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Abstract. This paper presents an implementation of the inverse kine-
matics (IK) solution for an industrial robot based on Conformal Geo-
metric Algebra where the correct signs of the joint angles are extracted
using the multivector coefficients and applying the forward kinemat-
ics. The solution presented is twice as fast as traditional IK algorithms
implemented using matrix algebra, and more than 45 times faster than
the IK provided by the robot manufacturer. The proposed solution has
been successfully demonstrated and benchmarked in a 3-DOF motion
compensation experiment. In addition to being efficient the presented
solution requires less matrix operations than for the traditional IK.

Keywords. Inverse kinematics, Industrial robotics, Conformal geometric
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1. Introduction

Existing offshore applications may include real-time dependent applications
such as motion compensated equipment. The real-time equipment has to be
functional and safely operated even during extreme weather conditions. This
is one of the key motivations why robust and reliable programmable logic
controllers (PLCs) currently dominate the offshore industry. In addition, off-
shore companies possess excellent knowledge and experience using PLCs to
control their equipment. PLCs are in general a robust, reliable and real-time
control platform to develop control strategies. However, a drawback using
the PLC is the computational performance (typically 10–20 ms cycle times),
and the low-level programming languages which do not provide functional-
ity to handle matrices directly for instance. PLCs in offshore applications
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are normally shared between different applications, not only kinematics cal-
culations. Since these PLCs often reach their computational limit, it is in
general important to use efficient code. As the offshore industry is currently
experiencing difficulties related to low oil prices, profitable oil production is
of high importance. To decrease oil production costs, a higher level of com-
plex automation is required. Fast, intuitive and robust algorithms are one
important step closer to achieving this goal.

In almost all automation engineering tasks including robotic equipment,
the problem of solving the inverse kinematics (IK) of complex geometries are
required. If the computational performance is limited, slow IK algorithms,
dynamics and path planning, will drastically reduce the overall performance
due to the time lag between each sampling interval. If the robot/equipment
to be controlled is placed inside a factory, this problem can be solved by
using powerful computers. On the other hand, if situated in harsh offshore
conditions the computational performance may be limited due to less pow-
erful control platforms like PLCs for instance. Current methods to solve the
IK problem are in general performed by analyzing the Forward Kinemat-
ics (FK) and then finding suitable relationships to solve the joint angles for
a given end-effector position and orientation [12]. IK methods like Pieper’s
solution [10] which was presented already in the late 1960s is not possible
to implement directly on a PLC without preprocessing the matrix equations
into ordinary equations. This is true since a matrix/vector library is normally
not covered by the IEC61131-3 standard. In [8] an example was presented
where matrix operations were preprocessed to obtain regular equations. The
equations generated from conformal geometric algebra (CGA) do not require
matrix operations in the first place, and could be implemented more or less
directly on standard PLCs.

William Kingdom Clifford first introduced geometric algebra in the
1870s. Clifford algebra was at this time building on the earlier work of Hamil-
ton and Grassmann. This mathematical theory has not frequently been used
in engineering applications, mostly due to the lack of tools to understand and
implement the algorithms. This issue has more or less been solved lately due
to newly developed visualization software like CluViz (see [9]). The devel-
oped code in CluViz can easily be compiled to optimized C++ code by using
Hildenbrand’s Gaalop C++ compiler [2,4,7]. The specific task in this paper
is aimed at solving the IK problem of an industrial robot using CGA as a
mathematical framework, there is some previously published work which are
presenting IK algorithms using CGA, please see [1,3,5,6,11]. The work pre-
sented in this paper differs from the previously published work with respect
to the following: The proposed CGA solution is compared with traditional
IK methods using DH-parameters and geometric decoupling, the signs/ori-
entations of the four first angles are obtained using the CGA multivector
components, the last two orientations are found by applying the FK. The
industrial robot (Comau Smart-5 NJ-110 3.0) considered in this paper has
two joint offsets (a1 and a3 in Fig. 1), which increase slightly the kinematic
complexity compared to previous research work. As a bottom line, this paper
presents a traditional IK algorithm and a CGA-based IK algorithm describing
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an industrial 6-DOF robot with two joint offsets. The two IK algorithms are
compared in terms of computational speed and intuitiveness of the algorithm
design process.

