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Abstract. So far quaternion Fourier transforms have been mainly defined
over R2 as signal domain space. But it seems natural to define a quater-
nion Fourier transform for quaternion valued signals over quaternion do-
mains. This quaternion domain Fourier transform (QDFT) transforms
quaternion valued signals (for example electromagnetic scalar-vector po-
tentials, color data, space-time data, etc.) defined over a quaternion
domain (space-time or other 4D domains) from a quaternion position
space to a quaternion frequency space. The QDFT uses the full poten-
tial provided by hypercomplex algebra in higher dimensions and may
moreover be useful for solving quaternion partial differential equations
or functional equations, and in crystallographic texture analysis. We
define the QDFT and analyze its main properties, including quaternion
dilation, modulation and shift properties, Plancherel and Parseval iden-
tities, covariance under orthogonal transformations, transformations of
coordinate polynomials and differential operator polynomials, transfor-
mations of derivative and Dirac derivative operators, as well as signal
width related to band width uncertainty relationships.
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1. Introduction

The electromagnetic field equations were originally formulated by Maxwell
[27] in the language of Hamilton’s quaternions [18]. Later, among many other
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applications, quaternions began to play an important role in aerospace en-
gineering [25], color signal processing [15], artificial intelligence [3–5], and
in material science for texture analysis (understood as the distribution of
crystallographic orientations of a polycrystalline sample [34]) [2,28].

Quaternion Fourier transforms (QFT) are since over 20 years a mathe-
matically well researched and frequently applied subject [9]. Yet interesting
enough most publications on QFTs concentrate on transformations for sig-
nals with domain R

2. Motivated by private communication with T. L. Saaty
related to quaternion valued functions over the domain of quaternions, we es-
tablish here a genuine Fourier transform with a quaternionic kernel operating
on such functions.

This paper begins by introducing quaternions and their relevant prop-
erties, including quaternion domain functions in Sect. 2. The quaternion (al-
gebra) domain Fourier transform (QDFT) is defined in Sect. 3. Many funda-
mental properties of the QDFT are investigated in Sect. 4. The conclusions
in Sect. 5 give an outlook into the wide area of possible applications and
the rich possibilities of studying related transforms for quaternion domain
signals.

2. Definition and Properties of Quaternions H

2.1. Basic Facts About Quaternions

Gauss, Rodrigues and Hamilton’s four-dimensional (4D) quaternion algebra
H is defined over R with three imaginary units:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (2.1)

Every quaternion can be written explicitly as

q = qr + qii + qjj + qkk ∈ H, qr, qi, qj , qk ∈ R, (2.2)

and has a quaternion conjugate (equivalent to reversion in Cl+3,0)

q̃ = qr − qii − qjj − qkk, p̃q = q̃p̃. (2.3)

This leads to the norm of q ∈ H

|q| =
√

qq̃ =
√

q2r + q2i + q2j + q2k, |pq| = |p||q|. (2.4)

The inverse of a non-zero quaternion q ∈ H is

q−1 =
q̃

|q|2 . (2.5)

The (symmetric) scalar part of a quaternion is defined as

〈q〉0 = Sc(q) = qr =
1
2
(q + q̃), Sc(pq) = Sc(qp) = Sc(p̃q̃), (2.6)

Sc(pqr) = Sc(qrp) = Sc(rpq). (2.7)
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Every quaternion a ∈ H, a �= 0, can be written as scalar part plus (pure)
vector part

a = ar + aii + ajj + akk = ar + a = |a|
(

cos α +
a
|a| sin α

)

= |a|eâα,

(2.8)

with â = a/|a|, cos α = ar/|a|, α ∈ [0, π). A scalar product of quaternions
can be defined for x, y ∈ H as

x · y = Sc(x̃y) = xryr + xiyi + xjyj + xkyk. (2.9)

Two quaternions interpreted as elements of R
4 are defined to be orthogonal,

if and only if their scalar product is zero

x ⊥ y ⇔ x · y = 0. (2.10)

Pure quaternions have zero scalar part. A (normed) unit pure quaternion q
squares to −1

q2 = −(q2i + q2j + q2k) = −1. (2.11)

The set of unit pure quaternions is isomorphic to the unit sphere S2 ⊂ R
3.

