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Abstract. The article presents a new approach to euclidean plane geom-
etry based on projective geometric algebra (PGA). It is designed for
anyone with an interest in plane geometry, or who wishes to familiarize
themselves with PGA. After a brief review of PGA, the article focuses
on P(R∗

2,0,1), the PGA for euclidean plane geometry. It first explores the
geometric product involving pairs and triples of basic elements (points
and lines), establishing a wealth of fundamental metric and non-metric
properties. It then applies the algebra to a variety of familiar topics in
plane euclidean geometry and shows that it compares favorably with
other approaches in regard to completeness, compactness, practicality,
and elegance. The seamless integration of euclidean and ideal (or “infi-
nite”) elements forms an essential and novel feature of the treatment.
Numerous figures accompany the text. For readers with the requisite
mathematical background, a self-contained coordinate-free introduction
to the algebra is provided in an appendix.
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1. Introduction

The 19th century witnessed an unprecedented development of geometry and
algebra. We need only mention the development of projective and non-eucli-
dean geometries, complex and quaternion number systems, and Grassmann
algebra to indicate the depth and breadth of these developments, many of
which came together in William Clifford’s invention of geometric algebra [4].
This is a comprehensive algebraic structure that models both incidence rela-
tions and metric relations—for a variety of metric geometries—in a concise
and powerful form, and which is ideally suited to computational implemen-
tation. The teaching and practice of euclidean geometry in the 20th century,
however, remained largely untouched by these developments, except for the
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introduction of vector and linear algebra to supplement the standard tools of
analytic geometry.

In recent years, however, geometric algebra has found growing accep-
tance as a tool for euclidean geometry. Those seeking geometric algebra toolk-
its for doing n-dimensional euclidean geometry find two popular solutions in
the contemporary literature: the so-called vector geometric algebra (VGA),
using n-dimensional coordinates ([5], Ch. 10); and conformal geometric al-
gebra (CGA), which uses (n + 2)-dimensional coordinates ([5], Ch. 13). [8],
[9], and [10] feature a third model, less well known than these two, which
fits naturally between them: projective geometric algebra (or PGA for short),
which uses (n + 1)-dimensional coordinates to model n-dimensional metric
spaces of constant curvature: euclidean, hyperbolic, and elliptic. This article
provides an introduction to euclidean PGA, by applying it to the euclidean
plane E2.

1.1. Structure of the Article

This article assumes familiarity with geometric algebra in general and with
[8] or [9] in particular. It begins with a quick review of the dual projective
geometric algebra P(R∗

2,0,1) which forms the basis of PGA for E2. It then
goes on to a detailed discussion of products of 2 or 3 k-vectors, with fo-
cus on the fruitful interplay of euclidean and ideal elements. There follows a
sequence of applications of this product to plane geometry: distance formu-
lae; isometries as sandwiches; sums and differences of k-vectors; orthogonal
projections; and a step-by-step solution to a classical geometric construction
problem. Finally, the article compares P(R∗

2,0,1) to alternative approaches to
doing plane geometry.

Section 2 gives a brief overview of geometric algebra. Section 3 then
introduces the dual projective geometric algebra P(R∗

2,0,1) as a geometric al-
gebra for doing euclidean plane geometry. There follows a discussion of the
basis elements in different grades and how they can be normalized, along with
the distinction between euclidean and ideal elements. Section 4 examines in
detail the geometric product of two elements of various grades and types,
while Sect. 5 does the same for three-way products. In the following sections,
the resulting compact and powerful geometric toolkit is applied to a sequence
of topics in plane geometry: distance formulae (Sect. 6), sums and differences
of k-vectors (Sect. 7), isometries as sandwiches (Sect. 8), orthogonal projec-
tions (Sect. 9), and a step-by-step solution to a classical geometric construc-
tion problem (Sect. 10). Section 11 gives the interested reader an overview
of directions for further study. The article concludes (Sect. 12) by evaluating
the results obtained and comparing them to alternative approaches to doing
euclidean plane geometry. Appendix A features a coordinate-free derivation
of the results of Sect. 3 for readers with the necessary mathematical sophis-
tication.
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2. Geometric Algebra Fundamentals

A self-contained introduction to geometric algebra lies outside the scope of
this article. We sketch here the essential ingredients; interested readers are
referred to the textbook [5] for a modern computer science approach or [6] for
an older, more mathematical approach. The Wikipedia article entitled “geo-
metric algebra” is also quite useful. Readers should keep in mind that none
of these references deal with degenerate metrics, which form a key feature of
the approach described here.

2.1. Grassmann Algebra

Geometric algebra can be built upon the combination of an outer and an
inner product on a vector space. We assume the reader is familiar with real
vector spaces, and also with the exterior (or Grassmann) algebra

∧
V con-

structed atop a real n-dimensional vector space V. This is a graded algebra
in which the elements of grade-k (

∧k V) correspond to the weighted vector
subspaces of V of dimension k.1 Each grade is a vector space in its own right
of dimension

(
n
k

)
. The exterior product

∧ :
k∧
V ×

m∧
V →

k+m∧
V

is a binary operator that is bilinear and anti-symmetric in its arguments.
Geometrically, ∧ is the join operator on the subspaces of V: it gives the (k +
m)-dimensional subspace spanned by its arguments, or 0 if they are linearly
dependent. It is also called the outer product. The Grassmann algebra has
(n+1) non-zero grades, from 0 (the scalars) to n (the so-called pseudoscalars).∧
V has total dimension 2n, as a glance at Pascal’s triangle shows.

2.2. Symmetric Bilinear Forms

We also assume the reader is familiar with symmetric bilinear forms on a
vector space, which allow us to define inner products on V. Such a form B is
characterized by its signature, an integer triple (p, n, z) where p + n + z = n.
Sylvester’s Inertia Theorem asserts that there is a basis for V for which B is
a diagonal matrix with p 1’s, n −1’s, and z 0’s on the diagonal. If z �= 0, we
say the inner product is degenerate. We will see below that the signature for
euclidean geometry is degenerate.

2.3. Measurement

In the standard euclidean vector space R
3, measurement of angles between

vectors u := (xu, yu, zu) and v := (xv, yv, zv) is determined by the standard
euclidean inner product u · v := xuxv + yuyv + zuzv, with signature (3, 0, 0).
Using this inner product, one can compute the angle between vectors or
between planes (elements of the dual vector space). If u and v are two unit-
length 1-vectors, then the inner product u · v is well-known to be the cosine
of their angle.

1 Two elements a and b that satisfy a = λb for some non-zero λ ∈ R represent the same

subspace, but with different weights. The weight is discussed in more detail below in Sect.

3.4.1.
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2.4. Geometric Product

The geometric algebra arises by supplementing the outer product with the
inner product. One defines the geometric product on 1-vectors of

∧
V by

ab := a · b + a ∧ b

The right-hand side is the sum of a 0-vector (scalar) and 2-vector (plane
through the origin). This definition can be extended to the whole Grassmann
algebra, yielding an associative algebra called the geometric (or Clifford)
algebra with signature (p, n, z). In the example above, we obtain R3,0,0. For
details see [5].

2.5. Some Terminology

The general element in a geometric algebra is called a multivector. For a
multivector M, the grade-k part is written 〈M〉k, hence M =

∑
k〈M〉k. An

element of
∧k V is called a k-vector. A k-vector that is the product of k

1-vectors is called a simple k-vector, or a blade. For a k-vector A and an
m-vector B, the dot product A · B := 〈AB〉|k−m| is defined as the lowest
grade component of AB. The wedge A ∧ B = 〈AB〉k+m is, on the other
hand, the highest grade component. This is consistent with the definition of
the product of two 1-vectors above. X̃, the reversal of a multi-vector X, is
obtained by reversing the order of all products involving 1-vectors. X̃ is an
algebra involution, needed below in 8.2.