The main goal of the research presented in this paper is not to solve the
IK for very challenging machines, but rather prepare the basis for computa-
tionally efficient multiple-machine control and relative motion compensation
with limited computational resources (such as industrial PLCs). The current
paper considers only a single robot, but for the authors, it is the first step in
this direction.

2. Traditional IK Solution using DH-Parameters and
Geometric Decoupling

The traditional IK solution is divided in five sub-solutions: describing the
FK using DH-parameters, calculation of the wrist center point (see. Fig. 1),
geometric decoupling to solve the first three joint angles (θ1, θ2, θ3), apply
the FK to obtain the orientation matrix R3

6, and design a proper algorithm
to choose among the different set of angles (θ4, θ5, θ6) obtained from R3

6. An
overview of the robot, link lengths and coordinate frames is shown in Fig. 1.

2.1. Forward Kinematics

The DH convention is a 4 × 4 homogeneous transformation matrix Ai using
four parameters to describe a rigid motion from joint (i− 1) to joint (i). The
DH transformation matrix Ai is given by Eq. (2.1).

Ai =

⎡
⎢⎢⎣

cθi
−sθi

cαi
sθi

sαi
aicθi

sθi
cθi

cαi
−cθi

sαi
aisθi

0 sαi
cαi

di

0 0 0 1

⎤
⎥⎥⎦ (2.1)

where θi is the revolution angle of joint i, αi is the link twist, ai is the joint
offset, and di is the link length. In matrix Ai, ck and sk are abbreviations for
cosine and sine expressions, where the subscript k defines the respective angle
argument. These four DH-parameters are usually structured in a DH-table
as given in Table 1.

The DH table lays the foundation for understand and solve the IK
problem. By using Eq. (2.1) and the parameters described in Table 1, a
complete homogeneous transformation between coordinate frame 0 and the
end effector’s coordinate frame 6 is given by Eq. (2.2).

T 0
6 (θ1, . . . , θ6) =

6∏
i=1

Ai =

⎡
⎢⎢⎣

r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

⎤
⎥⎥⎦ (2.2)

where transformation matrix T 0
6 , consists of the rotation matrix R0

6’s scalar
components rij and the end effector’s Cartesian position given by x, y and z.
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Figure 1. Geometric overview of Comau Smart-5 NJ-110
3.0 industrial robot (θ2 = 90◦)

Table 1. Comau Smart-5 NJ-110 3.0 DH-table

Link i ai αi di θi

1 a1 90◦ d1 θ1
2 a2 0◦ 0 θ2
3 a3 90◦ 0 θ3
4 0 −90◦ d4 θ4
5 0 90◦ 0 θ5
6 0 0◦ d6 θ6 + 180◦

The rotation matrix R0
6’s components rij are described using the ZYZ-Euler

angle transformation which is given in Eq. (2.3).

R0
6 = Rz(φ)Ry(θ)Rz(ψ) =

⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ (2.3)
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The rotation angles φ, θ and ψ are given as successive rotations relative to
the current coordinate frame. The FK is now fully defined by the six input
parameters (x, y, z, φ, θ, ψ). The IK objective is to solve all the six joint angles
θi as a function of the six input parameters (x, y, z, φ, θ, ψ), as illustrated by
Eq. (2.4).

θi = fi(x, y, z, φ, θ, ψ) (2.4)

2.2. Wrist Center Calculation

The second step is to calculate the wrist center located in joint 4 and 5. The
Cartesian coordinates of the wrist center are given by Eq. (2.5).

⎡
⎣

x0
c

y0
c

z0c

⎤
⎦ =

⎡
⎣

x − d6r13
y − d6r23
z − d6r33

⎤
⎦ =

⎡
⎣

x
y
z

⎤
⎦ + R0

6

⎡
⎣

0
0

−d6

⎤
⎦ (2.5)

where x0
c , y

0
c and z0c are the wrist center position relative to the robot base

coordinate system shown in Fig. 1.

2.3. Geometric Decoupling

The first three joint angles are obtained by geometric decoupling since the
wrist center position is known from Eq. (2.5). The first joint angle θ1 is simply
found using Eq. (2.6).

θ1 = Atan2
(
y0

c , x0
c

)
(2.6)

Equation (2.6) introduces the Atan2 function which is commonly avail-
able in most programming languages. Further θ2 is calculated using Eqs.
(2.7–2.9).

