f®%
For any Lie algebra (L,[—,—]), we can construct a Hom-Lie algebra
L,=(L,[-,—]a = ao[—,—],a) by a Lie algebra endomorphism « : L — L.

Then some classical examples of Hom—Lie algebras can be given in this way.

Example 4.2. Let W3 be a one-side Witt algebra with basis {e;}32_;, whose
Lie bracket is defined by

les, e5] = (J —i)eits,
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for all integers i¢,5 > —1. W may be identified with Dery(k[z]), the Lie
algebra of k-derivations of the algebra k[z] of polynomials Zf\io k;x' in the
indeterminate x with coeflicients in k.

Suppose that there is a linear map « : {¢;} — {e;} such that it is a Lie
algebra endomorphism given by

oz(ei) = %621‘.
Then we obtain a Hom-Lie algebra (W7, [—, —]a, @) called one-side Hom-Witt
algebra.

Definition 4.3. A Hom-Lie coalgebra in [16] is a triple (T, A, o) with a vector
space I', a linear map A : I' — I'®2 and a linear endomorphism o : I' — T,
such that

Aoa=a% oA, (comultiplicativity)
A+T0A=0, (anti-symmetry)
O(a®A)oA=0. (Hom-coJacobi identity)

The definition of sub-Hom—Lie coalgebra is analogous to sub-Hom—Lie
algebra. A morphism of Hom—Lie coalgebra f from a Hom-Lie coalgebra
(T, A, «) to a Hom-Lie coalgebra (I", A’, o) is a linear map such that

oof=foa and Alof=f%0A.

Let (L,[—,—],«) be a Hom-Lie algebra. For any = € L and integer
number n > 2, we define the adjoint diagonal action ad,, : L®" — L®" by

n

ad, (1 @ ®@yn) = Y _aly) @ @ a(yi1) ® [2,4:] ® ayir1) - @ alyn).
i=1

In particular, for n = 2, we have

ady(y1 @ y2) = [7,y1] ® a(y2) + a(y1) ® [z, ya].

Definition 4.4. A Hom-Lie bialgebra introduced in [27], is a quadruple

(L7 [_7 _]7 Av OZ)
in which (L, [—, —], @) is a Hom-Lie algebra and (L, A, «) is a Hom-Lie coal-
gebra such that the following compatibility condition holds, for all z,y € L,
A([z,y]) = ada(@)(A(y)) — ada(y) (A(2)). (4.1)

Explicitly, the compatibility condition can be restated as
A([z,y]) = [a(z), 11] @ aly2) + aly) © [a(z), 2]
— [a(y), 21] ® a(z2) — a(z1) @ [a(y), z2].

A Hom-Lie bialgebra is a Lie bialgebra with the trivial condition o =
id. Just similar to Lie bialgebras, the compatibility condition in Hom-Lie
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bialgebras says exactly that A € CY(L,L ® L) is a 1-cocycle in Hom-Lie
algebra cohomology.

Let (' A,«) be a Hom-Lie coalgebra, from direct checking, then the
dual space L* = Hom(L, k) is a Hom-Lie algebra under the following Lie
bracket [—, —]° and linear endomorphism a*:

([0,0]% 2) = (9@ @, Alx)), a"(¢) =doa,

for all ¢,p € L*, x € L. Conversely, we consider the dual of a Hom-Lie
algebra in the following.

Let (L,[—, —], @) be a Hom—Lie algebra. Then,
[—,—-]":L* - (L®L)" and a":L*— L™
A subspace M of L* is called good if [—, —]*(M) C M ® M and o*(M) C M,

in which M@ M C L*® L* C (L® L)* and o*(¢) = ¢ o v, for any ¢ € L*.
This means that there exist two linear maps

A° M —-MM and :M—M
such that A°(¢) = ¢1 ® ¢o and [(¢) = a* () for ¢, d1,pa € L*. Then,

(A%(d), z @ y) = (¢, [z, y]) = (P1,2)(d2,Y),
and B(¢)(z) = ¢p o a(x) for z,y € L.

Let L° = " M be the sum of all good subspaces of L* and o° € End(L°)
such that a°(¢) = ¢oa, for any ¢ € L°. Then, L° is a sub-Hom-Lie coalgebra
of L* clearly. Furthermore, we obtain the following result.

Proposition 4.5. Let (L,[—, —], A, «) be a Hom—Lie bialgebra. Then,

(LO, [7’ 7]O7AO’O[O)
defined as above is also a Hom—Lie bialgebra.
Proof. Since L° is a good space of L*, we know that L° is both a Hom—Lie
algebra and a Hom—Lie coalgebra. So, we only need to check the compatibility
condition (3.1) of L°.