Quaternion multiplication pq can be alternatively represented by the follow-
ing matrix vector multiplication [35]

⎛

⎜

⎜

⎝

Sc(pq)
(pq)i

(pq)j

(pq)k

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

pr −pi −pj −pk

pi pr −pk pj

pj pk pr −pi

pk −pj pi pr

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

qr

qi

qj

qk

⎞

⎟

⎟

⎠

. (2.12)

The determinant of the above matrix P (p) is simply

det P (p) = |p|4. (2.13)

If we interpret the four real coefficients of x ∈ H, xr, xi, xj , xk ∈ R as coor-
dinates in R

4, with infinitesimal volume element d4x = dxrdxidxjdxk, then
the substitution z = ax, a ∈ H, yields

z = ax ⇒ d4z = |a|4d4x, d4x = |a|−4d4z, (2.14)

assuming a �= 0 for the last identity.
For the transformation z = axb, a, b, x ∈ H, we set y = xb and then

d4z = |a|4d4y. (2.15)

Quaternion conjugation leads to

ỹ = b̃x̃, (2.16)

such that

− d4y = d4ỹ = |b̃|4d4x̃ = −|b|4d4x, (2.17)

because |b̃| = |b|, d4x̃ = dxr(−dxi)(−dxj)(−dxk) = −d4x, and similarly
d4ỹ = −d4y. Hence

d4z = |a|4d4y = |a|4|b|4d4x = |ab|4d4x. (2.18)
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As expected the rotation (2.25) does not change the infinitesimal volume
element

z = axa−1 ⇒ d4x = |aa−1|4d4x = d4x. (2.19)

We follow [17] in defining the following derivative operators

∂̃ = ∂xr
+ ∂xi

i + ∂xj
j + ∂xk

k, (2.20)
∂ = ∂xr

− ∂xi
i − ∂xj

j − ∂xk
k, (2.21)

where ∂xr
= ∂/∂xr, etc. We further define the three-dimensional Dirac op-

erator

D = ∂̃ − ∂xr
= ∂xi

i + ∂xj
j + ∂xk

k, ∂̃ = ∂xr
+ D. (2.22)

The orthogonal planes split of q ∈ H with (one) pure unit quaternion
f = g = I, I ∈ H, I2 = −1, [20,22,24] is defined1 as

q± =
1
2
(q ± IqI), q− = qr + qII,

q+ = qJJ + qKK = (qJ + qKI)J, (2.23)

with rotation operator R = (i+I)i, J = RjR−1 and K = RkR−1, J2 = K2 =
−1, qr, qI , qJ , qK ∈ R, similar to [24]. Note, that there is a gauge freedom in
this split by changing R → R exp(Iϕ/2), ϕ ∈ [0, 2π), i.e. a rotation freedom
in the q+-plane. The units {1, I, J,K} form another equivalent representation
of quaternions H. Note further, that the q− part commutes with I, whereas
the q+ part anticommutes

q−I = Iq−, q+I = −Iq+. (2.24)

2.2. Quaternions and Reflections and Rotations in Three and Four Dimen-
sions

The geometry of reflections and rotations in three and four dimensions, ex-
pressed in the language of quaternions is discussed in [12,23,24,28]. We
give an overview of how important orthogonal transformations in three-
dimensional and four-dimensional Euclidean space can be expressed by means
of quaternions.

A three-dimensional rotation of the vector part x of the quaternion
x ∈ H by the angle 2α around the axis â, leaving the scalar part xr invariant,
is given by

x′ = axa−1, a = eαâ, â2 = −1. (2.25)

For example a = cos α + k sinα = exp(kα) rotates x = i to

x′ = aia−1 = ekαie−kα = e2kαi = (cos 2α + k sin 2α)i
= cos(2α)i + sin(2α)j. (2.26)

We further note, that the transformation

x′ = axb, a = eαâ, b = eβâ, (2.27)

1 The references [20,22,24] contain examples with values of (f = i, g = j), (f = i, g = i),

etc. In the case that f = g = (i + j + k)/
√

3 we obtain the split into luminosity and
chromaticity of a color image [15].
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rotates the x−-part by the angle α+β in the q−-plane (determined by (2.23),
setting I = â), and rotates the x+-part by α − β in the q+-plane.

