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Abstract. In this paper we use the general two-sided quaternion Fourier
transform (QFT), and relate the classical convolution of quaternion-
valued signals over R2 with the Mustard convolution. A Mustard convo-
lution can be expressed in the spectral domain as the point wise prod-
uct of the QFTs of the factor functions. In full generality do we express
the classical convolution of quaternion signals in terms of finite linear
combinations of Mustard convolutions, and vice versa the Mustard con-
volution of quaternion signals in terms of finite linear combinations of
classical convolutions.
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1. Introduction

The two-sided quaternionic Fourier transformation (QFT) was introduced
in [9] for the analysis of 2D linear time-invariant partial-differential sys-
tems. Subsequently it has been further studied in [4] and applied in many
fields, including color image processing [26], edge detection and image filtering
[8,25], watermarking [1], pattern recognition [23,28], quaternionic multireso-
lution analysis (a generalization of discrete wavelets) [2], speech recognition
[3], noise removal from video images [21], and efficient and robust image
feature detection [11].
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This led to further theoretical investigations [13,14], where a special
split of quaternions was introduced, then called ±split. An interesting physi-
cal consequence was that this split resulted in a left and right traveling mul-
tivector wave packet analysis, when generalizing the QFT to a full spacetime
Fourier transform (SFT). Later [15,17,20] this split has been analyzed fur-
ther, interpreted geometrically and generalized to a freely steerable split of H
into two orthogonal 2D analysis planes, then appropriately named orthogonal
2D planes split (OPS).

A key strength of the classical complex Fourier transform is its easy
and fast application to filtering problems. The convolution of a signal with
its filter function becomes in the spectral domain a point wise product of
the respective Fourier transformations. This is not the case for the convo-
lution of two quaternion-valued signals over R

2, due to non-commutativity.
Yet it is possible to define from the point wise product of the QFTs of two
quaternion signals a new type of convolution, called Mustard convolution
[24]. This Mustard convolution can be expressed in terms of sums of classical
convolutions and vice versa. For the left-sided QFT this has recently been
carried out in [7]. We expand this work in full generality to the two-sided
QFT, making significant and efficient use of the two-sided orthogonal planes
split of quaternions.

This paper is organized as follows. Section 2 introduces quaternions
and reviews the general orthogonal two-dimensional planes split of quater-
nions. Section 3 introduces to the general form of the two-sided version of
the quaternion Fourier transform, and a related mixed exponential-sine trans-
form. Section 4 introduces the Mustard type convolutions based on the QFT
and contains the main results of this paper. That is the formulation of the
QFT of the classical convolution of quaternion signals in Theorem 4.1, and
specialized to the simpler case of only one transform axis in Corollary 4.2.
Moreover, the expression of the classical convolution of quaternion signals in
terms of the Mustard type convolutions is given in Theorem 4.3, for only one
transform axis in Corollary 4.5, and using only standard Mustard convolu-
tions fully general and explicit in Theorem 4.6. Finally the Mustard convo-
lution is fully expanded in terms of classical convolutions in Theorem 4.7.

2. Quaternions and Their Orthogonal Planes Split

2.1. Gauss, Rodrigues and Hamilton’s Quaternion Algebra

Gauss, Rodrigues and Hamilton’s four-dimensional (4D) quaternion algebra
H is defined over R with three imaginary units:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (2.1)

The explicit form of a quaternion q ∈ H is

q = qr + qii + qjj + qkk ∈ H, qr, qi, qj , qk ∈ R. (2.2)

We have the isomorphisms Cl(3, 0)+ ∼= Cl(0, 2) ∼= H, i.e. H is isomorphic
to the algebra of rotation operators in Cl(3, 0). The quaternion conjugate
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(equivalent to Clifford conjugation in Cl(3, 0)+ and Cl(0, 2)) is defined as

q = qr − qii − qjj − qkk, pq = q p, (2.3)

which leaves the scalar part qr unchanged. This leads to the norm of q ∈ H

|q| =
√

qq =
√

q2r + q2i + q2j + q2k, |pq| = |p| |q| . (2.4)

The part q = V(q) = V (q) = q − qr = 1
2 (q − q) = qii + qjj + qkk is called

a pure quaternion (part), or vector part. It squares to the negative number
−(q2i + q2j + q2k). Every unit quaternion ∈ S

