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Abstract. We classify the subalgebras of the split octonions, paying par-
ticular attention to the null subalgebras and their extensions.
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1. Introduction

The octonions appear to play an important role in the modern description of
fundamental particles, although the full scope of this role is not yet known.
There are clear indications that the octonions are related to supersymme-
try [10,11,20,21] and Grand Unified Theories [8,14-16,18,22]. Furthermore,
the octonions are at the heart of any description of the exceptional Lie
groups [1,4,6,9,12,19,24]. In all of these applications, the octonions general-
ize the notion of a Clifford algebra, as typified by the underlying quaternionic
nature of the Clifford algebra in two Euclidean dimensions. The structure of
the octonions is therefore of considerable interest to both mathematicians
and physicists working on these and related topics.

The subalgebras of the octonions Q@ are well-known: According to the
Hurwitz theorem [17], the only proper subalgebras are the reals R, the com-
plex numbers C, and the quaternions H. In its usual formulation, the Hur-
witz theorem asserts that these are the only Fuclidean composition algebras
(over R). However, there is also a non-Euclidean cousin of the octonions,
namely the split octonions Q'. Both the Hurwitz theorem and the Cayley—
Dickson process [5] lead to the construction of split complex numbers C’ and
split quaternions H’', but these turn out not to be the only proper
subalgebras of Q.

Maximal subalgebras of Cayley algebras have been classified over arbi-
trary fields of characteristic other than two [23]. In the split case, the maximal
subalgebras are either four- or six-dimensional; the quaternions, or the sex-
tonions, both discussed below. Implicit in this work is a classification of all
subalgebras, but so far as we are aware no such list has appeared in print.
Over finite fields, subalgebras of split Cayley algebras have indeed been fully
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classified [13], but again, these results do not appear to have been explicitly
applied to the real case, which is of greatest interest in physical applications.

We present here a complete classification of the subalgebras of the split
octonions, that is, the split Cayley algebra over the reals. We work throughout
in an explicit basis, therefore also providing an explicit example of each type
of subalgebra. It is straightforward to show that our classification is in fact
complete, but we omit a formal proof, as we deem the explicit list likely to
be more useful in applications.

2. The Split Octonions

We follow Dray and Manogue [7] in writing the basis of the quaternions as
{1,1,J, K}, so that

H=(1,I,J K) (1)
where of course

I’=J*=K?=—1, (2)

I1J=K=-JI. (3)
The split octonions can then be written as
O =HoHL (4)

where direct sums always refer to the underlying vector space structure, and
where

L? = +1. (5)
Like the octonions, the split octonions are not associative, but they are al-
ternative; the full multiplication table is shown in Table 1. Octonionic con-
jugation is defined as usual via

T =2Re(z) —=x (6)
and there is a norm, given by
j2|* = a7, (7)
which can be polarized to yield a non-degenerate inner product
1, _ 1_
-y = 5@y +yz) = 5 (Ty +7z) (8)

with signature (4,4), since |z|?> > 0 for € H, but |z|?> < 0 for x € HL. The
split octonions are indeed a composition algebra, that is, we have

jzyl* = |||yl (9)
for any z,y € Q.

It is useful to regard @’ as the sum of four Lorentzian subspaces labeled
by the basis elements of H. The inner product has signature (1,1) on each
such subspace, but each such subspace also contains elements of norm 0, and
in fact admits a basis of such elements. The null elements so obtained fall
into two categories: there are (multiples of) idempotents, such as (1 + L),

which square to themselves, and nilpotents, such as %(I + IL), which square
to 0.
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TABLE 1. The split octonionic multiplication table

1 I J K KL JL IL
1 1 I J K KL JL 1L
I I -1 K —J JL —-KL —L 1L
J J -K -1 1 —IL —L KL JL
K K J —I -1 —L 1L —JL KL
KL KL —JL 1L L 1 -1 J K
JL JL KL L —IL I 1 -K J
IL IL L —KL JL —J K 1 1
L L —IL —JL —-KL -K —J —I 1

In the presence of null elements, we must extend the usual definition of
signature. A vector subspace of @', henceforth simply called a subspace, has
signature (p, m,n) if it contains an n-dimensional subspace on which the inner
product is identically zero, and a (p+ m)-dimensional subspace on which the
inner product is nondegenerate with signature (p, m).