D =
(x0

c)
2 + (y0

c )2 − a2
2 − r2

2a2r
(2.7)

α = Atan2
(
−

√
1 − D2,D

)
(2.8)

θ2 = Atan2
(
y1

c , x1
c

) − Atan2 (rsα, a2 + rcα) (2.9)

where x1
c and y1

c are the wrist center coordinates given relative to coordinate
frame 1, which is placed in the origin of revolution joint 2 (see Fig. 1). To
obtain the wrist center position relative to coordinate frame 1, the DH-matrix
A1 is used as shown in Eq. (2.10).

P 1
c = A−1

1 P 0
c (2.10)

where P 0
c and P 1

c are the homogeneous representations of the wrist center
coordinates relative to coordinate frames 0 and 1 respectively. The third joint
angle is obtained using Eq. (2.8) together with Eq. (2.11).

θ3 = α +
π

2
− Atan2 (a3, d4) (2.11)
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2.4. The Orientation Angles

Rotation matrix R0
3 is found by using joint angle variables θ1, θ2 and θ3. By

knowing R0
3 and R, the numerical version of the rotation matrix R3

6 can be
calculated using Eq. (2.12).

R3
6 = (R0

3)
T R0

6 (2.12)

The analytical solution of the rotation matrix R3
6 is found by multiplying

the DH matrices A4, A5 and A6. The resulting rotation matrix is given by
Eq. (2.13).

R3
6 =

⎡
⎣

s4s6 − c4c5c6 c6s4 + c4c5s6 c4s5
−c4s6 − c5c6s4 c5s4s6 − c4c6 s4s5

c6s5 −s5s6 c5

⎤
⎦ (2.13)

From this resulting matrix, the possibility arises to obtain analytical
expressions for joint angle θ4, θ5 and θ6. The first angle to be solved is θ5
using Eq. (2.14).

θ5 = cos−1(R3
6(3, 3)) (2.14)

Joint angle θ5 described in Eq. (2.14) is calculated using an inverse
cosine expression, meaning that the orientation of this angle has to be deter-
mined by an intelligent algorithm, or it has to be defined by the user to fit
the specific application. As soon as this angle has been determined, the last
two joint angles can be found using Eqs. (2.15) and (2.16).

θ4 = Atan2(sign(θ5)R3
6(2, 3), sign(θ5)R3

6(1, 3)) (2.15)
θ6 = Atan2(−sign(θ5)R3

6(3, 2), sign(θ5)R3
6(3, 1)) (2.16)

Now, all the six revolution angles have been found, the remaining step is
to write a suitable algorithm to choose among the two possible sets of angles
for the last three joint angles θ4, θ5, θ6.

3. Conformal Geometric Algebra Solution

In Sect. 2, the IK problem was solved using matrix algebra and trigonometric
decoupling. In this section, the CGA is used to solve the IK problem in an
intuitive and elegant way. One of the main benefits of using CGA is that
it presents a nice and elegant way of describing geometric entities such as
points, spheres, planes, circles, lines and point pairs. This gives the ability to
work with complex geometric problems in a fast and intuitive way, especially
if compared to traditional methods using loads of trigonometric expressions
and matrices.

3.1. Short CGA Background Theory

The nature of geometric algebra and CGA are that the algebraic operations
are non-commutative. In addition to being non-commutative, the algebra uses
three different products. The three different products are given in Table 2.

CGA is based upon the three Euclidean basis vectors {e1, e2, e3}, and
two additional basis vectors {e0, e∞}, where e0 represent the origin, and
e∞ represent the infinity dimension. Using this five basis vectors, the most
common geometric entities can be expressed using Table 3.
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Table 2. The products of geomtric algebra