3 (i.e. |q| = 1) can be written as:

q = qr + qii + qjj + qkk = qr +
√

q2i + q2j + q2k q̂

= cos α + q̂ sinα = exp(α q̂), (2.5)

where

cos α = qr, sin α =
√

q2i + q2j + q2k,

q̂ = q/ |q| = (qii + qjj + qkk)/
√

q2i + q2j + q2k, (2.6)

and
q̂2 = −1, q̂ ∈ S

2. (2.7)
The left and right inverse of a non-zero quaternion is

q−1 = q/ |q|2 = q/(qq). (2.8)

The scalar part of a quaternion is defined as

S(q) = qr =
1
2
(q + q). (2.9)

with symmetries ∀p, q ∈ H:

S(pq) = S(qp) = prqr − piqi − pjqj − pkqk, S(q) = S(q) , (2.10)

and linearity

S(αp + βq) = α S(p) + β S(q) = αpr + βqr, ∀p, q ∈ H, α, β ∈ R, (2.11)

The commutator of any two quaternions p, q ∈ H is a pure quaternion
(because S(pq) = S(qp)) defined as

[p, q] = pq − qp, (2.12)

For example,
[i, j] = ij − ji = 2k. (2.13)

The commutator [f, g] of any two pure unit quaternions f, g gives therefore
another pure quaternion (or zero for f = αg, α ∈ R). It appears in the
commutation of exponentials, e.g.,

eαfeβg = eβgeαf + [f, g] sin(α) sin(β), (2.14)

which (in the same form for general multivector square roots of −1) has been
used in [19] in order to derive a general convolution theorem for Clifford
Fourier transformations. We furthermore note the useful anticommutation
relationships

g[f, g] = −[f, g]g, f [f, g] = −[f, g]f, (2.15)
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and therefore

eαf [f, g] = [f, g]e−αf , eβg[f, g] = [f, g]e−βg. (2.16)

The scalar part and the quaternion conjugate allow the definition of the
R

4 inner product of two quaternions p, q as

p · q = S(pq) = prqr + piqi + pjqj + pkqk ∈ R. (2.17)

Accordingly we can interpret the four quaternion coefficients as coordinates
in R

4. In this interpretation selecting any two-dimensional plane subspace
and its orthogonal complement two-dimensional subspace allows to split four-
dimensional quaternions H into pairs of orthogonal two-dimensional planes
(compare Theorem 3.5 of [17]).

Definition 2.1. (Orthogonality of quaternions) Two quaternions p, q ∈ H are
orthogonal p ⊥ q, if and only if S(pq) = 0.

We will subsequently adopt the following notation for reflecting the
argument of functions ([7], Notation 2.4, page 583)

Notation 2.2. (Argument reflection) For a function h : R2 → H and a multi-
index φ = (φ1, φ2) with φ1, φ2 ∈ {0, 1} we set

hφ = h(φ1,φ2)(x) := h((−1)φ1x1, (−1)φ2x2). (2.18)

2.2. General Orthogonal Two-Dimensional Planes Split (OPS)

Assume in the following an arbitrary pair of pure unit quaternions f, g, f2 =
g2 = −1. The orthogonal 2D planes split (OPS) is then defined with respect
to any two pure unit quaternions f, g as

Definition 2.3. (General orthogonal 2D planes split [17]) Let f, g ∈ H be an
arbitrary pair of pure quaternions f, g, f2 = g2 = −1, including the cases
f = ±g. The general OPS is then defined with respect to the two pure unit
quaternions f, g as

q± =
1
2
(q ± fqg). (2.19)

Note that
fqg = q+ − q−, (2.20)

i.e. under the map f()g the q+ part is invariant, but the q− part changes
sign.

Both parts are two-dimensional, and span two completely orthogonal
planes. For f �= ±g the q+ plane is spanned by two orthogonal quaternions
{f − g, 1+ fg = −f(f − g)}, the q− plane is e.g. spanned by {f + g, 1− fg =
−f(f + g)}. For g = f a fully orthonormal four-dimensional basis of H is (R
acts as rotation operator (rotor))

{1, f, j′,k′} = R−1{1, i, j,k}R, R = i(i + f), (2.21)

and the two orthogonal two-dimensional planes basis:

q+-basis: {j′,k′ = fj′}, q−-basis: {1, f}. (2.22)

Note the notation for normed vectors in [22] {q1, q2, q3, q4} for the resulting
total orthonormal basis of H. In (2.22), the q− part commutes with f and is
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Figure 1. Geometric pictures of the involutions i( )j and
f()g as half turns

also known as simplex part of q, whereas the q+ anticommutes with f , and
−q+j′ is known as perplex part of q, see [10].

