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Abstract. In this work a generalization of a Born–Infeld theory of gravity
with a topological β-term is proposed. These type of Born–Infeld actions
were found from the theory introduced by MacDowell and Mansouri.
This theory known as MacDowell–Mansouri (MM) gravity was one of the
first attempts to construct a gauge theory of gravitation, and within this
framework it was introduced in the action a topological β-term relevant
for quantization purposes in an analogous way as in Yang–Mills theory.
By the use of the self-dual and antiself-dual actions of MM gravity, we
further define a Born–Infeld gravity generalization corresponding to MM
gravity with the β-term.

Keywords. Born–Infeld gravity, MacDowell–Mansouri gravity, Self-dual
gravity.

1. Introduction

Several modifications to the undoubtedly successful classical theory of gravi-
tation, namely General Relativity (GR), have been considered since GR fails
to describe field situations where quantum effects are supposed to be impor-
tant. The classical formulation as GR as such does not allow to be consistently
quantized by any of the well known methods of quantization. We can find in
the literature several types of modifications to GR that have been proposed
in order to get a possibly consistent quantum version of gravity. Even in the
classical formulation, GR have always had the problem of leading to singu-
larities. We expect that a consistent quantum theory of gravitation should
avoid such singularities. The classical reformulation of electromagnetism of
Born–Infeld (BI) [6], which was very successful in regularizing the singularity
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related to the self energy due to the electric field of the point particle, has in-
spired similar reformulations of GR [20] to avoid singularities in the classical
field theory and it is also remarkable that the BI action appears in the realm
of string theories [32]. The first work in that direction was done by Deser–
Gibbons (DG) [10] where they considered the basic determinantal form of the
electrodynamic field action of BI and constructed the natural generalization
of the corresponding covariant gravitational field action. We can find other
type of actions constructed by the same principle of avoiding singularities but
in the metric affine approach considered by Eddington in [11], these kind of
modifications to the original work of BI have the name Eddington-Inspired
Born–Infeld gravities [4,38]. We also find natural non-Abelian generalizations
to the original Abelian BI theory [37] but no gravitational generalizations in
the spirit of DG has been made. Although all the previously mentioned Born–
Infeld type theories share the same square root structure of its Lagrangian,
remarkable enough is the work developed in [36] where an equivalent theo-
ry to Born’s original proposal was presented and without the square root.
This work inspired a corresponding non-Abelian generalization in [29]. There
are in general several BI theories of gravity that can be subdivided basically
in theories in the metric formalism [9,10,12,17,41] and those in the affine-
metric formalism [4,11,38] but other classification was stated in [20] where
some criteria were applied to put all those theories in just five classes taking
into account mainly theories with ghost instabilities and other ones in which
no additional degrees of freedom are present or considering the inclusion of
extra degrees of freedom.

Another interesting purely geometrical classical theory of gravitation
is the one of MacDowell–Mansouri [21,22]. This theory is one of the closest
approaches of a gauge theory of gravity (see also [5] and references therein).
Formulated in terms of the SO(4) gauge group valued connection for gravity,
this formalisms allows to describe supergravity in the same fashion and for
the SO(4, 1) group. This formulation also poses the question whether it can
be quantized in the same way as pure Yang–Mills (YM) theories for Lie-
group valued fields. In regards of quantization of a gauge theory of gravity,
it has been put in the discussion the relevance of the topological term, also
known as β-term, that can be added to the usual Yang–Mills action which
is in principle harmless to the classical dynamics but could be relevant to
take it into account in the quantization process. In the expansion of the MM
action with the additional β-term we are considering, among other topological
terms, it also arises the term corresponding to the so called Immirzi parameter
[18,24] which is necessary in the canonical formulation of quantum gravity [1–
3,23,33,34]. The one parameter ambiguity related to this term in canonical
quantum gravity and ambiguities in Yang–Mills theories are in some sense
similar [13]. Therefore from the point of view of the MM proposal with the
additional β-term, the Immirzi parameter naturally comes into play [24]. In
order to make a connection with requirements in canonical quantum gravity
it is consistent and consequently necessary to include the β-term as it already
takes into account the Immirzi parameter. The relation between MM gravity
and the LQG formulation is given through the self-dual formulation of MM
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gravity [19,27,35]. In this work we will later consider a non-trivial connection
between BI gravity and MM gravity. Following the procedure proposed in
[25], it can be shown that particular DG actions can be deduced from the
determinantal structure of the MM action. Based on the kind of actions
proposed in [25] we will construct the corresponding BI gravity related to
the MM action with a β-term, to achieve this goal we will make use of the
self-dual antiself-dual formulation of MM gravity [27].

The structure of the paper is as follows, first in Sect. 2, we briefly in-
troduce the general features of MM gravity and explain the basic objects
appearing in the MM action. In Sect. 3 we describe the structure of the grav-
itational Born–Infeld generalization of Deser–Gibbons, afterwards in Sect. 4
we discuss in detail the relation between a MM type action and a particular
DG action, formalism which was developed in [25]. We will then introduce
the self-dual and anti-selfdual MM actions to generate a more general MM
action containing a β-term and subsequently we construct the generalization
of the DG action corresponding to the MM action with the β-term included.
Finally in Sect. 5 we make some concluding remarks and draw attention to
questions related to future work.

2. MacDowell–Mansouri Gravity

When considering modifications to general relativity with the purpose of
making a unified description of fundamental forces, it is natural to think
of interactions described by a fundamental connection associated with an
internal symmetry group. Among a few attempts of describing gravitation as
a gauge theory [8,16,39], we will focus on the elegant formalism developed by
MacDowell and Mansouri [21]. They introduced a field theory for which the
action depends on a Lie group valued connection. The theory is constructed
by considering the gauge potential ωAB

μ (x) where the indices μ = 0, 1, 2, 3
correspond to space-time, with xα local coordinates and the indices A,B =
0, 1, 2, 3, 4 are associated to the fiber bundle De Sitter group SO(4, 1) later
broken into a SO(3, 1), in this way the group valued one form connection is
ωab

μ (x) and the tetrad field is identified with ω4a
μ (x) = ea

μ. Explicitly, we have
that the gauge fields associated to the generators of the Poincaré group are
the spin connection for the Lorentz group and the tetrads for the translations.
The way in which these fields transform, using the corresponding covariant
derivative, requires the vanishing of the torsion if we want reparametrization
invariance [31]. The gauge invariant objects are then, the ten gauge fields and
the corresponding field strength. The field strength associated to the gauge
potential ωAB

μ is given by

RAB
μν = ∂μωAB

ν − ∂νωAB
μ +

1
2
f

[AB]
[[CD][EF ]]ω

CD
μ ωEF

ν , (2.1)

where f
[AB]
[[CD][EF ]] are the structure constants and the group generators satisfy

SAB = −SBA and
[SAB , SCD] = f

[EF ]
[[AB][CD]]SEF .
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The structure constants are given by

f
[EF ]
[[AB][CD]] =

1
2

[
ηACδE

BδF
D − ηADδE

BδF
C + ηBDδE

AδF
C − ηBCδE

AδF
D

] − (E ↔ F ).

(2.2)
Once the original symmetry is broken, the curvature breaks up into the
Lorentz and translational parts, the last related to the torsion that we impose
to vanish [40]. The final action proposed in [21] is given by

S
MM

=
∫

d4xεμναβεabcdRab
μνRcd

αβ , (2.3)

where the curvature is

R ab
μν = R ab

μν + Σ ab
μν ,

Σ ab
μν = ea

νeb
μ − ea

μeb
ν . (2.4)

In the action (2.3) εμνρσ is the completely antisymmetric tensor associated
to space-time, with ε0123 = 1, while εabcd is the corresponding antisymmetric
tensor associated to the internal group SO(3, 1), with ε0123 = −1. We as-
sume that the internal metric is given by ηab = (−1, 1, 1, 1). With the group
structure defined in this way, the action (2.3) is equivalent to a gravitation-
al action given by three contributions [26]; the Einstein–Hilbert action, the
cosmological constant term and the Euler topological invariant.

We have already discussed the relevance of the addition of a θ-term to
the MM action in analogy with Yang–Mills theories. In the MM formalis-
m such term has been usually called β-term [30] and the action takes the
following form

S
MMβ

=
∫

d4xεμναβεabcdRab
μνRcd

αβ + β

∫
d4xεμναβRab

μνRαβab . (2.5)

The mathematical structure of MM can also be generalized to a Yang–Mills
type of supergravity [26] also taking into account the corresponding β-term
and its corresponding supersymmetric term [30]. In this formulation, the
corresponding supersymmetric Immirzi parameter, among other couplings,
arises naturally by the symmetry breaking mechanism [24,30].

3. Born–Infeld Gravity

Born–Infeld gravity was inspired by the non-linear version of electrodynamics
proposed in [6], which action takes the following form

S
BI

= −b2

[∫
d4x

√

−det
(

ημν +
1
b
Fμν

)
− 1

]

, (3.1)

where ημν is the Minkowski metric and Fμν is the usual electromagnetic
strength tensor. The expansion of the determinant allows to write this action
in the more appealing form

S
BI

= −b2

[∫
d4x

√

1 +
1
b2

FμνFμν − 1
16b4

(Fμν
∗Fμν)2 − 1

]

. (3.2)
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We have introduced the dual tensor ∗Fμν = 1
2εμναβFμν , and in that way the

action is written in terms of invariants formed with the strength tensor and
its corresponding electromagnetic dual. It was Eddington who considered first
the kind of action (3.1) as it transforms consistently under the diffeomorphism
group. The gauge invariance of this action is evident as the functions under
the square root are indeed gauge invariant scalars. Inspired by this structure,
Deser and Gibbons proposed a similar action of the type

S
DG

=
∫

d4x
√

−det (agμν + bRμν + cXμν) . (3.3)

Originally this action analogous to (3.1) considered the constant c = 0 but
ghost instabilities lead to consider the introduction of Xμν to determine
a posteriori the analytic form of such fudge tensor in order to avoid instabili-
ties [10,20]. These kind of DG actions can be deduced from the mathematical
structure of MM gravity, as we will see in the following section.

4. BI Gravity from a MacDowell–Mansouri Type Action

A Deser–Gibbons type action was proposed in [25] and is given by

S
DG

= − λ

4!

∫
d4x

√

−det
(

gμν + ΛRμν +
Λ2

4
RμαR α

ν

)
, (4.1)

where Λ = λ
2 . The starting point in [25] is the proposition of the following

d-dimensional modified MM type action

S
mMM

= − 1
d!

∫
ddxεμ1μ2...μdεa1a2...ad

R a1
μ1

R a2
μ2

. . . R ad
μd

, (4.2)

which in d = 4 takes the explicit form

S
mMM

= − 1
4!

∫
d4xεμναβεabcdR a

μ R b
ν R c

α R d
β . (4.3)

In this expression R a
μ is given as the contraction R a

μ = e ν
b R ab

μν which can
be written with the help of (2.4) as

R a
μ = eν

b

(
R ab

μν + Σ ab
μν

)
= R a

μ + λea
μ , (4.4)

with λ = (1 − d). With the use of R a
μ , the action (4.3) can be written as the

determinant of the contracted curvature

S
mMM

= − 1
4!

∫
d4x det (R a

μ ). (4.5)

It can be seen that from the transformations of the gauge fields, namely
the spin connection and the tetrads, the contracted R a

μ and consequently
the integrand in (4.5) is gauge invariant and it will also be the case for the
self(anti-self) dual actions defined below. The link between Eqs. (4.3) and
(4.1) is given by the following definition

Gμν =
1
λ2

R a
μ R b

ν ηab , (4.6)
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from which it follows that

det (R a
μ ) = λ

√
−det (Gμν) , (4.7)

and using expansion of det (Gμν) with the help of (4.4) the action (4.1) fol-
lows directly. Regarding the gauge invariance of (4.7), notice that since both
factors of the contraction (4.4) are gauge invariant, R a

μ is itself a gauge
invariant quantity and in the quadratic definition (4.6) two gauge indices
have been consistently contracted, or traced, which leaves a purely spacetime
but gauge invariant tensor. Inserting the last equation into (4.5) leaves us
with a pure DG action which is also gauge invariant in the same way as the
MacDowell–Mansouri action.

