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Abstract. The discretizable molecular distance geometry problem
(DMDGP) is related to the determination of 3D protein structure using
distance information detected by nuclear magnetic resonance (NMR)
experiments. The chemistry of proteins and the NMR distance informa-
tion allow us to define an atomic order v1, . . . , vn such that the distances
related to the pairs {vi−3, vi}, {vi−2, vi}, {vi−1, vi}, for i > 3, are avail-
able, which implies that the search space can be represented by a tree.
A DMDGP solution can be represented by a path from the root to a
leaf node of this tree, found by an exact method, called branch-and-
prune (BP). Because of uncertainty in NMR data, some of the distances
related to the pairs {vi−3, vi} may not be precise values, being repre-

sented by intervals of real numbers [di−3,i, di−3,i]. In order to apply BP
algorithm in this context, sample values from those intervals should be
taken. The main problem of this approach is that if we sample many
values, the search space increases drastically, and for small samples, no
solution can be found. We explain how geometric algebra can be used to
model uncertainties in the DMDGP, avoiding sample values from inter-
vals [di−3,i, di−3,i] and eliminating the heuristic characteristics of BP
when dealing with interval distances.

Keywords. Conformal geometric algebra, Distance geometry, Branch
and prune algorithm, 3D protein structure.

1. Distance Geometry and 3D Protein Structure

One of the important problems in computational biology is the calculation
of the three-dimensional structure of a protein. Nuclear magnetic resonance
(NMR) experiments can provide distances between pairs of atoms that are
close enough and the problem is how to determine the 3D protein structure
based on this partial distance information [4,7,23].
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Using a graph G = (V,E, d), where V represents the set of atoms and
E is the set of atom pairs for which a distance is available, defined by the
function d : E → (0,∞), the problem can be solved by finding a function
x : V → R

3 that associates elements of V with points in R
3 in such a way that

the Euclidean distances between the points correspond to the values given
by d. This is a distance geometry problem (DGP) in R

3, formally defined as
follows (recent literature about DGP can be found in [17–19]):

Definition 1. Given a simple undirected graph G = (V,E, d) whose edges are
weighted by d : E → (0,∞), find a function x : V → R

3 such that

∀{u, v} ∈ E, ||xu − xv|| = du,v, (1)

where xu = x(u), xv = x(v), du,v = d({u, v}), and ||xu −xv|| is the Euclidean
distance between xu and xv.

The information provided by NMR experiments and chemistry of pro-
teins allow us to define a vertex orders v1, . . . , vn ∈ V such that (in [3], it is
presented an analysis on computational complexity vertex orders in distance
geometry):

• For the first three vertices, there exist x1, x2, x3 ∈ R
3 satisfying equa-

tions (1);
• Each vertex with rank greater than 3 is adjacent to three contiguous

predecessors, i.e.

∀i > 3, {{vi−3, vi}, {vi−2, vi}, {vi−1, vi}} ⊂ E.

The class of DGP instances possessing these orders is called the dis-
cretizable molecular distance geometry problem (DMDGP) [12,13], for which
there is an exact method, called branch-and-prune (BP), for finding all solu-
tions up to rotations and translations [16] (in order to guarantee a finite
number of solutions, the strict triangular inequalities related to the three
adjacent predecessors of vi must be satisfied).

Because of uncertainty in NMR data [1,2,22], some of the distances
related to the pairs {vi−3, vi} may not be precise values. In [14], it is proposed
an extension of BP algorithm, the interval BP (iBP), to manage the uncer-
tainty in distance information, where the idea is to sample values from the
intervals related to the pairs {vi−3, vi}. The main problem of this approach
is that if we sample many values, the search space increases drastically, and
for small samples, no solution can be found.

In [15], using geometric algebra, it was presented an analytical expres-
sion for the position of atom i in terms of the positions of the three previous
ones and the corresponding distances, where di−3,i is represented by an inter-
val of real numbers [di−3,i, di−3,i], which implies that the related positions for
atom xi are represented by an arc of a circle, instead of a point (see Sect. 3).
This expression can be useful in iBP algorithm, as illustrated in [15], but it
is assumed that xi−1, xi−2, xi−3 are fixed, as a consequence of the sampling
process.

This paper explains how conformal geometric algebra (CGA) can
be used to model uncertainties in the DMDGP (related to the intervals
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[di−3,i, di−3,i]), avoiding sample values from intervals [di−3,i, di−3,i] and elim-
inating the heuristic characteristics of iBP.

