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Abstract. We consider Dolbeault–Dirac operators on quantized irre-
ducible flag manifolds as defined by Krähmer and Tucker-Simmons.
We show that, in general, these operators do not satisfy a formula of
Parthasarathy–type. This is a consequence of two results that we prove
here: first that we always have quadratic commutation relations for the
relevant quantum root vectors, up to terms in the quantized Levi factor;
second that there are examples of quantum Clifford algebras where the
commutation relations are not of quadratic-constant type, unlike the
classical case.

1. Introduction

Dolbeault–Dirac operators on Kähler manifolds can be written, up to a scalar,
in the form D = ð + ð∗ ∈ U(g) ⊗ Cl. In the conventions we adopt, the
element ð ∈ U(g) ⊗ Cl can be identified with the adjoint of the Dolbeault
operator ∂̄. Here U(g) is the enveloping algebra of g and Cl is an appropriate
Clifford algebra. The class of Kähler manifolds contains the irreducible flag
manifolds. Dolbeault–Dirac operators on quantized irreducible flag manifolds
where originally defined in [12]. This definition was revisited and extended in
[13], where these operators are given in the form D = ð + ð∗ ∈ Uq(g) ⊗ Clq.
Now Uq(g) is the quantized enveloping algebra of g, while Clq is the quantum
Clifford algebra introduced in the cited paper. One of the main results there
is that ð2 = 0, as in the classical case.

This brings us to the third item in the title of this paper, the
Parthasarathy formula [17] (we recommend [10] for a textbook derivation).
This formula expresses the square of Dolbeault–Dirac operators in terms of
quadratic Casimirs, up to multiples of the identity. This readily allows us to
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compute the spectra of such operators in terms of the representation the-
ory of the corresponding Lie algebras. It is an interesting question whether a
formula of Parthasarathy–type also exists in the quantum setting. One impor-
tant application would be to define spectral triples on quantized irreducible
flag manifolds, which was the main motivation in [12]. Indeed, it would allow
us to check the compact resolvent condition for Dolbeault–Dirac operators,
which is an important requirement for a spectral triple [4].

Up to now, a quantum Parthasarathy formula is known to hold for pro-
jective spaces as a consequence of the results in [5], which generalize those ob-
tained for low-dimensional cases in [6,7]. We should point out that the setup
of the cited paper is different from the one we consider here. The connection
between the two approaches was later made in [15], where similar results are
shown to hold. It seems plausible that a Parthasarathy–type formula should
hold for quantized irreducible flag manifolds, of which projective spaces are
an example. This expectation is motivated by the results of Heckenberger
and Kolb in [8,9]: they show that these spaces admit a canonical q-analogue
of the de Rham complex, with the homogenous components having the same
dimensions as in the classical case. We stress that this is definitely not the
case for general quantum spaces.

One of the main results of this paper is that a Parthasarathy–type
formula does not hold for all quantized irreducible flag manifolds. In order
to state this result, we need to give a precise definition of what we mean by
such a formula. Recall that, for a Dolbeault–Dirac operator D, the classical
Parthasarathy formula can be expressed as the identity D2 ∼ C ⊗ 1. Here C
is the quadratic Casimir of g and ∼ denotes equality up to terms in the Levi
factor. We need to consider a weaker formulation of this result, since in this
form it does not even hold for the case of quantum projective spaces. Clearly
the formula should contain central elements of Uq(g), in order to make the
connection with representation theory. We are also allowed to neglect terms
in the quantized Levi factor Uq(l): indeed these act as bounded operators
on sections of the spinor bundle, hence they are not important for checking
compactness of the resolvent of D. The result then takes the following form.

Theorem 1. Let D be a Dolbeault–Dirac operator corresponding to a quantized
irreducible flag manifold. Then there exists a flag manifold such that we do
not have

D2 ∼
∑

i

Ci ⊗ Ti,

where the elements Ci ∈ Uq(g) are assumed to be central and Ti ∈ Clq. Here
the symbol ∼ denotes equality up to terms in the quantized Levi factor Uq(l).

The strategy of the proof is as follows. We begin by deriving the commu-
tation relations for the relevant quantum root vectors, namely those appear-
ing in the definition of D. These turn out to be quadratic for all quantized
irreducible flag manifolds, see Theorem 2. This result hinges on the fact that
the radical roots take a very special form in the irreducible case. Using this
result we obtain a general expression for D2. Next, we show that the assump-
tion D2 ∼ ∑

i Ci⊗Ti, with the elements Ci being central, implies that certain
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terms appearing in the expression for D2 should vanish. This in turn implies
that we should have certain quadratic commutation relations in the quantum
Clifford algebra. Therefore it suffices to find one example where such rela-
tions do not hold. The example that we consider is that of the Lagrangian
Grassmannian LG(2, 4). After going through the necessary computations, we
finally show in Proposition 9 that the relevant quadratic relations do not hold
in this case.

The paper is organized as follows. In Sect. 2 we give some background
and fix notations and conventions. In Sect. 3 we derive commutation rela-
tions for the quantum root vectors. In Sect. 4 we discuss the implications
of these relations for a quantum Parthasarathy formula. In Sect. 5 we ob-
tain the relations for the exterior algebras corresponding to the Lagrangian
Grassmannian. In Sect. 6 we derive explicit formulae for the quantum Clifford
algebra. Finally in Sect. 7 we show that we do not have quadratic relations in
this algebra. In Appendix we collect some formulae related to various possible
rescalings.

2. Notations and Conventions

In this section we fix some notation and briefly review some facts about
complex simple Lie algebras, parabolic subalgebras and quantized enveloping
algebras.

2.1. Parabolic Subalgebras

Let g be a finite-dimensional complex simple Lie algebra with a fixed Cartan
subalgebra h. We denote by Δ(g) the root system, by Δ+(g) the positive
roots and by Π = {α1, . . . , αr} the simple roots. Denote by aij the entries
of the Cartan matrix and by (·, ·) the usual invariant bilinear form on h∗. In
particular, in the simply-laced case we have (αi, αj) = aij . Let S ⊂ Π be a
subset of the simple roots. Then we set

Δ(l) = span(S) ∩ Δ(g), Δ(u+) = Δ+(g)\Δ+(l).

In terms of these roots we define

l = h ⊕
⊕

α∈Δ(l)

gα, u± =
⊕

α∈Δ(u+)

g±α, p = l ⊕ u+.

It follows that l and u± are Lie subalgebras of g. We call p the standard
parabolic subalgebra associated to S (and omit S from the notation). The
subalgebra l is reductive and is called the Levi factor of p, while u+ is a
nilpotent ideal of p called the nilradical. We refer to the roots of Δ(u+) as
the radical roots. We have the commutation relations [u+, u−] ⊂ l.

The adjoint action of p on g descends to an action on g/p. The de-
composition g = u− ⊕ p gives g/p ∼= u− as l-modules. We say that p is of
cominuscule type if g/p is a simple p-module. The following well-known result
readily allows us to classify all cominuscule parabolics.
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Table 1. Classification of cominuscole parabolics. The
black node corresponds to the simple root αt. If there is
more than one, then they are equivalent choices

Ar 1 2 k r − 1 r Gr(k, r)

Br 1 2 r − 2 r − 1 r Q2r−1

Cr 1 2 r − 2 r − 1 r LG(r, 2r)

Dr 1 2 r − 2

r − 1

r Q2r−2

Dr 1 2 r − 2

r − 1

r OG(r + 1, 2r + 2)

E6 1 2 3 4 5

6

OP2

E7 1 2 3 4 5 6

7

Gω(O
3,O6)

Proposition 1. A parabolic subalgebra p is cominuscule if and only if it cor-
responds to S = Π\{αt}, where the simple root αt appears with multiplicity
1 in the highest root of g.

Moreover, it is clear from this result that all radical roots contain αt

with multiplicity 1. The classification of cominuscole parabolics is reported
in Table 1, see for example [19].

2.2. Quantized Enveloping Algebras

We briefly review some facts about quantized enveloping algebras. General
references for this topic are the books [2,11,14]. With the previous conven-
tions for complex simple Lie algebras, let di = (αi, αi)/2. Let q ∈ C and
define qi = qdi . The quantized universal enveloping algebra Uq(g) is gener-
ated by the elements Ei, Fi, Ki, K−1

i , for 1 ≤ i ≤ r and with r the rank of
g, satisfying the relations

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi,

KiEjK
−1
i = q

aij

i Ej , KiFjK
−1
i = q

−aij

i Fj ,

EiFj − FjEi = δij
Ki − K−1

i

qi − q−1
i

,

plus the quantum analogue of the Serre relations. The Hopf algebra structure
is defined by

Δ(Ki) = Ki ⊗ Ki, Δ(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, Δ(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi,

S(Ki) = K−1
i , S(Ei) = −K−1

i Ei, S(Fi) = −FiKi, ε(Ki) = 1,

ε(Ei) = ε(Fi) = 0.

For q ∈ R, the compact real form of Uq(g) is defined by

K∗
i = Ki, E∗

i = KiFi, F ∗
i = EiK

−1
i .
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Let l be the Levi factor corresponding to a parabolic subalgebra of g defined
by S ⊂ Π. Then the quantized enveloping algebra of the Levi factor is defined
as

Uq(l) = {subalgebra of Uq(g) generated by K±1
i and Ej , Fj with j ∈ S}.

This definition of the quantized Levi factor appears for example in [18, Section
4].

2.3. Quantum Root Vectors

Fix a reduced decomposition w0 = si1 . . . siN
of the longest word of the

Weyl group of g. Here si is the reflection corresponding to αi. It is well
known that all the positive roots can be obtained as βk = si1 . . . sik−1(αik

)
for k = 1, . . . , N .