The 4D reflection at the real line is given by quaternion conjugation
x → x̃, leaving the real line pointwise invariant.

The 4D reflection at the 3D hyperplane of pure quaternions is therefore
given by x → −x̃, leaving the 3D hyperplane of pure quaternions pointwise
invariant.

A reflection at a (pointwise invariant) general line in R
4 in the direction

of the unit quaternion a ∈ H, |a| = 1, is given by x → ax̃a.
A reflection at the (pointwise invariant) three-dimensional hyperplane

orthogonal to the direction in four dimensions given by the unit quaternion
a, |a| = 1, is given by x → −ax̃a.

A general rotation in R
4 is given by

x → axb, a, b ∈ H, |a| = |b| = 1. (2.28)

To understand the geometry of this rotation [24], we rewrite the unit quater-
nions a, b as

a = eαâ, b = eβb̂. (2.29)

The pure unit quaternions â and b̂ define two orthogonal two-dimensional
rotation planes in R

4, where without restriction of generality we assume â �=
b̂, because the case â = b̂ has already been discussed in (2.27). The qa,b

+

plane with orthogonal basis and projection

qa,b
+ basis : {â − b̂, 1 + âb̂}, qa,b

+ =
1
2
(q + âqb̂), (2.30)

and the orthogonal qa,b
− plane orthogonal basis and projection

qa,b
− basis : {â + b̂, 1 − âb̂}, qa,b

− =
1
2
(q − âqb̂), (2.31)

such that q = qa,b
+ + qa,b

− , for all q ∈ H. The transformation x → axb of (2.28)
then means geometrically a rotation by the angle α − β in the qa,b

+ plane
(around the qa,b

− plane as axis) and a rotation by the angle α + β in the qa,b
−

plane (around the qa,b
+ plane as axis). This also tells us, that for α = β the

rotation degenerates to a single two-dimensional rotation by 2α in the qa,b
−

plane, and for α = −β it degenerates to a single two-dimensional rotation by
2α in the qa,b

+ plane.
A general rotary reflection (rotation reflection) in R

4 is given by

x → ax̃b, a, b ∈ H, |a| = |b| = 1. (2.32)

This rotary reflection has the pointwise invariant line through a + b. In the
remaining three-dimensional hyperplane, orthogonal to the a+b line, the axis
of the rotary reflection is the line in the direction a − b, because a(̃a − b)b =
−(a − b). The rotation plane of the rotary reflection is spanned by the two
orthogonal quaternions v1,2 = [a, b](1 ± ãb), [a, b] = ab − ba, and the angle of
rotation is Γ = π − acrccos(Sc(ãb)) [24].
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2.3. Quaternion Domain Functions

Every real valued quaternion domain function f maps H → R:

f : x �→ f(x) ∈ R, ∀x ∈ H. (2.33)

Every quaternion valued quaternion domain function f maps H → H, its four
coefficient functions fr, fi, fj , fk, are in turn real valued quaternion domain
functions:

f : x �→ f(x) = fr(x) + fi(x)i + fj(x)j + fk(x)k ∈ H. (2.34)

Quaternion valued quaternion domain functions have been historically stud-
ied in [16,30,32,33], and applications are described in [17].