In Sect. 2, we describe the classical approach used for solving the
DMDGP. Section 3 presents the original contribution of this paper, explain-
ing how CGA can model uncertainties in the DMDGP. Some conclusions and
new research directions are given in Sect. 4.

2. Quadratic System and Matrix Approach

At each step of BP algorithm applied to a DMDGP instance, taking the
Cartesian coordinates of the last three vertices (previously calculated), the
position for vertex vi, i > 3, is obtained by solving the quadratic system

||xi − xi−3||2 = d2i−3,i,

||xi − xi−2||2 = d2i−2,i,

||xi − xi−1||2 = d2i−1,i, (2)

which can result in up to two possible values for xi, with probability one [18].
This recursive procedure defines a binary tree containing all possible positions
for each vertex vi on the respective layer. Each DMDGP solution can be
represented as a path from the root to a leaf node of the tree. When there
are other adjacent predecessors, one or both possible positions for vi may be
infeasible with respect to those additional distances. If both are infeasible, it
is necessary to backtrack and repeat the procedure [13].

Using DMDGP orders, we can replace resolutions of quadratic systems
by matrix multiplications (see below). Computational results presented in
[13] demonstrate that the second approach guarantees more stability in BP
algoritm.

A chain of n atoms of a molecule indexed by 1, . . . , n can be described
by internal coordinates [21], given by the bond lengths di−1,i (the Euclid-
ean distance between xi−1 and xi), for i = 2, . . . , n, the bond angles θi−2,i

(the angle defined by the atoms i − 2, i − 1, i), for i = 3, . . . , n, and the
torsion angles ωi−3,i (the angle between the normals through the planes
defined by the atoms i − 3, i − 2, i − 1 and i − 2, i − 1, i), for i = 4, . . . , n
(see Fig. 1). Due to the properties of DMDGP orders, the values di−1,i,
θi−2,i, cos(ωi−3,i) can be calculated using the distances between the atoms
i − 3, i − 2, i − 1, i, for i = 4, . . . , n [13]. Based on the previous deter-
mined positions for x1, x2, x3, . . . , xi−1, BP algorithm can obtain the two
possible values for xi = (xi1 , xi2 , xi3)

T ∈ R
3 (related to the two values for

sin(ωi−3,i) = ±√
1 − cos2(ωi−3,i)), using the following matrix multiplications

[13]: ⎡

⎢
⎢
⎣

xi1

xi2

xi3

1

⎤

⎥
⎥
⎦ = B1B2 · · · Bi

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , ∀i = 1, . . . , n,
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Figure 1. The internal coordinates of the atom i

where

B1 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ , B2 =

⎡

⎢⎢
⎣

−1 0 0 −d1,2

0 1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥
⎦ ,

B3 =

⎡

⎢⎢
⎣

− cos θ1,3 − sin θ1,3 0 −d2,3 cos θ1,3

sin θ1,3 − cos θ1,3 0 d2,3 sin θ1,3

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ,

and

Bi =
⎡

⎢
⎢
⎣

− cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cosωi−3,i − cos θi−2,i cosωi−3,i − sinωi−3,i di−1,i sin θi−2,i cosωi−3,i

sin θi−2,i sinωi−3,i − cos θi−2,i sinωi−3,i cosωi−3,i di−1,i sin θi−2,i sinωi−3,i

0 0 0 1

⎤

⎥
⎥
⎦ ,

for i = 4, . . . , n.
Using the above matrices, the first three atoms of the molecule can be

fixed at positions

x1 =

⎡

⎣
0
0
0

⎤

⎦ , x2 =

⎡

⎣
−d1,2

0
0

⎤

⎦ , x3 =

⎡

⎣
−d1,2 + d2,3 cos θ1,3

d2,3 sin θ1,3

0

⎤

⎦ .

The distances di−1,i and di−2,i are related to the chemistry of proteins,
considered as precise values, and the distances di−3,i, in general, are provided
by NMR experiments. Because of uncertainty in NMR data, some of the
distances di−3,i may not be precise, being represented by intervals of real
numbers [di−3,i, di−3,i].
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None of those two approaches (quadratic systems or matrix multiplica-
tions) deal well with interval distances. In the matrix approach, the uncer-
tainty in the value di−3,i is related to the value cos ωi−3,i through the expres-
sion [15] (for i = 4, ..., n)

cos ωi−3,i =
2d2i−2,i−1(d

2
i−3,i−2 + d2i−2,i − d2i−3,i) − (di−3,i−2,i−1)(di−2,i−1,i)

√
4d2i−3,i−2d

2
i−2,i−1 − (d2i−3,i−2,i−1)

√
4d2i−2,i−1d

2
i−2,i − (d2i−2,i−1,i)

,

where

di−3,i−2,i−1 = d2i−3,i−2 + d2i−2,i−1 − d2i−3,i−1,

di−2,i−1,i = d2i−2,i−1 + d2i−2,i − d2i−1,i.