3. Geometric Algebra for the Euclidean Plane

The above behavior for R
3 is typical of any geometric algebra with non-

degenerate metric: the inner product provides the necessary information to
calculate the angle or distance between the two elements. What is the situ-
ation in the euclidean plane E2? What kind of inner product do we need to
measure the angle between two euclidean lines?

Let

a0x + b0y + c0 = 0, a1x + b1y + c1 = 0

be two oriented lines which intersect at an angle α. We can assume with-
out loss of generality that the coefficients satisfy a2

i + b2i = 1. Then it is not
difficult to show that

a0a1 + b0b1 = cos α

Unlike the inner product for the case of vectors in R3,0,0, here the third
coordinate of the lines makes no difference in the angle calculation: translating
a line changes only its third coordinate, while leaving the angle between the
lines unchanged. Refer to Fig. 1 which shows an example involving a general
line and a pair of horizontal lines. Hence the proper signature for measuring
angles in E2 is (2, 0, 1). This is a so-called degenerate inner product since the
last entry in the signature is non-zero.

Notice that to model lines and points in a symmetric way we adopt
homogeneous coordinates so line equations appear as ax + by + cz = 0. That
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Figure 1. Angles of euclidean lines

is, we work in projective space RPn. Hence, to produce a geometric algebra
for the euclidean plane we must attach the signature (2, 0, 1) to a projectivized
Grassmann algebra. As the above discussion yields a way to measure the angle
between lines rather than the distance between points, we choose the dual
projectivized Grassmann algebra P(

∧
(R3)∗) for this purpose, where 1-vectors

represents lines, 2-vectors represent points, and ∧ is the meet operator. This
leads to the geometric algebra P(R∗

2,0,1) as the correct one for plane euclidean
geometry. We call it projective geometric algebra (PGA) due to its close
connections to projective geometry. (The standard Grassmann algebra leads
to P(R2,0,1), which models dual euclidean space, a different metric space.)

PGA for euclidean geometry first appeared in the modern literature in
[13,14] and was extended and developed in [7–10]. Readers unfamiliar with
duality or projectivization, or just interested in a fuller, more rigorous treat-
ment, should consult the latter references. The four-dimensional subalgebra
consisting of scalars and bivectors, also known as the planar quaternions, has
a long history as a tool for kinematics in the plane [1,12].

3.1. Meet and Join

As mentioned above, the wedge operator ∧ in P(R∗
2,0,1) is the meet operator.

It is important to have access to the join operator also. Since the typical
solution to this challenge assumes a non-degenerate metric, we sketch a non-
metric approach, for details see [7]. The Poincaré isomorphism J : G ↔ G∗

between the Grassmann algebra G and the dual Grassmann algebra G∗ can
be used to define the join operator ∨ in P(R∗

2,0,1) :

A ∨ B := J(J(A) ∧ J(B))

J is also sometimes called the dual coordinate map. It is essentially an identity
map, since it maps a geometric entity in the Grassmann algebra to the same
geometric entity in the dual Grassmann algebra. For example, in projective 3-
space RP 3, a line L can be represented as a bivector in G since it is the join of
two points (1-vectors in G). It also appears as a bivector in G∗ since it can also
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be represented as the intersection of two planes (1-vectors in G∗). In general,
a geometric entity represented by a k-vector in G will be represented by an
(n−k)-vector in G∗, where n is the dimension of the underlying vector space.
J allows one to move back and forth between these two dual representations
depending on the circumstances. One can also implement the join operator
using the shuffle operator within P(R∗

2,0,1) ([14], Ch. 10).

3.2. Basis Vectors of the Algebra

We provide here a treatment of the algebra based on a choice of basis el-
ements; a coordinate-free treatment for more mathematically sophisticated
readers can be found in Appendix A.

P(R∗
2,0,1) has an orthogonal basis of 1-vectors {e0, e1, e2} satisfying

e20 = 0, e21 = e22 = 1, ei · ej = 0 for i �= j

e0 is the ideal line of the plane (sometimes called the “line at infinity”)
which we write as ω, e1 is the x = 0 line (vertical!) and e2 is the y = 0 line
(horizontal). All lines except ω belong to the euclidean plane and are called
euclidean lines.

We choose the basis 2-vectors

E0 := e1e2, E1 := e2e0, E2 := e0e1
for the points of the plane. It is easy to check that these satisfy

E2
0 = −1, E2

1 = E2
2 = 0, Ei · Ej = 0 for i �= j

Hence the induced inner product on points has signature (0,1,2), more
degenerate than that for lines. As a result, the distance function between
points cannot be obtained from the inner product—but can be obtained via
the geometric product; see Sect. 4.3 below for details. Points that lie on ω
are said to be ideal. Then E0 is the origin of the coordinate system, E1 is the
ideal point in the x-direction and E2 is the ideal point in the y-direction. In
general, ideal elements can be characterized as elements satisfying x2 = 0.
See Fig. 2 for a perspective view of the fundamental triangle determined by
these elements.

The basis vectors chosen above assume that the first coordinate is the
homogeneous coordinate. This assumption is helpful when stating results that
should be valid for general dimensions. On the other hand, existing usage
often follows the opposite convention; for example, the line with equation
ax + by + cz = 0 appears in the algebra as ce0 + ae1 + be2. When writing
elements of the algebra as tuples, we take into account this existing usage.
We write the 1-vector m = ce0 + ae1 + be2 as [a, b, c] (square brackets), and
the 2-vector P = xE1 + yE2 + zE0 as (x, y, z) (standard parentheses).

The pseudoscalar I := e0e1e2 generates the grade-3 vectors. It satisfies
I2 = 0. This is, the inner product, or metric, is degenerate. A 3-vector p has
the form aI for a ∈ R. While in a non-degenerate metric the magnitude a
of a pseudoscalar p can be obtained, up to sign, as pI, this is not possible
with a degenerate metric (since pI = aI2 = 0 for all p), and we define the
signed magnitude S(p) := a. We occasionally use the fact for a 1-vector a
and a 2-vector P, S(a ∧ P) = a ∨ P. (This follows from the fact if x ∧ y is a
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Figure 2. Perspective view of basis 1- and 2-vectors

Table 1. Geometric product in P(R∗
2,0,1)

1 e0 e1 e2 E0 E1 E2 I

1 1 e0 e1 e2 E0 E1 E2 I
e0 e0 0 E2 −E1 I 0 0 0
e1 e1 −E2 1 E0 e2 I −e0 E1

e2 e2 E1 −E0 1 −e1 e0 I E2

E0 E0 I −e2 e1 −1 −E2 E1 −e0
E1 E1 0 I −e0 E2 0 0 0
E2 E2 0 e0 I −E1 0 0 0
I I 0 E1 E2 −e0 0 0 0

pseudoscalar, x ∨ y is a scalar with the same magnitude.) Note that Ei was
chosen so that eiEi = I.

3.3. The Geometric Product

The full multiplication table for the basis elements of P(R∗
2,0,1) can be found

in Table 1. The presence of 0’s indicates that the metric is degenerate. It
is useful to have special symbols for the different grade components of the
product of two blades, which we now provide. Let A be a k-vector and B, an
m-vector. All combinations of (k,m) in P(R∗

2,0,1) except (2, 2) can then be
written as

AB = A · B + A ∧ B

For (k,m) = (2, 2), 〈AB〉2 =: A × B(=AB − BA), sometimes called the
commutator or cross product. We’ll see below that A × B is the ideal point
perpendicular to the direction of the joining line of A and B.

