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1. Introduction

While studying graded-division finite-dimensional simple real algebras [14],
the second author found that they are intimately related to regular quadratic
forms over the field of two elements F2, and their Arf invariant. A similar
connection was remarked by Ovsienko [12] between real Clifford algebras and
regular quadratic forms over F2.

Actually, the graded-division algebras with homogeneous components
of dimension 1 are nothing else but the twisted group algebras, dealt with
by many authors in different situations, and the expression of Clifford al-
gebras as twisted group algebras was given by Albuquerque and Majid [2].
Here the groups behind the Clifford algebras are the 2-elementary abelian
groups.

Let us mention that Ovsienko also studied with Morier-Genoud [11] the
real (and complex) Clifford algebras as graded-commutative algebras, that
is, as graded algebras such that the commutation relations of the homoge-
neous elements are given by a bicharacter. They proved that every finite-
dimensional simple (associative) graded-commutative algebra over the field
of real or complex numbers is isomorphic to a Clifford algebra, and that the
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bicharacter can be chosen to be (−1 raised to the power of) the usual scalar
product on Z

N
2 .

The goal of this paper is to link the results of Rodrigo-Escudero [14],
Ovsienko [12], and Albuquerque and Majid [2], connecting real graded-division
algebras, twisted group algebras, Clifford algebras, and quadratic forms over
F2. Thanks to these connections, we show that we can determine the iso-
morphism class of a real Clifford algebra in terms of the Arf invariant, which
allows us to give new proofs (proofs of Theorem 16 and Corollary 18) of some
classical results.

After reviewing the basic definitions on gradings and on graded division
algebras in Sect. 2, twisted group algebras will be considered in Sect. 3, where
Theorem 2 relating alternating bicharacters and twisted group algebras will
be proved. In Sect. 4, the Clifford algebras of the nondegenerate quadratic
forms will be shown to be isomorphic to some twisted group algebras. This
was considered first in [2]. Section 5 will be devoted to review the classical
classification by Dickson [6] of the regular quadratic forms over F2. They are
determined by their Arf invariant.

In Sect. 6 each quadratic form over F2 is shown to define uniquely a real
twisted group algebra over a 2-elementary abelian group, the isomorphism
class of this algebra is determined by its dimension and the corresponding
Arf invariant (Corollary 13).

Finally, nice formulas for the Arf invariant are given in Sect. 7 (Theo-
rem 16), and the previous connections between real Clifford algebras, twisted
group algebras, and quadratic forms over F2 are used here to reprove some
well-known results on real Clifford algebras: the determination of their iso-
morphism class (Corollary 17), and some periodicity results (Corollary 18).

2. Background on Gradings

We want to study the relation between Clifford algebras and twisted group
algebras, which are naturally graded algebras, so let us recall the basic notions
about gradings, following [7]. Let G be a group, which will be assumed to be
abelian in most cases, a G-grading on an F-vector space W is a decomposition
of W into a direct sum of subspaces indexed by G,

Γ : W =
⊕

g∈G

Wg. (1)

The support of Γ (or of the G-graded vector space W ) is the subset of the
grading group supp(Γ) := {g ∈ G | Wg �= 0}. If 0 �= w ∈ Wg, we say that w
is homogeneous of degree g, and write deg w = g. The subspace Wg is called
the homogeneous component of degree g. A subspace U of W is said to be
graded if U =

⊕
g∈G(Wg ∩U). Given two gradings on the same vector space,

Γ : W =
⊕

g∈G Wg and Γ′ : W =
⊕

h∈H W ′
h, we say that Γ′ is a coarsening

of Γ, or that Γ is a refinement of Γ′, if for any g ∈ G there exists h ∈ H such
that Wg ⊆ W ′

h.
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If a G-grading Γ on an algebra D also satisfies

DgDh ⊆ Dgh (2)

for all g, h ∈ G, we say that Γ is a group grading ; we will always assume that
the gradings on our algebras are group gradings. The graded algebra D is
said to be a graded division algebra if the left and right multiplications by
any nonzero homogeneous element are invertible operators. If D is associative
this is equivalent to D being unital and every nonzero homogeneous element
having an inverse. In that case 1 ∈ De, where e is the neutral element of G,
and if 0 �= X ∈ Dg, then X−1 ∈ Dg−1 ; so the support of D is a subgroup of
G. Indeed, whenever Dg �= 0 and Dh �= 0, we also have 0 �= DgDh ⊆ Dgh and
Dg−1 �= 0.

Two group gradings Γ : D =
⊕

g∈G Dg and Γ′ : E =
⊕

h∈H Eh are
equivalent if there is an isomorphism of algebras ϕ : D → E , such that for
any g ∈ supp(Γ), there is an h ∈ supp(Γ′) such that ϕ(Dg) = Eh. If H = G
and ϕ(Dg) = Eg for any g ∈ G, then ϕ is said to be an isomorphism of
G-graded algebras.

3. Twisted Group Algebras

Given a group G, a field F and a map σ : G × G → F
×, the twisted group

algebra F
σG is the algebra over F with a basis consisting of a copy of G:

{εg : g ∈ G}, and with (bilinear) multiplication given by

εgεh := σ(g, h)εgh (3)

for any g, h ∈ G.
In a natural way, FσG is a G-graded algebra: (FσG)g := Fεg, which is

not necessarily associative. It is a graded-division algebra because the left
and right multiplications by εg are invertible operators, as σ takes values
in F

×. Actually, any G-graded-division algebra (not necessarily associative),
with homogeneous components of dimension 1, is a twisted group algebra,
isomorphic to F

σT , for a suitable σ, where T is the support of the grading.

Example 1. With F = R, Albuquerque and Majid (see [1]) considered the
classical algebras of complex numbers, quaternions and octonions as the
twisted group algebras R

σT with:
• T = Z2 and σ(x, y) = (−1)xy for the complex numbers.
• T = Z

2
2 and σ

(
(x1, x2), (y1, y2)

)
= (−1)x1y1+(x1+x2)y2 for the real asso-

ciative division algebra H of quaternions.
• T = Z

3
2 and

σ
(
(x1, x2, x3), (y1, y2, y3)

)
= (−1)y1x2x3+x1y2x3+x1x2y3+

∑
1≤i≤j≤3 xiyj

for the real non-associative division algebra O of octonions.

The twisted group algebra F
σG is associative if, and only if, for any

g, h, k ∈ G, (εgεh)εk = εg(εhεk), and this is equivalent to the following
condition on σ:

σ(g, h)σ(gh, k) = σ(h, k)σ(g, hk), (4)
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that is, to σ being a 2-cocycle with values in F
×: σ ∈ Z2(G,F×). (See [13,

Subsection 1.2] for the basic properties of associative twisted group algebras.)
Two twisted group algebras FσG and F

σ′
G are isomorphic as G-graded

algebras (these are named ‘diagonally equivalent’ in [13]) if and only if there
is a map μ : G → F

× such that the linear map determined by εg �→ μ(g)ε′
g,

where the ε′
g’s are the elements of the natural basis of Fσ′

G, is an isomorphism
of algebras, and this happens if, and only if,

μ(gh)σ(g, h) = μ(g)μ(h)σ′(g, h), (5)

that is, if and only if σ and σ′ are cohomologous.
Note that for σ ∈ Z2(G,F×), with h = k = e and with g = h = e

(the neutral element of G) in Eq. (4), we get σ(e, e) = σ(g, e) = σ(e, g)
for any g ∈ G, and hence the element 1 = σ(e, e)−1εe is the unity el-
ement of F

σG. Moreover, the powers of the basic elements are given by
εn
g =

(∏n−1
i=1 σ(gi, g)

)
εgn , and hence, if the order of g is n we have

εn
g =

(
n−1∏

i=0

σ(gi, g)

)
1. (6)

Given a 2-cocycle σ ∈ Z2(G,F×), consider the map β : G×G → F
× given by

β(g, h) = σ(g, h)σ(h, g)−1. In other words, β is determined by the condition:

εgεh = β(g, h)εhεg (7)

for any g, h ∈ G, that is, β measures the lack of commutativity of F
σG.

Trivially we have β(g, g) = 1 for any g ∈ G.
The associativity of FσG gives, for any g, h, k ∈ G:

εgεhεk =

{
σ(g, h)εghεk = σ(g, h)β(gh, k)εkεgh,

β(g, k)β(h, k)εkεgεh = σ(g, h)β(g, k)β(h, k)εkεgh,

and therefore β is multiplicative in the first variable, β(gh, k) = β(g, k)β(h, k),
and likewise in the second; so β is an alternating (β(g, g) = 1 for any g ∈ G)
bicharacter on G.

Our next result shows that, assuming that G is a finitely generated
abelian group, any alternating bicharacter on G comes from an associative
twisted group algebra defined on G.

Theorem 2. Let G be a finitely generated abelian group, and let β : G ×
G → F

× be an alternating bicharacter on G, then there exists a 2-cocycle
σ ∈ Z2(G,F×) such that β(g, h) = σ(g, h)σ(h, g)−1.

Moreover, if G = 〈g1〉 × · · · × 〈gN 〉, for a finite number of elements
g1, . . . , gN , with gi of order mi ∈ N≥2 for i = 1, . . . , r, and gi of infinite
order for i = r+1, . . . , N ; and if μ1, . . . , μr ∈ F

× are chosen arbitrarily, then
the 2-cocycle σ above can be taken so that the twisted group algebra F

σG is
isomorphic, as a G-graded algebra, to the following unital associative algebra
defined by generators and relations:
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alg
〈
x1, . . . , xN | xmi

i = μi, i = 1, . . . , r;

xixj = β(gi, gj)xjxi, i, j = 1, . . . , N
〉
, (8)

which is a G-graded algebra with deg(xi) = gi for i = 1, . . . , N .

Note that the free associative algebra generated by N generators can be
graded by any group G by assigning arbitrarily degrees to the free generators.
Hence the grading in the algebra in Eq. (8) is well defined, as the relations
imposed on the generators are homogeneous.

For future reference, the algebra in Eq. (8), which depends on N , the
mi’s, the μi’s, and the alternating bicharacter β, will be denoted by AF(N,m,
μ, β), where m = (m1, . . . ,mr) and μ = (μ1, . . . , μr), 0 ≤ r ≤ N . (m = ∅ = μ
if r = 0.)

Proof. Define σ : G × G → F
× by

σ
(
ga1
1 · · · gaN

N , gb1
1 · · · gbN

N

)
=

⎛

⎝
∏

i>j

β
(
gai

i , g
bj
j

)
⎞

⎠
(

r∏

i=1

μ
εi(ai,bi)
i

)
, (9)

for ai, bi ∈ Z for i = 1, . . . , N , with 0 ≤ ai, bi < mi for i = 1, . . . , r, and where,
for i = 1, . . . , r, εi(ai, bi) = 1 if ai + bi ≥ mi, and εi(ai, bi) = 0 otherwise.

It is clear that σ(g, h)σ(h, g)−1 = β(g, h) for any g, h ∈ G. We must
check that σ thus defined is a 2-cocycle, and this is done by induction on
N . If N = 1 and r = 0, then σ(ga1

1 , gb1
1 ) = 1 for any a1, b1, and σ is the

trivial cocycle. On the other hand, if N = r = 1, σ(ga1
1 , gb1

1 ) = μ
ε1(a1,b1)
1 ,

0 ≤ a1, b1 < m1. For x = ga1
1 , y = gb1

1 , and z = gc1
1 , with 0 ≤ a1, b1, c1 < m1,

σ(x, y)σ(xy, z) = σ(y, z)σ(x, yz) =

⎧
⎪⎨

⎪⎩

1 if a1 + b1 + c1 < m1,

μ1 if m1 ≤ a1 + b1 + c1 < 2m1,

μ2
1 if 2m1 ≤ a1 + b1 + c1.

Now assume that N > 1 and that the result is valid for N − 1. For x =
ga1
1 . . . gaN

N write x′ = ga1
1 . . . g

aN−1
N−1 , so that x = x′gaN

N , and similarly for
y = gb1

1 . . . gbN
N and z = gc1

1 . . . gcN
N . Then

σ(x, y) = σ(x′, y′)β(gaN

N , y′)σ(gaN

N , gbN
N ).

The factor σ(x′, y′) is a 2-cocycle (case N−1), and so is the factor σ(gaN

N , gbN
N )

(case N = 1). On the other hand, with σ̃(x, y) := β(gaN

N , y′), we have

σ̃(y, z)σ̃(x, yz) = β(gbN
N , z′)β(gaN

N , y′z′) = β(gbN
N , z′)β(gaN

N , y′)β(gaN

N , z′),
σ̃(x, y)σ̃(xy, z) = β(gaN

N , y′)β(gan

N gbN
N , z′) = β(gaN

N , y′)β(gaN

N , z′)β(gbN
N , z′),

and this shows that σ̃(x, y) is a 2-cocycle too.
Finally, in the twisted group algebra F

σG we have, because of Eq. (6),
that for i = 1, . . . , r:

εmi
gi

=

⎛

⎝
mi−1∏

j=0

σ(gj
i , gi)

⎞

⎠ 1 = μi1.
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Hence the generators εgi
, i = 1, . . . , N , of FσG satisfy the relations defining

the algebra in Eq. (8), so there is a surjective homomorphism of G-graded
algebras ϕ : AF(N,m, μ, β) → F

σG that sends xi to εgi
. But for any g =

ga1
1 · · · gan

N ∈ G, the homogeneous component AF(N,m, μ, β)g is spanned by
the monomial xa1

1 . . . xaN

N , so its dimension is at most 1. It follows that this
dimension is exactly 1 and that ϕ is an isomorphism. �

4. Clifford Algebras are Twisted Group Algebras

We start recalling the definition of Clifford algebra. Let F be a field of char-
acteristic different from 2, let V be an F-vector space of finite dimension N ,
and let Q : V → F be a non-degenerate quadratic form on V . The fact that
Q is a quadratic form is equivalent to the existence of a a symmetric bilinear
form B : V × V → F such that

2Q(v) = B(v, v) (10)

for all v ∈ V . We can recover B from Q, since

B(u, v) = Q(u + v) − Q(u) − Q(v) (11)

for all u, v ∈ V . Denote by T (V ) the tensor algebra of V , and by I(Q) the
two-sided ideal of T (V ) generated by all elements of the form v ⊗ v − Q(v)1
with v ∈ V . The Clifford algebra of (V,Q) is Cl(V,Q) := T (V )/I(Q).

Let {v1, . . . , vN} be an orthogonal basis of V , then by its own definition
Cl(V,Q) is isomorphic to the algebra

alg
〈
x1, . . . , xN | x2

i = μi, i = 1, . . . , N ; xixj = −xjxi, i �= j
〉
, (12)

under an isomorphism that takes each generator xi to the class of vi modulo
I(Q). That is, Cl(V,Q) is isomorphic to the algebra AF(N, 2, μ, β) in Eq. (8),
where:

• 2 = (2, 2, . . . , 2) (N components),
• μ =

(
Q(v1), Q(v2), . . . , Q(vN )

)
,

• β is the alternating bicharacter on the cartesian product G = CN
2 of N

copies of the cyclic group of two elements (so that G = 〈g1〉× · · ·× 〈gN 〉
with gi or order 2 for any i = 1, . . . , N), with β(gi, gj) = −1 for any
i �= j.

If we also have Q(v1) = · · · = Q(vN ) = 1, we denote the Clifford
algebra by ClN (F). In the case F = R, if Q(v1) = · · · = Q(vp) = +1 and
Q(vp+1) = · · · = Q(vN ) = −1, we denote the Clifford algebra by Clp,q(R),
where p + q = N .

Theorem 2 tells us that AF(N, 2, μ, β) is graded-isomorphic to a twisted
group algebra F

σG and, in particular, its dimension is 2N . It also follows that
Cl(V,Q) is a G-graded-division algebra, with deg(vi) = gi for i = 1, . . . , N
(here we identify vi ∈ V with the class of vi modulo I(Q) in Cl(V,Q)),
which is the grading by the group CN

2
∼= Z

N
2 that Albuquerque and Majid

constructed in [2, Proposition 2.2].
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Remark 3. Write vI := vi1 . . . vik , where 1 ≤ i1 < · · · < ik ≤ N and
I = {i1, . . . , ik}, and also denote v∅ := 1. It is clear that Cl(V,Q) is lin-
early spanned by {vI}I⊆{1,...,N}, but the fact that this family is linearly
independent, that is, dim Cl(V,Q) = 2N , is not immediate (see for example
[5, II.1.2] or [9, Theorem V.1.8]). In our case, this is a consequence of Theo-
rem 2. Alternatively, we can use the natural ZN

2 -grading of Albuquerque and
Majid to give a direct proof: Since the vI ’s belong to different homogeneous
components, they are linearly independent as long as they are nonzero; and
they are nonzero because they are invertible, since Q(vi) �= 0 for i = 1, . . . , N
(the quadratic form Q is non-degenerate). Of course, for this argument to
be complete, it has to be proved first that 1 �∈ I(Q), for example embedding
Cl(V,Q) in the algebra of endomorphisms of the exterior algebra Λ(V ), as
in [5, page 38]. Finally note that this also implies that dim Cl(V,Q) = 2N in
the general case, that is, if the quadratic form Q is degenerate, since we can
embed Cl(V,Q) in F[X1]/(X2

1 −Q(v1))⊗· · ·⊗F[XN ]/(X2
N −Q(vN ))⊗ClN (F),

and we have proved that dim ClN (F) = 2N .

Remark 4. There are division gradings on Clifford algebras with grading
group different from CN

2
∼= Z

N
2 . For instance, we can construct an exam-

ple of a division grading on Cl3(F) by the group Z2 ×Z4 = 〈a〉×〈b〉 following
[4, Subsection 2.4]:

e = deg 1, a = deg v1,

b = deg(v2 + v3v1), ab = deg(v3 − v1v2),
b2 = deg v1v2v3, ab2 = deg v2v3,

b3 = deg(v2 − v3v1), ab3 = deg(v3 + v1v2). (13)

However, in these graded algebras the information of the Clifford structure
is lost, and it is more natural to study them focusing only on their graded
nature (see [3,4,14]), so we are not interested in them.

5. Quadratic Forms Over the Field of Two Elements

Here we will consider quadratic forms q : W → F2 defined on a finite dimen-
sional vector space W over the field F2 of two elements. Let bq : W ×W → F2

be the associated bilinear form as in Eq. (11). As 2 = 0 in F2, bq is alternating:
bq(w,w) = 0 for any w ∈ W .

Two quadratic forms q : W → F2 and q′ : W ′ → F2 are equivalent (and
we will write q ∼ q′) if there is a linear isomorphism ϕ : W → W ′ such that
q′(ϕ(w)

)
= q(w) for any w ∈ W .

The orthogonal sum q ⊥ q′ is the quadratic form on W × W ′ given by

(q ⊥ q′)(w,w′) = q(w) + q′(w′) (14)

for any w ∈ W and w′ ∈ W ′.
Dickson [6] (see also [12] and [3, Section 5]) classified long ago the qua-

dratic forms q on F
N
2 with dim rad(bq) ≤ 1. (The radical of the bilinear
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form bq is the subspace {x ∈ F
N
2 | bq(x,y) = 0, ∀y ∈ F

N
2 }.) Dickson’s re-

sults are summarized as follows: Any quadratic form q : F
N
2 → F2 with

dim rad(bq) ≤ 1 is equivalent to one of the following:
N even (N = 2n)

• qN
0 (x1, . . . , x2n) = x1x2 + x3x4 + · · · + x2n−1x2n,

• qN
1 (x1, . . . , x2n) = x1x2 + x3x4 + · · · + x2n−1x2n + x1 + x2, (note

that x = x2 for any x ∈ F2 = {0, 1}).
N odd (N = 2n + 1)

• qN
0 (x1, . . . , x2n+1) = x1x2 + x3x4 + · · · + x2n−1x2n,

• qN
1 (x1, . . . , x2n+1) = x1x2 + x3x4 + · · · + x2n−1x2n + x1 + x2,

• qN
2 (x1, . . . , x2n+1) = x1x2 + x3x4 + · · · + x2n−1x2n + x2n+1.

Remark 5. For N even rad(bqN
0

) = 0 = rad(bqN
1

), while for N odd dim
rad(bqN

i
) = 1 for i = 0, 1, 2, and only qN

2 is regular (this means that either
rad(bq) = 0, or dim rad(bq) = 1 but q is not trivial on rad(bq)).

The equivalence class of a quadratic form q on F
N
2 with dim rad(bq) ≤ 1

is determined by its Arf invariant Arf(q), which tells us whether there are
more elements w ∈ F

N
2 with q(w) = 0 or q(w) = 1:

Definition 6. Let q : W → F2 be a quadratic form on a finite dimensional
vector space W over F2. Then

Arf(q) :=

⎧
⎪⎨

⎪⎩

1 if |{w ∈ W | q(w) = 0}| > |{w ∈ W | q(w) = 1}|,
0 if |{w ∈ W | q(w) = 0}| = |{w ∈ W | q(w) = 1}|,
−1 if |{w ∈ W | q(w) = 0}| < |{w ∈ W | q(w) = 1}|.

(15)

Remark 7. The Arf invariant is usually defined with a different and more
complex formula (see for instance [8, Example 13.5.(2)]) for quadratic forms
q over any ground field of characteristic 2 but such that rad(bq) = 0. Here
we have used the fact that, if the ground field is F2, the Arf invariant is
the ‘democratic invariant’, determined by the value which is assumed most
often by the quadratic form, to extend the definition to quadratic forms with
nontrivial radical, as in [10, page 61].

An easy computation shows:

Arf(qN
0 ) = 1, Arf(qN

1 ) = −1, Arf(qN
2 ) = 0 (N odd). (16)

A quadratic form that will be important later on is the one in the next
example:

Example 8. Take p, q ∈ N ∪ {0} such that p + q = N . The quadratic form
qp,q : FN

2 → F2 is defined by:

qp,q(x1, . . . , xN ) = x2
q+1 + · · · + x2

N +
∑

1≤i<j≤N

xixj . (17)

Remark that the associated alternating bilinear form is:

bqp,q
((x1, . . . , xN ), (y1, . . . , yN )) =

∑

1≤i�=j≤N

xiyj . (18)
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Denote by e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , eN = (0, 0, 0, . . . , 1),
the canonical generators of FN

2 . Clearly bqp,q
(ei, ej) = 1 for any i �= j. Note

that bqp,q
depends only on N = p + q, and not on p and q, and it is easily

checked that for N even bqp,q
is nondegenerate, while for N odd its radical

has dimension 1.

For later use, it will be convenient to move to multiplicative notation.
Let C2 = {±1} be the cyclic group of order 2 ‘in multiplicative version’. A
multiplicative quadratic form on CN

2 is a map µ : CN
2 → C2 such that the

map βµ : CN
2 × CN

2 → C2 given by

βµ(r, s) = µ(rs)µ(r)µ(s) (19)

is an alternating (that is, βµ(r, r) = 1 for any r ∈ CN
2 ) bicharacter. Note that

µ(r) = µ(r)−1 for any r ∈ CN
2 .

Remark 9. Given a quadratic form q : FN
2 → F2, its multiplicative version is

the map µ : CN
2 → C2 given by

µ ((−1)x1 , . . . , (−1)xN ) = (−1)q(x1,...,xN )

for x1, . . . , xN ∈ F2 = {0, 1}. The Arf invariant of µ is, by definition, the Arf
invariant of q.

The multiplicative versions of the quadratic forms qN
i above will be

denoted by µN
i , and the multiplicative version of qp,q in Example 8 will be

denoted by µp,q.

6. From Quadratic Forms to Real Algebras

Any multiplicative quadratic form µ : CN
2 → C2 determines the correspond-

ing bicharacter βµ and this may be considered as a bicharacter with values
in R

×, taking only the values ±1. Hence µ determines the associative algebra
AR(N, 2, μ, βµ), with μ =

(
µ(e1), . . . ,µ(eN )

)
, where we denote too by ei the

canonical generators of CN
2 that corresponds to the canonical basic elements

of FN
2 above:

ei = (1, . . . , 1,

i︷︸︸︷
−1 , 1, . . . , 1).

Theorem 2 has the following direct consequence:

Proposition 10. Given a multiplicative quadratic form µ : CN
2 → C2, the

CN
2 -graded algebra AR(N, 2, μ, βµ) is graded isomorphic to the twisted group

algebra R
σCN

2 , where the 2-cocycle σ is given by Equation (9). In particular,

σ(q, q) = µ(q) ∀q ∈ CN
2 ; (20)

and

σ(ei, ej) =

{
1 if i < j,

βµ(ei, ej) if i > j.
(21)
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Remark 11. The graded algebra AR(N, 2, μ, βµ) is determined by Eqs. (7)
and (20), so it only depends on the quadratic form µ and not on the chosen
basis of the grading group CN

2 , and we will denote it simply by AR(µ). Also,
if two multiplicative quadratic forms µ and µ′ are equivalent, then AR(µ) is
isomorphic to AR(µ′); and for any two multiplicative quadratic forms µ and
µ′, AR(µ) ⊗R AR(µ′) is isomorphic to AR(µ ⊥ µ′).

The arguments in [12] or [3, Section 5] give:

Theorem 12. We have the following isomorphisms,
• M2n(R) ∼= AR(µ2n

0 ),
• M2n−1(H) ∼= AR(µ2n

1 ),
• M2n(R) × M2n(R) ∼= AR(µ2n+1

0 ),
• M2n−1(H) × M2n−1(H) ∼= AR(µ2n+1

1 ),
• M2n(C) ∼= AR(µ2n+1

2 ).

Therefore, the isomorphism class of the algebra AR(µ), for a regular
multiplicative quadratic form µ is determined by the equivalence class of µ,
and hence by the dimension N and by the Arf invariant of µ. Thus, we can
rewrite the previous result as follows:

Corollary 13. Let µ : CN
2 → C2 be a regular multiplicative quadratic form.

Then there are the following possibilities:
• if N is even, N = 2n, and Arf(µ) = 1, then AR(µ) ∼= M2n(R),
• if N is even, N = 2n, and Arf(µ) = −1, then AR(µ) ∼= M2n−1(H),
• if N is odd, N = 2n + 1, and Arf(µ) = 1, then AR(µ) ∼= M2n(R) ×

M2n(R),
• if N is odd, N = 2n + 1, and Arf(µ) = −1, then AR(µ) ∼= M2n−1(H) ×

M2n−1(H),
• if N is odd, N = 2n + 1, and Arf(µ) = 0, then AR(µ) ∼= M2n(C).

Remark 14. In [3, Section 5] (see also [14]) the opposite reasoning was made.
Real graded-division algebras with homogeneous components of dimension
1 and center of dimension at most 2 were classified, obtaining Corollary 13.
Then, from that classification of gradings, Dickson’s classification of quadratic
forms was derived.

Recall that µp,q denotes the multiplicative version of qp,q. Equation (12)
proves our next result:

Theorem 15. The Clifford algebra Clp,q(R) is isomorphic to AR(µp,q).

7. Real Clifford Algebras

In order to classify the Clifford algebras Clp,q(R) we must compute the Arf
invariant Arf(µp,q) of the (multiplicative versions of the) quadratic forms in
Example 8. By sign(x) we denote the sign +1, 0, or −1, of the real number
x, this sign being 0 for x = 0.
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Theorem 16. For any p, q ∈ N ∪ {0}, the Arf invariant of µp,q is:

Arf(µp,q) = sign
(

cos
(p − q)π

4
+ sin

(p − q)π
4

)
(22)

=

⎧
⎪⎨

⎪⎩

1 if p − q + 1 ≡ 1, 2, 3 (mod 8),
0 if p − q + 1 ≡ 0, 4 (mod 8),
−1 if p − q + 1 ≡ 5, 6, 7 (mod 8).

(23)

Proof. Several steps will be followed.
• Let us prove first the formula

Arf(µp+1,q+1) = Arf(µp,q). (24)

To do this, denote by W the subgroup of C
(p+1)+(q+1)
2 generated by e1,

. . . , ep, ep+2, . . . , ep+q+1. Then for any w ∈ W , µ(wep+1) �= µ(wep+q+2),
because βµ(w, ep+1) = βµ(w, ep+q+2), and µ(ep+1) = 1 and µ(ep+q+2) =
−1. On the other hand, for any w ∈ W , µ(w) = µ(wep+1ep+q+2), because
βµ(w, ep+1ep+q+2) = 1 and µ(ep+1ep+q+2) = 1. Since the group C

(p+1)+(q+1)
2

can be expressed as the disjoint union W ∪Wep+1∪Wep+q+2∪Wep+1ep+q+2,
we get
∣∣{w ∈ C

(p+1)+(q+1)
2 : µp+1,q+1(w) = 1}∣∣ = 2

∣∣{w ∈ W : µp+1,q+1(w) = 1}∣∣ + |W |,
∣∣{w ∈ C

(p+1)+(q+1)
2 : µp+1,q+1(w)=−1}∣∣=2

∣∣{w ∈ W : µp+1,q+1(w) = −1}∣∣ + |W |,
and the result follows.

• Therefore we get

Arf(µp,q) =

⎧
⎪⎨

⎪⎩

Arf(µ1,1) if p = q,

Arf(µp−q,0) if p > q,

Arf(µ0,q−p) if p < q,

(25)

and it is enough to check our formulas for µN,0 and µ0,N , N ∈ N.
For µN,0, consider the canonical generators ei of CN

2 as in Example 8.
For any sequence I = {1 ≤ i1 < i2 < · · · < ir ≤ N}, let eI := ei1ei2 . . . eir .
Then µN,0(eI) = (−1)(

r
2), so we arrive at

|µ−1
N,0(+1)| − |µ−1

N,0(−1)| =
N∑

r=0

(
N

r

)
(−1)(r−1)r/2 = S0 + S1 − S2 − S3.

(26)
While for µ0,N , we have µ0,N (eI) = (−1)r(−1)(

r
2) = (−1)r+(r2), so

|µ−1
0,N (+1)|− |µ−1

0,N (−1)| =
N∑

r=0

(
N

r

)
(−1)(r−1)r/2+r = S0 −S1 −S2 +S3.

(27)
Where S0, S1, S2 and S3 are the following binomial sums:

S0 :=
(

N

0

)
+

(
N

4

)
+ · · · +

(
N

4�N−0
4 � + 0

)
=

1
2

(
2N−1 + 2N/2 cos

Nπ

4

)
,

(28)
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S1 :=
(

N

1

)
+

(
N

5

)
+ · · ·+

(
N

4�N−1
4 � + 1

)
=

1
2

(
2N−1 + 2N/2 sin

Nπ

4

)
,

(29)

S2 :=
(

N

2

)
+

(
N

6

)
+ · · · +

(
N

4�N−2
4 � + 2

)
=

1
2

(
2N−1 − 2N/2 cos

Nπ

4

)
,

(30)

S3 :=
(

N

3

)
+

(
N

7

)
+ · · ·+

(
N

4�N−3
4 � + 3

)
=

1
2

(
2N−1 − 2N/2 sin

Nπ

4

)
.

(31)
The last equality for each binomial sum is well-known, but we give an alge-
braic proof of them below, in the last step of this proof of Theorem 16.

Taking into account Eqs. (28)–(31), we get

Arf(µN,0) = sign
(

cos
Nπ

4
+ sin

Nπ

4

)
,

and

Arf(µ0,N ) = sign
(

cos
Nπ

4
− sin

Nπ

4

)
,

which, together with Eq. (25), give

Arf(µp,q) = sign
(

cos
(p − q)π

4
+ sin

(p − q)π
4

)
.

This proves the first half of the formula in the statement of the Theorem.
The second half is clear.

• To prove Eqs. (28)–(31), consider the isomorphism of unital R-algebras
given by the Chinese Remainder Theorem:

ϕ : R[T ]/(T 4 − 1) −→ R[X]/(X − 1) × R[Y ]/(Y + 1) × R[Z]/(Z2 + 1)
f(T ) + (T 4 − 1) �−→ (f(X) + (X − 1), f(Y ) + (Y + 1), f(Z) + (Z2 + 1)).

(32)

If we write t = T +(T 4 −1) and i = Z +(Z2 +1), then ϕ is defined by ϕ(1) =
(1, 1, 1), ϕ(t) = (1,−1, i), ϕ(t2) = (1, 1,−1) and ϕ(t3) = (1,−1,−i). Recip-
rocally, ϕ−1 is determined by ϕ−1(1, 0, 0) = (1+ t+ t2 + t3)/4, ϕ−1(0, 1, 0) =
(1 − t + t2 − t3)/4, ϕ−1(0, 0, 1) = (1 − t2)/2 and ϕ−1(0, 0, i) = (t − t3)/2.

On the one hand, we can compute (1 + t)N in R[t],

(1 + t)N =
N∑

i=0

(
N

i

)
ti = S01 + S1t + S2t

2 + S3t
3. (33)

On the other hand, we can apply first ϕ to (1 + t), which gives (2, 0, 1 + i),
and then raise it to the N -th power,

(2, 0, 1 + i)N = (2N , 0, (1 + i)N ) =
(

2N , 0, 2N/2 cos
Nπ

4
+ 2N/2 sin

Nπ

4
i

)
.

(34)
Applying ϕ−1 to this last expression, and comparing it with the other one
we have, we get our desired formulas.
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Corollary 13, together with Theorems 15 and 16, gives immediately
alternative proofs of the following classical results on Clifford algebras over
the real numbers:

Corollary 17. Let p, q ∈ N ∪ {0} and N = p + q. Then,
N even:

• Clp,q(R) ∼= M2N/2(R) if p − q + 1 ≡ 1, 3 (mod 8).
• Clp,q(R) ∼= M2(N−2)/2(H) if p − q + 1 ≡ 5, 7 (mod 8).

N odd:

• Clp,q(R) ∼= M2(N−1)/2(R) × M2(N−1)/2(R) if p − q + 1 ≡ 2 (mod 8).
• Clp,q(R) ∼= M2(N−1)/2(C) if p − q + 1 ≡ 0, 4 (mod 8).
• Clp,q(R) ∼= M2(N−3)/2(H) × M2(N−3)/2(H) if p − q + 1 ≡ 6 (mod 8).

Corollary 18. Let p, q ∈ N∪ {0}, then the following ‘periodicity results’ hold:

1. Clp+1,q+1(R) ∼= Clp,q(R) ⊗R M2(R).
2. Clp+2,q(R) ∼= Clq,p(R) ⊗R M2(R).
3. Clp,q+2(R) ∼= Clq,p(R) ⊗R H.
4. Clp+4,q(R) ∼= Clp,q+4(R).

Proof. For the first case, it is enough to show that Arf(µp+1,q+1) = Arf(µp,q),
and this was proved in the proof of Theorem 16. For the second case, note
that q−p+1 = 4−(

(p+2)−q+1
)
, so Arf(µp+2,q) = Arf(µq,p) by Theorem 16.

Also, q−p+1 = −(
p− (q +2)+1

)
, so Theorem 16 shows that Arf(µp,q+2) =

−Arf(µq,p), and this proves the third case. Finally, p+4−q+1 ≡ p−(q+4)+1
(mod 8), so Arf(µp+4,q) = Arf(µp,q+4), and this proves the last case. �

Alternatively, we can prove that

Arf(µp+2,q) = Arf(µq,p) (35)

reasoning in a similar way as we did in the proof of Theorem 16. Let e1, . . . , eN

and f1, . . . , fN , fN+1, fN+2 be the generators of Cq+p
2 and C

(p+2)+q
2 as in Ex-

ample 8, but reorder the indexes so that µp+2,q(fN+1) = µp+2,q(fN+2) = +1
and µq,p(ei) = −µp+2,q(fi) for i = 1, . . . , N . We have again four types of

terms in C
(p+2)+q
2 : (1) the fI , (2) the fIfN+1fN+2, (3) the fIfN+1, (4) the

fIfN+2 (I = {1 ≤ i1 < i2 < · · · < ir ≤ N}, fI = fi1fi2 · · · fir ). Since
µp+2,q(fN+1fN+2) = −1 and βµ(fI , fN+1fN+2) = 1, the terms of the second
type cancel out with the terms of the first type, µp+2,q(fI) = −µp+2,q(fI fN+1

fN+2). Also, we have that µp+2,q(fIfN+1) = µp+2,q(fIfN+2), hence the con-
tribution of the terms of the fourth type to Arf(µp+2,q) is the same as that
of the terms of the third type. If |I| is odd, then

µp+2,q(fIfN+1) = −µp+2,q(fI)µp+2,q(fN+1) = µq,p(eI);

whereas if |I| is even, also

µp+2,q(fIfN+1) = µp+2,q(fI)µp+2,q(fN+1) = µq,p(eI).

We conclude that Arf(µp+2,q) = Arf(µq,p).
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The same argument works for µp,q+2 and µq,p, but this time we would
have µp,q+2(fN+1) = µp,q+2(fN+2) = −1, so we get

Arf(µp,q+2) = −Arf(µq,p). (36)
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