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Abstract. We flesh out the affine geometry of R3 represented inside the
Clifford algebra R(4, 4). We show how lines and planes as well as conic
sections and quadric surfaces are represented in this model. We also
investigate duality between different representations of points, lines, and
planes, and we show how to represent intersections between these geo-
metric elements. Formulas for lengths, areas, and volumes are also pro-
vided.
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1. Introduction

Clifford algebra is a powerful paradigm for investigating geometry. The sep-
aration of operators and operands, the availability of versors and rotors for
computing transformations, the use of meets and joins for representing inter-
sections and unions, the large array of additional computational tools such as
the Clifford product, the inner product, and the outer product, the built-in
orientations, dimensions, and duality, and the geometric insights gained from
this powerful algebra often lead to cleaner, leaner, more robust algorithms,
programs, and code as well as the ability to solve challenging technical prob-
lems not always possible using classical matrix methods [9,19,22].

The algebra we use depends on the geometry we wish to investigate.
Let R(n,m) denote the algebra with n basis vectors that square to +1 and
m basis vectors that square to −1. The Clifford algebra R(3, 0) contains
vectors representing oriented line segments, bivectors representing oriented
plane sectors, and a subalgebra of quaternions representing rotations in 3-
dimensions. Thus R(3, 0) is the model of choice for investigating rotations of
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lines and planes through the origin as well as tangent vectors and normal vec-
tors in 3-dimensions [9]. Similarly, the conformal model R(4, 1) contains flats-
oriented lines and planes—and rounds-oriented circles and spheres—as well
as all the 3-dimensional conformal transformations—translation, rotation,
reflection, uniform scaling, and spherical inversion—as versors and rotors.
Thus R(4, 1) is the model of choice for investigating conformal geometry and
has been successfully applied to solve challenging problems in kinematics and
robotics [1,19].

The success of these two Clifford algebras has motivated a search for
a Clifford algebra appropriate for the study of affine and projective geom-
etry in 3-dimensions, a Clifford algebra that could serve as an algebraic
foundation for computer graphics, computer vision, and geometric modeling.
Such an algebra must incorporate all the 3-dimensional affine and projective
transformations—translation, rotation, reflection, uniform and non-uniform
scaling, classical and scissor shear, orthogonal and perspective projection—
as versors and rotors. To compete with matrix algebra, this Clifford algebra
must also be able to model lines and planes as well as conic sections and
quadric surfaces.

Two potential candidates are currently under investigation as the foun-
dation for affine and projective geometry in 3-dimensions: R(3, 3) [5,8,16,17,
20] and R(4, 4) [4,13]. So far only the affine and projective transformations
in each of these algebras have been thoroughly investigated; Dorst [8] gives
an extended comparison between the transformations available in R(3, 3) and
R(4, 4). The purpose of this paper is to flesh out the geometry of one of these
models, what Doran et al. call the mother algebra R(4, 4) [4].

This paper makes the following contributions. In an earlier paper [13],
we show how to use versors and rotors in R(4, 4) to perform all the affine
and projective transformations needed in computer graphics. To flesh out
the geometry of R(4, 4) into a more complete model for computer graphics,
here we show how

1. points, vectors, lines and planes are represented in R(4, 4);
2. conic sections and quadric surfaces are represented in R(4, 4);
3. duality works in R(4, 4);
4. intersections are computed in R(4, 4);
5. lengths, areas, and volumes are computed in R(4, 4).

To verify our results, we implemented and tested the formulas in this paper
using Gaigen [12] to generate a C++ library for R(4, 4).

Two other models share some of the features of our model. Gunn devel-
ops the Clifford algebra model P (R∗(3, 0, 1)) for 3-dimensional euclidean
space and using alternative derivations establishes similar formulas to mea-
sure distances and angles between geometric elements [6,7]. The even sub-
algebra of P (R∗(3, 0, 1)) is isomorphic to the dual quaternions [6,7], but
P (R∗(3, 0, 1)) lacks representations for shears and non-uniform scaling, as
well as quadric surfaces and conic sections, all of which are features in our
R(4, 4) model and all of which are needed for computer graphics.
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Easter and Hitzer [10,11] use the double conformal model to represent
quadric surfaces and conic sections in addition to points and planes; further,
they can represent some quartic surfaces, including tori. Their represention
of such surfaces has similarities to our representation of quadric surfaces.
However, this model is limited to conformal transformations and therefore
also lacks representations for shears and non-uniform scaling.

Thus the primary advantage of the Clifford algebra R(4, 4) with the
geometric interpretation presented here and in [13] is that so far R(4, 4) is
the only model of Clifford algebra supporting the full range of geometry
needed for computer graphics. Additionally, in this geometric interpretation
of R(4, 4), objects and their duals live in different subspaces. Thus, generally
one can tell if an object is meant to be a primal object or its dual, which is
an advantage in software implementations.

We organize our results in the following fashion. In Sect. 2.1 we introduce
the Witt basis, the basis that is used to represent geometry in R(4, 4). Thus we
construct R(4, 4) by starting with R8 = W ⊕ W ∗, where W ,W ∗ are two dual
4-dimensional subspaces of null vectors and then taking the Clifford algebra
of this 8-dimensional vector space. Standard representations for geometric
elements in R

3, including not only points, lines, and planes, but also quadric
surfaces and conic curves are presented in Sect. 21. Intersection formulas are
presented in Sect. 3 and formulas for barycentric coordinates are provided in
Sect. 4. Since the treatment of flats in this paper is similar to the treatment
of flats in other papers on Clifford algebra [9], we exclude metric formulas
for flats from the main body of this paper, and instead place formulas for
length, area and volume in Tables 3, 4, 5. We also include two appendices.
In Appendix A we verify that an object and its dual have the same metric
properties; in Appendix B we present derivations of the formulas for distances
and angles between a pair of lines or a pair of planes, since these derivations
are somewhat more complicated in R(4, 4) than in other Clifford algebras.

2. Geometry in R(4, 4)

In this section, we show how to use the mother algebra R(4, 4) to represent
geometric elements in R3, including not only points, lines, and planes, but
also quadric surfaces and conic curves.

In the subsequent discussion, we will invoke the following well known
formulas [14] for the interaction between the inner product and the outer
product:

(a1 ∧ ... ∧ ar) · (b1 ∧ ... ∧ bs)

=

{
((a1 ∧ ... ∧ ar) · b1) · (b2 ∧ ... ∧ bs) r ≥ s

(a1 ∧ ... ∧ ar−1) · (ar · (b1 ∧ ... ∧ bs)) r < s
(1)

1 Some people use E3 instead of R
3 to denote affine 3-space, reserving R

3 for the vector

space of 3-dimensions. We use R
3 instead of E3, since R

3 is still the standard notation for
affine 3-space in the field of computer graphics.
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and

(a1 ∧ ... ∧ ar) · b =
r∑

i=1

(−1)r−i
a1∧... ∧ ai−1 ∧ (ai · b) ∧ ai+1 ∧ ... ∧ ar

a · (b1 ∧ ... ∧ bs) =
s∑

i=1

(−1)i−1
b1∧... ∧ bi−1 ∧ (a · bi) ∧ bi+1 ∧ ... ∧ bs.

In particular,

a · (b ∧ c) = (a · b)c − (a · c)b (2)
(b ∧ c) · a = (a · c)b − (a · b)c (3)

(a ∧ b) · (c ∧ d) = (b · c)(a · d) − (b · d)(a · c). (4)

2.1. The Witt Basis

The mother algebra R(4, 4) is a geometric algebra for the 8-dimensional vector
space generated by four basis vectors e0, e1, e2, e3 that square to +1, and
four additional basis vectors ē0, ē1, ē2, ē3 that square to −1 [4]. Thus

e2i = 1, ē2i = −1 , (i = 0, 1, 2, 3).