Now let Ti be the Lusztig automorphisms (see for example [11, Section
6.2]). The quantum root vectors are then defined by Eβk

= Ti1 . . . Tik−1(Eik
)

for k = 1, . . . , N . They depend on the choice of the reduced decomposition of
w0. Similarly the quantum root vectors corresponding to the negative roots
are defined by Fβk

= Ti1 . . . Tik−1(Fik
) for k = 1, . . . , N .

3. Commutation Relations

In this section we will discuss the commutation relations between the quan-
tum roots vectors Eξ and E∗

ξ′ , where ξ and ξ′ are radical roots coming from
some cominuscule parabolic subalgebra. The main result of this section is
Theorem 2, which shows that we have quadratic commutation relations, up
to terms in the quantized Levi factor.

3.1. Nilradical and Adjoint Action

It is well-known that the irreducible representations of Uq(g) essentially co-
incide with those of U(g), when q is not a root of unity (see for example [11,
Section 7.1]). Hence there exists a Uq(l)-module corresponding to the classi-
cal nilradical, which we denote by u+. Suppose furthermore that u+ comes
from a cominuscule parabolic subalgebra p. Then it follows from the results
of [20] that u+ can be identified with a certain subspace of Uq(g).

Let us briefly review this result. First of all, recall that Uq(g) acts on
itself by the adjoint action, which is defined by X � Y = X(1)Y S(X(2)),
where as usual we use Sweedler’s notation. Consider now the subspace of
Uq(g) spanned by the quantum root vectors {Eξ}ξ. These depend on the
choice of decomposition of the longest word of the Weyl group. As in [20,
Section 5.1] we assume that it has a certain natural factorization (this won’t
be very important in the following, so we omit the details). The result that we
need is part of [20, Main Theorem 5.6], although stated in a slightly different
language.

Proposition 2. (Zwicknagl) The vector space spanned by the quantum root
vectors {Eξ}ξ, together with the adjoint action, is isomorphic to u+ as a
Uq(l)-module.
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An immediate consequence is the following.

Corollary 1. Let ξ ∈ Δ(u+) and αk ∈ Δ(l). Then we have

Ek � Eξ = ck,ξEξ+αk
, Fk � Eξ = c′

k,ξEξ−αk
,

where ck,ξ = 0 if ξ + αk /∈ Δ(u+) and c′
k,ξ = 0 if ξ − αk /∈ Δ(u+).

In order to obtain commutation relations between Eξ and E∗
ξ′ , we shall

also need the action of Uq(l) on the latter elements. This easily follows from
the previous result.

Lemma 1. The vector space spanned by the elements {E∗
ξ }ξ is invariant under

the action of Uq(l). In particular we have Ek �E∗
ξ = −q−(αk,αk)(Fk �Eξ)∗ for

αk ∈ Δ(l).

Proof. This easily follows from the general identity X�Y ∗ = (S(X)∗�Y )∗ and
the fact that Uq(l) is closed under the antipode and the involution. Otherwise
one can proceed by direct computation. The explicit action follows from our
conventions for Uq(g). �

3.2. Commutation Relations

We now proceed to derive the basic case of our commutation relations. We
are only interested in obtaining these relations modulo terms in the quantized
Levi factor Uq(l). For this reason we introduce the following notation.

Notation 1. For X,Y ∈ Uq(g) we write X ∼ Y if X = Y +Z with Z ∈ Uq(l).

We denote by αt the unique simple radical root corresponding to a
cominuscule parabolic.

Lemma 2. Let ξ ∈ Δ(u+). We have the commutation relations

EtE
∗
ξ − q−(αt,ξ)E∗

ξ Et ∼ 0.

Proof. It is enough to prove that [Eξ, Ft] ∼ 0. Indeed, as we will show below,
we have the identity EtE

∗
ξ − q−(αt,ξ)E∗

ξ Et = q−(αt,ξ)[Eξ, Ft]∗Kt, hence the
claim follows by observing that Kt ∈ Uq(l) and Uq(l) is invariant under ∗. To
show this identity let us consider

[Eξ, Ft]∗Kt = (KtEξFt − KtFtEξ)∗ = (q(αt,ξ)EξKtFt − KtFtEξ)∗.

In the last step we have used the relation KtEξ = q(αt,ξ)EξKt. But then we
have

q−(αt,ξ)[Eξ, Ft]∗Kt = q−(αt,ξ)(q(αt,ξ)EξE
∗
t − E∗

t Eξ)∗ = EtE
∗
ξ − q−(αt,ξ)E∗

ξ Et.

Now we will show that [Eξ, Ft] ∼ 0. Write ξ =
∑r

i=1 ciαi. Then, using the
grading by the root lattice, we conclude that Eξ is a sum of monomials of the
form E

cσ(1)

σ(1) . . . E
cσ(r)

σ(r) , where σ denotes a permutation of {1, . . . , r}. Below we
will consider in detail only the term Ec1

1 . . . Ecr
r . Recall that for any radical
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root ξ the simple root αt appears with multiplicity one, that is ct = 1. Since
we have [Ei, Fj ] = 0 for i 
= j, it follows that

[Ec1
1 . . . Ecr

r , Ft] = Ec1
1 . . . E

ct−1
t−1 [Et, Ft]E

ct+1
t+1 . . . Ecr

r

= Ec1
1 . . . E

ct−1
t−1

Kt − K−1
t

qt − q−1
t

E
ct+1
t+1 . . . Ecr

r ∈ Uq(l).

The case of a general term E
cσ(1)

σ(1) . . . E
cσ(r)

σ(r) is completely analogous. �

We are now ready to prove the main result of this section.

Theorem 2. Let ξ, ξ′ ∈ Δ(u+). We have the commutation relations

EξE
∗
ξ′ − q−(ξ,ξ′)E∗

ξ′Eξ ∼
∑

η,η′
cη,η′
ξ,ξ′ E

∗
ηEη′ ,

where in the sum we have the condition ht(η′) < ht(ξ).

Proof. We will proceed by induction over the height of ξ. In the case ht(ξ) = 1
we have only one radical root, namely the simple root αt. Hence the result
follows from Lemma 2. We will now assume that the claim is true for all ξ
with ht(ξ) = n.

We know that any radical root of height n + 1 can be written in the
form ξ + αk, for some simple root αk with k 
= t. Our first step will be to
obtain the commutation relation for the elements Eξ+αk

and E∗
ξ′ from that

of the elements Eξ and E∗
ξ′ , using the adjoint action. It is convenient at this

point to introduce the q-commutator notation

[Eξ, E
∗
ξ′ ]q = EξE

∗
ξ′ − q−(ξ,ξ′)E∗

ξ′Eξ.

Acting by the element Ek on this expression we get

Ek � [Eξ, E
∗
ξ′ ]q = (Ek � Eξ)E∗

ξ′ + (Kk � Eξ)(Ek � E∗
ξ′)

− q−(ξ,ξ′)(Ek � E∗
ξ′)Eξ − q−(ξ,ξ′)(Kk � E∗

ξ′)(Ek � Eξ).

Using Kk � Eξ = q(ξ,αk)Eξ and Kk � E∗
ξ = q−(ξ,αk)E∗

ξ we rewrite this as

Ek � [Eξ, E
∗
ξ′ ]q = (Ek � Eξ)E∗

ξ′ − q−(ξ+αk,ξ′)E∗
ξ′(Ek � Eξ)

+ q(ξ,αk)Eξ(Ek � E∗
ξ′) − q−(ξ,ξ′)(Ek � E∗

ξ′)Eξ.

Then using the action of Ek as in Lemma 1 we obtain

Ek � [Eξ, E
∗
ξ′ ]q = ck,ξ(Eξ+αk

E∗
ξ′ − q−(ξ+αk,ξ′)E∗

ξ′Eξ+αk
)

− c′
k,ξ′q(ξ−αk,αk)(EξE

∗
ξ′−αk

− q−(ξ,ξ′+αk)E∗
ξ′−αk

Eξ).

We are assuming that ξ+αk ∈ Δ(u+), which guarantees that ck,ξ 
= 0. Hence
we can divide by this factor and arrive at the identity

[Eξ+αk
, E∗

ξ′ ]q = c−1
k,ξEk � [Eξ, E

∗
ξ′ ]q + c−1

k,ξc
′
k,ξ′q(ξ−αk,αk)

× (EξE
∗
ξ′−αk

− q−(ξ,ξ′+αk)E∗
ξ′−αk

Eξ).

We have finally expressed [Eξ+αk
, E∗

ξ′ ]q in terms of [Eξ, E
∗
ξ′ ]q, plus an ad-

ditional term. Notice that this second term does not have the form of a
q-commutator.
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To prove our claim we have to analyze these two terms. Let us start
with the first one. Since ξ has height n, we can use the induction hypothesis
and write

[Eξ, E
∗
ξ′ ]q ∼

∑

η,η′
cη,η′
ξ,ξ′ E

∗
ηEη′ ,

where we have the condition ht(η′) < ht(ξ). Then we compute

Ek � (E∗
ηEη′) = (Ek � E∗

η)Eη′ + (Kk � E∗
η)(Ek � Eη′).