As a matter of fact, for any ¢, € L°, x,y € L,

(A%[g, ¢]% 2@ y) = (P ® p, Alz, y])
= (0@ [a(r), 1] @ aly:) + alyr) @ [a(z), y2] — [a(y), 21] @ alz2)
— afz1) @ [a(y), z2])
= (1@ d2 @, a(z) @Y1 @ ayz)) + (0 ® 1 ® @2, a(y1) @ a(r) @ ya)
— (91 ® P2 ®@ ¢, a(y) ® 1 ® a(22)) — (¢ ® 91 @ P2, (1) ® AY) ® T2)
=(a®(¢1) ® g2 ® a°(), T @ Y1 ® Ya2) + (a°(}) ® a°(p1) @ pa,
Y1 @ @ y2) — (@°(P1) ® 2 @ a®(p),y @ 11 ® x2)
= (a®(¢) ® a°(p1) ® P2, 71 O Y ® T2)
= —(a%(¢1) ® [2°(¢), $2]°, 2 @ y) + (a°(¢1) ® [a°(9), p2]°, 2z ® y)
— ([°(9), 91]° ® a®(d2), 2 @ y) + ([a°(9), p1]° ® a°(p2), z @ y)
= (adae(9) (A%(9)) — adae () (A°%(9)), 2 @ y).
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So,
A°[$,¢]° = adae () (A°(p)) — adae () (A°(4)),
by using the compatibility condition of L and the anti-symmetry of L°. [J

Note that Proposition 4.5 interprets the self-dual property of Hom-—
Lie bialgebras which is the generalization of the self-dual property of Lie
bialgebras in [21].

Definition 4.6. A Hom-Lie bialgebra (L, [—, —|, A, @) is called a coboundary
Hom-Lie bialgebra in [27] if there exists an element r = > r1 ® 1 € L® L
(the sum symbols always omitted), such that for any x € L,

a®2(r)y =7, Az) = ad.(r).

Furthermore, if r satisfies the classical Hom—Yang-Baxter equation (abbre-
viated to CHYBE)

CH(r) = [r'2, 73] + 2,72 4 [r13, 23] = 0,

then we call it a quasi-triangular Hom—Lie bialgebra. Here,
(12,7 = [r,r] @ alrs) @ a(r),
[r12,r%] = a(r1) @ [r2, 1] @ a(ry),
[12,r%] = a(r1) @ a(r}) ® [r2, 1),

where 712 = r @1 =1 e 1,r'? = Tid)(1®r) =1 ® 1 r,
r?® =1®r=1®r ®re, and 7’ is another copy of r.

Note that for a coboundary Hom-Lie bialgebra (L, [—, -], A, a, 1), the
symmetric part ry =1y ® ro + ro ® r1 is ad invariant, i.e., ad,(ry) = 0, for
all x € L. This is equivalent to the fact that A is anti-symmetry.

Example 4.7. Let si(2) = span{H, X1} be the three-dimensional simple Lie
algebra [27] with the bracket

[H,X.]=+2Xy, [X,, X_|=H.

It becomes a Lie bialgebra when equipped with the cobracket A : sl(2) —
sl(2) ® sl(2) defined by

A(H)=0, A(Xy)=3(X:1®H-H®Xy).
Setting
r=X,®X_+iH®H,

we obtain a quasi-triangular Lie bialgebra (sl(2),[—, =], A,r) in [13].
Consider a linear endomorphism of Lie bialgebra « : sl(2) — sl(2)
defined by

a(H)=H, ofXy)=c"Xy,

for the two non-zero complex numbers ¢* € C. Then, there is a HomLie
bialgebra

sl(2)a = (8l(2), [, —]a =ao[—,—], Ay = Ao a,a)
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with the Lie bracket and the Lie cobracket given by

(H, Xi]o = +2c5 Xy, [X4 X ]o=H,

AL(H)=0, Af(Xy)=1ic*(Xi@H-H®Xy).
Furthermore, sl(2), is a quasi-triangular Hom-Lie bialgebra with the same

r as in sl(2) with a®?(r) = r by direct computation.

In the following proposition, we characterize the CHYBE in terms of
both Hom-Lie algebra morphism and Hom—Lie coalgebra morphisms, which
tells us precisely when a coboundary Hom-Lie bialgebra is quasi-triangular.

Proposition 4.8. Let (L,[—, —], A, a, 1) be an involutive coboundary Hom—Lie
bialgebra with r = r1 @ ro. Then L is a quasi-triangular Hom—-Lie bialgebra
if and only if s1 : L™ — L defined by s1(¢) = (¢, a(r1))rs is a Hom—Lie
algebra morphism. Likewise, if and only if so : L* — L defined by so(¢) =
r1{@,a(rs)) is a Hom—Lie coalgebra morphism.