Now, we can ask if this kind of connection between MM gravity and
BI gravity can be achieved by adding to the MM action the contribution of
the topological term in Eq. (2.5). Before we proceed in that direction, we
remember that the action (2.5) can be written with the help of the self-dual
+R ab

μν and antiself-dual curvature −R ab
μν which are defined as follows

±R ab
μν =

1
2
R ab

μν ∓ i

4
εab

cdR cd
μν . (4.8)

Let us then consider the following dual action

S
DMM

=
∫

d4xεμναβεabcd

[
+τ+R ab

μν
+R cd

αβ − −τ−R ab
μν

−R cd
αβ

]
, (4.9)

where +τ and −τ are both constants. This linear combination of the self-
dual and antiself-dual actions were considered in [14,15,28] in the search of
a gravitational duality and to construct a supergravity gauge theory in [26].
We will take the advantage of action (4.9) as it is equivalent to the original
MM action plus a β-term. In particular, it was shown in [26] that the self-
dual action can be decomposed in four terms; the Ashtekar action [19,35], the
cosmological constant contribution and the Euler and Pontrjagin topological
invariants. The action (4.9) can be written as

S
DMM

=
∫

d4xεμναβεabcd

[
(−τ − +τ)R ab

μν R cd
αβ + (+τ + −τ)R ab

μν
∗R cd

αβ

]
,

(4.10)

where we have introduced the dual (star) curvature defined

∗R cd
αβ =

i

2
εab

cdR cd
αβ . (4.11)

By introducing the last definition in (4.10) and using the proportionally be-
tween the product of antisymmetric tensors and Kronecker deltas εabcdε

abef ∝
(δe

cδ
f
d − δe

dδ
f
c ) it is found to be

S
DMM

= (−τ − +τ)
∫

d4xεμναβεabcdR ab
μν R cd

αβ

+i(−τ + +τ)
∫

d4xεμναβR ab
μν Rαβab , (4.12)

action which is equivalent to (2.5) and the second term is identified with the
β-term [15,28]. This combination of the self-dual and anti-selfdual actions
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was used to derive a non-trivial relation between the Immirzi parameter and
its counterpart in the gauge theory of (2+1) gravity [7]. It is now possible to
apply the procedure followed in [25] to find the generalization of the Deser–
Gibbons action related to MM gravity with the β-term. For that purpose let
us propose the following action which hereafter we call DGβ action

S
DGβ

= +τ

∫
d4xεμναβεabcd

+R a
μ

+R b
ν

+R c
α

+R d
β

−−τ

∫
d4xεμναβεabcd

−R a
μ

−R b
ν

−R c
α

−R d
β , (4.13)

such action can be written as

S
DGβ

= +τ

∫
d4x det (+R a

μ ) − −τ

∫
d4x det (−R a

μ ), (4.14)

and now we can define in an analogous way as in Eq. (4.6) the following
self-dual and antiself-dual quantities

+Gμν =
4
λ2

+R a
μ

+R b
ν ηab ,

−Gμν =
4
λ2

−R a
μ

−R b
ν ηab . (4.15)

These definitions allow to find

det (+R a
μ ) =

λ

2

√
−det (+Gμν) ,

det (−R a
μ ) =

λ

2

√
−det (−Gμν) , (4.16)

which upon substitution in (4.17) leads to

S
DGβ

=
λ

2
+τ

∫
d4x

√
−det (+Gμν) − λ

2
−τ

∫
d4x

√
−det (−Gμν) . (4.17)

We will write this action in terms of the curvatures starting with

±R ab
μν =

1
2

[R ab
μν ∓ ∗R ab

μν

]
, (4.18)

where we have used (4.8) and the definition of the dual (star) curvature. We
can define in an analogous way the contracted gauge invariant self-dual and
antiself-dual curvatures

+R a
μ = e ν

b
+R ab

μν ,

−R a
μ = e ν

b
−R ab

μν , (4.19)

and it can be easily seen that these can be written as
+R a

μ = R a
μ + λea

μ − ∗R a
μ ,

−R a
μ = R a

μ + λea
μ + ∗R a

μ , (4.20)

where we have defined
∗R a

μ = e ν
b

∗R ab
μν . (4.21)