We define for two functions f, g : H → H the following quaternion valued
inner product

(f, g) =
∫

H

f(x)g̃(x) d4x (2.35)

with d4x = dxrdxidxjdxk ∈ R. Note that quaternion conjugation yields

(̃f, g) = (g, f). (2.36)

This means that the real scalar part of the inner product (f, g) is symmetric

〈f, g〉 =
1
2
[(f, g) + (g, f)] =

∫

H

〈f(x)g̃(x)〉0d4x ∈ R,

〈f, g〉 = 〈g, f〉. (2.37)

We further define the L2(H; H)-norm2 as

‖f‖ =
√

(f, f) =
√

〈f, f〉 =

√

√

√

√

∫

H

|f(x)|2 d4x ≥ 0. (2.38)

The quaternion domain module L2(H; H) is the set of all finite L2(H; H)-norm
functions

L2(H; H) = {f |f : H → H, ‖f‖ ≤ ∞}. (2.39)

The convolution of two functions f, g ∈ L2(H; H) is defined as

(f ∗ g)(x) =
∫

H

f(y)g(x − y) d4y. (2.40)

For unit norm signals f ∈ L2(H; H), ‖f‖ = 1, we define the effective spatial
width or spatial uncertainty (or signal width) of f in the direction of the unit
quaternion a ∈ H, |a| = 1, as the square root of the variance of the energy
distribution of f along the a-axis

Δxa = ‖(x · a)f‖ =

√

√

√

√

∫

H

(x · a)2|f(x)|2 d4x. (2.41)

2 Note that in equation (13) of [20] the square root is missing over the integral in the
definition of the L2(R2;H)-norm.
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Also for unit norm signals f , we define the effective spatial width (spatial
uncertainty) as the square root of the variance of the energy distribution of
f

Δx = ‖xf‖ =

√

√

√

√

∫

H

|x|2|f(x)|2 d4x. (2.42)

3. The Quaternion Domain Fourier Transform

Since the traditional quaternion Fourier transform (QFT) [10,14,20] is only
defined for real or quaternion valued signals over the domain R

2, we newly
define the quaternion domain Fourier transform (QDFT) for h ∈ L1(H; H)
as

F{h}(ω) = ĥ(ω) =
1

(2π)2

∫

H

h(x)e−Ix·ω d4x, (3.1)

with x, ω ∈ H, d4x = dxrdxidxjdxk ∈ R, and some constant I ∈ H, I2 = −1.
The constant unit pure quaternion I can be chosen specific for each problem.

Note that the QDFT of (3.1) is steerable due to the free choice of the
unit pure quaternion unit I ∈ S2.

This QDFT definition is left linear

F{αh + βg}(ω) = αĥ(ω) + βĝ(ω), (3.2)

for g, h ∈ L1(H; H) and constants α, β ∈ H. See (4.4) for linear combinations
of signals with constant quaternion coefficients multiplied from the right.

Applying the orthogonal planes split (2.23) to the signal function h =
h+ + h− and to the QDFT ĥ we find

ĥ(ω) = ĥ+(ω) + ĥ−(ω), (3.3)

ĥ+(ω) =
1

(2π)2

∫

H

h+(x)e−Ix·ω d4x =
1

(2π)2

∫

H

e+Ix·ωh+(x) d4x, (3.4)

ĥ−(ω) =
1

(2π)2

∫

H

h−(x)e−Ix·ω d4x =
1

(2π)2

∫

H

e−Ix·ωh−(x) d4x. (3.5)

Example Following the suggestion of T. L. Saaty, we apply the QDFT trans-
form to the functional quaternion equation3

h(ax) = bh(x), h : H → H, (3.6)

3 The simplest solutions of this equation take the form h(x) = cxd, bc = ca, with quaternion

constants c, d ∈ H. (I thank the anonymous reviewer for this hint.) In the complex domain
T. L. Saaty has developed interesting solutions [31].
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with quaternion constants a, b ∈ H. We define the auxiliary function ha(x) =
h(ax) and compute

ĥa(ω) =
1

(2π)2

∫

H

h(ax)e−Ix·ω d4x

=
1

(2π)2

∫

H

h(ax)e−ISc((ax)∼ã−1ω) d4x

z=ax=
1

(2π)2

∫

H

h(z)e−ISc(z̃ã−1ω)|a|−4 d4z

= |a|−4ĥ(ã−1ω), (3.7)

where we used that

x · ω = Sc(x̃ω) = Sc(x̃ãã−1ω) = Sc((ax)∼ã−1ω) = (ax) · (ã−1ω). (3.8)

For a = α ∈ R we get

ĥα(ω) =
1

|α|4 ĥ
(ω

α

)