The Hurwitz theorem is sufficient to classify the nondegenerate (proper)
subalgebras of Q’, yielding as expected R, C, C’, H, and H'. But what about
degenerate subalgebras?

Furthermore, the nondegenerate subalgebras of Q' contain no proper,
nondegenerate ideals. But the composition property means that degenerate
null subalgebras can be ideals, as we now show.

Lemma 1. The product of a null element of Q' with any other element of Q'
is null.

Proof. If ¢ € Q' is null, then

lg[*>=0 (10)

by definition, and
lgz|* = |gf*|z> = 0 (11)
for any x € @', so gz is also null. O

Lemma 2. The null elements of any subalgebra of Q' close under multiplica-
tion.

Proof. Let K C Q' be a subalgebra of @', and let N be the set of all null
elements of K. Since K is a subalgebra, it closes under multiplication, so
qr € K for any ¢ € N and z € K. But gz is null by Lemma 1, completing the
proof. O

It is tempting to conclude that the null elements of a subalgebra K ¢ Q'
form an ideal of K, but this statement is false; an algebra ideal must also be
closed under addition. For example, the null elements of a Lorentzian vector
space span the entire space, not merely the null subset. However, this example
correctly suggests that degenerate subalgebras contain null ideals.

We first need the following lemma, which we state without proof.
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Lemma 3. The inner product (8) on Q' satisfies the associator identity
xy-z—x-yz=2Re(x)y-z—2Re(2)x - y. (12)

We now define the degenerate subspace, also denoted N, of a subalgebra
K c @' to be the set of elements orthogonal to all elements of K. Thus, not
only is the inner product identically zero on N (so that its elements are null),
but elements of N are also orthogonal to any non-degenerate elements of K.

Lemma 4. Let N be the degenerate subspace of the subalgebra K C Q. If N
closes under multiplication, then N is an ideal of K.

Proof. If N = K, we're done, so assume N % K. Then K contains at least
one nondegenerate element z, satisfying 0 # 2T = 2(2Re(z) — ). Since K is
an algebra, the right-hand side of this expression is in K, and hence R C K.
Thus, g € N forces ¢ L R, so that Re(q) = 0.

For any p € K, pg = a + 3, with a € K\N, 8 € N. If 0 # o ¢ N, then
there exists s € K such that s-a # 0, so that s-(pq) = s-(a+3) = s-a+0 #£ 0.
Now use (12) with x = s, y = p, z = ¢, noting that y - z = 0 = Re(z2).
Therefore, (sp)-q # 0, which contradicts the assumed degeneracy of ¢, which
in turn forces a« = 0. Thus, pg € N, as desired. 0

Finally, we can characterize the nondegenerate part of any proper sub-
algebra K C Q. Using the Cayley—Dickson process, we can construct a max-
imal nondegenerate subalgebra X C K. Thus, we can assume without loss of
generality that (the basis is chosen such that) the nondegenerate subspace
X C K is in fact a subalgebra of K; the Cayley—Dickson process then assures
us that X is one of R, C, C’, H, or H'

With these tools, we are ready to classify the subalgebras of Q.

3. One-Dimensional Subalgebras

One-dimensional subalgebras of @’ could have signature (1,0,0), (0,1,0), or
(0,0, 1). However, the nondegenerate part of the subalgebra must itself be a
subalgebra, which rules out signature (0, 1,0). Signature (1, 0,0) corresponds
to R = (1), but what about signature (0,0,1)?

If 27 = 0, then 22 = 2zRe(x) from (6). There are two cases: Re(x) = 0,
in which case 22 = 0 and x is nilpotent, and Re(z) # 0, in which case we can
rescale x so that Re(z) = % and 22 = z, and « is idempotent. In either case,
x generates a 1-dimensional null subalgebra.