Lemma 2.4. (Orthogonality of two OPS planes [17]) Given any two quater-
nions q, p and applying the OPS with respect to any two pure unit quaternions
f, g we get zero for the scalar part of the mixed products

Sc(p+q−) = 0, Sc(p−q+) = 0. (2.23)

Next we mention the possibility to perform a split along any given set
of two (two-dimensional) analysis planes. It has been found, that any two-
dimensional plane in R

4 determines in an elementary way an OPS split and
vice versa, compare Theorem 3.5 of [17].

Let us turn to the geometric interpretation of the map f()g. It rotates
the q− plane by 180◦ around the q+ axis plane. This is in perfect agreement
with Coxeter’s notion of half-turn [6], see the right side of Fig. 1.

The following identities hold

eαfq±eβg = q±e(β∓α)g = e(α∓β)fq±. (2.24)

This leads to a straightforward geometric interpretation of the integrands of
the quaternion Fourier transform (QFT or OPS-QFT) with two pure quater-
nions f, g [17]. Particularly useful cases of (2.24) are (α, β) = (π/2, 0) and
(0, π/2):

fq± = ∓q±g, q±g = ∓fq±. (2.25)

We further note, that with respect to any pure unit quaternion f ∈ H,
f2 = −1, every quaternion A ∈ H can be similarly split into commuting and
anticommuting parts [18].

Lemma 2.5. (Commuting and anticommuting with pure unit quaternion [18])
Every quaternion A ∈ H has, with respect to any pure unit quaternion f ∈ H,
f2 = −1, i.e., f−1 = −f, the unique decomposition denoted by

A+f =
1
2
(A + f−1Af), A−f =

1
2
(A − f−1Af)

A = A+f + A−f , A+f f = fA+f , A−f f = −fA−f . (2.26)
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Note, that in Lemma 2.5 the commuting part A+f is also known as
simplex part of A, and the anticommuting part is up to a pure quaternion
factor the perplex part of A, see [10].

3. The General Two-Sided QFT

Definition 3.1. (QFT with respect to two pure unit quaternions f, g [17])
Let f, g ∈ H, f2 = g2 = −1, be any two pure unit quaternions. The quater-
nion Fourier transform (QFT) with respect to f, g is

F{h}(ω) = Ff,g{h}(ω) =
∫

R2

e−fx1ω1h(x) e−gx2ω2d2x, (3.1)

where h ∈ L1(R2,H), d2x = dx1dx2 and x,ω ∈ R
2.

The QFT can be inverted with

h(x) = F−1{h}(x) =
1

(2π)2

∫

R2

efx1ω1F{h}(ω) egx2ω2d2ω, (3.2)

with d2ω = dω1dω2.

Remark 3.2. Note, that the general pair of pure unit quaternions f, g in
Definition 3.1 includes orthogonal pairs f ⊥ g, non-orthogonal pairs f �⊥ g,
and parallel pairs f = ±g (only one transform axis). In the rest of this paper
the theorems will be valid for fully general pairs f, g, if not otherwise specified.
To avoid clutter we often omit the indication of the pair f, g as in F = Ff,g.

Linearity of the integral (3.1) allows us to use the OPS split h = h−+h+

Ff,g{h}(ω) = Ff,g{h−}(ω) + Ff,g{h+}(ω)

= Ff,g
− {h}(ω) + Ff,g

+ {h}(ω), (3.3)

since by its construction the operators of the QFT Ff,g, and of the OPS with
respect to f, g commute. From (2.24) follows

Theorem 3.3. (QFT of h± [17]) The QFT of the h± OPS split parts, with
respect to two linearly independent unit quaternions f, g, of a quaternion
module function h ∈ L1(R2,H) have the quasi-complex forms

Ff,g
± {h} = Ff,g{h±}

=
∫

R2

h±e−g(x2ω2∓x1ω1)d2x =
∫

R2

e−f(x1ω1∓x2ω2)h±d2x. (3.4)