Moreover, {ei, ēi} is an orthonormal basis, so

ei · ej = 0, ēi · ēj = 0, i �= j

ei · ēj = 0, for all i, j.

Therefore

eiej = −ejei, ēiēj = −ēj ēi, i �= j.

eiēj = −ējei, for all i, j

However, this basis is used mainly for computing, but not for represent-
ing geometry [13]. To represent points and vectors in 3-dimensions as well as
affine and projective transformations on R

3, we use the Witt basis [3]

wi =
ei + ēi

2
, w∗

i =
ei − ēi

2
, (i = 0, 1, 2, 3).

From these definitions, it follows easily that

wi · wj = 0, w∗
i · w∗

j = 0, w∗
i · wj =

1
2
δi,j . (5)

In particular, all the Witt basis vectors in R(4, 4) are null vectors. Therefore

wi ∧ wj = wiwj = −wjwi, w∗
i ∧ w∗

j = w∗
i w∗

j = −w∗
j w∗

i ,

w2
i = wi ∧ wi = 0, (w∗

i )2 = w∗
i ∧ w∗

i = 0.

In this model of R(4, 4), W = span{w0, w1, w2, w3} are vectors, and W ∗ =
span{w∗

0 , w
∗
1 , w

∗
2 , w

∗
3} are dual functionals (1-forms). That is, W ∼= R4 is a

vector space, and W ∗ ∼= (R4)∗ is the space of dual functionals (1-forms). So
in our algebra we use one copy of R4 and one copy of (R4)∗ and we denote
this algebra by W ⊕ W ∗. Further note that the subalgebra generated by the
vector space W has signature (0, 0, 0, 0); thus W is completely degenerate
and equivalent to the 4D Grassmann algebra; this is also the case for the
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subalgebra generated by W ∗. The importance of Eq. 5 now becomes clear:
wi · w∗

i �= 0 is necessary to introduce metric properties.
In Eq. 5, the factor of 1

2 in w∗
i · wj = 1

2δi,j leads, unfortunately, to
powers of 1

2 appearing in many of the formulas in this paper. A variation
of this definition of the inner product would remove this factor of 1

2 (and
thus the powers of 1

2 in the other formulas in this paper). However, changing
the definition of the inner product in this paper would require rederiving the
formulas in the earlier paper on transformations using versors and rotors in
R(4, 4) [13], and these rederived formulas would have powers of 2 where no
such powers of 2 currently appear. In fact, the factor of 1

2 in Eq. 5 was chosen
in order to remove these powers of 2 from the transformation formulas. In
any event, since the two papers must be used together to form a computa-
tional model for computer graphics, we have kept the factor of 1

2 in the inner
product.

2.2. Points and Planes

Before launching into a general treatment of the geometric algebra R(4, 4), we
consider first how this homogeneous model characterizes the simplest objects
and relationships in Euclidean geometry.

We let w1, w2, w3 ∈ W represent basis vectors along the coordinate axes
of R3. A point p in R

3 is represented homogeneously in the usual manner by
using w0 to carry the homogeneous coordinate so that

p = w0 + p1w1 + p2w2 + p3w3.

In homogeneous coordinates, a weighted point or a mass-point has the
form

p = p0w0 + p1w1 + p2w2 + p3w3,

where the weight p0 �= 0. In this case p represents the point located at
p0 + p1

p0
p1 + p2

p0
p2 + p3

p0
p3. We write p ≡ q if p = kq for some non-zero scalar

k because p and q are located at the same position; they differ only in their
masses. In particular, if p0 �= 0

p0w0 + p1w1 + p2w2 + p3w3 ≡ w0 +
p1
p0

w1 +
p2
p0

w2 +
p3
p0

w3.

All points in this paper are unweighted points unless noted otherwise.
An arbitrary free vector v in R

3 is written as

v = v1w1 + v2w2 + v3w3.

Remark 1. In the limit, as the weight goes to zero, we get a point at infinity.
Thus v ∈ span{w1, w2, w3} can represent either a free vector or a point at
infinity, depending on the context. Similarly the outer product of two vectors
u∧v can represent either a free parallelogram2 or a line at infinity, depending
on the context.

2 Free means the object can move freely in 3-dimensions parallel to itself.
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Next, consider a plane in 3-dimensions with the homogeneous implicit
equation

S(x0, x1, x2, x3) ≡ s0x0 + s1x1 + s2x2 + s3x3 = 0,

where s1, s2, s3, s0 are constants. Let

π∗
s = s0w

∗
0 + s1w

∗
1 + s2w

∗
2 + s3w

∗
3 .

Then for any homogeneous point p = x0w0 + x1w1 + x2w2 + x3w3

p · π∗
s =

1
2
S(x0, x1, x2, x3).

Thus p ·π∗
s = 0 ⇔ S(x0, x1, x2, x3) = 0. Therefore we use the vector π∗

s ∈ W ∗

to represent the plane S(x0, x1, x2, x3).

Proposition 2. For any plane π∗
s = s0w

∗
0 + s1w

∗
1 + s2w

∗
2 + s3w

∗
3 ∈ W ∗, the

normal to the plane is n∗
s = s1w

∗
1 + s2w

∗
2 + s3w

∗
3.

Proof. For any two points p = w0 +p1w1 +p2w2 +p3w3 and q = w0 + q1w1 +
q2w2 + q3w3 on the plane π∗

s = s0w
∗
0 + s1w

∗
1 + s2w

∗
2 + s3w

∗
3 ,

n∗
s · (q − p) =

1
2
(S(1, q1, q2, q3) − S(1, p1, p2, p3)) = 0.

Conversely a vector v not in the plane π∗
s can be represented as q − p where

p = w0+p1w1+p2w2+p3w3 is in the plane π∗
s and q = w0+q1w1+q2w2+q3w3

is not in the plane π∗
s . Then

n∗
s · (q − p) =

1
2
(S(1, q1, q2, q3) − S(1, p1, p2, p3)) =

1
2
S(1, q1, q2, q3) �= 0.

�

Notice that n∗
s = s1w

∗
1 + s2w

∗
2 + s3w

∗
3 has two meanings in W ∗ : n∗

s

represents a plane through the origin as well as a normal vector to any plane
π∗

s in W ∗ of the form π∗
s = s0w

∗
0 + s1w

∗
1 + s2w

∗
2 + s3w

∗
3 . In our subsequent

discussions, the notation n∗
s is used exclusively to represent the normal vec-

tor to a plane π∗
s . Similarly, the notation n∗

1 ∧ n∗
2 represents a plane sector,

epitomized by the parallelogram determined by the normals to two planes.
In addition, throughout this paper, lower case letter without stars typ-

ically represent points or vectors in W and lower case letters with stars typ-
ically represent normal vectors or planes in W ∗. We shall also adopt the
following notation: For any free vector v = v1w1 + v2w2 + v3w3 in R

3, we
define

v∗ = v1w
∗
1 + v2w

∗
2 + v3w

∗
3

and (v∗)∗ = v. This definition of * is a minor abuse of notation, since we have
already used π∗ to represent planes and now we are using v∗ as an operator.
However, both uses of star result in planes in W ∗; furthermore, this notation
is unambiguous since, by definition, (wj)∗ = w∗

j , j = 1, 2, 3. We extend this
star operator to all of ∧W by setting

(a1 ∧ a2 · · · ∧ ak)∗ = (a∗
k ∧ · · · ∧ a∗

2 ∧ a∗
1) = (−1)k(k−1)/2 a∗

1 ∧ a∗
2 · · · ∧ a∗

k
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and extending by linearity. Note that our *-operator differs from standard
use in that it maps between W and W ∗. In Sect. 2.7, we shall define a Hodge
dual using a pre-* operator.