The first summand is either zero or proportional to E∗
η−αk

Eη′ if η − αk ∈
Δ(u+). Similarly the second summand is either zero or proportional to
E∗

ηEη′+αk
if η′ + αk ∈ Δ(u+). As a result, we can write again an identity of

the form

Ek � [Eξ, E
∗
ξ′ ]q ∼

∑

η,η′
bη,η′
ξ,ξ′ E

∗
ηEη′ ,

but now we have the condition ht(η′) ≤ ht(ξ). Indeed, the sum on the right
hand side may contain the term E∗

ηEη′+αk
and we have the relation ht(η′ +

αk) = ht(η′) + 1.
Now let us consider the second term in our expression for [Eξ+αk

, E∗
ξ′ ]q.

As for the first one, we can use the induction hypothesis to write

EξE
∗
ξ′−αk

∼ q−(ξ,ξ′−αk)E∗
ξ′−αk

Eξ +
∑

η,η′
cη,η′
ξ,ξ′−αk

E∗
ηEη′ ,

with the condition ht(η′) < ht(ξ). It follows that

EξE
∗
ξ′−αk

− q−(ξ,ξ′+αk)E∗
ξ′−αk

Eξ ∼
(
q−(ξ,ξ′−αk) − q−(ξ,ξ′+αk)

)
E∗

ξ′−αk
Eξ

+
∑

η,η′
cη,η′
ξ,ξ′−αk

E∗
ηEη′ .

Notice that the term in parentheses does not vanish unless q = 1, in general.
Nevertheless, we can always rewrite this expression in the form

EξE
∗
ξ′−αk

− q−(ξ,ξ′+αk)E∗
ξ′−αk

Eξ ∼
∑

η,η′
b̃η,η′
ξ,ξ′−αk

E∗
ηEη′ ,

but now we have the condition ht(η′) ≤ ht(ξ). Indeed this sum contains the
term E∗

ξ′−αk
Eξ.

Finally, putting all these results together and relabeling our coefficients,
we get

[Eξ+αk
, E∗

ξ′ ]q ∼
∑

η,η′
cη,η′
ξ+αk,ξ′E

∗
ηEη′ ,

with the condition ht(η′) ≤ ht(ξ), that is ht(η′) < ht(ξ +αk). This concludes
the proof. �

Remark 1. It is shown in [16] that the commutation relations between the
elements Eξ and Fξ′ take a simpler form, at least for certain reduced decom-
positions. Namely we have [Eξ, Fξ′ ] ∼ 0, in perfect analogy with the classical
setting.
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Later on we will need the following variant of the above result.

Corollary 2. Let ξ, ξ′ ∈ Δ(u+). We have the commutation relations

S−1(Eξ′)∗S−1(Eξ) − q−(ξ,ξ′)S−1(Eξ)S−1(Eξ′)∗ ∼
∑

η,η′
cη′,η
ξ,ξ′ S

−1(Eη′)S−1(Eη)∗,

where in the sum we have the condition ht(η′) < ht(ξ).

Proof. If we apply the anti-homomorphism S−1 to Theorem 2 we obtain

S−1(E∗
ξ′)S−1(Eξ) − q−(ξ,ξ′)S−1(Eξ)S−1(E∗

ξ′) ∼
∑

η,η′
cη,η′
ξ,ξ′ S

−1(Eη′)S−1(E∗
η).

From the general property S−1 ◦∗ = ∗◦S it follows that S−1(E∗
ξ′) = S(Eξ′)∗.

Now for any element X ∈ Uq(g) we have the identity S2(X) = K2ρXK−1
2ρ ,

where ρ is the half-sum of the positive roots. Hence S2(Eξ′) = q(ξ′,2ρ)E′
ξ. We

conclude that

S−1(E∗
ξ′) = (S−1(S2(Eξ′)))∗ = q(ξ,2ρ)S−1(Eξ′)∗.

Upon relabeling the coefficients, we obtain the result. �

4. On the Parthasarathy Formula

In this section we discuss the implications of the commutation relations of
Theorem 2 for a quantum version of the Parthasarathy formula. We start
with a brief review of the classical case, from an appropriate perspective, and
then move to the quantum setting.

4.1. Dolbeault–Dirac operators

A pair (g, p), where g is a complex semisimple Lie algebra and p is a parabolic
Lie subalgebra, gives an infinitesimal description of the complex manifold
G/P . Here G is the (connected, simply-connected) Lie group with Lie algebra
g and P is the subgroup corresponding to p. These spaces are referred to
as generalized flag manifolds. Being complex manifolds, we have Dolbeault
operators acting on differential forms.

Since the focus of this paper is on quantum Dolbeault–Dirac opera-
tors, in this discussion of the classical setting we will adopt a point of view
which is well-suited for quantization. Following [13], we will define an ele-
ment ð ∈ U(g) ⊗ Cl, where U(g) is the enveloping algebra of g and Cl is the
(complex) Clifford algebra of u+ ⊕ u−. We will consider the Clifford algebra
as represented on the exterior algebra Λ(u+), the representation being given
in terms of exterior and interior multiplication. The operator ð to be defined
below turns out to coincide, once the appropriate identifications are made,
with the adjoint of the Dolbeault operator ∂̄ : Ω(0,k) → Ω(0,k+1), see the
discussion in [13, Section 7]. The adjoint is taken with respect to an invariant
Hermitian inner product on Λ(u+).

Let us see how this operator is defined. Recall that u+ and u− are dual
as l-modules, where l is the Levi factor. Pick a weight basis {vi}i ∈ u+ and let
{wi}i ∈ u− be the dual basis. We identify these bases with the root vectors
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{Eξi
}i ∈ g, corresponding to the radical roots. In this case the dual pairing

becomes the Killing form. Finally write γ−(w) for interior multiplication by
w ∈ u− on Λ(u+). With these preparations, we define

ð = −
∑

ξi∈Δ(u+)

Eξi
⊗ γ−(wi) ∈ U(g) ⊗ Cl.

It does not depend on the choice of bases, as its definition involves dual bases.
The minus sign is a matter of convention. Finally we define the DolbeaultDirac
operator as

D = ð + ð
∗ ∈ U(g) ⊗ Cl.

Here ∗ denotes the adjoint, which algebraically is implemented as a ∗-structure
on U(g) ⊗ Cl. More specifically, on the first factor it corresponds to the ∗-
structure on U(g) induced by the compact real form of g, while on the second
factor it comes from the choice of a Hermitian inner product on Λ(u+). It can
be seen that D acts, up to a scalar, as the Dolbeault-Dirac operator on G/Q
formed with respect to the canonical spinc structure (here Q is the same as
P with the choice of the opposite Borel subalgebra).

4.2. The Parthasarathy Formula

We will now discuss a simple way to compute the square of D on an irreducible
generalized flag manifold G/P (or G/Q, in our conventions).

Let {vi}i and {wi}i be as above, but furthermore we require that {vi}i

is orthonormal with respect to the invariant Hermitian inner product on u+.
Then it extends to an orthonormal basis of Λ(u+) and moreover the adjoint of
γ−(wi), the operator of interior multiplication by wi ∈ u−, is given by γ+(vi),
the operator of exterior multiplication by vi ∈ u+. With these conventions,
we can write the Dolbeault–Dirac operator as

D = ð + ð
∗ =

∑

i

Eξi
⊗ γ−(wi) +

∑

i

Fξi
⊗ γ+(vi).

We have ð2 = 0, as a consequence of ∂̄2 = 0. Then we obtain

D2 =
∑

i,j

Eξi
Fξj

⊗ γ−(wi)γ+(vj) +
∑

i,j

Fξi
Eξj

⊗ γ+(vi)γ−(wj).

For A,B ∈ U(g) we write A ∼ B if A = B + C for some C ∈ U(l). Recall
that in the irreducible case we have the commutation relation [u+, u−] ⊂ l.
Therefore [Eξi

, Fξj
] ∈ l, so that we can write Fξj

Eξi
∼ Eξi

Fξj
. Therefore

after relabeling we get

D2 ∼
∑

i,j

Eξi
Fξj

⊗ (γ−(wi)γ+(vj) + γ+(vj)γ−(wi)).

We have the following commutation relations between interior and exterior
multiplication

γ−(w)γ+(v) + γ+(v)γ−(w) = 〈w, v〉1, w ∈ u−, v ∈ u+.
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Since we are using dual bases we have 〈wi, vj〉 = δij . Hence

D2 ∼
∑

i

Eξi
Fξi

⊗ 1.

Finally using B(Eξi
, Fξi

) = 1, since we make the identification using dual
bases, we observe that C ∼ ∑

i Eξi
Fξi

, where C is the quadratic Casimir of g.
Therefore we conclude that D2 ∼ C ⊗1. We call this result the Parthasarathy
formula, although the full formula also includes the information about the
terms belonging to U(l) that we neglected. See [17] for the original reference
and [10] for a very readable textbook treatment.

4.3. The Quantum Setting

Let us now switch gears and move to the quantum setting. We will consider
the setup of [13], where Dolbeault–Dirac operators on quantized irreducible
flag manifolds are defined. We will start with the definition of symmetric
and exterior algebras according to [1]. Recall that, given two Uq(g)-modules
V and W , there exists a braiding R̂V W : V ⊗ W → W ⊗ V , which gives an
equivalence of representations. The quantum symmetric and exterior algebras
are then defined by

Sq(V ) = T (V )/〈ker(σV V + id)〉, Λq(V ) = T (V )/〈ker(σV V − id)〉.
Here ker(σV V ± id) coincides with the span of the eigenspaces of the braiding
R̂V V with negative (respectively positive) eigenvalues. While this definition
is general, it is only for certain modules that these graded algebras have the
same graded dimensions as in the classical case. This is indeed the case for
the modules in which we are interested.