We further define for later use the following two mixed exponential-sine
Fourier transforms

Ff,±s{h}(ω) =
∫

R2

e−fx1ω1h(x)(±1) sin(−x2ω2)d2x, (3.5)

F±s,g{h}(ω) =
∫

R2

(±1) sin(−x1ω1)h(x)e−gx2ω2d2x. (3.6)
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With the help of

sin(−x1ω1) =
f

2
(e−fx1ω1 − efx1ω1),

sin(−x2ω2) =
g

2
(e−gx2ω2 − egx2ω2), (3.7)

we can rewrite the above mixed exponential-sine Fourier transforms in terms
of the QFTs of Definition 3.1 as

Ff,±s{h} = ±
(
Ff,g

{
h

g

2

}
− Ff,−g

{
h

g

2

})
, (3.8)

F±s,g{h} = ±
(

Ff,g

{
f

2
h

}
− F−f,g

{
f

2
h

})
. (3.9)

We further note the following useful relationships using the argument reflec-
tion of Notation 2.2

F−f,g{h} = Ff,g{h(1,0)},

Ff,−g{h} = Ff,g{h(0,1)},

F−f,−g{h} = Ff,g{h(1,1)}, (3.10)

and similarly

Ff,−s{h} = Ff,s{h(0,1)}, F−s,g{h} = Fs,g{h(1,0)}. (3.11)

4. Convolution and Mustard Convolution

We define the convolution of two quaternion signals a, b ∈ L1(R2;H) as

(a � b)(x) =
∫

R2

a(y)b(x − y)d2y, (4.1)

provided that the integral exists.
The Mustard convolution [5,24] of two quaternion signals a, b ∈

L1(R2;H) is defined as

(a �M b)(x) = (Ff,g)−1(Ff,g{a}Ff,g{b}). (4.2)

provided that the integral exists. The Mustard convolution has the conceptual
and computational advantage to simply yield as spectrum in the QFT Fourier
domain the point wise product of the QFTs of the two signals, just as the
classical complex Fourier transform.

We additionally define a further type of exponential-sine Mustard con-
volution as

(a �Ms b)(x) = (Ff,g)−1(Ff,s{a}Fs,g{b}). (4.3)

In the following two Subsections we will first express the convolution
(4.1) in terms of the Mustard convolution (4.2) and vice versa.
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4.1. Expressing the Convolution in Terms of the Mustard Convolution

In [7] Theorem 4.1 on page 584 expresses the classical convolution of two
quaternion functions with the help of the general left-sided QFT as a sum of
40 Mustard convolutions. In our approach we use Theorem 5.12 on page 327 of
[19], which expresses the convolution of two Clifford signal functions (higher
dimensional generalizations of quaternion functions) in the Clifford Fourier
domain with the help of the general two-sided Clifford Fourier transform
(CFT), the latter is in turn a generalization of the QFT. We restate this
theorem here again, specialized for quaternion functions and the QFT of
Definition 3.1.

Theorem 4.1. (QFT of convolution)
Assuming a general pair of unit pure quaternions f, g, the general two-

sided QFT of the convolution (4.1) of two functions a, b ∈ L1(R2;H) can then
be expressed as

Ff,g{a � b}
Ff,g{a+f}Ff,g{b+g} + Ff,−g{a+f}Ff,g{b−g}

+Ff,g{a−f}F−f,g{b+g} + Ff,−g{a−f}F−f,g{b−g} (4.4)

+Ff,s{a+f}[f, g]Fs,g{b+g} + Ff,−s{a+f}[f, g]Fs,g{b−g}
+Ff,s{a−f}[f, g]F−s,g{b+g} + Ff,−s{a−f}[f, g]F−s,g{b−g}.

Note that due to the commutation properties of (3.5) and (3.6) we can
place the commutator [f, g] also inside the exponential-sine transform terms
as e.g. in

Ff,s{a+f}[f, g]Fs,g{b+g} = Ff,s{a+f [f, g]}Fs,g{b+g}
= Ff,s{a+f}Fs,g{[f, g]b+g}. (4.5)

For the special case of parallel unit pure quaternions f = ±g, the com-
mutator vanishes [f, g] = 0, and we get the following corollary. Note that in
this case b±g = b±f .