3.4. Normalized Points and Lines

A k-vector whose square is ±1 is said to be normalized. Since normalization
simplifies the subsequent discussion, we introduce it here, although logically
speaking the justification for all the steps in the normalization process will
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only later be established. The square of any k-vector in the algebra is a
scalar, since all k-vectors in this algebra are simple. Squaring this product
and rearranging terms, one obtains a product of the squares of these 1-vectors,
each of which reduces to a scalar. For a euclidean line m = ce0 + ae1 + be2,
define the norm

‖m‖ :=
√
m2 =

√
m · m (=

√
a2 + b2)

Then mn := ‖m‖−1m satisfies m2
n = 1. For a euclidean point P = zE0 +

xE1 + yE2, P2 = −z2. Define ‖P‖ := z. Note that, in contrast to a standard
norm of a vector space, ‖P‖ can take on positive and negative values, a
feature that is occasionally useful. Then Pn := z−1P satisfies ‖Pn‖ = 1.
Such a point is also called dehomogenized since its E0 coordinate is 1. Note
that we have shown that normalized euclidean lines have square 1 while
normalized euclidean points have square −1. In the following discussions we
often assume that euclidean lines and points are normalized.

3.4.1. Weight and Norm. If one has chosen a standard representative X for
a projective k-vector, and Y = λX, we say that Y has weight λ. We usually
choose the standard element to have norm ±1. Such elements of weight ±1
are exactly the normalized elements discussed above. The weight can be any
non-zero real number; while the norm is sometimes restricted to take non-
negative values (see Table 2 below). The freedom to choose the weight is a
consequence of working in projective space, since non-zero multiples of an
element are all projectively equivalent. Sometimes the weight is irrelevant,
sometimes crucial. When multiplying elements together, one gets the same
projective result regardless of the weights; while adding elements, different
weights give different projective results.

3.4.2. Ideal Elements and Free Vectors. Ideal points correspond to euclid-
ean “free vectors” (a fact already recognized in [3]). Let P = aE1 + bE2 be
an ideal point. Then, as noted above, ‖P‖ = 0. This leads us to introduce a
second norm for ideal points, one that is compatible with their function as
free vectors. Define the ideal norm

‖P‖∞ := ‖P ∨ Q‖
where Q is any normalized euclidean point. Then a direct calculation yields
‖P‖∞ =

√
a2 + b2, as desired. Thus, the points of the ideal line can be

treated as free vectors with the positive definite inner product of R2 [signature
(2, 0, 0)].

We write the corresponding inner product between two ideal points U
and V as 〈U,V〉∞. Every euclidean line m has an ideal point m∞, normalized
so that ‖m∞‖∞ = 1. The ideal norm allows us to represent ideal points in
the accompanying figures as familiar free vectors (arrows labeled with capital
letters), see Fig. 8 (right).

We also define an ideal norm for ideal lines (i. e., lines m satisfying m2 =
0). For m = ae1+be2+ce0, ‖m‖∞ = c. (As with ‖P‖ above, this can also take
on positive and negative values.) Then m = cω. c > 0 corresponds to an ideal
line in clockwise orientation; c < 0, to counter-clockwise orientation. Finally
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Table 2. Coordinate-based overview of the euclidean and
ideal elements with their corresponding norms

Grade Coord. & tuple form Norms Domain Description

1 m = ae1 + be2 + ce0 ‖m‖ :=
√
a2 + b2 ‖m‖ �= 0 Euc. line

[a, b, c] ‖m‖∞ := c ‖m‖ = 0 Ideal line

2 P = xE1 + yE2 + zE0 ‖P‖ := z ‖P‖ �= 0 Euc. point
(x, y, z) ‖P‖∞ :=

√
x2 + y2 ‖P‖ = 0 Ideal point

3 aI ‖aI‖∞ := a -all- Pseudoscalar

for completeness we can also consider the pseudoscalar signed magnitude
S(aI) as an ideal norm : ‖aI‖∞ := S(aI) = a. We have thus defined an ideal
norm for all ideal elements in the algebra. This ideal norm, restricted to the
ideal plane, has signature (2, 0, 0); considered projectively, this is an elliptic
line P(R∗

2,0,0), while considered as a vector space, it is R
∗
2,0,0, the geometric

algebra of R2. See Table 2 for an overview of the euclidean and ideal elements
and norms with their domains of validity.

In the following, we will more than once confirm that the standard and
ideal norms form an organic whole. For a fuller discussion of the ideal norm
see Sect. 4.4.4 of [7].

Whether to apply the standard or ideal inner product presents no dif-
ficulties for practical implementation, as a point can be easily identified as
ideal by the linear condition P∧ω = 0. There is also little danger that an ideal
point will be mistaken for a euclidean point – all the computational paths
that produce ideal points presented in this article (see for example Sects.
4.1, 4.2.2, 4.3.1, 7.2) produce exact ideal points. This situation is analogous
to traditional vector algebra: one has no trouble distinguishing vectors and
points.

4. The Geometric Product in Detail: 2-Way Products

In the following discussion, P and Q are normalized points (either euclidean
or ideal, as indicated), and m and n are normalized lines. We analyze the
geometric meaning of products of pairs and triples of k-vectors of various
grades, paying particular attention to the distinction of euclidean and ideal
elements. A selection of these products is illustrated in Fig. 3.

4.1. Product with Pseudoscalar

First notice that the pseudoscalar I commutes with everything in the algebra.
For a euclidean line a, the polar point a⊥ := aI = Ia is the ideal point
perpendicular to the line a. We can use the polar point to define a consistent
orientation on euclidean lines; we draw the arrow on an oriented line m
so that rotating it by 90◦ in the CCW direction produces m⊥. See Fig. 2,
which shows the resulting orientations on the basis 1-vectors. When a is
normalized, so is a⊥, another confirmation that the two norms (euclidean
and ideal) have been harmoniously chosen. For a normalized euclidean point
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P x Q
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||P x Q|| 

a  b v
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cos  (a b).-1
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Figure 3. Selected geometric products of blades

P, P⊥ := PI = IP = −e0, the ideal line with CW orientation. The polar of
an ideal point or line is 0.

We noted above in Sect. 3.2 that the condition I2 = 0 means the metric
is degenerate, or, what is the same, multiplication by I (the so-called metric
polarity) is not an algebra isomorphism. Although some researchers see this
as a flaw in the algebra (for example, [11], p. 11), our experience leads to view
it as an advantage, since it accurately mirrors the metric relationships in the
euclidean plane. For example, when m and n are parallel, m⊥ = n⊥, that is,
parallel lines have the same polar point. In a non-degenerate metric, however,
different lines have different polar points. In contrast, the degenerate metric
properly mirrors this euclidean phenomenon. For a fuller discussion of this
theme, see Sect. 5.3 of [10].

4.2. Product of Two Lines

In general we have mn = 〈mn〉0+〈mn〉2 = m·n+m∧n. We say two lines are
perpendicular if m ·n = 0 – even when one of the lines is ideal. The meaning
of the two terms on the right-hand side depends on the configuration of m
and n as follows.

4.2.1. Intersecting Euclidean Lines. We say that two intersecting euclidean
lines meet at an angle α when a rotation of α around their common point
brings the first oriented line onto the second, respecting the orientation. Then
m ·n = cos α and m∧n = (sin α)P where P is their normalized intersection
point. Consult Fig. 4, left. Readers who are surprised that the angle α can be
deduced from the wedge product—which does not depend on the metric—are
reminded that this is possible only because we have used the inner product
to normalize the arguments in advance. Without normalizing m and n, the
formulae are

m · n = ‖m‖‖n‖ cos α and m ∧ n = ‖m‖‖n‖(sin α)P

Similar extensions involving non-normalized arguments could be made for the
subsequent formulae given below, but in the interests of space we omit them.
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Figure 4. Geometric product ab of two intersecting lines
(left) and two parallel lines (right)

Exercise: (mn)n = cos nα + (sin nα)P. Show that the vector subspace gen-
erated by 1 and P is isomorphic to the complex plane C.