2.3. Geometry in ∧W : Lines and Planes

Here we shall use outer products of homogeneous points in W to represent
lines and planes in R

3. We call the set of all points P such that P ∧ E = 0
the outer product null space (OPNS) of E. If P ∧ E = 0 if and only if P ∈ x
then we say that x is represented by E.

Two points determine a line. Thus a line l in R
3 can be represented in

R(4, 4) by the outer product (the join) of two distinct points in W . Moreover,
the Plücker version of a line in projective space can be represented in R(4, 4)
by the outer product (the join) of a homogeneous point and a free vector
in W . Similarly, a plane π in R

3 can be represented in R(4, 4) by the outer
product (the join) of three non-collinear points in W . Formally we have the
following results.

Theorem 3. For any two distinct points p1 and p2 in W , their outer product
l = p1 ∧ p2 represents the line determined by p1 and p2.

Proof. Any point q ∈ W on the line determined by the points p1 and p2 can
be written as

q = (1 − t)p1 + tp2.

Therefore from the definition of OPNS, l represents the line determined by
p1 and p2 since

q ∧ l = ((1 − t)p1 + tp2) ∧ (p1 ∧ p2)
= (1 − t)p1 ∧ (p1 ∧ p2) + tp2 ∧ (p1 ∧ p2) = 0.

Moreover, if the point q is not on the line determined by the points p1, p2,
then the points q, p1 and p2 are affinely independent. Therefore

q ∧ p1 ∧ p2 �= 0.

♦
Note that the points p1, p2 in Theorem 3 can be weighted points, one

(but not both) of the points can be a point at infinity, giving, for example,
Plücker coordinates, and two points at infinity generate a line at infinity.

Corollary 4. Given a vector v and a point p in W , the expression l = p ∧ v
is the Plücker representation of the line determined by p and v.

Proof. Since l = p ∧ v = p ∧ (p + v), this result follows immediately from
Theorem 3. ♦
Theorem 5. For any three non-collinear points p1, p2, p3 in W , their outer
product π = p1 ∧ p2 ∧ p3 represents the plane determined by the points p1, p2,
p3.

Theorem 6. For any four non-collinear points p1, p2, p3, p4 in W , their outer
product π = p1 ∧ p2 ∧ p3 ∧ p4 represents the solid sector determined by the
points p1, p2, p3, p4.
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The proofs of Theorem 5 and Theorem 6 are similar to the proof of Theorem 3.

Notice that p1 ∧ p2 is oriented, so in fact p1 ∧ p2 represents an oriented
line. Moreover, p1 ∧ p2 also has an associated length, the distance from p1
to p2 (see Table 3 in Appendix A). Since p1 ∧ p2 is free to slide along the
associated line

p1 ∧ p2 = (p1 + c(p2 − p1)) ∧ (p2 + c(p2 − p1))

p1 ∧ p2 is more like a vector than a line. In fact, p1 ∧ p2 is really a vector
attached to the line determined by the points p1 and p2. Thus we call p1 ∧ p2
a line vector in contrast to the free vectors v = v1w1 + v2w2 + v3w3 in W .
For example, both w1 and w0 ∧ (w0 +w1) = w0 ∧w1 are unit vectors parallel
to the x-axis. But the free vector w1 is free to roam anywhere in 3-space as
long as it remains parallel to the x-axis, whereas the line vector w0 ∧ w1 is
constrained to roam only along the x-axis.

Similarly, p1 ∧ p2 ∧ p3 is oriented, so p1 ∧ p2 ∧ p3 represents an oriented
plane. Moreover, p1 ∧p2 ∧p3 has an associated area, the area of Δp1p2p3 (see
Table 3). Again p1 ∧ p2 ∧ p3 is free to slide along the plane determined by
the points p1, p2, p3; thus p1 ∧ p2 ∧ p3 is an oriented plane sector, similar to
a bivector in the Clifford algebra R(3, 0).

Finally p1 ∧ p2 ∧ p3 ∧ p4 has an associated orientation and volume, the
orientation and the volume of the tetrahedron determined by the four ordered
points p1, p2, p3, p4 (see again Table 3). Thus p1 ∧ p2 ∧ p3 ∧ p4 represents an
oriented volume in 3-dimensions.

2.4. Geometry in ∧W ∗: Points and Lines

Dually, besides their representation in W as the join of two points, lines can
also be represented in W ∗ as the intersection of two planes. Similarly, points
are represented in W ∗ as the intersection of three planes.

Here then we shall use outer products of planes in W ∗ to represent lines
and points as intersections of planes in R

3. We call the set of all points P
such that P · E = 0 the inner product null space (IPNS) of E. If P · E = 0 if
and only if P ∈ x then we say that x is represented by E.

Theorem 7. For any two distinct planes π∗
1 and π∗

2 in W ∗, their outer product
l∗ = π∗

1 ∧ π∗
2 represents the line determined by the intersection of π∗

1 and π∗
2 .

Proof. For any point q ∈ W

q · l∗ = q · (π∗
1 ∧ π∗

2) = (q · π∗
1)π

∗
2 − (q · π∗

2)π
∗
1 .

Therefore, since π∗
1 and π∗

2 are linearly independent, it follows that

q · l∗ = q · (π∗
1 ∧ π∗

2) = 0 ⇔ q · π∗
1 = 0, q · π∗

2 = 0.

♦
Theorem 8. For any three linearly independent planes π∗

1 , π∗
2 , π∗

3 in W ∗,
their outer product p∗ = π∗

1 ∧ π∗
2 ∧ π∗

3 represents the point determined by the
intersection of the three planes π∗

1 , π∗
2 , π∗

3 . Note that p∗ may be a homogeneous
point.

Proof. The proof is similar to the proof of Theorem 7. ♦
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2.5. Quadrics and Dual Quadrics

Using the method of Parkin [18], Goldman and Mann [13] show that
the quadric surface represented by the polynomial F (x0, x1, x2, x3) =

3∑
i,j=0

λijxixj , where λij =λji, corresponds to the bivector bF =
3∑

i,j=0

λijw
∗
i ∧ wj

in the vector space W ∗ ∧ W .
Indeed for any point p

p(p0, p1, p2, p3) · bF · p∗(p0, p1, p2, p3) =
1
4
F (p0, p1, p2, p3), (6)

where

p(p0, p1, p2, p3) = p0w0 + p1w1 + p2w2 + p3w3

p∗(p0, p1, p2, p3) = p0w
∗
0 + p1w

∗
1 + p2w

∗
2 + p3w

∗
3 .

Notice that Eq. 6 does not represent an IPNS nor does it represent an OPNS;
instead Eq. 6 represents a double inner product null space (DIPNS).

Goldman and Mann also observe that the tangent plane to the quadric
surface bF at the point p(p0, p1, p2, p3) is given by

π∗
s = bF · p∗(p0, p1, p2, p3).

Thus the dual quadric [21] is represented by the bivector

b∗
F =

3∑
i,j=0

λ∗
ijw

∗
i ∧ wj

where λ∗
ij is the adjoint of λij . A plane π∗ lies on the dual quadric if and only

if

π(s0, s1, s2, s3) · b∗
F · π∗(s0, s1, s2, s3) = 0

where

π∗(s0, s1, s2, s3) = s0w
∗
0 + s1w

∗
1 + s2w

∗
2 + s3w

∗
3

π(s0, s1, s2, s3) = s0w0 + s1w1 + s2w2 + s3w3

For more details and proofs concerning quadric surfaces in the Clifford
algebra R(4, 4) see [13].