Since the Uq(l)-modules u± are irreducible, there is a unique Uq(l)-
invariant pairing 〈·, ·〉 : u− ⊗ u+ → C, up to a scalar. It can be extended
to a pairing 〈·, ·〉k : Λk

q (u−) ⊗ Λk
q (u+) → C as in [13, Proposition 3.6].

The module u+ acts on Λq(u+) by left multiplication, denoted by γ+. We
also obtain an action of u− on Λq(u+) by dualizing right multiplication
on Λq(u−). We denote this action by γ−. By [13, Theorem 5.1] the map
Λq(u−)⊗Λq(u+) → EndC(Λq(u+)) is an equivariant isomorphism. Hence the
algebra EndC(Λq(u+)), together with its factorization in terms of γ− and γ+,
can be considered a quantum Clifford algebra.

Remark 2. This is the definition appearing in [13, Definition 5.2]. Neverthe-
less we argued in [15] that, in order to recover the relations of the classical
Clifford algebra, we have to choose appropriate scalars in the definition of
〈·, ·〉k : Λk

q (u−) ⊗ Λk
q (u+) → C. This small modification does not change the

main results of the cited paper.

Similarly to the classical case, we define the element

ð =
∑

i

S−1(Eξi
) ⊗ γ−(wi) ∈ Uq(g) ⊗ Clq.

Abstractly, ð can be seen as the Koszul differential
∑

i vi ⊗ wi ∈ Sq(u+)op ⊗
Λq(u−). This picture makes it apparent that ð2 = 0. The differential is then
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embedded into Uq(g) ⊗ Clq via S−1 ⊗ γ−. The antipode appears since we
embed the opposite algebra Sq(u+)op.

The Dolbeault–Dirac operator is then defined to be D = ð+ð∗, in perfect
analogy with the classical case. We will also adopt the following notation.

Notation 2. For ξi ∈ Δ(u+) we will write Ei = S−1(Eξi
).

4.4. Computation of D2

We now come to the computation of D2, with D a Dolbeault–Dirac operator
as above. In particular, we want to investigate whether this operator takes
a simple form, similar to that given by the Parthasarathy formula in the
classical case. Recall that classically we have D2 ∼ C ⊗ 1, where C is the
quadratic Casimir of g. In the quantum setting we do not expect to have such
a simple formula, hence we will look for a weaker form.

As we discussed in the introduction of the paper, we would like to obtain
an expression of the form

∑
i Ci ⊗ Ti for D2, where Ci ∈ Uq(g) are central

elements and Ti ∈ Clq are elements of the quantum Clifford algebra. This
would allow the computation of the spectrum of D from the representation
theory of Uq(g) and to check the compact resolvent condition.

Remark 3. We have shown in [15] that for Dolbeault–Dirac operators on
quantum projective spaces we obtain such a simple form. The result in this
case is that D2 ∼ C ⊗ T , where C ∈ Uq(g) is a central element and T is a
certain diagonal matrix.

The commutation relations obtained in Theorem 2 have some important
consequences for the computation of D2. These are summarized in the next
proposition.

Proposition 3. Let D be a Dolbeault–Dirac operator as above.
1. We have D2 ∼ ∑

i,j EiE∗
j ⊗ Tij, where the operators Tij ∈ Clq are given

by

Tij = γ−(wi)γ−(wj)∗ +
∑

k,l

bi,j
k,lγ−(wk)∗γ−(wl), bi,j

k,l ∈ C.

2. Suppose that D satisfies the relation D2 ∼ ∑
i Ci ⊗Ti, where Ci ∈ Uq(g)

are central elements and Ti ∈ Clq. Then we must have Tij = 0 for i 
= j.

Proof. 1. In [13, Proposition 5.5] it is proven that ð2 = 0. Therefore

D2 =
∑

i,j

EiE∗
j ⊗ γ−(wi)γ−(wj)∗ +

∑

i,j

E∗
j Ei ⊗ γ−(wj)∗γ−(wi).

We rewrite this expression using the commutation relations given in
Corollary 2, keeping in mind that Ei = S−1(Eξi

). Then we obtain

D2 ∼
∑

i,j

EiE∗
j ⊗ (γ−(wi)γ−(wj)∗ + q−(ξi,ξj)γ−(wj)∗γ−(wi))

+
∑

i,j,k,l

ck,l
i,jEkE∗

l ⊗ γ−(wj)∗γ−(wi).
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Upon relabeling the sum in the second term we can rewrite this as

D2 ∼
∑

i,j

EiE∗
j ⊗

⎛

⎝γ−(wi)γ−(wj)∗ +
∑

k,l

bi,j
k,lγ−(wk)∗γ−(wl)

⎞

⎠ .

Notice that the term q−(ξi,ξj)γ−(wj)∗γ−(wi) is included in the sum.
Then defining the term in parentheses as Tij we obtain the result.

2. Suppose that we have the relation D2 ∼ ∑
i Ci ⊗ Ti, where Ci ∈ Uq(g)

are central elements and Ti ∈ Clq. Comparing with the expression D2 ∼∑
i,j EiE∗

j ⊗ Tij obtained above, we conclude that the elements Ci are
linear combinations of the elements EiE∗

j .
Now recall that we have the relations KkEξ = q(αk,ξ)EξKk and KkE∗

ξ =
q−(αk,ξ)E∗

ξ Kk, with similar relations holding for Ei and E∗
i . Then the element

EiE∗
j does not commute with the generators {Kk}k unless i = j. It is easy to

see, using the PBW theorem for Uq(g), that the vectors {EiE∗
j }i,j are linearly

independent. Therefore such terms can not appear if we assume the relation
D2 ∼ ∑

i Ci ⊗ Ti. This is possible if and only if Tij = 0 for i 
= j. �

The upshot is that, in order to have a result of the form D2 ∼ ∑
i Ci⊗Ti,

we need to have some quadratic relations in the quantum Clifford algebra.
This is because we should have Tij = 0 for i 
= j and Tij are quadratic
expressions of γ−(wi) and their adjoints.

The rest of the paper will be devoted to proving the following claim: we
can find a quantum Clifford algebra coming from an irreducible flag manifold
such that we do not have these quadratic relations. Hence we do not get an
analogue of the Parthasarathy formula for the class of quantized irreducible
flag manifolds, as one might have hoped for.

5. Braiding and Exterior Algebras

From this section on we will focus on the case of the Lagrangian Grass-
mannian LG(2, 4). The aim of this section is to determine explicitely the
braiding corresponding to the nilradical u+, which corresponds to the ad-
joint module of Uq(sl(2)). This in turn will give the relations for the exterior
algebras Λq(u+) and Λq(u−). We will also compute their pairing.

5.1. Lagrangian Grassmannian

The Lagrangian Grassmannian LG(2, 4) is the irreducible flag manifold ob-
tained from C2 = sp(4) by removing the simple root α2, see Table 1. In our
conventions α1 is the short root and α2 is the long root. The positive roots
are

α1, α2, α1 + α2, 2α1 + α2.

Removing the long root α2 corresponds to S = Π\{α2} = {α1}. Then we
have

Δ(l) = {±α1}, Δ(u+) = {α2, α1 + α2, 2α1 + α2}.
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By definition we have l = g−α1 ⊕ h ⊕ gα1 , from which we obtain the iso-
morphism l ∼= gl(2) with semisimple part sl(2). We have that u+ is a 3-
dimensional simple sl(2)-module, hence it can be identified with the adjoint
representation.

Remark 4. There is an isomorphism of the quadric Q3 with LG(2, 4). Indeed
we have the low-dimensional isomorphism B2

∼= C2 and we are removing the
long root from both Dynkin diagrams. Hence it would be equivalent for our
purposes to consider this case.

5.2. The Braiding

We will now determine explicitely the braiding R̂ corresponding to the adjoint
representation of Uq(sl(2)), corresponding to the module u+. We denote by
α the simple root of sl(2) and by {K,E,F} the generators of Uq(sl(2)).

Notation 3. Denote by u+ the vector space spanned by v1, v0 and v−1. We
realize the adjoint representation of Uq(sl(2)) on this vector space by the
formulae

Kv1 = q2v1, Kv0 = v0, Kv−1 = q−2v−1,

Ev1 = 0, Ev0 = [2]1/2v1, Ev−1 = [2]1/2v0,

Fv1 = [2]1/2v0, Fv0 = [2]1/2v−1, Fv−1 = 0.

With these conventions v1 is the highest weight vector and v−1 is the lowest
weight vector.

Recall that the braiding R̂V,W : V ⊗W → W ⊗V is uniquely determined
by the relation

R̂V,W (v ⊗ w) = q(wt(v),wt(w))w ⊗ v +
∑

i

wi ⊗ vi,

where wt(wi) > wt(w) and wt(vi) < wt(v). Concretely we can start from the
highest weight vectors and obtain the other values using the action of the
quantized enveloping algebra.

Proposition 4. The braiding R̂ : u+ ⊗ u+ → u+ ⊗ u+, corresponding to the
adjoint representation of Uq(sl(2)), is given by the formulae

R̂(v1 ⊗ v1) = q2v1 ⊗ v1, R̂(v1 ⊗ v0) = v0 ⊗ v1 + (q2 − q−2)v1 ⊗ v0,

R̂(v1 ⊗ v−1) = q−2v−1 ⊗ v1 + q−1(q − q−1)(q2 − q−2)v1 ⊗ v−1

+(q2 − q−2)v0 ⊗ v0,

R̂(v0 ⊗ v1) = v1 ⊗ v0, R̂(v0 ⊗ v0) = v0 ⊗ v0 + q−2(q2 − q−2)v1 ⊗ v−1,

R̂(v0 ⊗ v−1) = v−1 ⊗ v0 + (q2 − q−2)v0 ⊗ v−1, R̂(v−1 ⊗ v1) = q−2v1 ⊗ v−1,

R̂(v−1 ⊗ v0) = v0 ⊗ v−1, R̂(v−1 ⊗ v−1) = q2v−1 ⊗ v−1.

Proof. We start with some general considerations. Let whw be the highest
weight vector of W . Then there is no wi such that wt(wi) > wt(whw). Hence
we obtain

R̂V,W (v ⊗ whw) = q(wt(v),wt(whw))whw ⊗ v.
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Similarly, let vlw be the lowest weight vector of V . Then there is no vi such
that wt(vi) < wt(vlw). Therefore we conclude that

R̂V,W (vlw ⊗ w) = q(wt(vlw),wt(w))w ⊗ vlw.

We apply the arguments above to the case of the adjoint representation. In
our notations v1 is the highest weight vector and v−1 is the lowest weight
vector. We obtain immediately

R̂(v1 ⊗ v1) = q2v1 ⊗ v1, R̂(v0 ⊗ v1) = v1 ⊗ v0,

R̂(v−1 ⊗ v1) = q−2v1 ⊗ v−1,

R̂(v−1 ⊗ v0) = v0 ⊗ v−1, R̂(v−1 ⊗ v−1) = q2v−1 ⊗ v−1.

Therefore it only remains to determine the values of

R̂(v1 ⊗ v0), R̂(v1 ⊗ v−1), R̂(v0 ⊗ v0), R̂(v0 ⊗ v−1).

To determine these we can proceed as follows. Since R̂ is a module map, we
have in particular that FR̂(v ⊗ w) = R̂F (v ⊗ w). Computing the LHS and
RHS separately, we obtain equations determining the missing elements.

Let us start by computing the action of F on the tensor product. Recall
that F (v ⊗ w) = Fv ⊗ K−1w + v ⊗ Fw. Then on the basis elements we get

F (v1 ⊗ v1) = [2]1/2(q−2v0 ⊗ v1 + v1 ⊗ v0),

F (v1 ⊗ v0) = [2]1/2(v0 ⊗ v0 + v1 ⊗ v−1),

F (v1 ⊗ v−1) = [2]1/2q2v0 ⊗ v−1,

F (v0 ⊗ v1) = [2]1/2(q−2v−1 ⊗ v1 + v0 ⊗ v0),

F (v0 ⊗ v0) = [2]1/2(v−1 ⊗ v0 + v0 ⊗ v−1),

F (v0 ⊗ v−1) = [2]1/2q2v−1 ⊗ v−1,

F (v−1 ⊗ v1) = [2]1/2v−1 ⊗ v0,

F (v−1 ⊗ v0) = [2]1/2v−1 ⊗ v−1, F (v−1 ⊗ v−1) = 0.

Case R̂(v1 ⊗ v0) We compute

R̂F (v1 ⊗ v1) = [2]1/2(q−2v1 ⊗ v0 + R̂(v1 ⊗ v0)),

F R̂(v1 ⊗ v1) = [2]1/2(v0 ⊗ v1 + q2v1 ⊗ v0).

From these we conclude that

R̂(v1 ⊗ v0) = v0 ⊗ v1 + (q2 − q−2)v1 ⊗ v0.

Case R̂(v0 ⊗ v0) We compute

R̂F (v0 ⊗ v1) = [2]1/2(q−4v1 ⊗ v−1 + R̂(v0 ⊗ v0)),
F R̂(v0 ⊗ v1) = [2]1/2(v0 ⊗ v0 + v1 ⊗ v−1).

From these we conclude that

R̂(v0 ⊗ v0) = v0 ⊗ v0 + q−2(q2 − q−2)v1 ⊗ v−1.

Case R̂(v0 ⊗ v−1) We compute

R̂F (v0 ⊗ v0) = [2]1/2(v0 ⊗ v−1 + R̂(v0 ⊗ v−1)).
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For the other term instead we get

FR̂(v0 ⊗ v0) = F (v0 ⊗ v0) + q−2(q2 − q−2)F (v1 ⊗ v−1)
= [2]1/2(v−1 ⊗ v0 + (q2 + 1 − q−2)v0 ⊗ v−1).

Therefore we obtain

R̂(v0 ⊗ v−1) = v−1 ⊗ v0 + (q2 − q−2)v0 ⊗ v−1.

Case R̂(v1 ⊗ v−1) This is the most complicated case. First we compute

R̂F (v1 ⊗ v0) = [2]1/2(R̂(v0 ⊗ v0) + R̂(v1 ⊗ v−1))

= [2]1/2(v0 ⊗ v0 + q−2(q2 − q−2)v1 ⊗ v−1 + R̂(v1 ⊗ v−1)).

On the other hand we have

FR̂(v1 ⊗ v0) = F (v0 ⊗ v1) + (q2 − q−2)F (v1 ⊗ v0)

= [2]1/2((q2 − q−2)v1 ⊗ v−1 + (q2 + 1 − q−2)v0 ⊗ v0

+q−2v−1 ⊗ v1).

From these equations we conclude that

R̂(v1 ⊗ v−1) = q−2v−1 ⊗ v1 + q−1(q − q−1)(q2 − q−2)v1 ⊗ v−1

+(q2 − q−2)v0 ⊗ v0.

�
Remark 5. It is straightforward, although tedious, to verify directly in terms
of the formulae given above that the braiding R̂ satisfies the Yang-Baxter
equation

R̂12R̂23R̂12 = R̂23R̂12R̂23,

where we use the standard leg-numbering notation.

5.3. The Algebra Λq(u+)

We will now use the braiding R̂ to determine the relations of the quantum
exterior algebra corresponding to u+. As we have recalled in a previous sec-
tion, by definition the quantum exterior algebra Λq(V ) is the quotient of the
tensor algebra T (V ) by the two-sided ideal generated by quantum symmetric
2-tensors. These are defined in terms of the braiding R̂V corresponding to
V . We denote by S2

qV (respectively Λ2
qV ) the span of the eigenvectors of R̂V

with positive (respectively negative) eigenvalues.
Therefore to proceed we will need the eigenvalues and eigenvectors of

the braiding R̂.

Lemma 3. The eigenvectors and eigenvalues of R̂ are given by

{v1 ⊗ v1, q2}, {v1 ⊗ v0 + q−2v0 ⊗ v1, q2}, {v1 ⊗ v0 − q2v0 ⊗ v1, −q−2},

{v1 ⊗ v−1 + q−4v−1 ⊗ v1 + q−1(q + q−1)v0 ⊗ v0, q2},

{v1 ⊗ v−1 − v−1 ⊗ v1 − q(q − q−1)v0 ⊗ v0, −q−2},

{v1 ⊗ v−1 + q2v−1 ⊗ v1 − q2v0 ⊗ v0, q−4},

{v0 ⊗ v−1 + q−2v−1 ⊗ v0, q2}, {v0 ⊗ v−1 − q2v−1 ⊗ v0, −q−2},

{v−1 ⊗ v−1, q2}.
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Proof. Follows from simple computations that we omit. �

Remark 6. We have three different eigenvalues, namely q2, −q−2 and q−4.
Hence R̂ does not satisfy a quadratic relation, unlike the fundamental repre-
sentation of Uq(sl(2)).

In particular the spaces of symmetric and antisymmetric 2-tensors are
given by

S2
qu+ = span{v1 ⊗ v1, v1 ⊗ v0 + q−2v0 ⊗ v1, v0 ⊗ v−1 + q−2v−1 ⊗ v0,

v−1 ⊗ v−1, v1 ⊗ v−1 + q2v−1 ⊗ v1 − q2v0 ⊗ v0,

v1 ⊗ v−1 + q−4v−1 ⊗ v1 + q−1(q + q−1)v0 ⊗ v0},

Λ2
qu+ = span{v1 ⊗ v0 − q2v0 ⊗ v1, v0 ⊗ v−1 − q2v−1 ⊗ v0,

v1 ⊗ v−1 − v−1 ⊗ v1 − q(q − q−1)v0 ⊗ v0}.

We are now ready to derive the relations for the exterior algebra.

Proposition 5. The algebra Λq(u+) has the relations

v1 ∧ v1 = 0, v0 ∧ v1 = −q2v1 ∧ v0, v0 ∧ v0 = −q−1(q − q−1)v1 ∧ v−1,

v−1 ∧ v1 = −v1 ∧ v−1, v−1 ∧ v0 = −q2v0 ∧ v−1, v−1 ∧ v−1 = 0.

Proof. By definition, the algebra Λq(u+) is the quotient of T (u+) by the ideal
generated by the subspace of eigenvectors of R̂ with positive eigenvalues, that
is S2

qu+. The relations follow straightforwardly from the description of S2
qu+,

except for two of them which we describe below. Taking the quotient gives
the relations

v1 ∧ v−1 + q2v−1 ∧ v1 − q2v0 ∧ v0 = 0,

v1 ∧ v−1 + q−4v−1 ∧ v1 + q−1(q + q−1)v0 ∧ v0 = 0.

Upon taking appropriate linear combinations, we see that these are equivalent
to

v1 ∧ v−1 = −v−1 ∧ v1, v0 ∧ v0 = −q−1(q − q−1)v1 ∧ v−1.

�

5.4. The Algebra Λq(u−)
In the classical case, the l-module u− can be identified with the dual of u+

with respect to the invariant Killing form. In the special case of u+ being
the adjoint module of sl(2), we also have the identification u+

∼= u−. This
also holds for the corresponding Uq(sl(2))-modules. We will derive an explicit
formula below.