4.2.2. Parallel Euclidean Lines. m · n = ±1. We say the lines are parallel
when this inner product equals 1, otherwise we say they are anti-parallel. In
the latter case, replace n by −n to obtain parallel lines. Then m · n = 1 and
m∧ n = dmnm∞, where dmn is the oriented euclidean distance between the
two lines and m∞. See Fig. 4, right. The simplicity of this formula validates
the choice of the norm ‖‖∞ on ideal points. Note that the geometric product
in PGA automatically finds the correct form of measuring the “distance” be-
tween the two lines: the weight of the intersection point m ∧ n reflects angle
measurement (sin α) for intersecting lines and euclidean distance measure-
ment (dmn) for two parallel lines.

Exercise: (mn)n = 1 + ndmnm∞.

4.2.3. Product of a Euclidean Line with the Ideal Line. Let n = ω be the
ideal line. Then m ·n = 0 and m∧n = m∞ is the ideal point of m. Note that
since m ·n = 0, the ideal line is perpendicular to every euclidean line; since it
shares an ideal point with each such line, it is parallel to every euclidean line!

4.3. Product of Two Points

Here the general formula is PQ = 〈PQ〉0 + 〈PQ〉2 = P · Q + P × Q. The
resulting behavior is characterized by the fact that the inner product for
points is more degenerate than that for lines.

4.3.1. Two Euclidean Points. P · Q = −1 and P × Q is an ideal point
perpendicular to P∨Q. To be exact P×Q = −(P∨Q)I (notice the negative
sign). We also write this as (P−Q)⊥ since the ideal point P−Q, rotated in
the CCW direction by 90◦, yields P × Q. See Fig. 5, left.

Exercise: The distance dPQ between two euclidean points satisfies

dPQ = ‖P × Q‖ (=‖P ∨ Q‖)
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Figure 5. Left: product PQ of two euclidean points; right:
product aP of euclidean line and point

4.3.2. Euclidean Point and Ideal Point. If Q is ideal, then P · Q = 0 and
P×Q is the ideal point obtained by rotating Q 90◦ in the CW direction. This
result is consistent with the characterization of the product of two euclidean
points: it is an ideal point perpendicular to P∨Q. Q×P rotates in the CCW
direction. Thus, multiplication of an ideal point by any finite point rotates
the ideal point by 90◦; the specific location of the euclidean point plays no
role.

4.3.3. Two Ideal Points. The product of two ideal points is zero. Hence
the only interesting binary operation on ideal points is addition. In light of
Sect. 3.4.1, this helps to explain why ideal points are often treated as vectors
rather than projective points.

4.4. Product of a Line and a Point

The general formula is mP = 〈mP〉1 + 〈mP〉3 = m ·P+m∧P. The wedge
vanishes if and only if P and m are incident. As before, we assume that both
m and P are normalized.

4.4.1. Euclidean Line and Euclidean Point. m·P is the line passing through
P perpendicular to m (consult Fig. 5, right). Why? This can be visualized
as starting with all the lines through P and removing all traces of the line
parallel to m, leaving the line perpendicular to m. It has the same norm as
m, and its orientation is obtained from that of m by CCW rotation of 90◦.
This is reversed in the product P ·m. This sub-product is important enough
to deserve its own symbol. We define

m⊥
P := m · P = −P · m

The wedge product satisfies m ∧ P = dmPI, where dmP is the directed
distance between m and P.

4.4.2. Euclidean Line and Ideal Point. Let α be the angle between the
direction of m and P: cos α = 〈m∞,P〉∞. Then m·P = (cos α)ω and m∧P =
(sin α)I. Notice that mP is the sum of an ideal line and a pseudoscalar: no
euclidean point or line appears in the product. The first term, involving
the ideal line, is non-zero when the ideal line is the only line through P
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Figure 6. Products of 3 euclidean points

perpendicular to m. When α = π
2 , every line through P is perpendicular to

m, and m · P = 0 while m ∧ P = I.

5. The Geometric Product in Detail: 3-Way Products

Products of more than 2 k-vectors can be understood by multiplying the fac-
tors out, one pair at a time. The product of 3 different euclidean points (or
lines) is important enough in its own right to merit a separate discussion. The
results provide a promising basis for a future investigation of euclidean trian-
gles. Later we will see that euclidean reflections (Sect. 8.1) and orthographic
projection (Sect. 9) can also be understood as 3-way products in which one
of the factors is repeated.

5.1. Product of 3 Euclidean Points

Let the three points be A, B, and C. See Fig. 6. Then using the results
obtained above for products of two points:

ABC = (AB)C

= (−1 + (A − B)⊥)C

= −C − (A − B)
= A − B + C

The first and second steps follow from the results from Sect. 4.3. The final
equation indicates the projective equivalence of the two expressions, since
multiplying by −1 does not effect the projective point. The result is some-
what surprising, since the scalar part vanishes. Hence, if one begins with the
triangle ABC and generates a lattice of congruent triangles by translating
the triangle along its sides, then the vertices of this lattice can be labeled by
products of odd numbers of the vertices A, B, and C (Fig. 6).
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Figure 7. Product of 3 euclidean lines

Exercise: The product of an odd number of euclidean points is a euclidean
point that is the alternating sum of the arguments.

5.2. Product of 3 Euclidean Lines

Let the 3 (normalized) lines be a, b, and c oriented cyclically. See Fig. 7.
These three lines determine a triangle. Then a ∧ b = sin (π − γ)C, etc.,
produces the interior angle γ and the (normalized) vertex C of the triangle.
Using the results obtained above for products of two lines:

abc = (ab)c

= (− cos γ)c + (sin γ)(Cc)

= (− cos γ)c + (sin γ)(C · c + C ∧ c)

= −((cos γ)c + (sin γ)c⊥
C) + sin γdCcI

The first step follows from the results from Sect. 4.2, the second and third
from Sect. 4.4. Let C be the intersection of c and C·c. In the last equation the
expression in parentheses is the grade-1 part of the product: b := 〈abc〉1. It
is, by inspection, minus the result of rotating c around C by γ. Parenthesizing
in a different order yields:

abc = a(bc) = −((cos α)a − (sin α)a⊥
A) + sin αdAaI

In this form, b is minus the result of rotating a around A by −α. Hence b
must be the joining line of A and C. See Fig. 7.

Since the grade-3 parts are equal, one obtains:

(sin γ)dCc = (sin α)dAa
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This illustrates an important technique for generating formulas in geometric
algebra. By applying the associative principle one can insert parentheses at
different positions:

(ab)c = abc = a(bc)

The left-hand side and right-hand side represent different paths in the algebra
to the same result, and these often produce non-trivial identities as this one.

Exercises 1) 〈abc〉1 = 1
2 (abc+ cba). 2) 1

2 (cab+ cba) = cos(γ)c. 3) Define

s := abc + acb + bac + bca + cab + cba

Show that s is a 1-vector, called the symmetric line of the triple {a,b, c}.
Fig. 7 illustrates these relations, and illustrates how the geometric product
in PGA produces compact and elegant expressions for familiar triangle con-
structions.

6. Distance and Angle Formulae

We collect here the various distance formulae encountered in the process of
discussing the 2-way vector products above. P and Q are normalized euclid-
ean points, U and V are normalized ideal points, and m and n are normalized
euclidean lines. Space limitations prevent further differentiation with respect
to signed versus unsigned distances. Consult Fig. 3.