, (3.9)

and for a ∈ H, |a| = 1, we get

ĥa(ω) = ĥ(aω), (3.10)

because for a ∈ H, |a| = 1, we have ã−1 = a. Using relationship (3.7) and left
linearity we arrive at the QDFT of (3.6)

|a|−4ĥ(ã−1ω) = bĥ(ω), (3.11)

or equivalently

ĥ(ã−1ω) = |a|4bĥ(ω), (3.12)

which seems neither less nor more complicated to solve than the original
Eq. (3.6). But note, that for a ∈ H, |a| = 1, Eqs. (3.6) and (3.12) become
identical, because (3.12) then reads

ĥ(aω) = bĥ(ω), (3.13)

i.e. then (3.6) is invariant under the QDFT operator.
An application of (3.7) is the four-dimensional inversion at the origin

x → −x results in

ĥ−1(ω) = ĥ(−ω). (3.14)

The QDFT can separate the two components of a “complex” signal f : H →
R + iR, f(x) = fr(x) + ifi(x), into even and odd components with respect
to the inversion x → −x. Let

f(x) = fr(x) + ifi(x) = fe
r (x) + fo

r (x) + i(fe
i (x) + fo

i (x)), (3.15)
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with

fe
r (−x) = fe

r (x) =
1
2
(fr(x) + fr(−x)),

fo
r (−x) = −fo

r (x) =
1
2
(fr(x) − fr(−x)),

fe
i (x) = fe

i (−x), fo
i (x) = −fo

i (x). (3.16)

Using the steerability of the QDFT (3.1) we select for I = j (we could also
set I = k or any other pure quaternion ⊥ i) and have by linearity

f̂(ω) = f̂e
r (ω) + f̂o

r (ω) + i(f̂e
i (ω) + f̂o

i (ω))

=
∫

H

fe
r (x) cos(x · ω) d4ω + j

∫

H

fo
r (x) sin(x · ω) d4ω

+i

∫

H

fe
i (x) cos(x · ω) d4ω + k

∫

H

fo
i (x) sin(x · ω) d4ω. (3.17)

Compare [26] for a similar approach to the symmetry analysis of signals
f : R → C.

4. Properties of the QDFT

Properties of the QDFT that can easily be established are inversion

h(x) =
1

(2π)2

∫

H

ĥ(x)e+Ix·ω d4ω, (4.1)

a shift theorem for g(x) = h(x − a), constant a ∈ H,

ĝ(ω) = ĥ(ω)e−Ia·ω, (4.2)

and a modulation theorem for m(x) = h(x)eIx·ω0 , constant ω0 ∈ H,

m̂(ω) = ĥ(ω − ω0). (4.3)

Linear combinations with constant quaternion coefficients α, β ∈ H from
the right lead due to (2.24) to

F{hα + gβ} = ĥ(ω)α+ + ĥ(−ω)α− + ĝ(ω)β+ + ĝ(−ω)β−. (4.4)

We define gl(x) = ∂xl
h(x), l ∈ {r, i, j, k} for the partial derivative of the

signal function h and obtain its QDFT as

ĝl(ω) = ĥ(ω)Iωl. (4.5)

For example for l = r we obtain

∂̂xr
h(ω) = ωrĥ(ω)I. (4.6)

This leads to the QDFT of the derivative operators (2.20) and (2.21)

̂

∂̃mh(ω) = ωmĥ(ω)Im, ̂∂mh(ω) = ω̃mĥ(ω)Im, m ∈ N. (4.7)
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Applying the derivative operators from the right to the signal function h we
further obtain

̂

h∂̃m(ω) = ̂hωm(ω)Im, ̂h∂m(ω) = ̂hω̃m(ω)Im, m ∈ N. (4.8)

QDFT transformations of the Dirac operator D applied from the left
and right, respectively, give

D̂mh(ω) = ωmĥ(ω)Im, ĥDm(ω) = ̂hωm(ω)Im, m ∈ N. (4.9)

where the pure quaternion part of the quaternion frequency ω is ω = ω −ωr.
The QDFT of m-fold powers of coordinates xl, l ∈ {r, i, j, k}, m ∈ N,

times the signal function h leads to (dual to (4.5))