Notation Meaning
AB Geometric Product
A ∧ B Outer Product
A · B Inner Product

Table 3. Conformal geometric entities

Entity IPNS Rep. OPNS Rep.
Point P = x + 1

2x
2e∞ + e0

Sphere S = P − 1
2r2e∞ S∗ = P1 ∧ P2 ∧ P3 ∧ P4

Plane π = n + de∞ π∗ = P1 ∧ P2 ∧ P3 ∧ e∞
Circle Z = S1 ∧ S2 Z∗ = P1 ∧ P2 ∧ P3

Line L = π1 ∧ π2 L∗ = P1 ∧ P2 ∧ e∞
Point pair PP = S1 ∧ S2 ∧ S3 P ∗

P = P1 ∧ P2

In Table 3, x is the Euclidean 3D representation of a point, r is the
sphere radius, n is the Euclidean normal vector of a plane, and d is the
normal distance between the origin and the plane hereby named π. In Table
3, all the geometric entities except from the point are represented using both
Inner Product Null Space (IPNS) and Outer Product Null Space (OPNS)
representations. For instance, if a plane π is constructed by taking the outer
product between three points and e∞, the resulting plane π is represented
using OPNS. To obtain the IPNS representation of the plane, the dual of
the plane has to be calculated. The dual of a multivector is found through
dividing the multivector D with the pseudoscalar I, as demonstrated in Eq.
(3.1).

D∗ =
D

I
=

D

e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0
(3.1)

where D∗ is the notation for the dual of multivector D. The fundamentals
of handling CGA expressions are now discussed briefly. In practical imple-
mentation and development of the code, it is highly recommended to use a
visualization software like CluViz created by Perwass see [9]. Another impor-
tant equation is needed to extract the desired point P of a point pair PP

which is defined in Table 3. This is carried out by introducing Eq. (3.2),
which extracts the desired point by changing the sign located before the root
expression.

P =
±√

P ∗
P · P ∗

P + P ∗
P

e∞ · P ∗
P

(3.2)

Now the point where CGA shows it strength and weakness are to be
discussed. In CGA, there is an elegant and universal way to calculate the
angle between two geometric entities such as planes and line segments. In
Eq. (3.3), the angle θ between two geometric objects o1 and o2 is defined.

θ = ∠(o1, o2) = cos−1

(
o∗
1 · o∗

2

|o∗
1||o∗

2|
)

(3.3)
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However, the weakness in real life engineering tasks is the lack of ori-
entation (sign) in the computed angle θ. To obtain a signed angle one might
consider applying signs depending on the position of related points in the
model. In some situations, the sign may also be obtained by studying the
resulting multivector coefficients. In this paper, the signs are extracted using
the multivector coefficients and two scalar components of the FK orientation
matrix R4

6. The solution is elaborated in the next section.
CGA also offers operations to describe rigid motions using rotors and

translators. These can be combined to a motor which is quite similar to
homogeneous transformations. A rotor in CGA is described using Eq. (3.4).

R = e− φ
2 L (3.4)

where L is a normalized bivector representing the desired rotation axis, and
φ is the rotation angle around bivector L. In order to perform translations,
a translator is introduced as described in Eq. (3.5).

T = e− 1
2 (t1e1+t2e2+t3e3)e∞ (3.5)

where {t1, t2, t3} are the translations in directions {e1, e2, e3} respectively.
Rotations and translations can be combined as a motor M given by Eq. (3.6)

M = RT (Rotation relative to a fixed coordinate frame) (3.6)
M = TR (Rotation relative to the current coordinate frame)

As we can see, there are clear similarities between rigid motions
described in CGA and homogeneous transformations in Euclidean space. In
order to actually apply a rigid motion to an object o, the motor M is applied
using Eq. (3.7).

oM = MoM̃ (3.7)

where M is the motor and M̃ is the reverse of the rotor. More information
about the reverse operation is given in [2].

3.2. Proposed CGA IK Solution

The proposed solution follows the technique used by Hildenbrand and Bayro
Corrochano with intersecting spheres and planes to obtain the fundamental
points in all revolution joints. The resulting joint angles are then found by
calculating the angle between the resulting line segments along the links.
However, in our solution also the sign of the four first joint angles are obtained
using the sign of the multivector elements.

First the point at origin P0, two points in the x- and z-directions, and
an assisting point PA is needed. The points are given by Eqs. (3.8–3.11).

P0 = e0 (3.8)

P0x = e1 +
1
2
e∞ + e0 (3.9)

P0z = e3 +
1
2
e∞ + e0 (3.10)

PA = d1e1 +
1
2
d21e∞ + e0 (3.11)
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To establish the end effector point P6 and wrist center point Pc, a motor
consisting of a rotor and translator are used. The rotor will describe the
orientation of the end effector, and the translator will define the position
relative to origin. The rotor, translator and the resulting motor are given in
Eqs. (3.12–3.14).