1. Intersecting lines ∠(m,n) = cos−1 (m · n) = sin−1 (‖m ∧ n‖)
2. Parallel lines d(m,n) = ‖m ∧ n‖∞
3. Euclidean points d(P,Q) = ‖P ∨ Q‖ = ‖P × Q‖∞
4. Ideal points ∠(U,V) = cos−1(〈U,V〉∞)
5. Euclidean line, euclidean point d(m,P) = −d(P,m) = S(m ∧ P) =

m ∨ P
6. Euclidean line, ideal point ∠(m,U) = cos−1 (‖m · U‖∞)

Notice that a single expression in the geometric algebra produces several
correct variants which take into account whether one or the other or both of
the arguments are ideal. For example, ‖m∧n‖ produces the intersection point
of the two lines weighted by either the inverse of the sine of the angle (when
the lines intersect), or the euclidean distance between them (when they are
parallel). Similar phenomena reveal themselves also in the next section.

7. Sums and Differences of Points and of Lines

Based on the discussion of the geometric product above, it is instructive to
examine sums and differences of points, resp. lines. This deceptively simple
theme reveals important distinctions between euclidean and ideal points and
lines that play a central role throughout this algebra. It also highlights how
traditional vector algebra can be directly accessed within P(R∗

2,0,1) (as the
weighted ideal points). As before, all points and lines are assumed to be
normalized unless otherwise stated. Consult Fig. 8.
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Figure 8. Left : sums and differences of normalized euclid-
ean lines. Right : sums and differences involving ideal points
and normalized euclidean points. P + Q is the (non-
normalized) midpoint of segment PQ; P × Q is the ideal
point P − Q rotated 90◦ CCW

7.1. Sums and Differences of Lines

When m and n are both euclidean, and intersect in a euclidean point, then
m + n is their mid-line, the line through their common point m ∧ n that
bisects the angle between m and n. m−n also passes through their common
point, but bisects the supplementary angle between the two lines (to establish
the claim, consider the inner product of m ± n with each line separately). If
the two lines are parallel, then m + n is their mid-line: the line parallel to
both, halfway in between them. m−n is the ideal line, weighted by the signed
distance between the lines. If m is euclidean and n = λω is a weighted ideal
line, then m+n is a (normalized) euclidean line representing the translation
of the line m by a signed distance λ in the direction perpendicular to its own
direction (to be exact, in the direction opposite its polar point m⊥).

7.2. Sums and Differences of Points

When P and Q are both euclidean, P + Q is their mid-point. (P+Q
2 is the

normalized mid-point.) P−Q is an ideal point representing their vector differ-
ence. If P is normalized euclidean and V is ideal (not necessarily normalized),
then P±V is a (normalized) euclidean point representing the translation of
the point P by the free vector ±V. If both U and V are ideal (again, not
necessarily normalized), then U±V is the ideal point representing their vec-
tor sum (difference). Here we once again meet the R

2 vector space structure
on the ideal line induced by the ideal norm.

8. Isometries

Equipped with our detailed knowledge of 2-way products we now turn to
discuss how to implement euclidean isometries in the algebra. Recall that
the group of isometries of E2 is generated by reflections in euclidean lines.
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The product of an even number of reflections yields a direct (orientation-
preserving) isometry (either a rotation or a translation), while an odd number
produces an indirect (orientation-reversing) isometry. Also recall, that in the
euclidean plane, every isometry can be written using 1, 2, or 3 reflections.
We now show how to implement reflections using the geometric product, then
extend this result to products of 2 and 3 reflections.

8.1. Reflections

Suppose a and b are two normalized euclidean lines, and let Ra(b) represent
the reflection of b in a. Purely geometric considerations imply that Ra(b) is
a line x satisfying a · x = a · b and a ∧ x = b ∧ a.

Exercise: Show that x := aba fulfils both conditions, satisfies x �= b when
a �= b and hence is the desired reflection.

Notice that a reflection can then be seen as a special form of a 3-way
product in which the first and third term is the same line. We write the
reflection operator b → aba as a(b). We sometimes refer to this as a sandwich
operator since the a “sandwiches” the operand b on both sides.

Exercise: Show that a(P) is also a reflection applied to a euclidean point P
[Hint: write P = mn for orthogonal m and n].

8.2. Product of Two Reflections

Before we discuss the product of several reflections, we introduce some termi-
nology. The product of any number of euclidean lines is called a versor ; the
product of an even number is called a rotor. Versors and rotors are important
since sandwich operators based on them yield euclidean isometries.

The concatenation of two reflections in lines a and b can be written

b(a(x)) = b(axa)b = (ba)x(ab)

where the expression on the right is obtained by applying associativity to
the middle expression. Define r := ba, and an operator r(x) := rxr̃ which
represents the composition of these two reflections expressed using the rotor r.
Such a composition can take two forms, depending on the position of the lines.

When the lines intersect in a euclidean point, then r is a rotation around
that point by twice the angle between the lines. See Fig. 9. When the lines
are a parallel, r is a translation by twice the distance between the lines in
the direction perpendicular to the direction of the lines. The details can be
confirmed by applying the results above involving products of two lines in
Sect. 4.2 to write out r for these two cases and then by multiplying out the
resulting sandwich operators. The rotor for a rotation is called a rotator ; for
a translation, a translator.

Exercises: 1) Show that for a translator t, tx = xt̃ represents half the trans-
lation of the sandwich t(x). That is, translators also make good “open-faced”
sandwiches. 2) Discuss the rotator cos α + (sin α)P when α = π

2 .
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cos  (a b).-1

a b v

Figure 9. The reflection in the line a is implemented by
the sandwich aXa; the product of the reflection in line a
followed by reflection in (non-parallel) line b is a rotation
around their common point a ∧ b through 2 cos−1(a · b)

8.3. Product of 3 Reflections

First, recall that a glide reflection is an isometry formed by a reflection in a
euclidean line (the axis of the glide reflection) and a translation parallel to
this line (the order of execution does not matter, since the two operations
commute). We begin by showing that the sandwich operator generated by
the sum of a 1-vector and a 3-vector (line and pseudoscalar) corresponds to
a glide reflection along the line. Let r = 〈r〉1 + 〈r〉3 = m + λI where m is
normalized. Then for an arbitrary line x:

r(x) = rxr̃

= (m + λI)x(m − λI)

= mxm + mxλI − λIxm − λ2I2

= mxm + λmx⊥ − λx⊥m

= m(x) + λ(mx⊥ − x⊥m)

= m(x) + 2λ(m · x⊥)

= m(x) + 2λ(cos α)ω

The steps in the calculation follow from the discussion of the 2-way prod-
ucts above. The result consists of two terms. The first term is the reflection of
x in the line m; by Sect. 7 above, the second term represents the translation of
the reflected line perpendicular to its own direction by the distance 2λ cos(α).
The translation component reveals itself more clearly by considering r(X) for
an arbitrary point X. A calculation similar to the above yields:

r(X) = · · · = m(X) + 2λ(m ∧ X⊥)

= m(X) + 2λ(m ∧ ω)

= m(X) + 2λ(m∞)
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Figure 10. Glide reflection generated by r = m+λI applied
to line x

In this form it is clear that the translation component is 2λm∞: a translation
in the direction of the line m through a distance 2λ. Consult Fig. 10.

Applying this to the situation of 3 reflections: By Sect. 5.2 above, the
product of three lines has the form r = abc = b + sin (α)daAI, hence the
above results can be applied. Recall that b is the joining line of A and C,
the feet of the altitudes from A and C, resp. Refer to Fig. 7.

8.4. Exponential Form for Direct Isometries

It’s not necessary to write a rotator as the product of two lines. If one knows
the desired angle of rotation, one can generate the rotor directly from the
fixed point P of the rotation. We know that it is normalized so that P2 = −1.
Then, using a well-known technique of geometric algebra, one looks at the
exponential power series etP and shows, in analogy to the case of complex
number i2 = −1, that etP = cos t + (sin t)P. The right-hand side we already
met above as the product of two euclidean lines meeting in the point P
at the angle t. Setting t = α one obtains the rotor r from the previous
paragraphs. What’s more, letting t take values from 0 to α one obtains a
smooth interpolation between the identity map and the desired rotation.
Note that this sandwich operator rotates through the angle 2α; to obtain a
rotation of α around P, set r = e

αP
2 .