We denote by {wi}i the basis of u− dual to the basis {vi}i of u+, that
is 〈wi, vj〉 = δij . Here the dual pairing 〈·, ·〉 : u− → u+ is assumed to be
invariant under to the action of Uq(l). This means that for any w ∈ u−,
v ∈ u+ and X ∈ Uq(l) we should have

〈X(1)w,X(2)v〉 = ε(X)〈w, v〉.
In this setting the dual pairing is unique up to a scalar factor.
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Lemma 4. We have an isomorphism ψ : u+ → u− of Uq(sl(2))-modules given
by

ψ(v1) = w−1, ψ(v0) = −w0, ψ(v−1) = q2w1.

Proof. Clearly we have an isomorphism of vector spaces, so we only have to
check equivariance. First of all, the condition 〈Kw,Kv〉 = 〈w, v〉 gives

Kw−1 = q2w−1, Kw0 = w0, Kw1 = q−2w1.

It is clear then that an equivariant map ψ : u+ → u− should have the form

ψ(v1) = αw−1, ψ(v0) = βw0, ψ(v−1) = γw1.

Now we want to determine the action of F on the dual basis. Invariance of the
dual pairing gives the condition 〈Fw,K−1v〉 = −〈w,Fv〉 for any w ∈ u− and
v ∈ u+. We will use the conventions of Notation 3. For w = w0 and v = v1 we
get 〈Fw0, q

−2v1〉 = −〈w0, [2]1/2v0〉. This implies Fw0 = −[2]1/2q2w1. Simi-
larly, for w = w−1 and v = v0 we get 〈Fw−1, v0〉 = −〈w−1, [2]1/2v−1〉, which
implies Fw−1 = −[2]1/2w0. Finally it is clear that Fw1 = 0. Summarizing,
the action of F on the basis {wi}i is given by

Fw−1 = −[2]1/2w0, Fw0 = −[2]1/2q2w1, Fw1 = 0.

Similarly one can obtain the action of E. Using these formulae we compute

Fψ(v1) = −[2]1/2αw0, Fψ(v0) = −[2]1/2q2βw1, Fψ(v−1) = 0.

On the other hand we have

ψ(Fv1) = [2]1/2βw0, ψ(Fv0) = [2]1/2γw1, ψ(Fv−1) = 0.

Enforcing equivariance of ψ, namely the condition Fψ = ψF , we find the
relations α = −β = q−2γ. One can show that the action of E gives the same
conditions. Finally we can fix the value α = 1 to obtain the expression in the
claim. �

Remark 7. This isomorphism can be extended to an isomorphism of tensor
powers of these modules. For example we obtain ψ : u+ ⊗ u+ → u− ⊗ u− by
setting ψ(w⊗w′) = ψ(w)⊗ψ(w′). The equivariance of this map follows from
that of ψ : u+ → u−.

It is now immediate to obtain the relations for Λq(u−).

Corollary 3. The algebra Λq(u−) has the relations

w−1 ∧ w−1 = 0, w0 ∧ w−1 = −q2w−1 ∧ w0,

w0 ∧ w0 = −q(q − q−1)w−1 ∧ w1,

w1 ∧ w−1 = −w−1 ∧ w1, w1 ∧ w0 = −q2w0 ∧ w1, w1 ∧ w1 = 0.

Proof. Follows from the relations of Λq(u+) and the isomorphism ψ. �
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5.5. Computation of Pairings

We are now in the position to compute the pairing between Λq(u−) and
Λq(u+). Let us briefly recall how this is defined. First of all there is a natural
pairing of the tensor algebras T (u−) and T (u+), which extends the dual
pairing of u− and u+. By definition the exterior algebra Λq(V ) is a quotient
of the tensor algebra T (V ). It is shown in [3, Proposition 3.2] that the map
π : Λk

qV → Λk
q (V ), obtained by composing the inclusion Λk

qV ↪→ V ⊗k with
the quotient V ⊗k � Λk

q (V ), is an equivariant isomorphism. Hence we can
define a pairing of exterior algebras by

〈w, v〉Λ = 〈π−1
− (w), π−1

+ (v)〉T , w ∈ Λk
q (u−), v ∈ Λk

q (u+).

Here the subscripts Λ and T refer to the exterior and the tensor algebra,
respectively.

To compute the pairing we need explicit expressions for the elements
π−1

− (w) and π−1
+ (v). In degrees 0 and 3 we have 1-dimensional vector spaces,

hence the pairing is just a non-zero number that we are always free to rescale.
In degree 1 the pairing is simply the dual pairing. Therefore we only have to
compute the pairing in degree 2.

Notation 4. We define a basis {V1, V0, V−1} of Λ2
qu+ by

V1 = v1 ⊗ v0 − q2v0 ⊗ v1, V−1 = v0 ⊗ v−1 − q2v−1 ⊗ v0,

V0 = v1 ⊗ v−1 − v−1 ⊗ v1 − q(q − q−1)v0 ⊗ v0.

Similarly we define a basis {W−1, W0, W1} of Λ2
qu− by

W−1 = w−1 ⊗ w0 − q2w0 ⊗ w−1, W1 = w0 ⊗ w1 − q2w1 ⊗ w0,

W0 = w−1 ⊗ w1 − w1 ⊗ w−1 − q−1(q − q−1)w0 ⊗ w0.

Notice that the vectors W−1, W0 and W1 correspond, up to scalars,
to the image of the vectors V1, V0 and V−1 under the isomorphism ψ from
Lemma 4.

Lemma 5. We have the identities

v1 ∧ v0 =
q−2

[2]q2
π+(V1), v1 ∧ v−1 =

1
[2]q2

π+(V0),

v0 ∧ v−1 =
q−2

[2]q2
π+(V−1),

w−1 ∧ w0 =
q−2

[2]q2
π−(W−1), w−1 ∧ w1 =

1
[2]q2

π−(W0),

w0 ∧ w1 =
q−2

[2]q2
π−(W1).

Here we use the notation [2]q2 = q2 + q−2.

Proof. This follows from the definition of the maps π±, together with simple
computations involving the commutation relations obtained in Proposition
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5 and Corollary 3. As an example, we show the identity for v1 ∧ v−1. We
compute

π+(V0) = v1 ∧ v−1 − v−1 ∧ v1 − q(q − q−1)v0 ∧ v0

= 2v1 ∧ v−1 + (q − q−1)2v1 ∧ v−1 = (q2 + q−2)v1 ∧ v−1.

The other relations are proven similarly. �

We are now in the position to compute the pairing between elements of
degree 2.

Proposition 6. The non-zero pairings between the basis {w0 ∧ w1, w−1 ∧
w1, w−1 ∧ w0} of Λ2

q(u−) and the basis {v1 ∧ v0, v1 ∧ v−1, v0 ∧ v−1} of
Λ2

q(u+) are given by

〈w0 ∧ w1, v1 ∧ v0〉 = 〈w−1 ∧ w0, v0 ∧ v−1〉 =
q−2

[2]q2
,

〈w−1 ∧ w1, v1 ∧ v−1〉 =
1

[2]q2
,

where we use the notation [2]q2 = q2 + q−2.

Proof. The pairing of exterior algebras is defined by 〈w, v〉Λ = 〈π−1
− (w), π−1

+

(v)〉T , where the pairing of tensor algebras is given by 〈w′ ⊗ w, v ⊗ v′〉T =
〈w, v〉〈w′, v′〉. Then the result follows from explicit computations using Lemma
5. Let us see one example. We have

〈w0 ∧ w1, v1 ∧ v0〉 = q−4

[2]2
q2

〈w0 ⊗ w1 − q2w1 ⊗ w0, v1 ⊗ v0 − q2v0 ⊗ v1〉
= q−4

[2]2
q2

(〈w0 ⊗ w1, v1 ⊗ v0〉 + q4〈w1 ⊗ w0, v0 ⊗ v1〉)
= q−4

[2]2
q2

(1 + q4) = q−2

[2]q2
.

The other cases are treated similarly. �

As mentioned previously, we are free to rescale the pairing in each de-
gree.

6. The Quantum Clifford Algebra

In this section we will derive an explicit expression for the operators γ−(w)
on Λq(u+). These operators, together with γ+(v), generate the quantum Clif-
ford algebra. For our discussion of Dolbeault–Dirac operators we are actually
interested in the adjoints γ−(w)∗. To define these we will classify all invariant
Hermitian inner products on the exterior algebra Λq(u+).

6.1. Bases of Exterior Algebras

Below we summarize our conventions for the bases of the exterior algebras
Λq(u+) and Λq(u−).
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Notation 5. We fix an ordered basis {v
(k)
i }i of Λq(u+) in each degree k. We

choose

{1}, {v1, v0, v−1}, {v1 ∧ v0, v1 ∧ v−1, v0 ∧ v−1}, {v1 ∧ v0 ∧ v−1}.

Similarly we fix an ordered basis {w
(k)
i }i of Λq(u−) in each degree k. We

choose

{1}, {w1, w0, w−1}, {w0 ∧ w1, w−1 ∧ w1, w−1 ∧ w0}, {w−1 ∧ w0 ∧ w1}.

Let us also summarize the results for the pairing 〈·, ·〉 : Λq(u−) ⊗
Λq(u+) → C. Elements of different degrees are orthogonal. It follows from
Proposition 6 that we have

〈1, 1〉 = 1, 〈wi, vj〉 = δij ,

〈w0 ∧ w1, v1 ∧ v0〉 = 〈w−1 ∧ w0, v0 ∧ v−1〉 = q−2,

〈w−1 ∧ w1, v1 ∧ v−1〉 = 1, 〈w−1 ∧ w0 ∧ w1, v1 ∧ v0 ∧ v−1〉 = 1.