R06 = e−φ 1
2 (e1∧e2)e−θ 1

2 (e3∧e1)e−ψ 1
2 (e1∧e2) (3.12)

T06 = e− 1
2 (xe1+ye2+ze3)e∞ (3.13)

M06 = T06R06 (3.14)

The resulting motor M06 can then be applied to calculate both the end
effector point P6 and the wrist center point Pc. These two points are defined
in Eqs. (3.15–3.16).

P6 = M06P0M̃06 (3.15)

Pc = M06(−d6e3 +
1
2
d26e∞ + e0)M̃06 (3.16)

where d6 is the length of the last link connecting Pc and P0. So far the
required points P0, Pc and P6 are established. The next step is to establish
point P1 by intersecting two planes and one sphere. The first plane π0AC is
intersecting with point P0, PA and Pc, the plane is defined by Eq. (3.17).

π0AC = (P0 ∧ PA ∧ Pc ∧ e∞)∗ (3.17)

The second plane (e3 + d1e∞) has the normal in the z-direction and
intersects with point PA. The sphere S0 is placed in the origin and has the
radius equal to the absolute length between points P0 and P1. The sphere S0

is defined in Eq. (3.18).

S0 = P0 − 1
2

(
a2
1 + d21

)
e∞ (3.18)

The point pair PP1 is then found by intersecting the two planes and
the sphere located in origin. The point pair expression is then given by Eq.
(3.19).

PP1 = S0 ∧ π0AC ∧ (e3 + d1e∞) (3.19)
As only one of the points in point pair PP1 is of interest, the desired

point P1 is found by applying Eq. (3.2). To illustrate the process, Fig. 2 shows
the two planes (red and blue) and the sphere (green) located in the origin.

Figure 2 shows all the points located in all six revolution joints. So far,
the points P0, P1, Pc and P6 are defined. As the figure illustrates, also points
P2 and P3 are needed to completely describe the robot kinematic chain. These
remaining points are found using the same procedure as for point P1, the only
difference is that the remaining points are found by intersecting two spheres
and one plane instead.

Point pair PP2 is found by constructing a sphere in point P1 with radius
a2, and a sphere in point Pc with radius r. These two spheres are given by
Eqs. (3.20) and (3.21).

S1 = P1 − 1
2
a2
2e∞ (3.20)
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Figure 2. Illustration of the intersecting planes and sphere
used to construct point P1

Sr = Pc − 1
2
r2e∞ (3.21)

These two spheres are then intersected with the plane π0AC as given in
Eq. (3.22).

PP2 = S1 ∧ Sr ∧ π0AC (3.22)
The same procedure is then applied to establish point pair PP3 where

the two spheres with center in point P2 and Pc are defined by Eqs. (3.23)
and (3.24).

S2 = P2 − 1
2
a2
3e∞ (3.23)

Sc = Pc − 1
2
d24e∞ (3.24)

PP3 is found by again intersecting these two spheres with the plane
π0AC .

PP3 = S2 ∧ Sc ∧ π0AC (3.25)
Similar to point pair PP1, the desired point is chosen by applying Eq.

(3.2). All the fundamental points found in all six revolution joints are now
established. The remaining steps required to obtain the angles between the
rigid links require some additional line and plane segments. These additional
segments enable the use of Eq. (3.3) to calculate the respective angle between
them. The additional required line segments are given in Eqs. (3.26–3.30).

L01 = (P0 ∧ P1 ∧ e∞)∗ (3.26)
L12 = (P1 ∧ P2 ∧ e∞)∗ (3.27)
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L23 = (P2 ∧ P3 ∧ e∞)∗ (3.28)
L3C = (P3 ∧ PC ∧ e∞)∗ (3.29)
LC6 = (PC ∧ P6 ∧ e∞)∗ (3.30)

The additional necessary plane segments are given in Eqs. (3.31–3.34).