Exercise: Carry out the same analysis for an ideal point V to obtain an
exponential form for a translator that moves a distance d in the direction
perpendicular (CCW) to V [Answer: e

dV
2 = 1 + d

2V].

9. Orthogonal Projections and Rejections

When one has two geometric entities it is often useful to be able to express one
in terms of the other. Orthogonal projection is one method to obtain such a
decomposition. For example, in the familiar euclidean VGA R3,0,0, any vector
b can be decomposed with respect to a second vector a as b = αa + βa⊥

where α, β ∈ R and a⊥ · a = 0. These two terms are sometimes called the
projection, resp., rejection of b with respect to a. The algebra P(R∗

2,0,1) offers
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Figure 11. Orthogonal projections (l. to r.): line m onto
line n, line m onto point P, and point P onto line m

a variety of such decompositions which we now discuss, both for their utility
as well as to gain practice in using the geometric product introduced above.
We can project a line onto a line or a point; and a point onto a line or a point.
As before all points and lines are assumed to be normalized. Consult Fig. 11.

Each projection follows the same pattern: take a product of the form
XYY and apply associativity to obtain X(YY) = (XY)Y. Assuming nor-
malized arguments, YY = ±1, yielding X = ±(XY)Y. The right-hand side
typically consists of two terms representing an orthogonal decomposition of
the left-hand side. Note that, like the reflection in a line (in which the first
and last factors are identical), such projections can be considered as a special
form of a 3-way product, in which either the first two or the last two factors
are identical.

9.1. Orthogonal Projection of a Line Onto a Line

Assume both lines are euclidean. Multiply the equation mn = m ·n+m∧n
with n on the right and use n2 = 1 to obtain

m = (m · n)n + (m ∧ n)n

= (cos α)n + (sin α)Pn

= (cos α)n − (sin α)n⊥
P

Note that Pn = −n⊥
P since P ∧ n = 0. Thus one obtains a decomposition of

m as the linear combination of n and the perpendicular line n⊥
P through P.

See Fig. 11, left.

Exercise: If the lines are parallel one obtains m = n + dmnω.

9.2. Orthogonal Projection of a Line Onto a Point

Assume both point and line are euclidean. Multiply the equation mP =
m · P + m ∧ P with P on the right and use P2 = −1 to obtain

m = −(m · P)P − (m ∧ P)P

= −m⊥
PP − (dmPI)P

= m||
P − dmPω

In the third equation, m||
P is the line through P parallel to m, with the same

orientation. Thus one obtains a decomposition of m as the sum of a line
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through P parallel to m and a multiple of the ideal line (adding which, as
noted above in Sect. 7, translates euclidean lines parallel to themselves). See
Fig. 11, middle.

9.3. Orthogonal Projection of a Point Onto a Line

Assume both point and line are euclidean. Multiply the equation

mP = m · P + m ∧ P

on the left with m on the right and use m2 = 1 to obtain

P = m(m · P) + (m ∧ P)

= m(m⊥
P) + m(dmPI)

= Pm + dmPm⊥

= Pm + (P − Pm)

In the third equation, Pm is the point of m closest to m. The second term
of the third equation is a vector perpendicular to m whose length is dPm:
exactly the vector P − Pm. Thus one obtains a decomposition of P as the
point on m closest to P plus a vector perpendicular to m. See Fig. 11, right.

Exercise: Show that the orthogonal projection of a euclidean point P onto
another euclidean point Q yields P = Q + (P − Q).

10. Worked-Out Example of Euclidean Plane Geometry

We pose a problem in euclidean plane geometry on which to practice the
theory developed up to now:

Given a point A lying on an oriented line m, and a second point
A′ lying on a second oriented line m′, construct the unique direct
isometry mapping A to A′ and m to m′.

The problem is illustrated in Fig. 12 (left), including orientation on the
two lines. We assume the points and lines are normalized, and define to begin
with the intersection point of the lines and the joining line of the points:

M := m ∧ m′, a := A ∨ A′

The direct isometry we are seeking is either a rotation or a translation. In
the former case, the center of rotation has to be equidistant from A and A′,
that is, it lies on the perpendicular bisector of the segment AA′. To construct
this we first obtain the midpoint, and then, applying Sect. 4.4, construct the
perpendicular line through the midpoint:

Am := A + A′, r := Am · a (=Ama)

The condition that m maps to m′ implies that the center of rotation is the
same distance from m as from m′, that is, lies on the angle bisector of the
two lines. We choose the difference in order to respect the orientations of



1224 C. G. Gunn Adv. Appl. Clifford Algebras

Figure 12. Left to right: the problem setting, the solution,
interpolating the solution

the lines, as the reader can readily confirm. The desired center is then the
intersection C of r and c.

c := m − m′, C := r ∧ c

The final step is to construct the desired isometry. We can (for a rotation)
find two lines through C that meet at half the desired angle of rotation: the
line A∨C and the perpendicular bisector r satisfy this condition. Then form
the rotor of their product; the rotation is then the sandwich operator defined
by this rotor.

s := A ∨ C, g := rs, g(X) := gXg̃

One can also calculate the angle α between the two mirror lines from the
equation cos α = r · s, and use this to calculate g as an exponential: g = eαC.

Exercise: Show that the above construction also yields valid results when C
is ideal, and that the resulting isometry is a translation.

11. Directions for Further Study

For readers who are intrigued by the approach presented here, there are
several natural directions for further study. If one wants to stay within plane
geometry, there are many themes that could be cast into the PGA format.
For example, one could explore calculus and differentiation in the plane,
including point-wise and line-wise curves, point- and line-valued functions,
etc. For a general introduction to differentiation in geometric algebra see
[5], Ch. 8. This could lead to a treatment of 2D kinematics and rigid body
dynamics. Or, one could use the discussion of three-way products in Sect. 5 as
a starting point for formulating the theory of triangles and triangle centers in
this language. One practical direction would be to apply the theory sketched
here as a framework for 2D graphics programming.

Another natural direction is to move from 2 to 3 dimensions and explore
the euclidean PGA P(R∗

3,0,1) for euclidean 3-space E3. Available resources
include [7] (Ch. 7), [8], and [9]. While many results presented here generalize
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Figure 13. Using P(R∗
2,1,0) to do hyperbolic plane geometry

without surprises to three dimensions, one conceptual challenge presented in
moving to three dimensions is that the space of bivectors, crucial to kinemat-
ics and dynamics, is no longer exhausted by the simple bivectors (which in
this case represent lines in 3-space); the non-simple bivectors, known classi-
cally as linear line complexes, exhibit much more complex—and interesting—
behavior. An exhaustive treatment of the geometric product modeled on the
one presented in the first half of this article would accordingly yield a richer,
more complicated picture.

Practitioners of non-euclidean geometry may be interested to know that
the approach outlined here for the euclidean plane can be carried out anal-
ogously for the hyperbolic and elliptic planes using the algebras P(R∗

3,0,0),
resp., P(R∗

2,1,0).
2 Most of the features discussed above for the euclidean plane

have non-euclidean analogies which possess a similar elegance and succinct-
ness. An introduction to these metric planes is given in Ch. 6 of [7], from
which Fig. 13 is taken. This presents a metric-neutral approach, that is,
results are stated whenever possible without specifying the metric.

12. Evaluation and Conclusion

We have shown that traditional euclidean plane geometry can be formulated
in a compact and elegant form using P(R∗

2,0,1). We have successfully applied
the algebra to a variety of practical problems of plane geometry and have
encountered no obstacles to the program of extending it to all aspects of
euclidean plane geometry.