3. Conformal Geometric Algebra and Sphere Intersection

Geometrically, the solution of the system (2) is given by the intersection of
three spheres. However, when the distance di−3,i is represented by an interval,
we have the intersection of two spheres with one spherical shell, giving two
arcs, instead of two points (Fig. 2).

Using CGA, a null basis {e0, e∞} is added to the canonical basis in R
3,

{e1, e2, e3} , and spheres can be represented by vectors in a five dimensional
space: the conformal space [5,6,8,9,11,20]. The set {e0, e∞} is called a null
basis because both vectors square to zero with respect to the geometric prod-
uct. In the conformal space, e0 represents its origin and e∞ represents a point
at infinity.

Considering xi ∈ R
3 and ri ∈ R be the center and radius of a sphere in

R
3, respectively, Table 1 describes how to represent points, spheres, circles

and point pairs in the conformal space, where “∧” indicates the outer product
and the juxtaposition of vectors indicates the geometric product. Note that a
circle is obtained from the intersection between two spheres and a point pair
is the result of the intersection among three spheres.

Figure 2. P 0
i P 0

i and P 1
i P 1

i are the arcs from the intersec-
tion of spheres
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Table 1. Geometric elements represented in the conformal space

Element Expression

Point Xi = xi +
1
2

‖xi‖2 e∞ + e0

Sphere Si = Xi − 1
2
r2i e∞

Circle Si ∧ Sj

Point pair Si ∧ Sj ∧ Sk

Figure 3. The rotation axis for the rotor Ri

From the hypothesis of the DMDGP, for i = 4, . . . , n, we know
two exact distances (di−2,i and di−1,i) and one interval distance (di−3,i).
Given points xi−3, xi−2, xi−1 and distances di−3,i, di−2,i, di−1,i, where di−3,i ∈
[di−3,i, di−3,i], we use Table 1 to calculate the point pairs

Pp
i
= Si−3 ∧ Si−2 ∧ Si−1, (3)

Ppi = Si−3 ∧ Si−2 ∧ Si−1, (4)

where underline and overline indicate the use of di−3,i and di−3,i, respectively.
Each point pair provides two extreme points, P 0

i , P 1
i and P 0

i , P 1
i , one for each

arc, P 0
i P 0

i and P 1
i P 1

i (Fig. 2).
Once we have the starting and the ending point of an arc, we can define

a rotor acting on that. In CGA, a rotor is defined by its rotation axis (or
rotation plane) and rotation angle. Here, the rotation axis zi is given by
the centers of the spheres Si−2, Si−1 (Fig. 3) and the rotation angle φi (in
radians) is the angle corresponding to the arcs P 0

i P 0
i and P 1

i P 1
i (Fig. 2).

Defining the rotor Ri by

Ri = cos
(

λi

2

)
+ z∗

i sin
(

λi

2

)
, 0 ≤ λi ≤ φi,

where zi = Xi−2 ∧ Xi−1 ∧ e∞ and z∗
i is the dual of zi, we obtain

X0
i (λi) = RiP

0
i R̃i and X1

i (λi) = RiP
1
i R̃i,

where R̃ is the reverse of R.
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Using X0
i (λi) or X1

i (λi), we can describe the arc points obtained by the
intersection of two spheres with a spherical shell. We remark that Xi−2 and
Xi−1 do not need to be necessarily fixed points, as explained in the following.

3.1. An Example

Let us consider the same example (with seven atoms) presented in [15], where
di−1,i = 1, for i = 2, 3, 5, 6, 7, d3,4 = 2.3452, θi−2,i = 120◦, for i = 1, 4, 5, 6, 7,
θ2,4 = 77.69◦ and θ3,5 = 62.94◦. The distances di−3,i, for i = 4, . . . , 7, are
given by interval distances [see matrix D (8)]. Remember that the first three
atoms can be fixed in R

3 and the search begins at the fourth level of the BP
tree (xT is the transpose of x):

x1 = (0, 0, 0)T
, (5)

x2 = (−1, 0, 0)T
, (6)

x3 = (−1.5, 0.866025, 0)T
. (7)

Remark in the example from [15], the correct values for d3,4, θ2,4 and θ3,5

are those shown above (all the results are correct, since it were used those
values). The calculations in the conformal space were done using the software
Gaalop [10].