An example of an idempotent null subalgebras is

1
Hi:<2(1iL)> = (1% L), (13)
and an example of a nilpotent null subalgebra is
NE = (K + KL). (14)

As with the other examples discussed below, these examples are generic; our
use of an explicit basis notwithstanding, it is straightforward to show that



Vol. 28 (2018) Subalgebras of the Split Octonions Page 5 of 9 40

TABLE 2. The split octonionic multiplication table in a null
basis, using the abbreviations 14 = $(1+L), I+ = $(I+IL),
Jy =1(J+JL), Ky = J(K+KL)

1, I, J, K. K, J_ I_ 1
1, 1. 0 0 K_ 0 J_ I_ 0
I, I, 0 K_ 0 —J_ 0 ~1_ 0
J. J. -K_ 0 0 I_ -1 0 0
K. 0 0 0 0 1, I, Jy K_
K, K, J_ - —1_ 0 0 0 0
J_ 0 0 -1, I 0 0 K. J_
I_ 0 1, 0 ~Jy 0 K. 0 I
1_ 0 I, Jy 0 K, 0 0 1_

all null 1-dimensional subalgebras of Q' are isomorphic to one of these two
cases.

4. Two-Dimensional Subalgebras

The only nondegenerate two-dimensional subalgebras of Q" are C and C/;
we take the particular examples C = (1,I) and C' = (1, L). Examples of
degenerate two-dimensional subalgebras are

IE=1*eNy=(1+L,K-KL), (15)

Nyjxk =Ny &Ny =(J+JL, K — KL). (16)

Although both of these subalgebras have completely degenerate inner prod-

ucts, they are not isomorphic, as only N ;g also has a completely degenerate

multiplication table. (The multiplication table for Q' in a null basis is shown

in Table 2.) Notice that Nj and N are both ideals of N, but only N is
an ideal of H}E.

There are also mixed two-dimensional subalgebras of @', which must
take the form R + N, with N degenerate. An example of such a subalgebra is

RONL = (1, K + KL), (17)

of which N£ must be an ideal by Lemma 4.

5. Three-Dimensional Subalgebras

There are no nondegenerate three-dimensional composition algebras over R,
so any three-dimensional subalgebra of @' must contain a degenerate piece.
Beginning with the completely degenerate case, we have the remarkable sub-
algebra

Nijx =N} @ NV @ N = (I + 1L, J+ JL, K — KL), (18)
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which closes since the product of the first two generators is (a multiple of)
the third. We can also combine the null two-dimensional subalgebras in the
previous section, obtaining

I, +Njx = (1+ L, J+ JL, K — KL), (19)

with a quite different multiplication table. Turning to mixed algebras, the
only possibilities have the form R@ N, C' ® N, or C ¢ N, with N degenerate.
Examples of the first two types are

R&Nyx = (1,J+JL, K — KL), (20)

C'@NEt =(1,L,K + KL), (21)

but it is not possible to extend C to a three-dimensional subalgebra, as the

subspace will not close. Subalgebras of Q' with signature (1,1,1) such as
C' @ N3 are called ternions (T).

It is easy to see that N}', Ny, and N are ideals of Ny jx, but the only

ideal of I+ ® Nk is Njg. As before, Njx must be an ideal of R® N, and
NE must be an ideal of C’ @ N%, by Lemma 4.

6. Four-Dimensional Subalgebras
The only nondegenerate four-dimensional subalgebras of Q' are H and H/;

we take the particular examples H = (1,1, J, K) and C' = (1,1,1L,L). The
only degenerate four-dimensional subalgebras of @’ have the form

I* ¢Nyjg=(1+L,I+IL,J+JL K—KL), (22)

with ideals Ny, Nyg, and N7jx. A mixed subalgebra must have the same
general form as given above in the three-dimensional case; examples of each
case are:

R&Nyyx=(1,I+IL,J+JL K — KL), (23)
CeNyg = (1,1,J+JL, K — KL), (24)
C &Ny =(1,L,J+JL,K — KL), (25)

where in each case the degenerate subspace is in fact a subalgebra of Q' and
hence an ideal by Lemma 4.