How do these results compare to existing approaches? Plane geometry
is usually handled with a mixture of analytic geometry, linear algebra, and

2 We favor using the dual construction here also (even though it is not strictly required)
since then reflections in lines are represented by sandwiches with 1-vectors. In the standard
approach, where 1-vectors are points, such sandwiches represent the less familiar, less
practical “point reflections”.
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vector algebra. The foregoing has established that P(R∗
2,0,1) offers a variety of

desirable “infrastructure” features which this mixed approach does not offer:

1. It is coordinate-free (for details see Appendix A).
2. Points and lines are equal citizens, rather than lines being defined in

terms of points.
3. Ideal elements are integrated organically, both in incidence (intersection

of parallels) and metric relations.
4. Join and meet operators are obtained from the Grassmann algebra.
5. Isometries are represented by versor sandwich operators that act uni-

formly on primitives of all grades. The rotors have an exponential rep-
resentation.

6. The geometric product provides a rich, interrelated family of formulas
for distance and angle integrating seamlessly both euclidean and ideal
elements.

The last point above reflects a novel feature of P(R∗
2,0,1) of special note:

euclidean and ideal elements are tightly interwoven in an organic whole. See
for example the discussion of the 2-way products in Sect. 4 and the collection
of formulas in Sect. 6. This tight integration is, to the best of our knowl-
edge, available nowhere else. We think it deserves to be better known and
understood. The discussion in Sect. A.4 below makes a modest start towards
a deeper understanding.

Implementing this algebra within modern programming languages
presents no significant challenges. The author has implemented it in Java,
JavaScript, and Mathematica (at different times, for different purposes) and
successfully applied the resulting toolkit to a variety of practical geometric
and graphical problems. The resulting infrastructure gains, in comparison to
traditional approaches, have been gratifying.

How does P(R∗
2,0,1) compare to the other two geometric algebras men-

tioned at the beginning of the article? [2] is a treatment of plane geometry
based on R2,0,0. While entirely appropriate as an introduction to GA at the
high school level, it makes extensive use of non-GA techniques to overcome
the limitations of R2,0,0, which unlike the euclidean plane contains a distin-
guished point (the origin), and can by itself model neither parallelism nor
translations. One of the leitmotifs of this article has been to show how R2,0,0

is embedded organically within P(R∗
2,0,1) as the ideal line ω, so all the fea-

tures of R2,0,0 can be accessed easily in the model presented here. We are
not aware of an analogous treatment of plane geometry in CGA to the one
presented here. [10] provides a general comparison of CGA and PGA for
euclidean geometry and establishes that for flat geometric primitives, such as
the domain of classical plane geometry treated in this article, PGA displays
advantages over CGA with regard to robustness, simplicity of representation,
and ease of learning.

To sum up: we have demonstrated that the model of plane euclidean
geometry provided by PGA is complete, compact, computable, and elegant.
Whether considered pedagogically, practically, or scientifically, we believe
PGA provides a viable alternative to traditional approaches to euclidean
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plane geometry. By helping to modernize the teaching of euclidean geome-
try, it could make an important contribution to the task mentioned at the
beginning of the article, of bringing the dramatic advances in 19th century
mathematics in geometry and algebra to a wider audience.

Appendix A. Coordinate-Free Description

We provide here a modern, coordinate-free description of the algebra instead
of the more traditional coordinate-based approach used above in Sects. 3.2
and 3.4.

A.1. Foundations

Let V be a real, three-dimensional vector space with dual space V ∗. We con-
struct a geometric algebra A based on V using the signature (2, 0, 1). We
describe it here algebraically, and postpone until later the geometric inter-
pretation. We begin by recalling some basic facts and definitions regarding
the underlying Grassmann algebra G based on V :

• G is a graded algebra consisting of 4 grades:
–

∧0(V ) is the one-dimensional subspace of scalars R1.
–

∧1(V ) can be identified with V .
–

∧2(V ) can be identified with V ∗.
–

∧3(V ) is a one-dimensional vector space of pseudoscalars RI. I is
defined more precisely below in Sect. A.2.2.

• An element of
∧k(V ) is called a k-vector.

• There is an anti-symmetric bilinear product ∧ (called the wedge or
Grassmann product) defined on G that mirrors the subspace structure
of weighted subspaces of V . For a ∈ ∧k(V ) and b ∈ ∧m(V ),

– a ∧ b = 0 ⇐⇒ a and b are linearly dependent.
– Otherwise, a ∧ b ∈ ∧k+m(V ) represents the weighted subspace

spanned by a and b.
• Let a ∈ ∧1(V ) and A ∈ ∧2(V ). We say a and A are incident ⇐⇒

a ∧ A = 0.
• For a vector subspace T ⊂ ∧k(V ) define the outer product null space

T⊥
∧ := {x ∈ ∧3−k(V ) | t ∧ x = 0 ∀ t ∈ T}.

• Notation: For a multi-vector M ∈ G, M =
∑

k〈M〉k where 〈M〉k is the
grade-k part of M.

A.2. Euclidean and Ideal Elements

The inner product of the geometric algebra can be represented by a symmetric
bilinear form B : V ⊗ V → R. The kernel of B is defined as:

N := {n ∈ V | B(n,x) = 0 ∀ x}
The signature of the inner product is (2, 0, 1). The 1 in the third position
gives the dimension of N . So, N is a one-dimensional vector sub-space of V .
As such, it is generated by an element ω, which we will specify more precisely
below in Sect. A.2.2. Elements of N are called ideal vectors. Vectors not in
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N are called euclidean (or proper). N⊥
∧ consists of bivectors incident with ω,

and is a two-dimensional subspace of
∧2(V ). An element of N⊥

∧ is said to be
an ideal bivector; all other bivectors are euclidean (or proper).

A.2.1. The Square of a 1-Vector; Normalized Euclidean Vectors. In a
geometric algebra, the geometric product is defined on 1-vectors by

ab = a · b + a ∧ b

where a ·b = B(a,b) and a∧b is the the exterior product of the underlying
Grassmann algebra. The geometric product m2 for a 1-vector m reduces to
m · m since the wedge product is antisymmetric. For m = ω, ω2 = ω · ω = 0
since ω ∈ N . For any euclidean vector m,

m2 = m · m = k ∈ R
+

We define the norm ‖m‖ :=
√
m2. Then mn :=

√
k

−1
m satisfies ‖mn‖ = 1;

such a vector is said to be normalized.

A.2.2. The Square of a 2-Vector. From the above, there are two sorts of
bivectors, ideal and euclidean. For ideal U, U = ω ∧ m for some euclidean
vector m. And, since ω ∈ N , ω ∧ m = ωm. Then U2 = −ω2m2 = 0. Using
the following exercise, it is easy to calculate that P2 = −1. Hence a bivector
is ideal ⇐⇒ its square is zero.

Exercise: For normalized euclidean P, one can find two orthonormal euclidean
1-vectors m and n such that P = mn.

A.2.3. Normalized Euclidean 2-Vectors. We could define a normalized
euclidean bivector to be a bivector satisfying P2 = −1. But we can do better,
as the following discussion shows. Let P be any euclidean 2-vector satisfying
P2 = −1. Recall the definition of the scaled magnitude function S in Sect.
3.2. We fix ω to be the unique element of N satisfying S(ω ∧ P) = 1, and
define I := ω ∧ P. We show that these definitions do not depend on P, and
that the value of S(ω ∧ P) can serve as a norm for bivectors.

Lemma 1. For euclidean bivector P and ideal bivector U, 〈PU〉0 = 0.

Proof. Choose m ∈ U⊥
∧ ∩ P⊥

∧ with ‖m‖ = 1.3 Then U = λmω for λ ∈ R
∗.