The matrix below gives all the known distances for our example (we
have precise and interval distances):

D =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

0 1 1.73205 [1.75, 2] ∗ ∗ ∗
1 0 1 2.3452 [2.3, 2.5] ∗ ∗

1.73205 1 0 2.3452 2.09165 [1.9, 2.3] ∗
[1.75, 2] 2.3452 2.3452 0 1 1.73205 [2.2, 2.5]

∗ [2.3, 2.5] 2.09165 1 0 1 1.73205
∗ ∗ [1.9, 2.3] 1.73205 1 0 1
∗ ∗ ∗ [2.2, 2.5] 1.73205 1 0

⎤

⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

.

(8)

Atom x4

The pair {x2, d2,4} defines the sphere S2,4 (center at x2 with radius d2,4)
and {x3, d3,4} defines the sphere S3,4 (center at x3 with radius d3,4). The
intersection S2,4 ∧ S3,4 gives the circle C4, where x4 lies. For each extreme of
the interval distance d1,4 ∈ [1.75, 2.2], we have two pairs involving x1, giving
spheres S1,4 and S1,4. The respective point pairs are determined by

Pp
4

= S1,4 ∧ S2,4 ∧ S3,4, (9)

Pp4 = S1,4 ∧ S2,4 ∧ S3,4, (10)

implying that

Pp
4

= 1.33e12 ∧ e∞ − 0.866e12 ∧ e0 − 1.36e1 ∧ E + 0.622e2 ∧ E, (11)

Pp4 = 1.73e12 ∧ e∞ − 0.866e12 ∧ e0 − 1.12e1 ∧ E + 0.216e2 ∧ E, (12)

where e12 = e1e2 and E = e∞ ∧ e0.
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Figure 4. The four points on C4 creating the two arcs for X4

Using the Formula (13), we extract the points P 0
4 and P 1

4 , from Pp
4

,

and P 0
4 and P 1

4 , from Pp4:

P 0
i =

Pp∗
i − √

(Pp∗
i )2

−e∞
Pp∗
i

and P 1
i =

Pp∗
i +

√
(Pp∗

i )2

−e∞
Pp∗
i

; (13)

P 0
4 = 0.719e1 + 1.57e2 − 0.287e3 + 1.53e∞ + 1e0, (14)

P 1
4 = 0.719e1 + 1.57e2 + 0.287e3 + 1.53e∞ + 1e0, (15)

P 0
4 = 0.25e1 + 1.3e2 − 1.5e3 + 2e∞ + 1e0, (16)

P 1
4 = 0.25e1 + 1.3e2 + 1.5e3 + 2e∞ + 1e0, (17)

and calculate the angle φ4 corresponding to the arcs P 0
4 P 0

4 and P 1
4 P 1

4 :

φ4 = 0.588.

In (13), the symbol 
 represents a left contraction, which is an extension of
the inner product for vectors. More details on the contractions and on this
formula are found in [5].

The points X2 and X3 define the rotation axis for the rotor R4 , giving
by

R4 = cos(λ4
2 ) + z∗

4 sin(λ4
2 ), 0 ≤ λ4 ≤ 0.588, (18)

where z4 = X2∧X3∧e∞, and the two possible arcs are the following (Fig. 4):

X0
4 (λ4) = R4P

0
4 R̃4 and X1

4 (λ4) = R̃4P
1
4 R4. (19)

The position x4 = (0.625, 1.51554,−0.75)T , from the example given in
[15], is obtained by X0

4 (0.208). However, we can continue the search without
arc sampling, considering X0