7. Higher-Dimensional Subalgebras

We refer to the remaining cases, with dimension greater than four, as higher-
dimensional subalgebras of Q. There are no proper, nondegenerate, higher-
dimensional subalgebras of Q’, nor can there be more than four independent,
orthogonal null directions. Therefore, any higher-dimensional subalgebra of
O must be mixed, although now we must include H and H' as possibilities
for the nondegenerate part of the subalgebra.

There is no higher-dimensional subalgebra of Q' of the form R®N, with
N degenerate, since N would have to be four-dimensional, leaving no room
for any further elements. Put differently, adding any additional element to
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the null, four-dimensional subalgebra I* @& Ny ;i would change the signature
to (1,1, 3). But this signature is possible, an example being

C' @Nyyx=(,L,I+IL,J+JL, K — KL) (26)

with N7 sk as an ideal by Lemma 4. But the same argument shows that there
can be no larger subalgebras containing C'.

Higher-dimensional subalgebras containing C or H are not possible for
similar reasons; there are not enough Lorentzian planes left over to find a
sufficient number of orthogonal null elements.

That leaves the possibility of a subalgebra of Q' of the form H' & N,
with N degenerate. This case is possible, an example being

H &Nyg = (1,1,IL,L,J + JL,K — KL) (27)

with, yet again, N as an ideal by Lemma 4. Subalgebras of Q' with signa-
ture (2,2,2) such as H' @ N, are called sextonions (S). Both the ternions
and sextonions have recently been used to generalize the Freudenthal-Tits
magic square [3].

8. Summary

By examining each case, we have in fact shown that any subalgebra of Q" can
be decomposed into orthogonal subalgebras, one degenerate and the other
nondegenerate.

Theorem 1. Any subalgebra K C Q' can be decomposed as K = X &N, where
X, N are orthogonal subalgebras of K, with N degenerate and X nondegenerate.
Furthermore, N is an ideal of K.

An exhaustive list of the possible signatures, together with examples of
each case, is given in Table 3. As enumerated above, each null subalgebra
of dimension greater than one contains one or more null subalgebras that
are ideals, and Lemma 4 guarantees that each subalgebra with mixed signa-
ture contains an ideal, namely its degenerate subalgebra. Are these the only
subalgebras with ideals, that is, are the remaining algebras simple?

The answer is, not quite. The Euclidean subalgebras R, C, and H are of
course simple, as are the one-dimensional null subalgebras, but what about
the split subalgebras? It is easy to verify that H’ and Q' itself are indeed
simple, but C’ is not, as it can be written as the sum of two idempodent null
subalgebras, namely

C=Itel, (28)
and each of these subalgebras is an ideal. The simple subalgebras of Q' are
therefore 1%, Nli(, R, C, H, H', and of course Q' itself.
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TABLE 3. The possible signatures for proper subalgebras of
Q’, with examples for each case

Signature Example(s)
(1,0,0) R = (1)
(0,0,1) IF=(1+L); Nf=(K+KL)
(2,0,0) C=(1,I)
(1,1,0) C' =(1,L)
(1,0,1) R NE = (1,K £ KL)
0.0.2) £ =(1+L,K—KL);
” Nyg = (J+JL,K — KL)
Y Nyyg={I+I1IL J+JL,K—KL)
(1,0,2) ReNyjg=(,J+JL, K- KL)
(1,1,1) C'@®NL =(1,L,K+KL)
(4,0,0) H=(1,1,J,K)
(2,2,0) H' = (1,1,1L,L)
(0,0,4) I*®Nyx=0+L,I+IL,J+JL K —KL)
(1,0,3) R&Nyjx=(1,1+IL,J+JL K — KL)
(2,0,2) CeNyg=(1,I,J+JL,K - KL)
(1,1,2) C'®Nyx=(1,L,J+JL, K — KL)
(1,1,3) C'®Npygx=(1,LI+IL,J+JL, K- KL)
(2,2,2) H &Ny =(1,1,IL,L,J + JL,K — KL)
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