π3C6 = (P3 ∧ Pc ∧ P6 ∧ e∞)∗ (3.31)
π6xz = (P6 ∧ P6x ∧ P6z ∧ e∞)∗ (3.32)
π012 = (P0 ∧ P1 ∧ P2 ∧ e∞)∗ (3.33)
π123 = (P1 ∧ P2 ∧ P3 ∧ e∞)∗ (3.34)

All the required geometric entities are now defined, and all six rotational
angles should be obtained using Eq. (3.3). In real life engineering problems
like IK, the orientation/sign has to be considered as well. Obtaining these
signs using geometric computations like the inner product between a point
and a plane could have been considered to define the angle orientations/signs.
However, in this article, the sign of the multivector coefficients are observed
to define these signs. A multivector in CGA is defined as a linear combination
of the 32 basis elements {1, e1, e2, e3, e∞, e0, . . . , e1e2e3e∞e0}. An example of
a multivector u is given by Eq. (3.35)

u = u(3)e2 + u(5)e∞ + u(30)(e3 ∧ e1) (3.35)

where u(3) is the notation used to describe the scalar coefficient associated
with multivector basis element e2. The same apply for u(5) and u(30), these
are the scalar coefficients of basis elements e∞ and (e3 ∧ e1) respectively. In
general u(i) is the ith coefficient of multivector u in CluViz. By observing
the signs of the multivector coefficients u(i), the signs could be defined for
angles θ1 · · · θ4. These four signed angles are given by Eqs. (3.36–3.39).

θ1 = sign(P1(3))∠(e∗
2, π

∗
0AC) (3.36)

θ2 = sign(π∗
012(30))∠(L∗

01, L
∗
12) + tan−1 (d1/a1) (3.37)

θ3 = sign(π∗
123(30))∠(L∗

12, L
∗
23) (3.38)

θ4 = sign(−π3C6(5))∠(π∗
0AC , π∗

3C6) (3.39)

In Eq. (3.36), tan−1 (d1/a1) is added to match the angle offset in the tradi-
tional IK algorithm described in Sect. 2. To obtain the remaining two signed
angles θ5 and θ6, the FK has to be applied in order to find the rotation matrix
R4

6 since such information could not be found in the multivector components.
However, only R4

6(1, 3) and R4
6(3, 1) are required since these two matrix com-

ponents describe the sign of the last two angles. The analytical version of R4
6

is given by Eq. (3.40) to illustrate why only two of the matrix components
are required to describe the sign of joint angles 5 and 6.

R4
6 =

⎡
⎣

−c5c6 −c5s6 s5
−c6s5 s5s6 −c5
−s6 −c6 0

⎤
⎦ (3.40)
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To obtain the numerical values of rotation matrix R4
6, the four first

signed joint angles and R0
6 are used to obtain R4

6 using Eq. (3.41).

R4
6 = (R0

4)
T R0

6 (3.41)

Symbolic equations for R4
6(1, 3) and R4

6(3, 1) can be found analytically
to enable for low level PLC language implementation. The calculated values
of R4

6(1, 3) and R4
6(3, 1) can then be used to describe the signs of joint angle

θ5 and θ6 as shown in Eqs. (3.42) and (3.43).

θ5 = sign(R4
6(1, 3))∠(L∗

3C , L∗
C6) (3.42)

θ6 = sign(−R4
6(3, 1))∠(π∗

6xz, π
∗
3C6) (3.43)

The signs of the first four joint angles were found by analyzing the
multivector coefficients. The remaining two signs of joint 5 and 6 were found
by applying the FK scheme. The authors believe that it should be possible to
solve the correct signs for all six joint angles by a further study of the CGA
properties in general. The method presented in this paper is valid as long as
the wrist center point Pc is located at x0

c > 0. A separate solution for x0
c ≤ 0

would have to be developed, following the same principles as outlined in this
paper.

4. Gaalop Implementation and Benchmarking

In the previous Sects. 2 and 3, two different methods to solve the IK problem
were presented, where the latter one used CGA as a mathematical frame-
work. In this section, a benchmark between these two algorithms and the IK
algorithm supplied with the robot are presented. The benchmark program
written in C++ loops through the trajectory depicted in Fig. 3 for a high
number of iterations and then measures the elapsed time for each of the three
algorithms respectively.

The result of applying the benchmark is given in Table 4 where the
resulting average iteration time is given in microseconds.