2.6. Conic Sections: The Meet of a Quadric and a Plane

Not only quadric surfaces, but also conic curves play an important role in
applications. Next we show how to represent conic curves in R(4, 4) as the
intersection of a quadric surface with a plane—that is, the meet of a quadric
and a plane. This intersection is an implicit way to represent conic curves in
3-dimensions.

Theorem 9. For any quadric surface bF in W ∗ ∧W and any plane π∗
s in W ∗,

the outer product C = πs ∧ bF ∧ π∗
s represents the conic curve given by the

intersection of the quadric surface and the plane. A point p in W lies on the
conic curve C if and only if p · C · p∗ = p · (πs ∧ bF ∧ π∗

s ) · p∗ = 0.
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Proof. Since p · πs = p∗ · π∗
s = 0, it follows from Eq. 1 that the test equation

p · C · p∗ = p · (πs ∧ bF ∧ π∗
s ) · p∗ can be written as

p · (πs ∧ bF ∧ π∗
s ) · p∗

= [(p · πs) ∧ bF ∧ π∗
s − πs ∧ (p · bF ) ∧ π∗

s + πs ∧ bF ∧ (p · π∗
s )] · p∗

= (p · bF · p∗)(πs ∧ π∗
s ) − (p · bF ) ∧ (πs · p∗) ∧ π∗

s + (p · bF ) ∧ πs ∧ (π∗
s · p∗)

−(p · π∗
s ) ∧ (πs · p∗) ∧ bF + (p · π∗

s ) ∧ πs ∧ (bF · p∗)
= −(πs · p∗) ∧ (p · bF ) ∧ π∗

s + πs ∧ (p · bF · p∗) ∧ π∗
s

−(πs · p∗) ∧ bF ∧ (p · π∗
s ) + πs ∧ (bF · p∗) ∧ (p · π∗

s )
= (p · bF · p∗)(πs ∧ π∗

s )
−(πs · p∗)((p · bF ) ∧ π∗

s − πs ∧ (bF · p∗) + bF ∧ (p · π∗
s )). (7)

Since πs · p∗ = π∗
s · p, it follows that

p · π∗
s = 0, p · bF · p∗ = 0 ⇒ p · (πs ∧ bF ∧ π∗

s ) · p∗ = 0.

To prove the converse, wedge both sides of Eq. 7 with πs on the left and
by π∗

s on the right. Then we find that

πs ∧ [p · (πs ∧ bF ∧ π∗
s ) · p∗] ∧ π∗

s

= πs ∧ [(p · bF · p∗)(πs ∧ π∗
s ) − (πs · p∗)((p · bF ) ∧ π∗

s

−πs ∧ (bF · p∗) + bF ∧ (p · π∗
s ))] ∧ π∗

s

= −(πs · p∗)(p · π∗
s )(πs ∧ bF ∧ π∗

s ).

Hence

p · (πs ∧ bF ∧ π∗
s ) · p∗ = 0 ⇒ πs ∧ [p · (πs ∧ bF ∧ π∗

s ) · p∗] ∧ π∗
s = 0

⇒ (πs · p∗)(p · π∗
s )(πs ∧ bF ∧ π∗

s ) = 0
⇒ p · π∗

s = 0.

When p · π∗
s = 0 Eq. 7 reduces to

p · (πs ∧ bF ∧ π∗
s ) · p∗ = (p · bF · p∗)(πs ∧ π∗

s ).

Therefore

p · (πs ∧ bF ∧ π∗
s ) · p∗ = 0 ⇒ p · bF · p∗ = 0.

Thus, p · (πs ∧ bF ∧π∗
s ) ·p∗ = 0 ⇔ p ·π∗

s = 0, p · bF ·p∗ = 0 , so any conic curve
can be represented in W ∧ W ∗ ∧ W ∧ W ∗ by the intersection of a quadric
surface with a plane. ♦
2.7. Duality

As we have seen in Sects. 2.3 and 2.4, there are two ways to represent points,
lines, and planes: either as joins of points in ∧W or as intersections of planes
in ∧W ∗. In this section we investigate duality between the geometry in the
spaces ∧W and ∧W ∗.

This duality is mediated by the pseudo-scalars I in ∧W and I∗ in ∧W ∗:

I = w0 ∧ w1 ∧ w2 ∧ w3

I∗ = w∗
0 ∧ w∗

1 ∧ w∗
2 ∧ w∗

3 .
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The inner product of a point or a line or a plane in W with I∗ introduces a
factor of (1/2)d+1, where d is the dimension of the object in W (e.g., d = 0
for points, d = 1 for lines, and d = 2 for planes). Similarly, taking the inner
product of an object in W ∗ with I introduces a factor of (1/2)3−d. Since we
would like f = dual(dual(f)), we define the dual as

dual(f) = 2dim(f)+1f · I∗ for f ∈ ∧W

dual(f∗) = 23−dim(f∗)f∗ · I for f∗ ∈ ∧W ∗.

To shorten and simplify our notation, we shall also write ∗x to denote the
dual of x.

The following three lemmas give some insight into the algebraic nature
of duality in terms of the dot product. We shall use these lemmas to prove
that an object and its dual represent the same geometry. We give the proof
of Lemma 11; the proofs of Lemmas 10 and 12 are similar to the proof of
Lemma 11.

Lemma 10. Let ∗p = 2(p · I∗), where p is a point in W . Then p · ∗p = 0.

Lemma 11. Let ∗l = 4(l · I∗), where l is a line in ∧W . Then l · ∗l = 0.

Lemma 12. Let ∗π = 8(π · I∗), where π is a plane in ∧W . Then π · ∗π = 0.

Proof of Lemma 11. Suppose that l is the line segment along the x-axis from
w0 to w0 + w1. Then

l = w0 ∧ (w0 + w1) = w0 ∧ w1.

In this case
∗l = 4(l · I∗) = (w∗

2 ∧ w∗
3).

Therefore by Eq. 4, l · ∗l = 0.
Now for any arbitrary line segment l′, we can always apply an affine

transformation A consisting of translation, rotation, and scaling to map the
line segment l along the x-axis to the arbitrary line segment l′. Therefore the
general result follows, since A is an inner automorphism [13]. ♦
Theorem 13. The line l in ∧W and the dual line ∗l = 4(l · I∗) in ∧W ∗

represent the same line.

Proof. From Lemma 11, l · ∗l = 0. Hence for any point p

∗l · (p ∧ l) = (∗l · p) ∧ l − (∗l · l) ∧ p = (∗l · p) ∧ l.

Therefore

p ∧ l = 0 ⇔ p · ∗l = 0.

♦
Example 14. Consider the line l = w0 ∧ w2 in ∧W , which represents the y-
axis. The expression ∗l = w∗

1 ∧ w∗
3 in ∧W ∗ also represents the y-axis. The
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Table 1. The geometric entities in R(4, 4)

Entity ∧W space ∧W ∗ space

Point p = p0w0 + p1w1
∗p = π∗

1 ∧ π∗
2 ∧ π∗

3

+p2w2 + p3w3

Line l = p1 ∧ p2
∗l = π∗

1 ∧ π∗
2

Plane π = p1 ∧ p2 ∧ p3
∗π = s0w

∗
0 + s1w

∗
1

+s2w
∗
2 + s3w

∗
3

Quadric surface bF =
3∑

i,j=0

λijw
∗
i ∧ wj

Conic curve in plane π C = π ∧ bF ∧ π∗

lines l and ∗l are dual; they represent same line in two different ways and the
inner product with the pseudo-scalars I and I∗ mediates this duality:

4(w0 ∧ w2) · I∗ = 4(w0 ∧ w2) · (w∗
0 ∧ w∗

1 ∧ w∗
2 ∧ w∗

3)
= 4w0 · (w2 · (w∗

0 ∧ w∗
1 ∧ w∗

2 ∧ w∗
3)) = 2w0 · (w∗

0 ∧ w∗
1 ∧ w∗

3)
= w∗

1 ∧ w∗
3 .