Notice that we have rescaled the pairings appearing in Proposition 6. Also
notice the following orthogonality property: we have 〈w(k)

i , v
(k)
j 〉 = δijbi for

some numbers bi.

6.2. Action of u−
Let us recall the definition of the action γ− of the module u− on the exterior
algebra Λq(u+). It is defined as the dual of the right multiplication on u−,
that is

〈w, γ−(z)v〉k = 〈w ∧ z, v〉k+1, z ∈ u−, w ∈ Λk
q (u−), v ∈ Λk+1

q (u+).

Below we will compute the explicit action of u− on the ordered basis of
Λq(u+).

Proposition 7. The action of u− on the basis of Λq(u+) is as follows. In degree
0 we have γ−(wi)1 = 0, in degree 1 we have γ−(wi)vj = δij1, in degree 2 we
have

γ−(w1)v1 ∧ v0 = q−2v0, γ−(w1)v1 ∧ v−1 = v−1, γ−(w1)v0 ∧ v−1 = 0,

γ−(w0)v1 ∧ v0 = −v1, γ−(w0)v1 ∧ v−1 = −q(q − q−1)v0,

γ−(w0)v0 ∧ v−1 = q−2v−1,

γ−(w−1)v1 ∧ v0 = 0, γ−(w−1)v1 ∧ v−1 = −v1, γ−(w−1)v0 ∧ v−1 = −v0,

and finally in degree 3 we have

γ−(w1)v1 ∧ v0 ∧ v−1 = q2v0 ∧ v−1, γ−(w1)v1 ∧ v0 ∧ v−1 = −q2v1 ∧ v−1,

γ−(w1)v1 ∧ v0 ∧ v−1 = q4v1 ∧ v0.

Proof. We denote by {v
(k)
i }i and {w

(k)
i }i the bases of Λk

q (u+) and Λk
q (u−) as in

Definition 5. Recall that these are orthogonal in the sense that 〈w(k)
i , v

(k)
j 〉 =
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δijbi for some numbers bi. From this fact it easily follows that we can write
any vector v ∈ Λk

q (u+) as

v =
∑

i

〈w(k)
i , v〉

〈w(k)
i , v

(k)
i 〉

v
(k)
i .

Then, acting with γ−(wa) : Λk
q (u+) → Λk−1

q (u+) on a vector v ∈ Λk
q (u+), we

obtain

γ−(wa)v =
∑

i

〈w(k−1)
i , γ−(wa)v〉

〈w(k−1)
i , v

(k−1)
i 〉

v
(k−1)
i =

∑

i

〈w(k−1)
i ∧ wa, v〉

〈w(k−1)
i , v

(k−1)
i 〉

v
(k−1)
i .

From this expression we can easily compute the action of γ−(wa) on the basis
{v

(k)
i }i.

In degree 0 it is clear that γ−(wa)1 = 0. In degree 1 we find γ−(wi)vj =
δij1, since 〈wi, vj〉 = δij . The formulae in degrees 2 and 3 follow from simple
computations. Let us just show an example. Let v = v1 ∧ v0 ∧ v−1 ∈ Λ3

q(u+).
Then we have

γ−(w1)v =
〈w0 ∧ w1 ∧ w1, v〉
〈w0 ∧ w1, v1 ∧ v0〉v1 ∧ v0 +

〈w−1 ∧ w1 ∧ w1, v〉
〈w−1 ∧ w1, v1 ∧ v−1〉v1 ∧ v−1

+
〈w−1 ∧ w0 ∧ w1, v〉

〈w−1 ∧ w0, v0 ∧ v−1〉v0 ∧ v−1

=
〈w−1 ∧ w0 ∧ w1, v1 ∧ v0 ∧ v−1〉

〈w−1 ∧ w0, v0 ∧ v−1〉 v0 ∧ v−1 = q2v0 ∧ v−1.

The other cases follow similarly, upon using the appropriate commutation
relations. We remark that we have to use relations like w−1 ∧ w0 ∧ w0 = 0,
even though w0 ∧ w0 
= 0. �

6.3. Hermitian Inner Products and Adjoints

The next task is to determine an appropriate Hermitian inner product on
Λq(u+). It should be invariant with respect to the adjoint action of Uq(l)
considered as a ∗-algebra, with the ∗-structure coming from the compact real
form of Uq(g). More concretely this means that

(v,Xv′) = (X∗v, v′), v, v′ ∈ Λq(u+), X ∈ Uq(l).

In the next proposition we will determine all the Hermitian inner products on
Λq(u+) that satisfy this condition. The only freedom we will get is a rescaling
in each degree.

Proposition 8. Let (·, ·) : Λq(u+)⊗Λq(u+) → C be an invariant inner product
as above. Denote by M (k) the matrix of inner products in degree k, that is
M

(k)
ij = (v(k)

i , v
(k)
j ). Then, up to a rescaling in each degree, we have

M (0) = (1), M (1) =

⎛

⎝
1 0 0
0 1 0
0 0 q2

⎞

⎠ , M (2) =

⎛

⎝
1 0 0
0 q4 0
0 0 q2

⎞

⎠ , M (3) = (1).
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Proof. The statement in degrees 0 and 3 is obvious, since these are
1-dimensional vector spaces. Next we consider the case of degree 1. In general
the fact that the inner product is invariant under the generator K, namely
(v,Kv′) = (Kv, v′), implies that vectors of different weights are orthogonal.
To proceed we will use the explicit action given in Notation 3. On one hand
we have (v0, Fv1) = [2]1/2(v0, v0). On the other hand we have

(F ∗v0, v1) = (EK−1v0, v1) = [2]1/2(v1, v1).

Hence we must have (v0, v0) = (v1, v1). Similarly we have (v−1, Fv0) =
[2]1/2(v−1, v−1) and

(F ∗v−1, v0) = (EK−1v−1, v0) = [2]1/2q2(v0, v0).

Then we conclude that (v−1, v−1) = q2(v0, v0). We obtain the result by fixing
(v1, v1) = 1.

Finally we consider the case of degree 2. The spaces Λ1
qu+ and Λ2

qu+ are
isomorphic as Uq(sl(2))-modules, but we have to be careful with this iden-
tification. Recall that we have Λ2

qu+ = span{V1, V0, V−1}, where the vectors
are given explicitely in Notation 4. The action of the generator F on these
elements is given by

FV1 = [2]1/2V0, FV0 = [2]1/2V−1, FV−1 = 0.

This follows from easy computations. For example we have

FV1 = Fv1 ⊗ K−1v0 + v1 ⊗ Fv0 − q2Fv0 ⊗ K−1v1 − q2v0 ⊗ Fv1

= [2]1/2(v0 ⊗ v0 + v1 ⊗ v−1 − v−1 ⊗ v1 − q2v0 ⊗ v0) = [2]1/2V0.

Now recall the relations between the elements V1, V0, V−1 and the elements
v1∧v0, v1∧v−1, v0∧v−1 given by Lemma 5. Since the map π+ is equivariant,
we obtain

F (v1 ∧ v0) = [2]1/2q−2v1 ∧ v−1, F (v1 ∧ v−1) = [2]1/2q2v0 ∧ v−1,

F (v0 ∧ v−1) = 0.

Hence, making the identifications v1∧v0 ∼ v1, v1∧v−1 ∼ q2v0 and v0∧v−1 ∼
v−1, we obtain the result in degree 2 by appropriate rescaling of the result in
degree 1. �

Using the Hermitian inner product (·, ·) : Λq(u+) ⊗ Λq(u+) → C we
can define adjoints of operators on Λq(u+). In particular we are interested in
operators of degree −1, such as γ−(w). Given such an operator T , we will
consider the maps

T (k) : Λk
q (u+) → Λk−1

q (u+), T (k)∗ : Λk−1
q (u+) → Λk

q (u+).

The first map is the restriction of T to elements of degree k, while the second
map is defined by (T (k)v, v′)k−1 = (v, T (k)∗v′)k for all elements v ∈ Λk

q (u+)
and v′ ∈ Λk−1

q (u+). In terms of matrices, this means that our operators take
the form
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T =

⎛

⎜⎜⎝

0 T (1) 0 0
0 0 T (2) 0
0 0 0 T (3)

0 0 0 0

⎞

⎟⎟⎠ , T ∗ =

⎛

⎜⎜⎝

0 0 0 0
T (1)∗ 0 0 0

0 T (2)∗ 0 0
0 0 T (3)∗ 0

⎞

⎟⎟⎠ .

Lemma 6. Let M (k) be the matrix of inner products in degree k, that is the
matrix with entries M

(k)
ij = (v(k)

i , v
(k)
j )k. Let T be an operator as above. Then

we have

T (k)∗ = (M (k))−1T (k)†M (k−1),

where † denotes the usual conjugate transpose.

Proof. Follows from some elementary linear algebra. �

6.4. Matrix Expressions

Here we will record the matrix expressions for the operators γ−(wi) and their
adjoints. Let us adopt the following short-hand notation.

Notation 6. We will write Γ+ = γ−(w1), Γ0 = γ−(w0) and Γ− = γ−(w−1).

The matrices can be read off from Proposition 7. In degree 1 we have

Γ(1)
+ =

(
1 0 0

)
, Γ(1)

0 =
(
0 1 0

)
, Γ(1)

− =
(
0 0 1

)
.

In degree 2 we have

Γ(2)
+ =

⎛

⎝
0 0 0

q−2 0 0
0 1 0

⎞

⎠, Γ(2)
0 =

⎛

⎝
−1 0 0
0 −q(q − q−1) 0
0 0 q−2

⎞

⎠, Γ(2)
− =

⎛

⎝
0 −1 0
0 0 −1
0 0 0

⎞

⎠.