Proof. From the involutivity and coboundary of Hom—Lie bialgebra, we have
aos1(¢) = (¢, a(r1))a(rz) = (@,r1)r2
= (a* (), a(r1))r2 = s10a™(d),

for all ¢ € L*.
Then, to show that L is quasi-triangular if and only if s; is a Hom—
Lie algebra morphism, is equivalent to show that CH(r) = 0 if and only if

s1([0, ¢]) = [51(¢), s1()], for any ¢, € L*.
Indeed,

s1([0,#]) = [51(0), s1(p)]

= ([¢, ¢, a(r1))ra = (6, a(r1))(p, a(ry))[r2, 5]

= (¢®@ ¢ @id, Ala(r)) ® r2 — a(r1) @ a(r]) @ [rz, 15))

= (¢®e®id [a(r),r] ® a(ry) @ r2 + a(r]) @ [a(r),r5] @
= a(r1) @ a(r]) @ [ra, 1)

= (@@ e®id[r,r] ©a(ry) ® a(r2) + a(r]) @ [r1, 5] ® a(re)
— a(r1) @ a(ry) @ [rz, 1)

=(¢p®p®id,—CH(r)),

where r’ is another copy of 7, so, L is a quasi-triangular Hom—Lie bialgebra
if and only if s; is a Hom—Lie algebra morphism.
The proof for ss is strictly analogous. Similarly,

a0 s2(d) = s20a"(¢) =r1(s2,72).
Meanwhile, CH(r) = 0 if and only if Ao sy(¢) — (52 ® s2) 0 A(¢) = 0. In fact,
Ao sy(p) — (s2 @ s2) 0 A(¢)
= A(r1)(¢, a(r2)) — r @11 (A(4), alr2) @ a(r))
= ([r, ] @ alry) + a(ry) @ [r1, r)) (4, a(r2)) — 11 @11, [a(rz), ary)])
= (id®* ® ¢, [r1,71] @ a(ry) ® a(r2) + a(rh) @ [r1,75] ® a(r2)
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=1 @1 ® [arz), a(ry)])
= (id®? ® ¢, —[r1, ] ® a(r2) ® a(ry) — a(r1) @ [r2, 7] ® a(r))
— a(r) @ a(ry) @ [ra, r3))
= (id®* @ ¢, —CH(r)).
So, L is a quasi-triangular Hom-Lie bialgebra if and only if s5 is a Hom-Lie

coalgebra morphism. O

Lemma 4.9. Let (L,[—,—],«) be a Hom~-Lie algebra andr =1 ®@re € L L
such that a®%(r) = r. Set A = ad(r) : L — L ® L. Then, it satisfies (5.1),
i.e.,

A([xvy]) = ada(z)(A(y)) - ada(y)(A(x))v
which is the compatibility of Hom—Lie bialgebra.

Proof. By the Hom—Jacobi identity, anti-symmetry and a®?(r) = r, we have
ada(a)(A(Y)) — ada(y) (A2))
= ada () ([y,71] @ a(r2) + a(r1) @ [y, m2]) — (z < y)
= la(@), [y, m]] @ &®(r2) + aly,m] @ afz, 2] + afz, 1] @ aly, 7]
+ a?(r) @ [a(2), [y, r2]] — (z < y)
= [[z,y), a(r)] @ a®(r2) + a®(11) @ [z, y), a(r2)]
= [[z,y],m1] ® a(rz) + a(r1) @ [[z,y], 2]
= adpz,)(r) = A([z,y])

for any z,y € L, where x « y means swapping x for y in the forward
expression. O

Proposition 4.10. Let (L,[—, —], @) be an involutive Hom~Lie algebra and r =
71 ®ry € L® L such that a®*(r) = r, r = —7(r). Set

Az) = ad;(r) = [z,71] @ alr) + a(r) @ [z, ra].
Then, O (@ ® A) o A(x) = ady (4 (CH(r)) for any x € L.
Proof. From the fact a(r;) ® a(ry) = r1 ® ro and L is involutive, we have
a(r) ®@re =11 @ a(rse),

which is used in the following proof. By the definition of A and the properties
of r, for any element = € L,

ady(z) (CH(r))
= [a(@), [r, M)l @ re @ ry + a(fr,r]) ©
+ a([r1, 1)) @ 2 @ [a(), a(ry)] + [() (n)
+ 71®@ [a(z), [ra, ]| @ 15 + 11 @ af[re, 7]) @ |
+ (@), a(r)] @ ry @ a([rs, 75]) + 71 @ [a(2), a(r]) @ a([rs, 75])
+ @7 @ [a(@), [ra, 5]
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= [a(@), [r, 1] @ ra @ 1y + [r1, ()] @ [a(x), ro] @ 15

(1) (2)
+ [a(r), r] ® r2 ® [e(@), 73] + [a(@),71] @ [r2, a(r))] @ 75
(3) (4)
+ 71 ® [a(2), [ra, 1] @ 15 + 11 @ [a(ra), 7] @ [e(@), 73]
(5) (6)
+ [a(z),ri] @71 @ [r2, a(ry)] +71 @ [alz), r1] @ [a(rz), 5]
(7) (8)
+ 11 @1 @ (@), [r2, 1] -
(9)

Meanwhile,

O (a®A)oAx)