24 Page 8 of 11 J. L. López et al. Adv. Appl. Clifford Algebras

In this way we have the following

±
Gμν =

1

λ2

[
R

a
μ Rνa + 2λRμν + λ

2
gμν +

∗
R

a
[μ

∗
Rν]a ∓ 2λ

∗
Rμν ∓ 2R

a
[μ

∗
Rν]a

]
(4.22)

and finally we write

S
DGβ

=
λ

2

+
τ

∫
d
4
x

√

− det

(
gμν + ΛRμν +

Λ2

4
RμαR α

ν + ∗R a
μ

∗Rνa +
+Aμν

λ2

)

− λ

2

−
τ

∫
d
4
x

√

− det

(
gμν + ΛRμν +

Λ2

4
RμαR α

ν + ∗R a
μ

∗Rνa +
−Aμν

λ2

)
,

(4.23)

where in order to make the expressions shorter we have defined ±Aμν as
follows

±Aμν = ∓2λ∗Rμν ∓ 2R a
[μ

∗Rν]a , (4.24)

where the pair of indices between square brackets means symmetrization.
The action (4.23) corresponds to the Deser–Gibbons generalization of the
MM action with a β-term (2.5) and it is the closest in structure analogue to
the determinantal form of the action (3.1). The determinant of this action can
be expanded to get a form equivalent to Eq. (3.2) where the dual curvature
will also appear under the argument of the square root analogous to the pure
BI theory.

In the action proposed in [10], an ad-hoc fudge tensor Xμν was proposed
which form would prevent the action from having instabilities. In a similar
manner, one would need to add a fudge tensor to the action (4.23). This
fudge tensor could be adjusted to avoid the corresponding instabilities [10].
We can then redefine the action (4.23) in the following manner

S
DGβ

=
λ

2

+
τ

∫
d
4
x
√

− det (+Gμν + Xμν) − λ

2

−
τ

∫
d
4
x
√

− det (−Gμν + Xμν) . (4.25)

The inclusion of this additional tensor does not affect the diffeomorphism
invariance, however the form of this term will be strongly constrained if we
want to maintain the gauge invariance and the dual structure of the action.

5. Final Remarks

Non-Abelian generalizations of the BI theory have been considered [29,37]
but it is not clear if these approaches allow for gravitational generalizations
of the DG type. MM gravity represents the closest theoretic approach to a
Yang–Mills type gravitational theory and it already can be related to DG
gravities by a similar procedure as that followed in [25]. In this work we
have defined the DG gravity related to the modified version of MM gravi-
ty that contains the topological β-term (2.5). As it was stated before, the
MM gravity action with the additional β-term takes into account the ter-
m corresponding the so called Immirzi parameter relevant in the canonical
formulation of quantum gravity [18,24]. If we want to make contact with
this quantum gravity formulation, it is consistent and necessary to consider
the complete Yang–Mills action, namely the MM action with the additional
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β-term. It is also remarkable that the addition of the β-term in the gener-
alization of gauge supergravity, the corresponding supersymmetric Immirzi
parameter arises naturally [30]. Therefore, we considered the complete MM
action (2.5) and as we have seen, the procedure followed in [25] can be applied
by the use of the combination of the self-dual and anti-selfdual MM actions.
It is possible to construct independently the DG actions of the selfdual (anti-
selfdual) actions respectively [25] but the combination of both is necessary
in order to have a equivalent action to (2.5). The approach followed by us
is then supported by the equivalence between the actions in Eqs. (2.5) and
(4.9). This was not considered in [25].

Guided by the same motivation that inspired the construction of DG
gravity it is interesting to search if the DG gravity represented by action
(4.23) could avoid singularities classically or a possible quantum version of
it could do. Using the supersymmetric extensions of MM gravity [26,30], a
supersymmetric generalization of the procedure followed here could be pos-
sible. It will also be relevant to make the analysis of mode propagation in
order to determine if our action could be ghost free. We notice that even
when some DG gravities in the metric formalisms have ghost instabilities,
some ghost free DG gravity theories have been constructed [17]; These, and
other interesting topics will be presented in a future work.
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[15] Garćıa-Compeán, H., Obregón, O., Ramı́rez, C.: Gravitational duality in
MacDowell–Mansouri gauge theory. Phys. Rev. D 58, 104012 (1998)

[16] Gotzes, S., Hirshfeld, A.C.: A geometric formulation of the SO(3, 2) theory of
gravity. Ann. Phys. 203, 410 (1990)