Similarly

4(w∗
1 ∧ w∗

3) · I = 4(w∗
1 ∧ w∗

3) · (w0 ∧ w1 ∧ w2 ∧ w3)
= 4w∗

1 · (w∗
3 · (w0 ∧ w1 ∧ w2 ∧ w3)) = −2w∗

1 · (w0 ∧ w1 ∧ w2)
= w0 ∧ w2.

The fact that there are two different sets of line coordinates, one in
terms of points and another in terms planes was known already to 19th
century mathematicians; see [15, pp. 82, 83].

The proofs of the following duality results for points and planes are
similar to the proof of duality for lines in Theorem 13.

Theorem 15. The point p in ∧W and the dual point ∗p = 2(p · I∗) in ∧W ∗

represent the same point.

Theorem 16. The plane π in ∧W and the dual plane ∗π = 8(π · I∗) in ∧W ∗

represent the same plane.

We list the geometric entities of R(4, 4) including points, lines, planes,
quadric surfaces, and conic sections in Table 1. Several of these elements—
points, lines and planes—have two different algebraic representations: the
representation in ∧W and the representation in ∧W ∗.

3. Intersections in R(4, 4)

Intersections between geometric elements are widely used in computer graph-
ics and geometric modeling. For example, ray tracing a surface requires com-
puting the intersection points of an arbitrary line with the surface as well as
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calculating the corresponding parameter values along the line of these inter-
section points. In this section, we show how to compute intersections of lines
with planes, planes with planes, and lines with quadric surfaces.

3.1. Line-Plane and Plane-Plane Intersections

We start by intersecting lines with planes and planes with planes. There are
two different ways to represent lines: one as the join of two points, the other
as the intersection of two planes [15]. By representing one object in primal
form and the other in dual form, we can compute their intersection using the
inner product.

Theorem 17. Consider a line l and a plane π∗. Then l · π∗ = 0 if and only
if l lies in π∗. Otherwise l · π∗ is the (possibly weighted) point of intersection
of the line l and the plane π∗. Note that if l is parallel to π∗ then l · π∗ is the
direction of l, i.e., a point at infinity.

Proof. Let p1 and p2 be two distinct points and let l = p1 ∧ p2.
• If l · π∗ = 0, then

0 = l · π∗ = (p1 ∧ p2) · π∗ = (π∗ · p2)p1 − (π∗ · p1)p2.

Thus, l · π∗ is a (possibly weighted) point, and l · π∗ = 0 ⇔ p1 · π∗ = 0,
p2 · π∗ = 0, which means that the points p1 and p2 lie on the plane π∗.
Therefore the line l is also on the plane π∗.

• If l · π∗ �= 0, then

(l · π∗) ∧ l =
(
(p1 ∧ p2) · π∗) ∧ (p1 ∧ p2)

= ((p1 · π∗)p2) ∧ (p1 ∧ p2) − ((p2 · π∗)p1) ∧ (p1 ∧ p2)
= 0.

Hence by the definition of OPNS, the point l · π∗ lies on the line l.
Moreover

(l · π∗) · π∗ =
(
(p1 ∧ p2) · π∗) · π∗

= (p1 · π∗)(p2 · π∗) − (p2 · π∗)(p1 · π∗) = 0.

Hence from the definition of IPNS, the point l · π∗ is on the plane π∗.
Therefore, the point l · π∗ is the intersection of the line l and the plane
π∗.

• If the line l is parallel to the plane π∗, then π∗ · (p2 − p1) = 0. Hence

l · π∗ = (p1 ∧ p2) · π∗ = (π∗ · p2)p1 − (π∗ · p1)p2 = (π∗ · p1)(p1 − p2)

Therefore, in this case, l · π∗ is the point at infinity in the direction
parallel to l.

♦
Theorem 18. Consider a plane π in ∧W and a plane π∗ in ∧W ∗. Then π ·
π∗ = 0 if and only if the planes are the same plane. Otherwise π · π∗ is the
line of intersection of π and π∗.

Proof. The proof is similar to the proof of Theorem 17.
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3.2. Line-Quadric Intersections

Our goal is to find the intersection of any line with an arbitrary quadric
surface. We begin with the special case where the line is the z-axis. Later we
shall show how to reduce all other cases to this special case. In this section,
we will use Γ = w0 ∧ w1 ∧ w2 ∧ w3 ∧ w∗

0 ∧ w∗
1 ∧ w∗

2 ∧ w∗
3 to represent the

pseudo-scalar of R(4, 4).

Lemma 19. Let bF be a bivector representing a quadric surface and let l∗ =
w∗

2 ∧ w∗
1 represent the z-axis with l = (l∗)∗ = w1 ∧ w2. Then

Pp ≡ (l∗ ∧ bF ∧ l) · Γ = c(p1 ∧ p∗
2 + p2 ∧ p∗

1),

where c is a scalar and p1, p2 are the intersection points of the quadric bF

and the line l∗ in complex projective space.

Proof. For any quadric surface bF =
3∑

i,i=0

λijw
∗
i ∧ wj ,

Pp = (l∗ ∧ bF ∧ l) · Γ = (w∗
2 ∧ w∗

1 ∧ bF ∧ w1 ∧ w2) · Γ

= (λ00w0 ∧ w1 ∧ w2 ∧ w∗
0 ∧ w∗

1 ∧ w∗
2+λ03w1 ∧ w2 ∧ w3 ∧ w∗

0 ∧ w∗
1 ∧ w∗

2

+λ30w0 ∧ w1 ∧ w2 ∧ w∗
1 ∧ w∗

2 ∧ w∗
3+λ33w1 ∧ w2 ∧ w3 ∧ w∗

1 ∧ w∗
2 ∧ w∗

3) · Γ

= − 1

64
(λ00w3 ∧ w3

∗ − λ30w0 ∧ w3
∗ − λ03w3 ∧ w0

∗ + λ33w0 ∧ w0
∗). (8)

Now consider the polynomial

F (z) = λ33z
2 + λ30z + λ03z + λ00.

Let a, b be the (possibly complex) roots of F (z) = 0 and set p1 = w0 + aw3

and p2 = w0 + bw3. Expanding p1 ∧ p∗
2 + p2 ∧ p∗

1 we find that

p1 ∧ p∗
2+p2 ∧ p∗

1 =2abw3 ∧ w∗
3+(a+b)w0 ∧ w∗

3 + (a + b)w3 ∧ w∗
0 + 2w0 ∧ w∗

0 .

Now compare this result to Eq. 8 using the formulas for the sum and product
of the roots of F (z) (a + b = −λ30+λ03

λ33
and ab = λ00

λ33
). Recalling that λ30 =

λ03, we observe that Pp = −λ33
128 (p1 ∧ p∗

2 + p2 ∧ p∗
1). From the definition of

p1 and p2, it follows easily that p1 · w∗
1 = p1 · w∗

2 = p2 · w∗
1 = p2 · w∗

2 = 0.
Moreover, since F (a) = F (b) = 0,

p1 · bF · p∗
1 = λ00 − aλ03 − aλ30 + a2λ33 = 0

p2 · bF · p∗
2 = λ00 − bλ03 − bλ30 + b2λ33 = 0

Thus, p1 and p2 are two points lying on the quadric surface bF and the line
l∗ = w∗

2 ∧ w∗
1 in complex projective space. ♦

Remark 20. In real affine space, which is the primary concern of computer
graphics, Lemma 19 can be expanded into four cases:

1. λ33 �= 0 and λ2
30 − λ00λ33 > 0. In this case, the roots a, b of F (z) are

real numbers and the line and the quadric intersect in two points.
2. λ33 �= 0 and λ2

30 − λ00λ33 < 0. In this case, the roots a, b of F (z) are
complex numbers and the line and the quadric do not intersect.