=0 (@@ A)([z,m1] ® a(rz) + a(r1) @ [z,72])

=0 a([z,n1]) ® [a(r2), 1] ® a(ry) + al[z,7]) @ a(r]) @ [a(rz), 5]
+ 711 @ [[z, 2], 1] @ a(ry) + 11 @ a(r)) @ [[z, 2], 7]

=0 [a(x),m1] ® [r2,71] @ a(ry) + [a(2), 1] © a(r}) @ [ra, )]
+ 711 @ [[z,r2], 1] ® a(ry) + 1 @ a(r)) ® [[z, 2], 7]

= [a(z),r1] @ [r2, 7] @ a(r3) + [(@),71] ® a(r]) @ [ra, 5]

(4) (7
+ 71 @ [[2, 2], 1] @ alrh) + 11 @ a(r)) @ [[z, 2], 1)
(5) (9)
+ [r2, 7] @ a(ry) @ [a(z),m1] + a(r]) @ [r2, 75] @ [a(x), 1]
(3) (6)
+ [[z, 2], 7] @ a(ry) @ r + a(r)) @ [[z, 2], 5] @ 11
(1) (5)
+ a(ry) @ [a(x), 1] @ [r2, 7] + [r2, 75] @ [a(z), 1] @ a(r])
(8) (2)
+ a(ry) @ @ [[x, 7], ] + [[x,72],75] @ 11 ©@ a(r]) .
(9) (1)

We break these twelve terms into nine groups, which is equal to the nine
terms of ad ;) (C H (7)) respectively. O

From Lemma 4.9 and Proposition 4.10, we have the main result of this
section, which generalizes the result in [5].

Theorem 4.11. Under the assumption of Proposition 4.10, A endows
(L7 [_7 _]7 Av CY)
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with a coboundary Hom-Lie bialgebra structure if and only if ad () (CH(r)) =
0 for all x € L.

Corollary 4.12. Let (L,[—, —],«) be an involutive Hom~Lie algebra and r €
Im(id — 1) satisfy CHYBE. Set A(x) = ad,(r), for any v € L. Then
(L,[—, -], A, ) is a coboundary Hom—Lie bialgebra.

Proof. Since r € Im(id — 7), we get the anti-symmetry of A easily. The
compatibility of Hom-Lie bialgebra is from Lemma 4.9. In addition,

O (a®A)oA(zr) =ady) (CH(r)) =0
from Proposition 4.10. So, by the above theorem, (L,[—,—],A,«) is a
coboundary Hom-Lie bialgebra. O

In Proposition 3.4, if (3.1) and (3.2) hold, then we would get a double
Hom-associative algebra (D(A*, A),x,ap) on the finite dimensional Hom-
associative algebra (A, m, «). Define a Lie bracket on (D(A*, A) as follows

[f+a,9+0=(f+a)x(g+b)—(g+b)x(f +a),
that is,
[f+a,g+b=(fg+fab+arg)+ (ab+ f—b+a+g)
- (fegaob)
=fg—gf+f<ab—b>f+arg—g<a
+ab—-ba+f—-b—b—f+a—g—g—a,
for any f,g € A* a,b € A, where (f < g,a < b) means swapping f for g,
and a for b in the formal expression.
Furthermore, if there exist two pairs of linearly independent elements
fo,90 in A* and ag, by in A satisfying
a®?((fo + a0) ® (9o + bo) — (g0 +bo) ® (fo + ao))
= (fo + ao) ® (90 +bo) — (g0 + bo) ® (fo + ao),
and,
fogo — gofo + fo by — bo > fo + ao > go — go < ao = pa*(fo),
aobo — boao + fo — bo — bo — fo +ao “— go — go — ao = pa(ap),
in which 0 # p € k.
Then, from Theorem 2.4 in [4], there is a quasi-triangular Hom-Lie
bialgebra (D(A*, A), [—, —],A = ad(r),r,ap) by setting
r = (fo+a0) ® (go + bo) — (9o + bo) ® (fo + ao).
In addition, if A is commutative, the Lie bracket becomes
[f+ag+b=fg—gf+f—=b-b—f+ta—g—g—a
In this moment, we can obtain a Hom—Lie bialgebra under the following two
conditions
fogo — gofo = pa*(fo),
fo—bo —bo ~ fo+ao — go — go — ap = pa(ao).
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5. Double Hom-Lie Bialgebras

In this section, we introduce the notion of double Hom—Lie bialgebras which
generalizes double Lie bialgebras in [18] and show that the double Hom—Lie
bialgebras are indeed quasi-triangular Hom—Lie bialgebras. Meanwhile, we
discuss the coquasi-triangular structure on the dual space-codouble Hom-Lie
bialgebras.

We cite a useful lemma in [27] which plays an important role in Theo-
rem 5.2.