Write P = nm where n is normalized and orthogonal to m. Then

PU = (nm)(λmω)

= λn(m2)ω
= λnω

Here we have used associativity of the geometric product, and the fact that
m is normalized. Finally, since ω ∈ N , 〈nω〉0 = n · ω = 0. �

Lemma 2. Given euclidean bivectors P and Q, Q = λP + U for some λ ∈
R, λ �= 0 and U ∈ N⊥

∧ . Furthermore, Q2 = λ2P2.

3 Or define m = U ∨ P and normalize m.
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Proof. The first part follows by observing that N⊥
∧ ⊂ ∧2(V ) is a subspace of

co-dimension 1 in
∧2(V ), and Q,P /∈ N⊥

∧ . The second assertion follows by
observing:

Q2 = (λP + U)2

= λ2P2 + λ(PU + UP) + U2

= λ2P2 + 2λ〈PU〉0
= λ2P2

Here we have used the fact that the grade-0 part of the geometric product
PU is the symmetric part of the product, that U2 = 0 for ideal U, and the
previous lemma. �

Theorem 1. Given euclidean bivectors P and Q such that P2 = Q2, and
ω ∈ N . Then ω ∧ P = ±ω ∧ Q.

Proof. By Lemma 2, Q = λP + U for U ∈ N⊥
∧ . Since Q2 = P2, λ = ±1.

Wedging with ω yields ω ∧ Q = ±ω ∧ P + ω ∧ U = ±ω ∧ P. �

The preceding theorem allows us to obtain a stronger normalization than
the condition Q2 = −1. Define the norm of a bivector to be ‖Q‖ := S(ω∧Q).
We say that a euclidean bivector Q is normalized when ‖Q‖ = 1. In every
one-dimensional vector subspace of

∧2(V ), there are two solutions {Q,−Q}
to Q2 = −1. ‖Q‖ = 1 picks out exactly one of these solutions. The uniqueness
of this result simplifies many calculations.

A.2.4. Multiplication by the Pseudoscalar. Multiplication by the basis
pseudoscalar I is an important operation, sometimes called the polarity on
the metric quadric. It maps an element to its orthogonal complement with
respect to the inner product. This multiplication is important enough to merit
its own notation

Π(X) := X⊥ := IX

The result is called the polar of X. By the previous section, a euclidean
bivector Q is normalized ⇐⇒ I := ωQ. Then the polar of a normalized
euclidean point P is given by P⊥ = IP = −ω since P2 = −1.

X⊥ is sometimes called the inner product null space of X. Note in con-
trast that X⊥

∧ is the outer product null space.
The situation is a little more complicated for 1-vectors. Let m be a

normalized euclidean 1-vector. Let n be a 1-vector orthogonal to m. Then
the product nm is a normalized euclidean 2-vector, hence I = ωnm and
m⊥ := Im = ωn = U, where U is an ideal bivector.

Exercise: The kernel of Π, restricted to 1-vectors, is N , while the kernel of
Π, restricted to 2-vectors, is N⊥

∧ .
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A.3. Ideal Inner Product on Ideal Bivectors

We saw above that euclidean bivectors can be normalized, but an ideal bivec-
tor U satisfies U2 = 0 hence cannot be normalized in the same way. However,
there is a way to define an alternative norm—along with an associated inner
product—on the ideal bivectors. We define this ideal inner product and then
show how to derive the complete inner product structure on the euclidean
elements (of all grades) from this ideal inner product.

A.3.1. The Quotient Space V/ω. Define an equivalence relation on the set
of euclidean vectors:

m ≡ n ⇐⇒ ∃ c ∈ R such that m − n = c ω.

Let the equivalence class of m be denoted by [m]. Define a symmetric bilinear
form B̃ on the resulting quotient space V/ω by B̃([m], [n]) := B(m,n). This
is well-defined. For if m̃ and ñ are two other representatives, then m̃ = m+cω
and ñ = n + dω. B(m̃, ñ) = B(m + cω,n + dω) = B(m,n) since ω ∈ N .

A.3.2. An “Ideal” Inner Product on N⊥
∧ . Furthermore,

m ≡ n ⇐⇒ Π(m) = Π(n)

(⇒): If m ≡ n, then m = n+cω and Π(m) = Π(n)+cΠ(ω) = Π(n) since ω ∈
ker(Π). (⇐): If Π(m) = Π(n), then by linearity Π(m)−Π(n) = I(m−n) = 0.
This means m−n ∈ ker(Π). Hence, by the previous paragraph, m−n = cω

for c ∈ R. Thus Π̃ : V/ω → N⊥
∧ defined by Π̃([m]) := Π(m) is well-defined. In

fact we have shown that it is a bijection and hence has a well-defined inverse.
Use this inverse to transfer the inner product B̃([m], [n]) onto the ideal

bivectors via

〈U,W〉∞ := B̃(Π̃−1(U), Π̃−1(W))

It’s not hard to show that 〈, 〉∞ is the standard positive definite inner product
on N⊥

∧ (since we began with the signature (2, 0, 1)) . This induces a norm
on ideal bivectors by ‖U‖∞ :=

√〈U,U〉∞. It is always possible to choose a
representative for U so that ‖U‖∞ = 1.

A.4. Recreating the (2, 0, 1) Inner Product from the Ideal Inner Product

It’s tempting to view the ideal norm 〈, 〉∞ as something ad hoc added on to
the algebra P(R∗

2,0,1). However, the above discussion supports the contrary
interpretation that the ideal inner product 〈, 〉∞ on ideal bivectors is the
primary structure from which the inner product (2, 0, 1) on vectors is derived,
rather than vice-versa. For, let a and b be two euclidean vectors, and A :=
a∧ω and B := b∧ω be their wedge product with the ideal vector. Then define
a symmetric bilinear form B̂(a,b) := 〈A,B〉∞. From the above discussion it
is clear that B̂ is well-defined, and in fact, B̂ = B. So one can begin with
the ideal bivector subspace N⊥

∧ equipped with the signature (2, 0, 0) and
“push” it in this straightforward way onto the euclidean 1-vectors to obtain
the euclidean plane. Similar constructions work for any dimension.
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A.5. Interpretation with Respect to P(R∗
2,0,1)

The above treatment has been carried out for an abstract real vector space
V of dimension 3. To arrive at the algebra P(R∗

2,0,1) one must specify V ,
as outlined in Sect. 2 above, which leads to the choice V := (R3)∗, the
dual space of R3. In the resulting vector space geometric algebra R

∗
2,0,1, 1-

vectors represents oriented planes through the origin and 2-vectors represent
standard vectors. In the second step, the algebra has to be projectivized to
form P(R∗

2,0,1). Hence, 1-vectors transform to lines and 2-vectors become
points. In particular, ω represents a plane in (R3)∗, and when projectivized
represents a line, the ideal line of the euclidean plane. The ideal bivectors
are ideal points, incident with ω. Interpreting the contents of Sect. A.2.2 in
this light: the difference P−Q, for normalized euclidean points P and Q, is
an ideal point. This is reminiscent of how free vectors are defined to be the
difference of two euclidean points. In fact, ideal points are equivalent to free
vectors, an insight already made by Clifford in [3], so that the vector algebra
R2,0,0 is contained here as the ideal line with its ideal inner product.

The equivalence classes of V/ω, in the context of P(R∗
2,0,1), are families

of parallel lines, which share a common ideal point. Such a set of lines is
known as a line pencil in classical projective geometry; in this case the pencil
is centered on (or carried by) an ideal point. To see this: m ≡ n ⇐⇒
m − n = cω. The point U := m ∧ n satisfies U ∧ m = U ∧ n = 0. Hence
U∧ω = 0, which shows that U is ideal, as claimed. The metric polarity Π̃, in
this context, maps an equivalence class [m] to an ideal point perpendicular
to the ideal point U. It maps all euclidean points (2-vectors) to the ideal line.

Equipped with this coordinate-free foundation of the algebra, the reader
can now rejoin the article at Sect. 4.
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