̂xm
l h(ω) = ∂m

ωl
ĥ(ω)Im. (4.10)

For example for l = r we obtain

̂xrh(ω) = ∂ωr
ĥ(ω)I. (4.11)

If P (xr, xi, xj , xk) =
∑

mr,mi,mj ,mk
αmr,mi,mj ,mk

xmr
r xmi

i x
mj

j xmk

k , with
quaternion coefficients αmr,mi,mj ,mk

∈ H, is a polynomial of the four co-
ordinates {xr, xi, xj , xk}, then the QDFT yields

F{P (xr, xi, xj , xk)h}(ω)

=
∑

mr,mi,mj ,mk

αmr,mi,mj ,mk
∂mr

ωr
∂mi

ωi
∂mj

ωj
∂mk

ωk
ĥ(ω)Imr+mi+mj+mk .

(4.12)

For example for P (x) = a · x = arxr + aixi + ajxj + akxk we obtain

F{(a · x)h}(ω) = (a · ∂̃ω)ĥ(ω)I, (4.13)

with ∂̃ω = ∂ωr
+∂ωi

i+∂ωj
j+∂ωk

k and a · ∂̃ω = ar∂ωr
+ai∂ωi

+aj∂ωj
+ak∂ωk

.
We have the dual to (4.12) result that

F{P (∂xr
, ∂xi

, ∂xj
, ∂xk

)h}(ω)

=
∑

mr,mi,mj ,mk

αmr,mi,mj ,mk
ωr

mrωi
miωj

mjωk
mk ĥ(ω)Imr+mi+mj+mk ,

(4.14)

with the special case (dual to (4.13))

F{(a · ∂̃)h}(ω) = (a · ω)ĥ(ω)I. (4.15)

Note that (4.14) shows how the QDFT (with t = x0, x1 = xi, x2 = xj ,
x3 = xk) can be used to treat important partial differential equations in
physics, e.g. the heat equation, wave equation, Klein–Gordon equation, the
Maxwell equations in vacuum, free particle Schrödinger and Dirac equations
[36–39].

Equation (4.12) leads further (dual to left side of (4.7)) to,

̂xh(ω) = ∂̃ĥ(ω)I, ̂xmh(ω) = ∂̃mĥ(ω)Im, m ∈ N. (4.16)
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Multiplying instead with the quaternion conjugate x̃ we obtain (dual to right
side of (4.7))

̂x̃h(ω) = ∂ĥ(ω)I, ̂x̃mh(ω) = ∂mĥ(ω)Im, m ∈ N. (4.17)

Taking only the pure vector part of x, x = x − xr we obtain (dual to (4.9))

̂xh(ω) = Dωĥ(ω)I, ̂xmh(ω) = Dm
ω ĥ(ω)Im, m ∈ N, (4.18)

where Dω = ∂ωi
i + ∂ωj

j + ∂ωk
k.

We further obtain the following QDFT Plancherel identity, which ex-
presses, that the quaternion valued inner product (2.35) of two quaternion
domain module functions f, g ∈ L2(H; H) is given by the quaternion valued
inner product of the corresponding QDFTs f̂ and ĝ

(f, g) = (f̂ , ĝ). (4.19)

As corollaries we get the corresponding QDFT Plancherel identity for the
scalar inner product of Eq. (2.37)

〈f, g〉 = 〈f̂ , ĝ〉, (4.20)

as well as the QDFT Parseval identity

‖f‖ = ‖f̂‖. (4.21)

The QDFT Parseval identity means, that the QDFT preserves the signal
energy when applied in signal processing.