Lemma 5.1. Let (L,[—,—],«) be a Hom-Lie algebra and r € L®? such that
a®%(r) =r. Then A = ad(r) : L — L®? satisfies
adp, (1) = ady(e) (ady (1)) — ada(y)(adz(r))
for any x,y € L.
Theorem 5.2. Let (L,[—,—],A,a) be a finite-dimensional involutive Hom—

Lie bialgebra with the dual space L* given by the note after Proposition 4.5.
Then, there is a quasi-triangular Hom—Lie bialgebra

(D(L) =L" @ L7 [_7 _]D7 AD7 OCD,’I")

called double Hom—Lie bialgebra, built on L*°P ® L as a vector space, with the
following structures,

@z, 0D yYlp = [p, 9]

+p1(p2, ) — $1(¢2,y) @ [z, Y] + 71 (p, T2) — Y1(P, y2),

Ap(¢+ ) = ¢1 ® 2 + 21 ® 22,

ap(¢+ ) = a™(¢) + a(z),

r=3 (f*®@ale.) +a*(f*) @ ea),

for all ¢, € L*, x,y € L. Here, L*°P and L are sub-Hom-Lie bialgebras,
where (—)°P denotes the opposite Lie bracket, the set {e,} is a basis of L and
{f*} is its dual basis.

Proof. Noting that every element of direct sum has a unique decomposition
into a vector in L* and a vector in L, and from the definition of D(L), we
know that,

(¢, 0lp = =[¢, ¢, [z,y]D = [z,

[z, ¢lp = ¢1(d2, ) + 21(P, 72),
Ap(¢) = A(), Ap(z) = A(w),
ap(¢) = a’(¢),ap(z) = a(z),

for all ¢, p € L*, z,y € L, where the right hand of the above equalities are
in terms of the structures of L* and L.

Tt is clear that [—, —]p is anti-symmetric and the Hom—Jacobi identity
holds when we restrict all the elements on L* or on L. So, we need to check
the cross brackets.

yl,
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In fact, for any ¢, € L*,x € L,

O [an(2), [¢,¢]p]D
= [a(2),[9,¢lp]D + [ (), [p, 2]D
= la(x), [6, ¢lplp + [ (), [, 2]D]
[a(z), [¢,¢]p]D
= — [, ¢l ([0, ¢l2, a(@)) — a(2)1([¢, o], a(2)2)
= —[a%(9), p1l(a™ (p2), a(2)) — @ (P)1{[@" (), o], ()
— (9= p) —(ld@a™(9) ®a’(p), (@@ A) o Az)) (by (4.1))
= —["(9); prl(pa, 2) — o™ (p1){[8, " (p2)], 7)
— (P o p) —(ldoa™(d) ®a™(p), (@@ A) 0 A(z)),

where ¢ < ¢ means swapping ¢ for ¢ in the forward expression. On the other
hand,

o U

[a*(¢), [¢,z]plp — [" (), [¢,2]p]D
[a*(¢), [, 2]p]p — (¢ < @)
= [a%(9), p1l{p2, ) — [a™ (), z1]p{p, 22) — (¢ < )
= [a"(8), p1](p2, ) + a™(d1){" (¢2), 21) (¢, x2)
+ (id® a™(¢) ® v, (A ®id) o Alx)) — (¢ < ).
Then, by merging the above two equalities, we have

O [ap (), [¢, ¢lplD

= —(d®a"(¢) ® a*(p), (0 ® A) o A(x))
+ (id ® a*(¢) ® ¢, (A @ id) o A(x))
—(id® a™(p) ® ¢, (A @ id) o A(z))

= —(id® a*(¢) ® a* (), (a ® A) o A(z))
+{id® a™(¢) ® a*(v), (A ® a) o A(z))
—(id® a”(p) ® a*(¢), (A ® @) o Az))

= —(id®a"(¢) ® a’(p),0 (e ® A) o A(z)),

which is just the Hom—coJacobi identity for L. So, O [ap(x), [¢, ¢]p]p = 0.

Similarly, from the Hom—coJacobi identity for L*, we can prove that
O [aD(x)ﬂ [y7¢}D]D =0, for any r,y € L7¢ €L

Thus, (D(L),[—, —]p,ap) is a Hom-Lie algebra.

In addition, from the definition of Ap, we know that it satisfies the anti-
symmetry and the Hom-coJacobi identity, so (D(L), Ap,ap) is a Hom-Lie
coalgebra.

In the following proof we need two very useful identities:

o (f*) @ alea, )(; aleq,)) = [f* 0] ® €q, (5.1)
fi(f3,2) ® ea = a™(f*) @ [a(ea), ], (5:2)
for any ¢ € L*,xz € L. These are true by using the fact of duality pairing
fp,eq) = ¢ and (f* x)e, = x, for all ¢ € L*, x € L. In fact, for any
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o, p€L",

= " (f*) (e [w, ¢, €a)
= (fa)<(,07 a(em )><¢7 a(6a2)>7

so, equation (5.1) holds.
In the same way, the second identity is satisfied too.
By the identity (5.1), for any ¢ € L*, x € L, we have,

ady(r) = jady(f* ® aleq) +a*(f*) @ ea)
=3[0, flp @ ea + " (f*) ® [¢,alea)]D + [¢, 0 (f))]D ® alea)
+ f*®[¢,ealp)
= 3([f* ¢l @ ea — ™ (f*) @ ¢1 (92, alea))
—a"(f*) @ aleq,)(; aleq,)) + [ (f), 0] @ alea)
= [*® d1(d2,€a) — [ @ €a, (0, €a,))
= 2(—¢2 @ P1 — 2 ® ¢1)
= Ap(9).
Meanwhile, from the identity (5.2),
ad,(r) = %adw(fa ® afeq) +a* (f*) @eq)
= 3([z. f]p ® ea + " (f*) ® [z, alea)]p + [z, 0" (f*)]D ® alea)
+ f* @ [z, ea]D)
= (1[5, 2) @ ea + 21 (f*, 22) @ e+ (f*) @ [z, a(eq)]
+ o (f7){e"(f2),2) ® alea) + x1(a”(f*), 72) ® a(ea)
+f* ® [z, ed])
= %(xl ® x2 + x1 @ T2)
= Ap(z).
So, Ap(d) = ady(r), for any d € D(L).
In addition,
aB(r) = aB’(f* @ aled) +a*(f*) @ea) =,
from Lemma 5.1, the compatibility of Hom-Lie bialgebra
Aple,d] = ady () (Ap(d)) — ada(a)(Ap(c))

holds, for any ¢,d € D(L). Thus, (D(L),[—, —]p,Ap,ap,r) is a coboundary
Hom-Lie bialgebra.

Last, r obeys the CHYBE. Since r = 1(f* @ a(e,) + o*(f*) ® €4), by
Definition 4.6,

’)"12 = %(fa ®Ol(€a) ® 1 +a*(fa) RKeq ® 1)5
P =L(f'o1l®ale)+a*(f*) @1 e,),
P =110 f*® aled) + 10 a*(f*) @ ea),
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we have

CH(r) = 1([f* ']p ® ea @ e + [f*, 0" (f")]D ® €a ® aley)
(1) (2)
+[a*(f*), F'lp ® alea) ® e+ [ (f), & (f*)]p @ alea) @ aep)
(3) (4)
+a*(f*) @ [aled), f']p ® e, + o (f*) @ [alea), a* ()] @ ales)
(1) (2)
+ £ @ [ea, f'lp @ €+ f* @ [ea, & ()] ® cu(es)
(3) (4)
+a* (f*) @ a* (f*) © [alea), aler)p + o (f) @ f* © [a(ea), es] D
(1) (2)
+ 2@ a*(f*) ® [eq alen)p + [ @ f* @ [ea, e1]D),
(3) (4)

which can be divided into four groups as above. One of the groups (1):

[f% D ® ea @ ep + & (f*) @ [alea), fPlp ® €
+a*(f) @ a*(f*) @ [alea), ales)]p
=—[f" M1 @ea®@en+a*(f*) @ f1{f5, alea)) @ ey
+ " (f) @ alea, ) (" alea,)) @ ey
+a*(f) @ (f°) @ [afea), oen)]
=0,

by identities (5.1) and (5.2). In the same way, the other three groups are all

zero too. So, CH(r) = 0.
Thus D(L) is a quasi-triangular Hom—Lie bialgebra. O

Example 5.3. Let si(2), be the Hom-Lie bialgebra and si(2)* be its dual
Hom-Lie bialgebra given in Example 4.7. For the condition a? = id needed
in Theorem 5.2, so, ¢ = +1 in Example 4.7. But if ¢ = 1, then the Hom-Lie
bialgebra sl(2), is just sl(2). So, ¢ can be only equal to —1. At this particular
moment, the structure maps of si(2), are given by

Oé(H) = H, a(Xi) = —Xi7
[HvX:I:]a ::F2X:|:7 X+7X7]Oz :Hv
Aa(H) =0, Au(Xa)=—L(Xow H - HeXa).

Respectively, the structures of sl(2)} are as follows

of(H*)=H", o"(X1)=-XI,
(X1, Ho=—-1X1, [X1,X%]a=0,

AXD)=F2H" @ XL - X1 ®@H"), A (H")=X]®X" -X"®X].
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From direct computation, we obtain the double Hom-Lie bialgebra D(sl(2),,)
built on the vector space sl(2)% @sl(2), with the following structures [—, —|p,
Ap, and ap:

[(Xi,H'|p=3X:1, [Xi,X]p=0, [H Xi]p=TF2Xy,
X+, X_|p=H, [HH|p=0, [Xy Xi]p=F2H"+1H,
[H,X3]p = +2X5, [Xi H']p=—3X:FXZ,
Ap(Xi)=F2H" @ X -XI1®H"), Ap(H")=X]®X' -X'®X],
Ap(H)=0, Ap(Xi)=—-3(X+®H—-H®Xz),
ap(H*)=H*, ap(Xi)=-Xi, ap(H)=H, ap(Xy)=-Xy.
In addition,
=1i(H"®@a(H)+a"(H)® H+ X} ®a(Xy)
+a" (X)X + X @a(X_)+a" (X))@ X_)
=H"@H-X;0X; -X"®@X_.
That is, the double (D(sl(2)a), [—, —]p, Ap, ap, ) is a quasi-triangular Hom—
Lie bialgebra.
Example 5.4. Working on the complex filed C, we know that sl(2), and
sl(2)% defined as in Example 4.3 have another dual bases
er=—5(Xy +X), ea=-3(Xy-X), e3=-1H,
fl=i(X5+X%), fP=-(X;-Xr), f*=2H"
We can easily check that (f® e,) = 0y by the duality pairing relation. We

can construct another quasi-triangular Hom—Lie bialgebra on D(sl(2),) with
[—, —]p, Ap,ap defined as above and r’ given as follows:

v =13 (" @ alea) + 0" (f*) @ ea)

=3(f'@ale) +a* () @er + [P @ aler) + a (f*) @ ez
+ P @ales) +a* (%) ®e3)

= L(XI+X)® (X4 + X )+ (X; - X5)® (Xy — X))
—2H"®H)

—H'®OH-X:0X, - X" ®X_.

We find that r = r/ clearly. That is, though sl(2), and sl(2)7 have different
dual bases, D(sl(2),) has the same quasi-triangular structure.

We give a useful lemma in [27] which plays a key role in Proposition 5.6.

Lemma 5.5. Let (L,[—,—],A,«) be a Hom-Lie bialgebra and t € L®? such
that a®?(t) = t,ty; = ft and
a®(ad, (CH(t)+ O (@ ® A)(t)) =0

for all x € L. Define the perturbed cobracket Ay = A + ad(t). Then, L; =
(L,[—, =], At, @) is a Hom-Lie bialgebra.
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Next, we consider the codouble Hom-Lie bialgebra D(L)* built on the
vector space L°°P @ L* which is the dual to the double Hom-Lie bialgebra
D(L). From the note after Proposition 4.5, D(L)* has a Hom-Lie algebra
structure and a complicated Lie cobracket, which is just analogous to the
codouble Lie bialgebra in [18]. In addition, we know that the twisting map
apry- = a+ a*. Then we have the following result.

Proposition 5.6. Let (L,[—, —], A, a) be a finite dimensional involutive Hom—
Lie bialgebra. From the Lie cobracket of Hom—Lie bialgebra L°°P & L*, we
define a perturbed Lie cobracket Apcorgr+ + ad(t) which is exactly the Lie
cobracket Ap(ry- of codouble Hom—Lie bialgebra, where

t= 53 (" (f*) ® ea — ea ® (%) + f* © alea) — alea) © 7).

Here {e,} is a basis of L and {f} is its dual basis, and the L°°P denotes the
opposite cobracket.

Proof. Except for apcorgr(x @ ¢) = a(x) ® a*(¢), the Hom-Lie algebra
structure on L°°P & L* means that
[z® ¢,y ® @l = [z,y] ® [0, 4],
and the Hom—Lie coalgebra structure on LP @& L* means that
Apeorgre(x) = —=A(x); Apcorgr-(9) = A(9),

for all z,y € L,¢,p € L*, or equivalently, L, L* are both sub-Hom-Lie
algebras with [z, ¢] = 0 for the Lie bracket between them and sub-Hom-Lie
coalgebras for the corresponding Lie cobrackets of them respectively.

The duality paring of the codouble is given by

(D, p@Y) = (T,90) +(,9).

Using this, we can obtain the Hom—Lie cobracket of codouble as follows

(Apr) (@ 9),(¢@yY) ® (¥ ® 2))
= (Do, [p @Y, YD zlpw))
= (2@ ¢, (—[p, Y] + V1 (Y2,y) — p1(p2,2))
® ([, 2] + Y1, y2) — 21(p, 22)))
= (@, =[p, ¥]) + (2,91 (¥2,)) — (z,901(p2, 2))
+ (9, [y, 2]) + (&, y1(¥, y2)) — (9, 21 (P, 22))
= (—A2), e @ ¥) + ([z,9],¥) — ([z, 2], )
+ (A(¢),y ® 2) + ([0, 9], ) — ([0, ], 2).
On the other hand,
(Apcorgr-(x @ @) + adaag(t), (¢ D y) ® (Y © 2))
= (Apcorgr- (2D ¢), (p B Y) @ (Y @ 2)) + (adzae(t), (¢ B y) ® (Y & 2))
= (-A) + A(9), (¢ @ y) @ (Y @ 2))
+ (3([0, " (S @ aled) + [ @ [ e0] — [, €] @ [
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= afea) @ [¢, " (f*)] + [, fU] @ ea + " (f*) @ [z, a(ea)]
= [z aled)] @ (f9) —ea @ [0, [*]), (¢ @ y) @ (¥ @ 2))
= (~A(x), ¢ @ ¥) + (A(9), y ® 2) + 5({[¢, " (f*)] ® a(ea)
+ [0, [ ®ea,y @) + (f* @ [z, ea] + " (f*) @ [z, 0(ea)],y @ ¥)
— ([2,ea) @ £ + [, 0lea)] @ 0*(F2), 0 © 2) — (alea) @ 9,07 (£)]
+ ea ® (8, f], p ® 2))
= (-A(2),p@Y) + (A(¢),y ® 2)
+ ([0, 9] y) + [z, 9l ) — ([, 2], ) — ([0, 4], 2),
for any z,y,z € L, ¢,p,9 € L*. So,
Ap(ry = Apcorgr+ + ad(t),
and the Lie cobracket of the codouble on the Lie subalgebras is
Apry-(z) = =A(x) + Toad, —ad,, Appy«(¢) = —A(¢) + 7oadg — adg,

for all x € L,¢ € L*, where we regard ad, : L — L and ady : L* — L* as
elements of L ® L* in the natural way.

Next we show that the stronger condition in Lemma 5.5 is satisfied.
That is,

CH()+ O (apeorgre © Apeorgr-)(t) = 0.
In fact,
CH(t) = ([o*(f*),a" (f")] ® alea) @ aley) + [ (f*), f*] @ alea) @ e
+ [eq,e5] @ f2 @ f° + [ea, aler)] @ f2 @ a*(f?)
+ [f% " ()] @ eqa @ ales) + [f% 1] @ eq ® e
+ [a(eq), e5) @ a* (f?) @ O+ [aeq), alen)] @ @ (f*) @ a*(f°)
— Y@ [ea,er]) @ F° — [ @ [ea, aler)] @ a*(f°)
— aleq) @ [a* (f9), 0" (f*)] @ aley) — aleq) @ [ (f), f*] @ ey
— a*(f*) @ [aled), €] @ f* — o (f*) ® [a(eq), aes)] @ a*(f°)
— e @[ a () @aler) —ea @ [ [l @ e
+ Y@ P @ learen] + [ @ a*(f°) @ [ea, ales)]
+ aleq) ® aley) @ [ (f), & (f*)] + aleq) @ e @ [ (f*), f*]
+ a*(f*) © f* @ [aled), e] + a* (f*) @ a*(f*) @ [alea), alep)]
+ ea @aler) @ [ a" ()] + e @ e ® [f%, f°])
=0 1([0*(f*),a* (/)] ® alea) @ aley) + [a*(f*), f'] @ alea) @ e
+ [eares] @ 2@ fo 4 [ea, alen)] @ f2 @ o (f7)
+ [f% a* ()] ® eq @ aley) + [f2, ] @ eq @ €
+ [a(ea), ] ® @ (f*) @ [ + [a(ea), a(en)] @ o (f) @ *(f*))
=0 L[ (f*), " ()] ® aleq) ® aler) + [f* f] ® ea @ e
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+ [ea ] @ f* @ f* + [a(ea), alen)] © a* (f) @ a* (7))
=0 3@ (f*) @ Aa(en)) + aleq) ® Ala*(f) + f* © Alea)
+ ea @ A(f?))
= — O (apcorgr @ Apcorgr)(t),

which is required. O

Furthermore, we consider the coquasi-triangular (dual quasi-triangular)
structure on the codouble Hom-Lie bialgebra D(L)*. In principle, all that
we have to say in the following can be obtained by dualising along the lines
in the usual way, by writing out the axioms of a quasi-triangular Hom—Lie
bialgebra as diagrams and then turning all the arrows around.

Unlike the Hom—Lie bialgebra axioms themselves, the axioms of a quasi-
triangular Hom-Lie bialgebra are clearly not self-dual. Since the quasi-trian-
gular structure r € L ® L in quasi-triangular Hom—-Lie bialgebra can be
regarded as a map kK — L ® L, there is a map r : G ® G — k such that the
Lie bracket has a special form

[z, y] = z17(22 ® (y)) + yir(a(z) @ y2)
and obeys the CHYBE in a dual form

r(z1 @ ay))r(z: ® a(z)) + r(a(z) @ y1)r(y2 © a(2))
+r(a(z) © z1)r(a(y) @ z2) = 0,

where z,y, z € G and G is used to refer to the Hom—Lie bialgebra in the dual
formation.

The symmetric part 2ry is required to be invariant under the adjoint
Lie coaction according to r4(a(x) @ y1)y2 + ro (21 ® a(y))ze = 0.

Here, the coquasi-triangular structure r : D(L)* ® D(L)* — k in the
codouble Hom-Lie bialgebra D(L)* is

%Z(T(fa ® aleq)) +r(a*(f*) ® eq))-
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