[17] Gullu, I., Sisman, T.C., Tekin, B.: Born–Infeld gravity with a massless graviton
in four dimensions. Phys. Rev. D 91(4), 044007 (2015)

[18] Immirzi, G.: Real and complex connections for canonical gravity. Class. Quan-
tum Gravity 14, L177 (1997)

[19] Jacobson, T., Smolin, L.: Covariant action for Ashtekar’s form of canonical
gravity. Class. Quantum Gravity 5, 583 (1988)

[20] Jimenez, J.B., Heisengerg, L., Olmo, G., Rubiera-Garcia, D.: Born–Infeld mod-
ifications of gravity. Phys. Rep. 727, 1 (2017)

[21] MacDowell, S.W., Mansouri, F.: Unified geometric theory of gravity and su-
pergravity. Phys. Rev. Lett. 38, 739 (1997)

[22] Mansouri, F.: Superunified theories based on the geometry of local (super-)
gauge invariance. Phys. Rev. D 16, 2456 (1977)

[23] Mercuri, S.: Fermions in Ashtekar–Barbero connections formalism for arbitrary
values of the Immirzi parameter. Phys. Rev. D 73, 084016 (2006)

[24] Mercuri, S., Randono, A.: The Immirzi parameter as an instanton angle. Class.
Quantum Gravity 28, 025001 (2011)

[25] Nieto, J.A.: Born–Infeld gravity in any dimension. Phys. Rev. D 70, 044042
(2004)

[26] Nieto, J.A., Obregón, O., Socorro, J.: Gauge theory of supergravity based only
on a selfdual spin connection. Phys. Rev. Lett. 76, 3482 (1996)

[27] Nieto, J.A., Obregón, O., Socorro, J.: The gauge theory of the de Sitter group
and Ashtekar formulation. Phys. Rev. D 50, R3583 (1994)

[28] Nieto, J.A., Socorro, J.: Selfdual gravity and selfdual Yang–Mills theory in the
context of MacDowell–Mansouri formalism. Phys. Rev. D 59, 041501 (1999)

[29] Obregón, O.: Non-abelian Born–Infeld theory without the square root. Mod.
Phys. Lett. A 21, 1249 (2006)

[30] Obregón, O., Ortega-Cruz, M., Sabido, M.: Immirzi parameter and θ ambiguity
in de Sitter MacDowell–Mansouri supergravity. Phys. Rev. D 85, 124061 (2012)



Vol. 29 (2019) Born–Infeld Gravity from the MacDowell–Mansouri Action. . . Page 11 of 11 24

[31] Ort́ın, T.: Gravity and Strings. Cambridge Monographs of Mathematics and
Physics. Cambridge University Press, Cambridge (2004)

[32] Polchinski, J.: String Theory, vols. 1, 2. An Introduction to the Bosonic
String, Cambridge Monographs on Mathematical Physics. Cambridge Univer-
sity Press, Cambridge (1998)

[33] Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity.
Nucl. Phys. B 442, 593 (1995)

[34] Rovelli, C., Thiemann, T.: The Immirzi parameter in quantum general relativ-
ity. Phys. Rev. D 57, 1009 (1998)

[35] Samuel, J.: A Lagrangian basis for Ashtekar’s formulation of canonical gravity.
Pramana J. Phys. 28, L429 (1987)

[36] Schrodinger, E.: Contribution to Born’s new theory of the electromagnetic field.
Proc. R. Soc. A 150, 465 (1935)

[37] Tseytlin, A.A.: On non-abelian generalization of Born–Infeld action in string
theory. Nucl. Phys. B 501, 41–52 (1997)

[38] Vollick, D.N.: Palatini approach to Born–Infeld–Einstein theory and a geomet-
ric description of electrodynamics. Phys. Rev. D 69, 064030 (2004)

[39] West, P.C.: A geometric gravity Lagrangian. Phys. Lett. 76B, 569 (1978)

[40] Wise, Derek K.: MacDowell–Mansouri gravity and Cartan geometry. Class.
Quantum Gravity 27, 155010 (2010)

[41] Wohlfarth, M.N.R.: Gravity a la Born–Infeld. Class. Quantum Gravity 21, 1927
(2004)
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