3. λ33 �= 0 and λ2
30 − λ00λ33 = 0. In this case, the roots a, b of F (z) are

equal and the line and the quadric are tangent.
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4. λ33 = 0. In this case, F (z) is linear and one of the two intersection
points of the line and the quadric lies at infinity.

From Lemma 19, we can extract the intersection points between a line
and a quadric in the following fashion.

Theorem 21. Let Pp = c(p1 ∧ p∗
2 + p2 ∧ p∗

1).
• If (Pp · w0) · (Pp · w∗

0) = 0, then p1 and p2 are two points at infinity.
• If (Pp · w0) · (Pp · w∗

0) �= 0 but Pp · (w0 ∧ w∗
0) = 0, then p1 is a point at

infinity, with

p1 = 2Pp · w0 = u(for u ∈ W )

and

p2 =
p1 · Pp − p1·Pp·p∗

1
2p1·p∗

1
p1

p1 · p∗
1

.

• If (Pp · w0) · (Pp · w∗
0) �= 0 and Pp · (w0 ∧ w∗

0) �= 0, then

p1,2 = Pp · w0 ±
(√

(w∗
1 ∧ w1) · A w1+

(−1)r1
√

(w∗
2 ∧ w2) · A w2 + (−1)r2

√
(w∗

3 ∧ w3) · A w3

) (9)

where A = 4w0 · (Pp ∧ (w∗
0 · Pp)), and

r1 =
{

0 if (w1 ∧ w∗
2) · A ≥ 0

1 if (w1 ∧ w∗
2) · A < 0 r2 =

{
0 if (w1 ∧ w∗

3) · A ≥ 0
1 if (w1 ∧ w∗

3) · A < 0

• If (w∗
1 ∧ w1) · A < 0 or (w∗

2 ∧ w2) · A < 0 or (w∗
3 ∧ w3) · A < 0, then p1,

p2 are not real points.

Proof. We know p1 = w0 + u or p1 = u, and p2 = w0 + v or p2 = v, for
u, v ∈ W . So

Pp = (w0 + u) ∧ (w∗
0 + v∗) + (w0 + v) ∧ (w∗

0 + u∗)

= 2w0 ∧ w∗
0 + w0 ∧ (u∗ + v∗) + (u + v) ∧ w∗

0 + u ∧ v∗ + v ∧ u∗

with some terms missing from this expression if p1 = u and/or p2 = v.
Expanding the expressions in the conditions in each of the three bullets of
this theorem shows that

• (Pp · w0) · (Pp · w∗
0) = 0 if and only if Pp has no w0 ∧ (u∗ + v∗) term

(meaning that both p1 and p2 are vectors rather than finite points);
• (Pp · w0) · (Pp · w∗

0) �= 0 and Pp · (w0 ∧ w∗
0) = 0 if and only if Pp has a

non-zero w0∧(u∗ +v∗) term but does not have a w0∧w∗
0 term, meaning

that either p1 or p2 is a vector (i.e., a point at infinity) and the other is
a finite point; and

• (Pp ·w0) · (Pp ·w∗
0) �= 0 and Pp · (w0 ∧w∗

0) �= 0 if and only if Pp has both
a w0 ∧ w∗

0 term and a w0 ∧ (u∗ + v∗) term (meaning that both p1 and
p2 are finite points).

Expanding Pp = c(p1∧p∗
2+p2∧p∗

1) in the equations for p1, p2 in the statement
of this theorem completes the proof. ♦
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Remark 22. In Eq. 9, Pp · w0 = (p1 + p2)/2, while the remaining portion of
Eq. 9 is a vector offset from this midpoint of p1p2 to the points p1 and p2.

To intersect an arbitrary line l with a quadric surface bF , we have two
choices. First, we could proceed in the following fashion:

1. Find the rigid motion R that maps the line l to the z-axis.
2. Apply the transformation R to the quadric surface bF using the tech-

niques in [13].
3. Intersect this transformed quadric surface with the z-axis, using

Lemma 19 and Theorem 21.
4. Transform the points found in step 3 by the inverse of the transformation

R found in step 1.

This approach—transforming the problem to a canonical location where
the problem is easy to solve—is a standard technique in computer graphics.
Alternatively, we can find these intersection points without performing any
transformations using the following theorem.

Theorem 23. Let bF be a bivector representing a quadric surface and let l∗ =
π∗
2 ∧ π∗

1 represent a line with l = (l∗)∗ = π1 ∧ π2. Then (l∗ ∧ bF ∧ l) · Γ =
c(p1 ∧ p∗

2 + p2 ∧ p∗
1), where c is a scalar and p1, p2 are the intersection points

of the quadric bF and the line l∗.

Proof. By an affine transformation A, any arbitrary planes π∗
1 and π∗

2 can be
mapped to the planes w∗

1 and w∗
2 . In this way, the general case of line-quadric

intersection can be reduced to the special case in Lemma 19 where the result
is valid. Now this general result follows by applying the affine transformation
A−1 to the result in Lemma 19 and recalling that both A and A−1 are inner
and outer automorphisms [13]. ♦

Using Theorem 23 together with Theorem 21 we can find the intersection
points of an arbitrary line and a quadric surface without performing any
transformations.

4. Barycentric Coordinates

Barycentric coordinates are used extensively in computer graphics. For exam-
ple, barycentric coordinates for triangles appear in both ray tracing and scan
line algorithms such as Gouraud and Phong shading [2], to compute colors or
normals inside a triangle by interpolating colors or normals given at the tri-
angle vertices. Here we show how to apply formulas from Sect. 2.3 to compute
barycentric coordinates in R(4, 4).

Barycentric coordinates represent a given point as an affine combina-
tion of related points. A point p on a line can be represented as an affine
combination of the end points of a segment p1p2 along the line:

p = b1 p1 + b2 p2, b1 + b2 = 1.
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Similarly, a point p in a plane can be represented as an affine combination of
the vertices of a triangle �p1p2p3 in the same plane:

p = b1 p1 + b2 p2 + b3 p3, b1 + b2 + b3 = 1.

Finally, a point p in 3-dimensions can be represented as an affine combination
of the vertices of a tetrahedron �p1p2p3p4:

p = b1 p1 + b2 p2 + b3 p3 + b4 p4, b1 + b2 + b3 + b4 = 1.

Coefficients in these affine combinations are called barycentric coordinates
and are the ratios of lengths, areas, and volumes in 1, 2, and 3-dimensions.
In Sect. 2.3, we showed that in R(4, 4) line segments can be represented by
the outer product of two distinct points; triangles by the outer product of
three non-collinear points; and tetrahedra by the outer product of four non-
coplanar points. Here we shall show that the ratios of such outer products
can be used to represent barycentric coordinates.

Theorem 24. Consider a point p that lies along the same line as two distinct
points p1, p2. Then for ij ∈ {12, 21} the ith barycentric coordinate bi of p
relative to the points p1, p2 is given by

bi =
(−1)i+1(p ∧ pj) · (p1 ∧ p2)∗

(p1 ∧ p2) · (p1 ∧ p2)∗ .