We now define analogous to (2.41) for unit norm signals f ∈ L2(H; H),
‖f‖ = 1, the effective spectral width (or band width) of f in the direction of
the unit quaternion a ∈ H, |a| = 1, as the square root of the variance of the
frequency spectrum of f along the a-axis

Δωa = ‖(ω · a)f̂‖ =

√

√

√

√

∫

H

(ω · a)2|f̂(ω)|2 d4ω. (4.22)

We further define the effective spectral width (frequency uncertainty) as the
square root of the variance of the energy distribution of f̂

Δω = ‖ωf̂‖ =

√

√

√

√

∫

H

|ω|2|f̂(ω)|2 d4ω. (4.23)

We can now state the directional uncertainty principle for the QDFT of unit
norm signals f ∈ L2(H; H), ‖f‖ = 1 as

ΔxaΔωb ≥ |a · b|
2

. (4.24)

The uncertainty principle takes the form

ΔxΔω ≥ 1. (4.25)

Equality holds in (4.24) and (4.25) for Gaussian signals

f(x) = Ce−c|x|2 , 0 < c ∈ R, (4.26)

with constant factor C ∈ H.
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The QDFT of the convolution (2.40) of two functions f, g ∈ L2(H; H)
results in

(̂f ∗ g)(ω) = (2π)2[f̂(ω)ĝ−(ω) + f̂(−ω)ĝ+(ω)]. (4.27)

Note that for ĝ+(ω) = 0 or if f̂(ω) = f̂(−ω) we obtain

(̂f ∗ g)(ω) = (2π)2f̂(ω)ĝ(ω). (4.28)

The QDFT of the convolution of the two functions f, g ∈ L2(H; H) in opposite
order results in

(̂g ∗ f)(ω) = (2π)2[ĝ(ω)f̂−(ω) + ĝ(−ω)f̂+(ω)], (4.29)

and is usually different from (4.27), because of the general non-commutativity
of f, g ∈ L2(H; H).

An application of the QDFT convolution (4.27) is, e.g., the fast con-
volution (via simple multiplication of the QDFTs in the Fourier domain)
of a quaternion domain signal f : H → H with a pair of complex filters
g1(x) = g1,r(x) + g1,i(x)i = g−(x), g2(x) = g2,r(x) + g2,i(x)i = g+(x)(−j),
choosing I = i in (3.1).

Next, we study the covariance properties of the QDFT under orthogo-
nal transformations. We find that a three-dimensional rotation (2.25) of the
argument g(x) = h(a−1xa) leads to

ĝ(ω) = ĥ(a−1ωa). (4.30)

The reflection at the pointwise invariant real scalar line x → x̃, g(x) = h(x̃)
gives

ĝ(ω) = −ĥ(ω̃). (4.31)

The reflection at the three-dimensional hyperplane of pure quaternions x →
−x̃, g(x) = h(−x̃) results in

ĝ(ω) = −ĥ(−ω̃). (4.32)

The reflection at the pointwise invariant line through a ∈ H, |a| = 1, x → ax̃a,
g(x) = h(ax̃a) gives

ĝ(ω) = −ĥ(ã−1ω̃ã−1) = −ĥ(aω̃a), (4.33)

because ã−1 = a for |a| = 1. The reflection at the three-dimensional hyper-
plane orthogonal to the line through a ∈ H, |a| = 1, x → −ax̃a, g(x) =
h(−ax̃a) results in

ĝ(ω) = −ĥ(−aω̃a). (4.34)

A general four-dimensional rotation in R
4, x → axb, a, b ∈ H, |a| = |b| = 1,

g(x) = h(axb) leads to

ĝ(ω) = ĥ(aωb). (4.35)

We have thus studied the behavior of the QDFT under all point group trans-
formations in three and four dimensions (reflections, rotations, rotary re-
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flections, inversions), which are of importance in crystallography. We note,
that quaternions have already been employed for the description of crystal-
lographic symmetry in [2] and for the description of root systems of finite
groups in three and four dimensions in [13].

5. Conclusion

We first reviewed quaternion algebra, its expression in terms of matrices
and vectors, quaternion derivatives and the Dirac derivative, the orthogo-
nal planes split of quaternions with respect to a single unit pure quaternion,
and the description of three-dimensional and four-dimensional orthogonal
transformations. Then we defined quaternion domain functions, the quater-
nion module L2(H; H), convolution of quaternion domain functions, and their
effective spatial width (uncertainty).

We established the steerable quaternion domain Fourier transform (QD-
FT) with a free choice a single constant pure unit quaternion in the kernel.
We examined the properties of left and right linearity, orthogonal plane split
property, and gave an example of the QDFT applied to a functional equa-
tion. Further properties studied are the inverse QDFT, shift and modulation
theorems, the QDFT of quaternion coordinate polynomials4 multiplied with
quaternion domain signals, as well as products with powers of the signal argu-
ment x, and the corresponding dual properties (polynomials of partial differ-
ential operators, quaternion derivatives and Dirac derivatives). We found that
the QDFT can separate the symmetry components of complex signals, and
can be applied to many partial differential equations in physics. Quaternion
non-commutativity means, that multiplication from the right and left need
to be distinguished carefully. Next we established Parseval and Plancherel
identities, uncertainty principles and convolution properties for the QDFT.
The convolution allows e.g. fast filtering with pairs of complex filters. Fi-
nally we studied the covariance properties of the QDFT under orthogonal
transformations of the signal arguments, which may a.o. be of importance
for applications in crystallography.

We expect that this new quaternionic Fourier transformation5 may find
rich applications in mathematics (e.g. higher dimensional holomorphic func-
tions [17]) and physics, including relativity and spacetime physics, in three-
dimensional color field processing, neural signal processing, space color video
processing, crystallography, quaternion analysis, and for the solution of many
types of quaternionic differential equations. We further expect that the QDFT
can be successfully extended to localized transforms, e.g., quaternion domain
window Fourier transforms, and continuous quaternionic wavelets and quater-

4 Note that real and complex polynomial generated moment invariants have recently been
successfully used for translation, rotation and scale invariant normalized moment descrip-
tion of vector field features, including flow fields [6–8].
5 A review of previous types of quaternionic Fourier transforms and their applications can
be found in [9].
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nionic ridgelets [11]6. Further research should be done into operator versions
of the QDFT, and its related linear canonical transforms, which may open
up many further areas of interesting applications, including quantum physics.
Especially for applications, discretization and fast implementation with pairs
of complex fast Fourier transforms will be of great interest.
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Variablen. Commun. Math. Helv. 10, 327–342 (1937/1938)

[33] Sudbery, E.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85(2), 199–
225 (1979)

[34] Wikipedia: Texture (crystalline). http://en.wikipedia.org/wiki/
Texture (crystalline). Accessed 15 May 2015

[35] Wikipedia: Quaternions. http://en.wikipedia.org/wiki/Quaternion. Accessed
28 April 2014

[36] Wikipedia, Partial Differential Equations. http://en.wikipedia.org/wiki/
Partial differential equation. Accessed 10 June 2014

[37] Wikipedia, Maxwell Equations. http://en.wikipedia.org/wiki/Maxwell
equations. Accessed 10 June 2014

[38] Wikipedia, Schrödinger Equation. http://en.wikipedia.org/wiki/Schroedinger
equation. Accessed 10 June 2014

[39] Wikipedia, Dirac Equation. http://en.wikipedia.org/wiki/Dirac equation. Ac-
cessed 10 June 2014

Eckhard Hitzer
Department of Material Science
College of Liberal Arts
International Christian University
Mitaka 181-8585
Japan
e-mail: hitzer@icu.ac.jp

Received: December 13, 2014.

Accepted: October 16, 2015.

http://dx.doi.org/10.1007/978-3-0348-0603-9_2
http://dx.doi.org/10.1007/978-3-0348-0603-9_2
http://arxiv.org/abs/1306.2157
http://www.biblegateway.com/passage/?search=Psalm%20145&version=NIV
http://www.biblegateway.com/passage/?search=Psalm%20145&version=NIV
http://en.wikipedia.org/wiki/Texture_(crystalline)
http://en.wikipedia.org/wiki/Texture_(crystalline)
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Maxwell_equations
http://en.wikipedia.org/wiki/Maxwell_equations
http://en.wikipedia.org/wiki/Schroedinger_equation
http://en.wikipedia.org/wiki/Schroedinger_equation
http://en.wikipedia.org/wiki/Dirac_equation

	The Quaternion Domain Fourier Transform and its Properties
	Abstract
	1. Introduction
	2. