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Abstract. The problem of 3D protein structure determination using dis-
tance information from nuclear magnetic resonance (NMR) experiments
is a classical problem in distance geometry. NMR data and the chemistry
of proteins provide a way to define a protein backbone order such that
the distances related to the pairs of atoms {i− 3, i}, {i− 2, i}, {i− 1, i}
are available, implying a combinatorial method to solve the problem,
called branch-and-prune (BP). There are two main steps in BP algo-
rithm: the first one (the branching phase) is to intersect three spheres
centered at the positions for atoms i−3, i−2, i, with radius given by the
atomic distances di−3,i, di−2,i, di−1,i, respectively, to obtain two possible
positions for atom i; and the second one (the pruning phase) is to check
if additional spheres (related to distances dj,i, j < i− 3) can be used to
select one of the two possibilities for atom i. Differently from distances
di−2,i, di−1,i (associated to bond lenghts and bond angles), distances
dj,i, j ≤ i− 3, may not be precise. BP algorithm has difficulties to deal
with uncertainties, and this paper proposes the oriented conformal geo-
metric algebra to take care of intersection of spheres when their centers
and radius are not precise.

Keywords. Oriented conformal geometric algebra, Distance geometry,
Branch and prune algorithm, 3D protein structure.

1. The Molecular Distance Geometry Problem

The origin of distance geometry (DG) is due to Menger [34], in 1928, when he
characterized geometric concepts using the idea of distance. The fundamental
problem of DG is how to determine spatial positions for a set of points, whose
distances among some of them are known [30,32,33].

There are many applications of DG [4,5,36] and one of the most impor-
tant is related to molecular geometry [24], where the problem is the calcu-
lation of 3D protein structures using Nuclear Magnetic Resonance (NMR)
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experiments, which provide distances between hydrogen atoms that are close
enough [10,40].

We can formally define the problem, called the Molecular Distance
Geometry Problem (MDGP) [30], using a graph G = (V,E, d), where V
represents the set of atoms, E represents the set of atom pairs for which a
distance is available, and d : E → (0,∞) is the function that assigns non-
negative real numbers to each pair {u, v} ∈ E (we say that G is simple and
undirected when, respectively, if {u, v} ∈ E then u �= v, and {u, v} = {v, u}):

Definition 1.1. Given a simple undirected graph G = (V,E, d) whose edges
are weighted by d : E → (0,∞), find a function x : V → R

3 such that

∀{u, v} ∈ E, ||xu − xv||2 = du,v, (1.1)

where xu = x(u), xv = x(v), and du,v = d({u, v}).

Using NMR data and the chemistry of proteins [25], the MDGP can be
solved iteratively using a method called Branch-and-Prune (BP) [28,29]. BP
algorithm is based on a vertex order v1, ..., vn ∈ V such that [7,15,35] (we
denote xi instead of xvi

and di,j instead of dvivj
):

1. For v1, v2, v3, there exist x1, x2, x3 ∈ R
3 satisfying equations (1.1);

2. For i > 3, there exist vi−3, vi−2, vi−1 such that

{{vi−3, vi}, {vi−2, vi}, {vi−1, vi}} ⊂ E (1.2)

and
di−3,i−2 + di−2,i−1 > di−3,i−1. (1.3)

MDGP instances with this order are called the Discretizable Molecular
Distance Geometry Problem (DMDGP) [20,21]. For other approaches that
use different starting triplets of atoms, see [14].

From Property 1 above, the DMDGP solution set can avoid solutions
obtained by rotations and translations and, from Property 2, the position for
v4 can be obtained solving the system

||x4 − x3||2 = d3,4, (1.4)
||x4 − x2||2 = d2,4,

||x4 − x1||2 = d1,4, (1.5)

which can result in up to two possible solutions. For each position determined
for v4, we obtain other two for v5, and so on, implying that the DMDGP
search space is finite, having 2n−3 possible solutions [21,31].

For some i > 4, we may also have {vj , vi} ∈ E, j < i−3, adding another
equation to the system related to vi:

||xi − xi−1||2 = di−1,i,

||xi − xi−2||2 = di−2,i,

||xi − xi−3||2 = di−3,i,

||xi − xj ||2 = dj,i.

If the points xi−1, xi−2,xi−3, xj ∈ R
3 are not in the same plane, we obtain

a unique solution x∗
i for vi, supposing ||x∗

i − xj ||2 = dj,i. However, it may
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happen that both possible positions for vi are infeasible with respect to addi-
tional distances dj,i, j < i − 3. In this case, it is necessary to consider the
other possible position for vi−1 and repeat the procedure [21].

Geometrically, the requirements (1.2) and (1.3) of the DMDGP defini-
tion mean that, at each iteration of the BP algorithm, we have to intersect
three spheres centered at the positions for vertices vi−3, vi−2, vi−1 with radius
di−3,i, di−2,i, di−1,i, respectively, resulting in two possible positions for vi.

Distances di−1,i and di−2,i can be considered precise values, since they
are related to bond lengths and bond angles of a protein, but if distances
di−3,i are provided by NMR experiments, they contain uncertainties [11].

In [22], imprecision in distances di−3,i were represented as interval dis-
tances [di−3,i, di−3,i] , where di−3,i ≤ di−3,i ≤ di−3,i, and an extension of
the BP algorithm, called iBP, were proposed, where the idea is to sample
values from [di−3,i, di−3,i] in order to solve a system like (1.4) related to
vi. The main drawback of this approach is that choosing many values, the
search space increases exponentially, and for small samples, a solution may
not be found [1,8,9,16,37,39]. When the data are not precise, it is difficult to
do sphere intersection using linear algebra, because uncertainties in distance
values imply uncertainties also in the centers of the spheres, not only in their
radius.

Using Geometric Algebra (GA), it is possible to avoid sampling process
and calculate intersection of spheres considering the uncertainties associated
to their centers and radius. To the best of our knowledge, the first mathemat-
ical relationship between DG and GA was established by Dress and Havel,
in 1993 [13]. However, a strong connection between GA and the DMDGP
appeared only in 2015 [23]. In [2,3], for the first time, the Conformal GA
(CGA) [17,26] was consistently applied to solve discrete versions of DG.

In [2,3], CGA was used to model uncertainties in the DMDGP, avoiding
the sampling strategy and eliminating the heuristic characteristics of iBP.
This was done for the branching phase of iBP, and this paper explains how
the Oriented CGA (OCGA) [6] can be used in the pruning phase of iBP.

Next section explains how CGA replaces the classical approach to the
DMDGP and Section 3 provides the original contribution of this paper,
describing how OCGA can be integrated in iBP. New research directions
are presented in Section 4.

2. Conformal Geometric Algebra for Branching

We will follow the arguments given in [2,3] to explain how CGA deals with
uncertainties in the DMDGP.

If d1,4 is an interval distance [d1,4, d1,4], we have to intersect two spheres
with one spherical shell resulting in two arcs, instead of two points in R

3

(Fig. 1). Thus, we first obtain the points from the intersection of the spheres
centered at the positions for v1, v2, v3 with radius d1,4, d2,4, d3,4, resulting in
P 0

4 and P 1
4 , and with radius d1,4, d2,4, d3,4 , resulting in P 0

4 and P 1
4 (Fig. 1).

These points can be obtained from the point pairs generated by S1,4 ∧ S2,4 ∧
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Figure 1. Interval distance d1,4 generates two arcs for X4

Figure 2. Rotation axis defined by X2 and X3

S3,4 and S1,4 ∧ S2,4 ∧ S3,4 [12], where underline and overline indicate the use
of d1,4 and d1,4, respectively, and Si,j is the sphere centered at the position
of vertex vi, denoted by Xi, with radius di,j :

Si,j = Xi − 0.5d2
i,je∞.

With the starting and the ending point of an arc, we can define a rotor
acting on that. For v4, the rotation axis of its rotor is defined by X2 and
X3, denoted by z4, and the rotation angle φ4 (in radians) is the angle cor-
responding to the arcs P 0

4 P 0
4 and P 1

4 P 1
4 (Fig. 2). The associated rotor R4 is

given by
R4 = cos

(
λ4
2

) − sin
(

λ4
2

)
z∗
4 , 0 ≤ λ4 ≤ φ4,

where z4 = X2 ∧X3 ∧ e∞ (z∗
4 is the dual of z4), and the two possible arcs are

described by
X0

4 (λ4) = R4P
0
4 R−1

4
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and
X1

4 (−λ4) = R4P
1
4 R−1

4 .

We use negative values in X1
4 (−λ4) to invert the orientation in P 1

4 P 1
4 (Fig.

2).
For i > 4, we can easily obtain (all the values φi, for i > 3, can be

computed a priori based on the DMDGP definition)

X0
i (λi) = RiP

0
i R−1

i ,

X1
i (−λi) = RiP

1
i R−1

i ,

where

Ri = cos
(

λi

2

)
− sin

(
λi

2

)
z∗
i , 0 ≤ λi ≤ φi, (2.1)

and
zi = Xi−2 ∧ Xi−1 ∧ e∞.

Note that expressions for X0
i (λi) and X1

i (−λi) consider that Xi−2 and
Xi−1 are fixed points. However, the effect of changing the points in the arcs
must be taken into account in order to avoid the sampling process (more
details in the next section). This was done in [3], resulting in

Xb
i (λ4, . . . , λi) = (Ri · · · R4) P b

i

(
R−1

4 · · · R−1
i

)
,

where

Ri = cos
(

λi

2

)
− sin

(
λi

2

)
z∗
i , 0 ≤ λi ≤ φi,

zi = (Ri · · · R4)
(
P b

i−2 ∧ P b
i−1 ∧ e∞

) (
R−1

4 · · · R−1
i

)
,

and P b
i is one of the points obtained from the intersection Si−3,i ∧ Si−2,i ∧

Si−1,i, for i = 4, . . . , n, with b ∈ {0, 1} (these values are defined when i BP
chooses one of the branches in the search tree).

3. Oriented Conformal Geometric Algebra for Pruning

For each vi, i > 4, iBP verifies if there are pruning edges {vj , vi} ∈ E,
j < i − 3. If this is not the case, it can choose P 0

i or P 1
i and “ignore” the

pruning phase, since both points can be used to continue the search. Since
there is no pruning edge for v4, let us consider v5 with interval distances
[d2,5, d2,5] and [d1,5, d1,5], for example (see Fig. 8).

Using the classical approach [22], we have to sample values from the
interval [d2,5, d2,5] to solve the system

||x5 − x4||2 = d4,5,
||x5 − x3||2 = d3,5,

d2,5 ≤ ||x5 − x2||2 ≤ d2,5.
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Figure 3. Oriented circle Ci = P 0
i ∧ P

0

i ∧ P
1

i

That is, some values d1
2,5, d

2
2,5, ..., d

k
2,5 ∈ [d2,5, d2,5] should be selected. Since

{v1, v5} ∈ E, before considering vertex v6, at least one of such values, e.g.
d∗
2,5, must be associated with a solution x∗

5 to the above system, i.e.,

||x∗
5 − x4||2 = d4,5,

||x∗
5 − x3||2 = d3,5,

||x∗
5 − x2||2 = d∗

2,5,

such that
d1,5 ≤ ||x∗

5 − x1||2 ≤ d1,5.

However, if the first pruning edge is v1,6 ({v1, v5} /∈ E), we do not know
(during the calculations for v5) how refined the sample from [d2,5, d2,5] must
be (i.e. how big is k?) in order to obtain a position for v6 that satisfies

d1,6 ≤ ||x6 − x1|| ≤ d1,6.

To avoid the sampling strategy during the pruning phase of iBP, it
is necessary to take care of the orientation of the new arcs obtained when
additional spherical shells related to the pruning edges must be considered.
Oriented CGA (OCGA) can do that [6].

OCGA is an extension of the Oriented Projective Geometry, developed
by Stolfi [38], for problems in computer graphics and computer vision.

First, let us define an orientation for the circle obtained from the inter-
section Si−2,i ∧ Si−1,i (Fig. 3), given by

Ci = P 0
i ∧ P 0

i ∧ P 1
i .
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Figure 4. The new arc is P 0
i P 0

j

Ci is a trivector in the conformal space. So, its dual C∗
i is a bivector, orthog-

onal to the plane that contains the circle, which implies that the line

C∗
i ∧ e∞

is oriented according to Ci. Since C∗
i is the dual circle, given by the intersec-

tion of the dual spheres centered at Xi−2 and Xi−1, the line C∗
i ∧ e∞ has the

same direction of ± (Xi−2 ∧ Xi−1 ∧ e∞), but it carries the orientation of Ci.
In practice, this means we are deciding correctly between Xi−2 ∧ Xi−1 ∧ e∞
and Xi−1 ∧ Xi−2 ∧ e∞ to be the rotation axis.

The related rotor Ri is then defined in a different way, compared to (
2.1), using the normalized bivector dual to the rotation axis C∗

i ∧ e∞,

Ri = cos
(

λi

2

)
−

(
λi

2

)
zi, 0 ≤ λi ≤ φi,

where

zi =
(C∗

i ∧ e∞)∗

||C∗
i ∧ e∞|| .

Let us suppose now that for vi, i > 4, there is a pruning edge
{vj , vi} ∈ E, j < i − 3, with an interval distance [dj,i, dj,i]. Denoting by
P 0

j P 0
j and P 1

j P 1
j the arcs obtained from the intersections Sj,i ∧Si−2,i ∧Si−1,i

and Sj,i ∧ Si−2,i ∧ Si−1,i, respectively, and using the tests defined in [6] to
compare the orientation of two circles (where ti > 0 indicates they have the
same orientation), we can recognize all the possible cases, as illustrated in
Figs. 4,5,6,7. This means that we have to calculate the following values (t1
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Figure 5. The new arc is P 0
j P 0

i

Figure 6. The new arc is P 0
j P 0

j

and t2) for P 0
j and P 0

j (the same procedure for P 1
j and P 1

j ):

t1 =
(
P 0

j ∧ P 0
i ∧ P 1

i

)
Ci, t2 =

(
P 0

i ∧ P 0
j ∧ P 1

i

)
Ci
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Figure 7. No intersection

and
t1 =

(
P 0

j ∧ P 0
i ∧ P 1

i

)
Ci, t2 =

(
P 0

i ∧ P 0
j ∧ P 1

i

)
Ci,

where
Ci = P 0

i ∧ P 0
i ∧ P 1

i .
The situation in Fig. 6 is different from the others, since both points

(P 0
j and P 0

j ) are inside the arc P 0
i P 0

i . Consider the oriented circle defined by

P 0
j ∧ P 0

j ∧ P ,

where P is any point on the circle, but outside the arc P 0
i P 0

i . Without loss
of generality, let us consider P as a point obtained when a rotor is applied
on P 0

j , in such a way to be outside from the arc P 0
i P 0

i . Since

P 0
j ∧ P 0

j ∧ P = P ∧ P 0
j ∧ P 0

j ,

there is no change in the orientation of the trivector P 0
j ∧ P 0

j ∧ P , which
implies that (

P 0
j ∧ P 0

j ∧ P
)(

P 0
j ∧ P 0

j ∧ P ′
)

> 0,

for different rotation angles generating P and P ′.

3.1. Example

Let us consider a DMDGP instance with the vertex order v1, v2, v3, v4, v5, v6

and the following associated distances:

di−1,i = 1, i = 2, ..., 6,

di−2,i =
√

3, i = 3, ..., 6,
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d1,4 = 2.15, d2,5 ∈ [2.20, 2.60], d3,6 ∈ [2.40, 2.60],
d1,5 ∈ [2.45, 2.55].

This is the same example presented in [3], where the pruning phase was done
“visually”. Now, we can solve it formally, using OCGA. All the calculations
were done using GAALOP: http://www.gaalop.de/.

After fixing the positions for v1, v2, v3, and also for v4 (since d1,4 is a
precise value),

x1 =

⎡

⎣
0
0
0

⎤

⎦ , x2 =

⎡

⎣
−1
0
0

⎤

⎦ , x3 =

⎡

⎣
−1.5√

3
2
0

⎤

⎦ , x4 =

⎡

⎣
−1.311
1.552
0.702

⎤

⎦ ,

we obtain the arcs P 0
5 P 0

5 and P 1
5 P 1

5 , from the intersection of spheres S2,5 ∧
S3,5 ∧ S4,5 and S2,5 ∧ S3,5 ∧ S4,5, respectively:

P 0
5 = e0 − 0.409e1 + 1.981e2 + 0.753e3 + 2.329e∞,

P 1
5 = e0 − 1.502e1 + 1.350e2 + 1.663e3 + 3.422e∞,

and

P 0
5 = e0 − 1.386e1 + 2.525e2 + 0.484e3 + 4.266e∞,

P 1
5 = e0 − 2.046e1 + 2.144e2 + 1.033e3 + 4.966e∞.

The pruning edge {v1, v5} implies we have to calculte S1,5 ∧ S3,5 ∧ S4,5

and S1,5 ∧ S3,5 ∧ S4,5, giving the points

A0
5 = e0 − 0.6735e1 + 2.299e2 + 0.5132e3 + 3.0012e∞,

A1
5 = e0 − 1.2602e1 + 1.2827e2 + 1.664e3 + 3.0012e∞,

and

A0
5 = e0 − 0.7952e1 + 2.3768e2 + 0.47e3 + 3.2512e∞,

A1
5 = e0 − 1.4069e1 + 1.3173e2 + 1.6696e3 + 3.2512e∞.

Now, we define the oriented circle C5,

C5 = P 0
5 ∧ P 0

5 ∧ P 1
5 ,

and perform the tests described above for A0
5, A

1
5, A

0
5, A

1
5:

A0
5 : t1 = (A0

5 ∧ P
0

5 ∧ P
1

5)C5 = 0.468 > 0

t2 = (P 0
5 ∧ A0

5 ∧ P
1

5)C5 = 0.531 > 0

A1
5 : t1 = (A1

5 ∧ P
0

5 ∧ P
1

5)C5 = 0.965 > 0

t2 = (P 0
5 ∧ A1

5 ∧ P
1

5)C5 = −1.425 < 0

A0
5 : t1 = (A0

5 ∧ P
0

5 ∧ P
1

5)C5 = 0.359 > 0

t2 = (P 0
5 ∧ A0

5 ∧ P
1

5)C5 = 0.650 > 0

A1
5 : t1 = (A1

5 ∧ P
0

5 ∧ P
1

5)C5 = 0.878 > 0

http://www.gaalop.de/
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Figure 8. One arc is reduced and the other is pruned

t2 = (P 0
5 ∧ A1

5 ∧ P
1

5)C5 = −1.389 < 0

From the results of the tests (see Fig. 8), arc P 1
5 P 1

5 is pruned and arc

P 0
5 P 0

5 is reduced to a new one, given by A0
5A

0
5. The rotation axis z5 is defined

by

z5 =
((

A0
5 ∧ A0

5 ∧ P 0
5

)∗
∧ e∞

)∗
,

the new angle φ5 (associated to A0
5A

0
5) is recomputed, the rotor R5 is given

by
R5 = cos

(
λ5
2

) − sin
(

λ5
2

)
z5, 0 ≤ λ5 ≤ 0.174,

and, finally, after pruning at vertex v5, without sampling values from
[2.20, 2.60], we obtain

X0
5 (λ5) = R5A

0
5R

−1
5 .

Doing the calculations, we get

x5 =

⎡

⎢
⎣

−1.7602 sin2(λ5
2 ) − 1.3085 cos(λ5

2 ) sin(λ5
2 ) − 0.6735 cos2(λ5

2 )

1.4920 sin2(λ5
2 ) + 0.9673 cos(λ5

2 ) sin(λ5
2 ) + 2.2990 cos2(λ5

2 )

1.5939 sin2(λ5
2 ) − 0.5935 cos(λ5

2 ) sin(λ5
2 ) + 0.5133 cos2(λ5

2 )

⎤

⎥
⎦ .

For vertex v6, we intersect the spheres centered at X3,X4,X
0
5 (0), with

radius d3,6, d4,6, d5,6 , resulting in

P 0
6 = e0 − 1.149e1 + 3.224e2 + 0.2784e3 + 5.896e∞,

P 1
6 = e0 + 0.2279e1 + 2.344e2 + 0.768e3 + 3.068e∞,
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and with radius d3,6, d4,6, d5,6, resulting in

P 0
6 = e0 − 0.907e1 + 3.221e2 + 0.9275e3 + 6.03e∞,

P 1
6 = e0 − 0.1484e1 + 2.737e2 + 1.197e3 + 4.473e∞.

The oriented circle C6 is defined by

C6 = P 0
6 ∧ P 0

6 ∧ P 1
6

and the angle φ6 (associated to P 0
6 P 0

6 and P 1
6 P 1

6 ) is given by φ6 = 0.8231.
Now, we have to consider the effect of rotor R5, i.e.

C6(λ5) =
(
R5P

0
6 R−1

5

)
∧

(
R5P 0

6 R−1
5

)
∧

(
R5P 1

6 R−1
5

)

= R5

(
P 0

6 ∧ P 0
6 ∧ P 1

6

)
R−1

5

= R5C6R
−1
5 ,

which implies that

R6 = cos
(

λ6
2

) − sin
(

λ6
2

)
z6, 0 ≤ λ6 ≤ φ6,

and

z6 =
(C∗

6 (λ5) ∧ e∞)∗

||C∗
6 (λ5) ∧ e∞|| .

Thus, the positions for v6 are given by

X0
6 (λ5,λ6) = R6R5P

0
6 R−1

5 R−1
6

and
X1

6 (λ5,−λ6) = R6R5P
1
6 R−1

5 R−1
6 .

4. Conclusions

The branching phase of iBP algorithm can be described using the language
of CGA to eliminate the heuristic characteristic of the classical strategy. This
paper explains how Oriented CGA can be used to model the other phase of
iBP, the pruning phase. This is an important step in order to solve one of
the open problems in Distance Geometry, proposed in [27]. Next challenges
are related to the design of efficient computational codes to solve instances
with real protein NMR data.
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