Proof. Since p lies in the line determined by the points p1, p2, we have p =
b1 p1 + b2 p2. Therefore for j �= i

(−1)i+1(p ∧ pj) · (p1 ∧ p2)∗

(p1 ∧ p2) · (p1 ∧ p2)∗ =
(−1)i+1(b1 p1 + b2 p2) ∧ pj) · (p1 ∧ p2)∗

(p1 ∧ p2) · (p1 ∧ p2)∗ = bi.

♦
The proofs of the following theorems for barycentric coordinates in

planes and in 3-dimensional space are similar to the proof of Theorem 24.

Theorem 25. Consider a point p that lies in the same plane as three non-
collinear points p1, p2, p3. Then the ith barycentric coordinate bi of p relative
to �p1p2p3 is given by

bi =
(p ∧ pj ∧ pk) · (p1 ∧ p2 ∧ p3)∗

(p1 ∧ p2 ∧ p3) · (p1 ∧ p2 ∧ p3)∗ ,

for ijk ∈ {123, 231, 312}.
Theorem 26. Consider a point p that lies in 3-dimensional space and let p1,
p2, p3, p4 be four non-coplanar points. Then the ith barycentric coordinate bi

of p relative to the tetrahedron �p1p2p3p4 is given by

bi =
(p ∧ pj ∧ pk ∧ p�) · (p1 ∧ p2 ∧ p3 ∧ p4)∗

(p1 ∧ p2 ∧ p3 ∧ p4) · (p1 ∧ p2 ∧ p3 ∧ p4)∗ ,

for ijk� ∈ {1234, 2314, 3412, 4132}.
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5. Conclusions

In this paper, we have shown how to represent lines, planes, quadric sur-
faces, and conic sections in R(4, 4). Together with our earlier work on affine
and projective transformations [13], we have shown that R(4, 4) can model
all the standard geometric entities and projective transformations typically
represented in computer graphics by matrix methods. As derivations of met-
ric formulas for flats in R(4, 4) are essentially the same as the derivations of
metric formulas for flats in other Clifford algebras, we have omitted these
derivations from the main body of this paper; however, since the metric for-
mulas in R(4, 4) differ somewhat from those metric formulas in other Clifford
algebras, we have collected these metric formulas for flats (including formu-
las for lengths, areas, volumes, distances, and angles) in Tables 3, 4, and 5.
Table 2 contains some useful identities, which can be used to derive the for-
mulas in Tables 3, 4, and 5. We have also included two appendices: Appendix
A verifies that an object and its dual have the same metric properties; Appen-
dix B focuses on deriving distances and angles between a pair of lines or a
pair of planes, which are a bit more complicated in R(4, 4) than in other
Clifford algebras.

The Clifford algebra R(4, 4) has several advantages over other potential
Clifford algebras for computer graphics. The versors and rotors in R(4, 4)
can model all the affine and projective transformations needed for computer
graphics, including shears and non-uniform scaling, which are not readily
available in other models of Clifford algebra. Moreover, as we have shown,
conic sections and quadric surfaces are also readily modeled in R(4, 4), but
are not so readily available in other Clifford algebras. Additionally, in R(4, 4)
primal objects and their duals live in a different spaces, which leads to greater
clarity and is often an advantage in software implementations.

The main disadvantage of R(4, 4) is its enormous size: 28 = 256 dimen-
sions seems way out of proportion to what is needed for 3-dimensional com-
puter graphics, and indeed many of the multi-vectors of R(4, 4) appear to have
no clear geometric interpretation. Whether these additional multi-vectors
have useful geometric meanings or whether a smaller Clifford algebra will
ultimately prevail remain open questions for future research.

Appendix A: Equivalent Metric Properties of Objects and
their Duals

Here we verify that a line and its dual have the same length and that a plane
and its dual have the same area.

Theorem 27. Let l represent a line in ∧W with dual representation ∗l =
4(l · I∗) in ∧W ∗. Then the lengths

‖l‖ = ‖∗l‖ .
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Table 2. Standard algebraic identities in Clifford algebra

‖u1 ∧ ... ∧ uk‖2 = 2k(u1 ∧ ... ∧ uk) · (u∗
k ∧ ... ∧ u∗

1)

‖u∗
1 ∧ ... ∧ u∗

k‖2 = 2k(u∗
1 ∧ ... ∧ u∗

k) · (uk ∧ ... ∧ u1)
‖v‖2 = 2( v · v∗)
2(v · u∗) = ‖v‖ ‖u‖ cos(θ)
‖n∗

s‖2 = 2(ns · n∗
s)

2n1 · n∗
2 = ‖n∗

1‖‖n∗
2‖ cos(θ)

u × v = −4(u∗ ∧ v∗) · (w1 ∧ w2 ∧ w3)
‖u ∧ v‖2 = −4(u ∧ v) · (v ∧ u)∗ = 4(u ∧ v) · (v∗ ∧ u∗) = ‖u × v‖2
‖n1

∗ ∧ n2
∗‖2 = 4(n1 ∧ n2) · (n∗

2 ∧ n∗
1) = ‖n∗

1 × n∗
2‖2

‖w1 ∧ w2 ∧ w3‖ = 1
‖u ∧ v ∧ w‖2 = det(u, v, w)2

Proof. Let l = aw0∧w1+bw0∧w2+cw0∧w3+dw1∧w2+ew1∧w3+fw2∧w3.
From Table 3, ‖l‖2 ≡ 8(w∗

0 · l) · (l∗ · w0); therefore

‖l‖2 ≡ 8(w∗
0 · l) · (l∗ · w0)

= 2(aw1 + bw2 + cw3) · (aw∗
1 + bw∗

2 + cw∗
3)

= a2 + b2 + c2.

Moreover, using Eq. 1, the dual representation of l is
∗l = 4l · I∗

= −aw∗
2 ∧ w∗

3 + bw∗
1 ∧ w∗

3 − cw∗
1 ∧ w∗

2 − dw∗
0 ∧ w∗

3 + ew∗
0 ∧ w∗

2 − fw∗
0 ∧ w∗

1 .

Since ∗l is a line, we can find two planes π∗
1 and π∗

2 in W ∗ such that their
intersection is equal to the dual line—that is, ∗l = π∗

1 ∧ π∗
2 . Let n∗

1 and n∗
2 be

the normal vectors to the planes π∗
1 and π∗

2 . Then

n∗
1 ∧ n∗

2 = 2w0 · (w∗
0 ∧ (d1w∗

0 + n∗
1) ∧ (d2w∗

0 + n∗
2))

= 2w0 · (w∗
0 ∧ π∗

1 ∧ π∗
2).

Therefore by Table 2

‖n∗
1 ∧ n∗

2‖2 = 4(n1 ∧ n2) · (n∗
2 ∧ n∗

1)

= 8(w∗
0 · (w0 ∧ π1 ∧ π2)) · (w0 · (w∗

0 ∧ π∗
2 ∧ π∗

1))

= a2 + b2 + c2 = ‖l‖2.
From Table 3 it follows that

‖∗l‖ = ‖n∗
1 ∧ n∗

2‖ = ‖l‖.

♦

Theorem 28. Let π represent a plane in ∧W with dual representation ∗π =
8π · I∗ in ∧W ∗. Then the areas

‖π‖ = ‖∗π‖ .
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Table 3. Formulas for length, area, and volume of the line
segment, triangle, and tetrahedron associated to the corre-
sponding blades

Object Squared length, area, volume

Line segment l = p1 ∧ p2 ||l||2 = 8(w∗
0 · l) · (l∗ · w0)

Triangle π = p1 ∧ p2 ∧ p3 ||π||2 = −4(w∗
0 · π) · (π∗ · w0)

Tetrahedron Δ = p1 ∧ p2 ∧ p3 ∧ p4 ||Δ||2 = 16
3 (w∗

0 · Δ) · (Δ∗ · w0)
Dual plane ‖π∗‖ = 1

2 ‖n∗‖
Dual tetrahedron ‖l∗‖ = ‖n∗

1 ∧ n∗
2‖

Proof. Let π = aw0 ∧w1 ∧w2 +bw0 ∧w1 ∧w3 +cw0 ∧w2 ∧w3 +dw1 ∧w2 ∧w3.
From Table 3, ‖π‖2 ≡ 4(w∗

0 · π) · (π∗ · w0); therefore

‖π‖2 =
1
4
(a2 + b2 + c2).