Table 4 indicates the superior performance of the CGA-based IK algo-
rithm implemented using the Gaalop compiler. Since the algorithm supplied
with the Comau robot and the traditional IK algorithm can only be imple-
mented using serial computing, also the CGA-based algorithm is implemented
serially. However, the CGA-based algorithm can be parallelized, which again
most likely would speed up the algorithm even further. Another benefit of
using CGA is that matrix computations are avoided, which simplifies the
implementation of the final code on platforms like industrial PLCs.

The resulting CGA IK algorithm is implemented in an experimental
setup in the MotionLab located in the Mechatronics lab at the University of
Agder (see https://www.motion-lab.no). Here the algorithm has been bench-
marked and used to carry out a 3-DOF motion compensation, where the
robot base is moving in x, y and z-directions. A YouTube video of the 3-DOF
experimental motion compensation can be seen at https://www.youtube.
com/watch?v=WDpFD1c37T4. The experimental setup used in the YouTube

https://www.motion-lab.no
https://www.youtube.com/watch?v=WDpFD1c37T4
https://www.youtube.com/watch?v=WDpFD1c37T4
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Figure 3. Spiral trajectory used to benchmark the three IK algorithms

Table 4. Average iteration time for the three different IK
algorithms using an Intel i7-3555LE CPU

Comau IK Traditional IK CGA based IK
71.77μs 2.93μs 1.59μs

video is depicted in Fig. 4, and the number indicators are described in more
detail below the figure.

1. Industrial 6-DOF robot delivered by Comau Robotics (Smart-5 NJ-110
3.0).

2. Robot control cabinet featuring Comau’s C5GOpen functionality.
3. Bosch Rexroth Stewart Platform (E-Motion 8000) capable of lifting 8

tons and move with 6-DOF.
4. Industrial PC featuring Linux Real-Time and PowerLink communica-

tion with the control cabinet (2). This is where the IK algorithms are
implemented using optimized C++ code generated using Gaalop.

5. Handheld controller used to start up and execute commands to the
industrial robot.

6. Laptop featuring human machine interface (HMI) and 3D visualization
of the current robot pose.
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Figure 4. Lab setup at the norwegian MotionLab at the
University of Agder, Campus Grimstad.

5. Discussion and Conclusion

In this paper, two IK algorithms have been proposed. The first algorithm
uses traditional matrix operations to solve the joint angles as a function of
the input reference. The second algorithm is based on CGA, this algorithm
has been implemented on a real-life robot application using optimized C++
code, which was generated by using the Gaalop compiler. The performance
benchmark clearly states the benefits of using CGA over traditional matrix
algebra. The CGA implementation is almost twice as fast as the traditional
IK algorithm, and about 45 times faster than the IK algorithm supplied
with the industrial robot. Even though the results are already convincing,
the benchmarks in this paper have only been using serial processing. Since
the CGA algorithm allows for parallel processing, even higher performance
should be realistic. Another advantage of using CGA is that the resulting
C++ code does not require any matrix operations, which means that the
code has great potential to be easily implemented on an industrial PLC for
instance.
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Even if the results in this paper show that the resulting equations based
on CGA are faster than traditional IK methods using matrix algebra, it
should be noted that both the CGA and the traditional IK equations can be
further optimized. For example, the following code in Maple

with ( CodeGeneration ) :
x1:= . . . :
x2:= . . . :
C( [ ’ x1 ’=x1 , ’ x2 ’=x2 ] , opt imize ) :

will result in significantly faster code, both for CGA and traditional IK. In
this way, the requirement for a matrix library on a PLC can be removed for
the traditional IK.

Another benefit of using CGA in complex geometric tasks is the more
intuitive and elegant way of describing geometric entities compared to homo-
geneous transformations or quaternions. CGA may increase engineers ability
to solve tasks involving complex geometry much more efficiently than before,
both regarding computational performance and time spent in developing the
algorithms. This is especially true if the visualization software CluViz is used
to visualize and understand CGA.

On the downside, CGA does not offer an elegant way of describing the
orientation of the angles obtained. The signs of the first four joint angles were
found by analyzing the multivector coefficients. The remaining two signs of
joint 5 and 6 had to be described using the FK. The authors believe that
it should be possible to solve the correct signs for all six joint angles by a
further study of the mathematical tools provided by GCA in general. Further
work is therefore needed to describe the joint angle signs in an elegant, robust
and efficient way. Such further work may strengthen the relevance of CGA
in real-life engineering problems like IK.
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