Corollary 4.2. (QFT of convolution with f ‖ g) Assuming a parallel pair of
unit pure quaternions f = ±g, the general two-sided QFT of the convolution
(4.1) of two functions a, b ∈ L1(R2;H) can be expressed as

Ff,g{a � b}
= Ff,g{a+f}Ff,g{b+f} + Ff,−g{a+f}Ff,g{b−f}

+Ff,g{a−f}F−f,g{b+f} + Ff,−g{a−f}F−f,g{b−f}. (4.6)

By applying the inverse QFT, we can now easily express the convolution
of two quaternion signals a � b, in terms of only eight Mustard convolutions
(4.2) and (4.3).

Theorem 4.3. (Convolution in terms of two types of Mustard convolution)
Assuming a general pair of unit pure quaternions f, g, the convolution (4.1)
of two quaternion functions a, b ∈ L1(R2;H) can be expressed in terms of four
Mustard convolutions (4.2) and four exponential-sine Mustard convolutions
(4.3) as
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a � b = a+f �M b+g + a
(0,1)
+f �M b−g + a−f �M b

(1,0)
+g + a

(0,1)
−f �M b

(1,0)
−g

+ a+f �Ms [f, g]b+g + a
(0,1)
+f �Ms [f, g]b−g

+ a−f �Ms [f, g]b(1,0)
+g + a

(0,1)
−f �Ms [f, g]b(1,0)

−g . (4.7)

Remark 4.4. We use the convention, that terms such as a+f �Ms [f, g]b+g,
should be understood with brackets a+f �Ms ([f, g]b+g), which are omitted
to avoid clutter.

Assuming f ‖ g, the standard Mustard convolution is sufficient to
express the classical convolution.

Corollary 4.5. (Convolution in terms of Mustard convolution with parallel
axis) Assuming a parallel pair of unit pure quaternions f ‖ g, the convolution
(4.1) of two quaternion functions a, b ∈ L1(R2;H) can be expressed in terms
of four Mustard convolutions (4.2) as

a � b = a+f �M b+f + a
(0,1)
+f �M b−f + a−f �M b

(1,0)
+f + a

(0,1)
−f �M b

(1,0)
−f (4.8)

Furthermore, applying (3.8) and (3.9), we can expand the terms in (4.4)
with exponential-sine transforms into sums of products of QFTs. For exam-
ple, the first term gives

Ff,s{a+f}[f, g]Fs,g{b+g}
=

1
4

(Ff,g{a+fg}−Ff,−g{a+fg}) (Ff,g{f [f, g]b+g}−F−f,g{f [f, g]b+g}
)

=
1
4

(
F{a+fg}F{f [f, g]b+g} − F{a+fg}F{f [f, g]b(1,0)

+g }

−F{a(0,1)
+f g}F{f [f, g]b+g} + F{a(0,1)

+f g}F{f [f, g]b(1,0)
+g }

)
. (4.9)

This now allows us in turn to express the quaternion signal convolution purely
in terms of standard Mustard convolutions

Theorem 4.6. (Convolution in terms of Mustard convolution) Assuming a
general pair of unit pure quaternions f, g, the convolution (4.1) of two quater-
nion functions a, b ∈ L1(R2;H) can be expressed in terms of twenty standard
Mustard convolutions (4.2) as

a � b = a+f �M b+g + a
(0,1)
+f �M b−g + a−f �M b

(1,0)
+g + a

(0,1)
−f �M b

(1,0)
−g (4.10)

+ 1
4 ( a+fg �M fcb+g − a+fg �M fcb

(1,0)
+g − a

(0,1)
+f g �M fcb+g

+ a
(0,1)
+f g �M fcb

(1,0)
+g + a

(0,1)
+f g �M fcb−g − a

(0,1)
+f g �M fcb

(1,0)
−g

− a+fg �M fcb−g + a+fg �M fcb
(1,0)
−g + a−fg �M fcb

(1,0)
+g

− a−fg �M fcb+g − a
(0,1)
−f g �M fcb

(1,0)
+g + a

(0,1)
−f g �M fcb+g

+ a
(0,1)
−f g �M fcb

(1,0)
−g − a

(0,1)
−f g �M fcb−g

− a−fg �M fcb
(1,0)
−g + a−fg �M fcb−g ) ,

with the abbreviation c = [f, g].
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4.2. Expressing the Mustard Convolution in Terms of the Convolution

Now we will simply write out the Mustard convolution (4.2) and simplify
it until only standard convolutions (4.1) remain. In this Subsection we will
use the general OPS split of Definition 2.3. Our result should be compared
with the Theorem 2.5 on page 584 of [7] for the left-sided QFT with 32
classical convolutions for expressing the Mustard convolution of quaternion
functions (and for the two-sided QFT in [5], Section 4.4.2, with 16 classical
convolutions, stated in a different but apparently equivalent form to Theorem
4.7).