4 as a function of λ4 ∈ [0, 0.588].
The rotor R4, given as a sum of a scalar and a bivector in (18), can be

rewritten as

R4 = a0 + a1e12 + a2e13 + a3e23 + a4e1 ∧ e∞ + a5e2 ∧ e∞ + a6e3 ∧ e∞,
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Table 2. Table of multiplication (XB̃)

e1 e2 e3 e∞ e0

−e2 e1 −e123 −e12 ∧ e∞ −e12 ∧ e0 e21
−e3 e123 e1 −e13 ∧ e∞ −e13 ∧ e0 e31
−e123 −e3 e2 −e23 ∧ e∞ −e23 ∧ e0 e32
−e∞ e12 ∧ e∞ e13 ∧ e∞ 0 −e1 − e1 ∧ E e∞ ∧ e1
−e12 ∧ e∞ −e∞ e23 ∧ e∞ 0 −e2 − e2 ∧ E e∞ ∧ e2
−e13 ∧ e∞ −e23 ∧ e∞ −e∞ 0 −e3 − e3 ∧ E e∞ ∧ e3

Table 3. Table of multiplication (BX)

e1 e2 e3 e∞ e0

e12 −e2 e1 e123 e12 ∧ e∞ e12 ∧ e0
e13 −e3 −e123 e1 e13 ∧ e∞ e13 ∧ e0
e23 e123 −e3 e2 e23 ∧ e∞ e23 ∧ e0
e1 ∧ e∞ −e∞ −e12 ∧ e∞ −e13 ∧ e∞ 0 −e1 + e1 ∧ E
e2 ∧ e∞ e12 ∧ e∞ −e∞ −e23 ∧ e∞ 0 −e2 + e2 ∧ E
e3 ∧ e∞ e13 ∧ e∞ e23 ∧ e∞ −e∞ 0 −e3 + e3 ∧ E

Table 4. Table of multiplication (BXB̃)

e1 e2 e3 e∞ e0

e12 −e1 −e2 e3 e∞ e0 e21
e13 −e1 e2 −e3 e∞ e0 e31
e23 e1 −e2 −e3 e∞ e0 e32
e1 ∧ e∞ 0 0 0 0 2e∞ e∞ ∧ e1
e2 ∧ e∞ 0 0 0 0 2e∞ e∞ ∧ e2
e3 ∧ e∞ 0 0 0 0 2e∞ e∞ ∧ e3

where ai ∈ R, i = 0, 1, ..., 6. Considering R = b + B (b is a scalar and B is a
bivector), the rotation X

′
= RXR̃ can be written as

X
′
= bXb + bXB̃ + BXb + BXB̃,

where Tables 2, 3 and 4 show the multiplication rules for basis elements in
bXB̃,BXb,BXB̃, respectively (the first term in X

′
is just a scalar-vector

product b2X).
From Tables 2, 3 and 4, and from (18) and (19), we obtain

R4 = cos
(

λ4
2

)
+ sin

(
λ4
2

)
(0.866e13 + 0.5e23 + 0.866e3 ∧ e∞) (20)

and

X0
4 (λ4) = (0.719c2 − 0.496cs − 3.22s2)e1 + (1.57c2 − 0.286cs − 0.703s2)e2

+(−0.286c2 − 4.55cs + 0.286s2)e3 + (1.53c2 + 0.496cs + 5.47s2)e∞
+(c2 + s2)e0,
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where c = cos(λ4
2 ) and s = sin(λ4

2 ). That is,

x4(λ4) =

⎡

⎣
0.719 cos2(λ4

2 ) − 0.496 cos(λ4
2 ) sin(λ4

2 ) − 3.22 sin2(λ4
2 )

1.57 cos2(λ4
2 ) − 0.286 cos(λ4

2 ) sin(λ4
2 ) − 0.703 sin2(λ4

2 )
−0.286 cos2(λ4

2 ) − 4.55 cos(λ4
2 ) sin(λ4

2 ) + 0.286 sin2(λ4
2 )

⎤

⎦ ,

for λ4 ∈ [0, 0.588].

Atoms x5 and x6

In order to determine x5, we have to consider the three predecessors x2, x3, x4,
whose distances to x5 are given in the distance matrix D (8). But now, the
sphere S4,5 has a “moving” center, which causes a change in the position of
the circle C5, given by the intersection S3,5 ∧ S4,5. The rotation axis for R5,
defined by X3∧X0

4 (λ4)∧e∞, also changes when λ4 varies. However, the angle
φ5 corresponding to the arcs in C5 does not depend on λ4. The position X5

depends on “local” rotation given by R5, through the axis determined by the
“global” change caused by R4.

To understand how R4 acts on X5, let λ4 = 0, implying that X0
4 (0) =

P 0
4 , R4 = 1 (the identity transformation), and z5 = X3 ∧ P 0

4 ∧ e∞. Using P 0
4

as the center of S4,5, we get the points P 0
5 , P 1

5 and P 0
5 , P 1

5 (the first two for
the lower bound of d2,5 and the others for the upper bound).

Considering the arc P 0
5 P 0

5 , we can see that the rotor R4 determines the

rotation axis for R5 and also the position of P 0
5 P 0

5 . This means that we can
describe the whole set of possible positions for X0

5 , without expliciting the
possible positions for X0

4 . In fact, we can fix any position for X0
4 (we choose

X0
4 (0)). Algebraically, we have:

z5 = R4(X3 ∧ P 0
4 ∧ e∞)R̃4, (21)

R5 = cos(λ5
2 ) + z∗

5 sin(λ5
2 ), 0 ≤ λ5 ≤ φ5, (22)

X0
5 (λ4, λ5) = R5R4P

0
5 R̃4R̃5. (23)

When λ4 = 0, X0
5 suffers only the local transformation given by R5.

In our example, we have φ5 = 0.88 and, for λ4 = 0, P 0
5 = (0.0895,

1.73,−1.05)T . In the example from [15], another point is selected from the
arc P 0

5 P 0
5 , given by X0

5 (0.208, 0.229) = (−0.156, 1.79,−1.31)T .
Positioning the sixth atom is analogous to the fifth one. Thus,

we go straight to the seventh atom, which illustrates the general case.
We mention that the selected point used in the example from [15] is
X1

6 (0.208, 0.229, 0.334) = (−0.664, 1.096,−1.83)T , for φ6 = 0.483.
So far, the path we are following is shown in Fig. 5.

Atom x7

For x7, none of the three predecessors are fixed. The rotation axis for R7

is defined by X5 and X6, which depends on R4, in addition to R5 and R6.
Fixing λ4 = λ5 = λ6 = 0 and choosing X0

4 ,X0
5 ,X1

6 , we can calculate the
values for P 0

4 , P 0
5 , P 1

6 :
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Figure 5. Path chosen in the tree to follow the search

X0
4 (0) = P 0

4 = 0.719e1 + 1.57e2 − 0.287e3 + 1.53e∞ + e0,

X0
5 (0, 0) = P 0

5 = 0.089e1 + 1.73e2 − 1.05e3 + 2.06e∞ + e0,

X1
6 (0, 0, 0) = P 1

6 = −0.027e1 + 1.04e2 − 1.76e3 + 2.09e∞ + e0.

Using the interval distance d4,7 ∈ [2.2, 2.5], we get the point pairs related to
X7, the associated angle φ7 = 0.116, and P 0

7 :

X0
7 (0, 0, 0, 0) = P 0

7 = −0.412e1 + 0.148e2 − 1.53e3 + 1.26e∞ + e0.

With the values above, we can obtain all of the rotation axis and their
corresponding rotors as follows. For i = 4, . . . , 7, we have

Ri = cos
(

λi

2

)
+ z∗

i sin
(

λi

2

)
, 0 ≤ λi ≤ φi,

where

z4 = X2 ∧ X3 ∧ e∞,

z5 = R4(X3 ∧ P 0
4 ∧ e∞)R̃4,

z6 = R5R4(P 0
4 ∧ P 0

5 ∧ e∞)R̃4R̃5,

z7 = R6R5R4(P 0
5 ∧ P 1

6 ∧ e∞)R̃4R̃5R̃6.

Finally, we obtain X0
7 in terms of λ4, λ5, λ6, λ7, given by

X0
7 (λ4, λ5, λ6, λ7) = R7R6R5R4P

0
7 R̃4R̃5R̃6R̃7.

Figure 6 shows the path we followed in our example. For any atom xi,
i > 7, the situation is similar to x7.

4. Conclusion

Nuclear magnetic resonance experiments provide distance information that
can be used to determine 3D protein structures. This problem can be defined
as a DMDGP, where some of the distances are represented by interval of real
numbers, due to the uncertainties in NMR information.
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Figure 6. Path chosen in the tree to follow the search

In [15], it was proposed a way to deal with interval distances that can
help to reduce the search space of the problem, but sample points still need
to be selected in order to apply the BP algorithm [14].

The contribution of this paper is the application of CGA to model
DMDGP with interval distances, avoiding sampling process and eliminating
the heuristic characteristics of BP in this new scenario.

The next challenge is to combine the results of this paper with the
ideas presented in [15], in order to define a new algorithm that can be able
to choose which paths in the “interval” BP tree should be taken to find
“interval” DMDGP solutions.
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