Finally in degree 3 we have

Γ(3)
+ =

(
0 0 q2

)T
, Γ(3)

0 =
(
0 −q2 0

)T
, Γ(3)

− =
(
q4 0 0

)T
.

We will also need the expressions for the adjoints, as in Lemma 6. In degree
0 we have

Γ(1)∗
+ =

(
1 0 0

)T
, Γ(1)∗

0 =
(
0 1 0

)T
, Γ(1)∗

− =
(
0 0 q−2

)T
.

In degree 1 we have

Γ(2)∗
+ =

⎛

⎝
0 q−2 0
0 0 q−2

0 0 0

⎞

⎠ , Γ(2)∗
0 =

⎛

⎝
−1 0 0
0 −q−3(q − q−1) 0
0 0 q−2

⎞

⎠ ,

Γ(2)∗
− =

⎛

⎝
0 0 0

−q−4 0 0
0 −q−2 0

⎞

⎠ .

Finally in degree 2 we have

Γ(3)∗
+ =

(
0 0 q4

)
, Γ(3)∗

0 =
(
0 −q6 0

)
, Γ(3)∗

− =
(
q4 0 0

)
.
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7. Commutation Relations for the Quantum Clifford Algebra

In this section we will discuss the commutation relations for the quantum
Clifford algebra End(Λq(u+)), where u+ corresponds the adjoint representa-
tion of Uq(sl(2)). More precisely, we will be concerned with relations between
the elements Γi = γ−(wi) and their adjoints. These are the elements appear-
ing in the definition of the Dolbeault–Dirac operator. The main result is the
fact that we do not have quadratic relations among these.

7.1. Equivariance of the Construction

Before getting into the commutation relations, let us pause for a moment to
stress the equivariance of the construction of the quantum Clifford algebra.
Some consequences of this property will be used in the proof below.

Recall that the quantum Clifford algebra is defined in terms of the
maps γ± : Λq(u±) → End(Λq(u+)). First of all we have that u± are Uq(l)-
modules, which implies that Λq(u±) are Uq(l)-modules, since the exterior
algebras are defined in terms of module maps. Then the quantum Clifford
algebra End(Λq(u+)) becomes a Uq(l)-module in a canonical way. We denote
all these actions by �. The map γ+ is clearly equivariant since it corresponds
to left multiplication on Λq(u+). On the other hand, the equivariance of the
map γ− follows from the fact that the pairing used in its definition is invariant.
Summarizing, we find that for all X ∈ Uq(l), v ∈ Λq(u+) and w ∈ Λq(u−) we
have the relations

X � γ+(v) = γ+(X � v), X � γ−(w) = γ−(X � w).

Next we consider the introduction of an invariant Hermitian inner product
on Λq(u+). This defines a ∗-structure on End(Λq(u+)). It is compatible with
the ∗-structure on Uq(l), coming from the compact real form of Uq(g). This
compatibility takes the form

(X � T )∗ = S(X)∗ � T ∗, X ∈ Uq(l), T ∈ End(Λq(u+)).

7.2. Absence of Quadratic Relations

We are now in the position to show that we do not have quadratic commu-
tation relations in the quantum Clifford algebra.

Proposition 9. Let Γi = γ−(wi) ∈ End(Λq(u+)), where u+ is the adjoint
module of Uq(sl(2)). Then for 0 < q < 1 we do not have relations of the
form

ΓiΓ∗
j =

∑

k,l

ckl
ijΓ

∗
kΓl, i 
= j.

Proof. Let us start with some general considerations for a generic Uq(l)-
module u−. Suppose we do have quadratic relations between the elements
Γi and Γ∗

j , with i 
= j as above. Then we can restrict the terms appearing
on the right-hand side by using the equivariance of the map γ−. This can
be seen as follows. Let βi be the weight of the basis vector wi ∈ u−. We
have Kk � wi = q(αk,βi)wi, hence by equivariance we obtain Kk � γ−(wi) =
q(αk,βi)γ−(wi). Similarly we find that Kk � γ−(wi)∗ = q−(αk,βi)γ−(wi)∗. This
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follows from the compatibility condition of the ∗-structure with the action,
rewritten in the form X � T ∗ = (S(X)∗ � T )∗, together with the fact that
S(Kk)∗ = K−1

k . Therefore the action on the product ΓiΓ∗
j is

Kk � (ΓiΓ∗
j ) = (Kk � γ−(wi))(Kk � γ−(wj)∗)

= q(αk,βi−βj)γ−(wi)γ−(wj)∗.

Since the elements {Γ∗
kΓl}k,l are linearly independent, we conclude that the

term Γ∗
kΓl can appear in the sum only when it matches the weight of the

term ΓiΓ∗
j .

We will now concentrate on the case of the adjoint representation. It
is enough to focus on the commutation relation between the elements Γ− =
γ−(w−1) and Γ∗

0 = γ−(w0)∗. Arguing as above, we find using equivariance
that this must take the form

Γ−Γ∗
0 = tΓ∗

0Γ− + t′Γ∗
+Γ0,

for some t and t′. In particular, when acting on elements of degree k it reads

Γ(k+1)
− Γ(k+1)∗

0 = tΓ(k)∗
0 Γ(k)

− + t′Γ(k)∗
+ Γ(k)

0 .

Taking into account the rescalings as in Appendix this becomes

ck+1

ck
Γ(k+1)

− Γ(k+1)∗
0 =

ck

ck−1
(tΓ(k)∗

0 Γ(k)
− + t′Γ(k)∗

+ Γ(k)
0 ). (7.1)

We will only consider the cases of degree 1 and 2, since this is enough to
prove that the above identity is not satisfied for q 
= 1. Let us start with
k = 1. Plugging in the explicit matrix expressions into (7.1) we obtain the
two equations

c2

c1
q−3(q − q−1) =

c1

c0
t′, −c2

c1
q−2 =

c1

c0
t. (7.2)

Clearly the coefficients {ci}i must be non-zero, otherwise we would have
degenerate pairings. Hence we can use these two equations to determine the
coefficients t and t′. Consider now the case k = 2. Proceeding as before we
obtain the equations

−c3

c2
q10 =

c2

c1
(t − t′q−1(q − q−1)), 0 =

c2

c1
q−4(tq(q − q−1) + t′).

By the argument above, the second equation is equivalent to tq(q−q−1)+t′ =
0. Plugging in the expressions for t and t′ obtained from (7.2), we see that
this equation has a solution only in the cases q = ±1. This concludes the
proof. �

The absence of these quadratic relations in the quantum Clifford al-
gebra, together with the results of Proposition 3, completes the proof of
Theorem 1.
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Appendix: Rescaling of Pairing and Inner Product

In this Appendix we will discuss the effects of rescaling the dual pairing
and the Hermitian inner product. As mentioned previously this is always
possible in each degree. The aim is to have the most general setting for
the discussion of commutation relations in the quantum Clifford algebra.
Although ultimately it won’t play any role, we can not exclude this a priori.

We will use as before the notation Γi = γ−(wi), where {wi}i is a basis
of u−. Recall also that we write Γ(k)

i and Γ(k+1)∗
i for the restriction of Γi and

Γ∗
i to elements of degree k.

Lemma 7. Under the rescalings 〈·, ·〉k → λk〈·, ·〉k and (·, ·)k → λ′
k(·, ·)k we

have

Γ(k)
i → λk

λk−1
Γ(k)

i , Γ(k+1)∗
i → λ̄k+1

λ̄k

λ′
k

λ′
k+1

Γ(k+1)∗
i .

Proof. Recall that Γ(k)
i : Λk

q (u+) → Λk−1
q (u+) is defined by

〈z,Γ(k)
i v〉k−1 = 〈z ∧ wi, v〉k, v ∈ Λk

q (u+), z ∈ Λk−1
q (u−).

Rescaling the dual pairing as 〈·, ·〉k → λk〈·, ·〉k we get

Γ(k)
i → λk

λk−1
Γ(k)

i .

Next we consider the case of Γ(k+1)∗
i : Λk

q (u+) → Λk+1
q (u+). It is defined by

(Γ(k+1)
i v, v′)k = (v,Γ(k+1)∗

i v′)k+1, v ∈ Λk+1
q (u+), v′ ∈ Λk

q (u+).

Rescaling the inner product as (·, ·)k → λ′
k(·, ·)k we get

Γ(k+1)∗
i → λ′

k

λ′
k+1

Γ(k+1)∗
i .

Finally we combine this with the rescaling of the dual pairing. Using the fact
that the inner product is conjugate-linear in the first variable we obtain

Γ(k+1)∗
i → λ̄k+1

λ̄k

λ′
k

λ′
k+1

Γ(k+1)∗
i .

�

In particular we need the combinations Γ(k+1)
i Γ(k+1)∗

j and Γ(k)∗
i Γ(k)

j ,
acting on elements of degree k, which appear in quadratic relations. Upon
rescaling we find

Γ(k+1)
i Γ(k+1)∗

j → |λk+1|2
|λk|2

λ′
k

λ′
k+1

Γ(k+1)
i Γ(k+1)∗

j

and similarly for the other one. Therefore if we define ck = |λk|2/λ′
k we

obtain

Γ(k+1)
i Γ(k+1)∗

j → ck+1

ck
Γ(k+1)

i Γ(k+1)∗
j , Γ(k)∗

i Γ(k)
j → ck

ck−1
Γ(k)∗

i Γ(k)
j .
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