We begin by writing the Mustard convolution (4.2) of two quaternion
functions a, b ∈ L2(R2,H)

a �M b(x) = 1
(2π)2

∫

R2

efx1ω1F{a}(ω)F{b}(ω)egx2ω2d2ω

= 1
(2π)2

∫

R2

efx1ω1

∫

R2

e−fy1ω1a(y)e−gy2ω2d2y

×
∫

R2

e−fz1ω1b(z)e−gz2ω2d2zegx2ω2d2ω

= 1
(2π)2

∫

R2

∫

R2

∫

R2

ef(x1−y1)ω1(a+(y) + a−(y))e−gy2ω2

× e−fz1ω1(b+(z) + b−(z))eg(x2−z2)ω2d2yd2zd2ω. (4.11)

Next, we use the identities (2.24) in order to shift the inner factor e−gy2ω2 to
the left and e−fz1ω1 to the right, respectively. We abbreviate

∫
R2

∫
R2

∫
R2 to∫∫∫

.

a �M b(x) (4.12)

= 1
(2π)2

∫∫∫
ef(x1−y1)ω1efy2ω2a+(y)b+(z)egz1ω1eg(x2−z2)ω2d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1)ω1efy2ω2a+(y)b−(z)e−gz1ω1eg(x2−z2)ω2d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1)ω1e−fy2ω2a−(y)b+(z)egz1ω1eg(x2−z2)ω2d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1)ω1e−fy2ω2a−(y)b−(z)e−gz1ω1eg(x2−z2)ω2d2yd2zd2ω

Furthermore, we abbreviate the inner function products as ab±±(y,z) :=
a±(y)b±(z), and apply the general OPS split of Definition 2.3 once again
to obtain ab±±(y,z) = [ab±±(y,z)]+ + [ab±±(y,z)]− = ab±±(y,z)+ +
ab±±(y,z)−. We omit the square brackets and use the convention that the
final OPS split indicated by the final ± index should be performed last.
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This allows to further apply (2.24) again in order to shift the factors e±gz1ω1

eg(x2−z2)ω2 to the left. We end up with the following eight terms

a �M b(x)

= 1
(2π)2

∫∫∫
ef(x1−y1−z1)ω1ef(y2−(x2−z2))ω2ab++(y,z)+d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1+z1)ω1ef(y2+(x2−z2))ω2ab++(y,z)−d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1+z1)ω1ef(y2−(x2−z2))ω2ab+−(y,z)+d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1−z1)ω1ef(y2+(x2−z2))ω2ab+−(y,z)−d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1−z1)ω1ef(−y2−(x2−z2))ω2ab−+(y,z)+d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1+z1)ω1ef(−y2+(x2−z2))ω2ab−+(y,z)−d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1+z1)ω1ef(−y2−(x2−z2))ω2ab−−(y,z)+d2yd2zd2ω

+ 1
(2π)2

∫∫∫
ef(x1−y1−z1)ω1ef(−y2+(x2−z2))ω2ab−−(y,z)−d2yd2zd2ω.

(4.13)

We now only show explicitly how to simplify the second triple integral, the
others follow the same pattern.