Moreover, using Eq. 1, the dual representation of π is
∗π = 8π · I∗ = dw∗

0 − cw∗
1 + bw∗

2 − aw∗
3 .

Let n∗ be the normal vector to the dual plane ∗π. Then n∗ = −cw∗
1 + bw∗

2 −
aw∗

3 . Therefore by Table 2

‖n∗‖2 = a2 + b2 + c2 = 4‖π‖2.
From Table 3 it follows that

‖∗π‖ =
1
2

‖n∗‖ = ‖π‖ .

♦

Appendix B: Measurement in R(4, 4): Distances and Angles

Besides intersections between geometric elements, measurements such as dis-
tances and angles between geometric elements are also widely used in many
areas of computer graphics, geometric modeling and robotics. For example,
to solve the inverse kinematics problem for a simple robot, we need to com-
pute not only the distance between two points or a point and a plane for path
planning, but also the angle between two lines or even between two planes to
calculate rotation angles.

In R(4, 4), the inner product can be used to measure distances and
angles. Table 4 shows the inner product can be used for tasks such as finding
the distance between two points, or a point and a line, or a point and a plane.
These results are easy to derive. The formula for the distance between two
points p1 and p2 is similar to the formula for the length of a line segment:
both are equal to the norm of the vector from p1 to p2. The formula for the
distance between a point and a line simply divides the area of the triangle
generated by the point and a line segment by the length of the base of the
triangle which is half the height of the triangle or equivalently exactly half
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Table 4. Distance between two points, or a point and a
line, or a point and a plane in R(4, 4)

Distance between points p1 and p2 dist2(p1, p2) = 2(p2 − p1) · (p∗
2 − p∗

1)

Distance between point p and line � dist(p, �) = 2‖p∧�‖
‖�‖

Signed distance between point sdist(p, π∗) = p·π∗

‖π∗‖
p and plane π∗

the distance from the point to the line. Finally the formula for the distance
between a point and a plane is simply the projection onto the normal to the
plane of the vector from the given point to a point on the plane.

Remark 29. In the formula for the distance between a point p and a plane
π∗, the sign of the distance appears because p may be above or below the
plane so the direction of the normal vector n∗ may point towards or away
from the point p.

Two lines in 3-dimensions are either skew, parallel, or intersect. Sim-
ilarly, two planes in 3-dimensions are either parallel or intersect. Angles
between two lines or two planes can be computed using the inner product
of the normalized OPNS representation of the lines or planes. To proceed,
however, we need to extract some basic geometry from a line l in W .

We shall adopt the following notation: For any line l, we define

v(l) = w∗
0 · l, p(l) = ∗(∗l ∧ (v(l))∗)

Proposition 30. Let l be a line in ∧W . Then v(l) = w∗
0 · l is a vector parallel

to l.

Proof. Let l = q ∧ r. Then w∗
0 · l = (r − q)/2. ♦

Proposition 31. Let l be a line in ∧W . Then p(l) = ∗(∗l∧(v(l))∗) is the point
on the line l closest to w0.

Proof. By Proposition 30, the vector v(l) is parallel to the line l. Therefore
the plane (v(l))∗ is perpendicular the line l and hence to the dual line ∗l,
since the normal vector to the plane (v(l))∗ is (v(l))∗. Thus the dual point
∗l ∧ (v(l))∗ lies on the intersection of the line ∗l and the plane (v(l))∗. Hence
the point p(l) = ∗(∗l ∧ (v(l))∗) lies on the original line l, since the point p(l)
is at the same location as the dual point ∗l∧ (v(l))∗ and the line l is the same
line as the dual line ∗l. ♦
Remark 32. The idea behind Proposition 31 is that the outer product of 3
planes generates a point, so to get a point we need to compute an outer
product in ∧W ∗ and dualize to get a point in ∧W .

Theorem 33. Classification of lines. Consider two lines l1, l2 in ∧W .
1. l1, l2 skew ⇔ l1 ∧ l2 �= 0.
2. l1, l2 parallel ⇔ v(l1) ∧ v(l2) = 0.
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Table 5. Distances and angles between two lines and two
planes in R(4, 4)

Distance between two skew lines l1, l2 dist(l1, l2) = |p(l2)·∗π|
‖∗π‖

where π = p(l1) ∧ v(l1) ∧ v(l2)

Distance between two parallel lines l1, l2 dist(l1, l2) = dist(p(l2), l1)
Angle θ between oriented lines l1 and l2 cos(θ) = 2(w∗

0 ·l1)·(w0·l∗2)
‖w∗

0 ·l1‖‖w0·l∗2‖
Signed distance between parallel sdist(π1, π2) = sdist(p(π2), π1)

planes π1, π2

Angle θ between planes π∗
1 and π∗

2 cos(θ) = 2(w∗
0 ·(w0∧π1))·(w0·(w∗

0∧π∗
2 ))

‖w∗
0 ·(w0∧π1)‖‖w0·(w∗

0∧π∗
2 )‖

3. l1, l2 intersect ⇔ l1 ∧ l2 = 0 and v(l1) ∧ v(l2) �= 0.

Theorem 34. The intersection point of two intersecting lines l1, l2 in ∧W is

p(l1, l2) = l1 · w∗,

where w∗ = n∗ − 2(n∗ · p(l2))w∗
0 is the plane in W ∗ with normal vector

n∗ =
(
v(l2) × (

v(l1) × v(l2)
))∗ satisfying p(l2) · w∗ = 0.

Theorem 35. Let π be a plane ∧W . Then
1.

n∗(∗π) = 4(2π · w∗
0) · (w∗

1 ∧ w∗
2 ∧ w∗

3)

is normal to the plane π;
2.

p(∗π) = w0 +
8π · (w∗

1 ∧ w∗
2 ∧ w∗

3)
‖n∗(∗π)‖2 n

is a point on the plane π.

Table 5 shows distances and angles between two lines and two planes
in 3-dimensions using the algebra of R(4, 4); Gunn derives similar, somewhat
simpler formulas for P (R∗(3, 0, 1)) [6,7]. These results are easy to derive. The
formula for the distance between two skew lines l1, l2 is similar to the formula
for the distance between a point and a plane: p(l2) is the point on the line
l2 closest to w0 (Proposition 31) and π = p(l1) ∧ v(l1) ∧ v(l2) is the plane
containing l1 that is parallel to l2. The formula for the distance between two
parallel lines is similar to the formula for the distance between a point and
a line. Similarly, the formula for the distance between two parallel planes is
similar to the formula for the distance between a point and a plane. The
formula for the angle between two oriented lines l1 and l2 is similar to the
formula for the angle between two vectors (Table 2): w∗

0 · l1 is a vector parallel
to line l1 and w∗

0 · l2 is a vector parallel to line l2 (Proposition 30). Finally
the formula for the angle between the two planes is similar to the formula for
the angle between the two normal vectors to the planes (Table 2).
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Remark 36. In the formula for the distance between parallel planes π1, π2,
the sign of the distance appears because p(π2) may be above or below the
plane π1 depending on whether the normal to π1 points towards or away from
the plane π2.
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