1
(2π)2

∫∫∫
ef(x1−y1+z1)ω1ef(y2+(x2−z2))ω2 [a+(y)b+(z)]−d2yd2zd2ω

= 1
(2π)2

∫∫ ∫

R

ef(x1−y1+z1)ω1dω1

∫

R

ef(y2+(x2−z2))ω2dω2[a+(y)b+(z)]−d2yd2z

=
∫∫

δ(x1 − y1 + z1)δ(y2 + (x2 − z2))[a+(y)b+(z1, z2)]−d2yd2z

=
∫

R2

[a+(y)b+(−(x1 − y1), x2 + y2)]−d2y

=
∫

R2

[a+(y)b+(−(x1 − y1),−(−x2 − y2))]−d2y

=
∫

R2

[a+(y)b(1,1)
+ (x1 − y1,−x2 − y2)]−d2y

= [a+ � b
(1,1)
+ (x1,−x2)]−. (4.14)

Note that a+ �b
(1,1)
+ (x1,−x2) means to first apply the convolution to the pair

of functions a+ and b
(1,1)
+ , and only then to evaluate them with the argument

(x1,−x2). So in general a+ � b
(1,1)
+ (x1,−x2) �= a+ � b+(−x1, x2). Simplify-

ing the other seven triple integrals similarly we finally obtain the desired
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decomposition of the Mustard convolution (4.2) in terms of the classical con-
volution.

Theorem 4.7. (Mustard convolution in terms of standard convolution) The
Mustard convolution (4.2) of two quaternion functions a, b ∈ L1(R2;H) can
be expressed in terms of eight standard convolutions (4.1) as

a �M b(x) =

= [a+ � b+(x)]+ + [a+ � b
(1,1)
+ (x1,−x2)]−

+ [a+ � b
(1,0)
− (x)]+ + [a+ � b

(0,1)
− (x1,−x2)]−

+ [a− � b
(0,1)
+ (x1,−x2)]+ + [a− � b

(1,0)
+ (x)]−

+ [a− � b
(1,1)
− (x1,−x2)]+ + [a− � b−(x)]−. (4.15)

Remark 4.8. (Levels of computation) Equation (4.15) involves five levels of
operation: primary (inner) and secondary (outer) OPS, argument reflections
before (pre) and after (post) the actual convolution, and the convolution itself
in each of the eight terms.

Remark 4.9. (Efficiency of notation and interpretation) If we would explic-
itly insert according Definition 2.3 a± = 1

2 (a ± fag) and b± = 1
2 (b ± fbg),

and similarly explicitly insert the second level OPS split [. . .]±, we would
(potentially) obtain up to a maximum of 64 terms1. It is therefore obvious
how straightforward, significant and efficient the use of the general OPS split
is in this context. Efficiency first of all with respect to concise (compact)
notation, which in turn may assist geometric (or physical) interpretation in
concrete applications.

Regarding derivation efficiency, we needed two pages to derive (4.15),
but in order to strike the balance with sufficient detail for reasonably self-
contained comprehension, this level of detail may be justified. Whether the
compact eight term form of (4.15) is advantageous for actual numerical com-
putations, is an open question, which requires application to concrete rep-
resentatives problems, e.g. in the area of quaternionic image processing (see
e.g. [1,3,4,8,10,11,21,23,25,26,28]).

And it may depend on the concrete hardware architecture, e.g. how
many parallel channels of computation (e.g. number of parallel GPUs) are
available, whether quaternion operations are hard coded or need breaking
down in elementary real (or matrix) computations; and whether optimized
software packages like the precompiler GAALOP [12] or the MATLAB pack-
age QFMT [27] would be used, etc.

5. Conclusion

In this paper we have briefly reviewed the algebra of quaternions, their general
orthogonal two-dimensional planes split, the general two-sided quaternion

1Note that in [5], Section 4.4.2, a fully explicit form is given with only 16 terms.
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Fourier transform, and introduced a related mixed quaternionic exponential-
sine Fourier transform. We defined the notions of convolution of two quater-
nion valued functions over R2, the Mustard convolution (with its QFT as the
point wise product of the QFTs of the factor functions), and a special Mus-
tard convolution involving the point wise products of mixed exponential-sine
QFTs.

The main results are: An efficient decomposition of the classical con-
volution of quaternion signals in terms of eight Mustard type convolutions.
For the special case of parallel pure unit quaternion axis in the QFT, only
four terms of the standard Mustard convolution are sufficient. Even in the
case of two general pure unit quaternion axis in the QFT, the classical con-
volution of two quaternion signals can always be fully expanded in terms
of standard Mustard convolutions. Finally we showed how to fully generally
expand the Mustard convolution of two quaternion signals in terms of eight
classical convolutions.

In view of the many applications of the QFT explained in the introduc-
tion, we expect our new results to be of great interest, especially for filter
design and feature extraction in signal and color image processing.
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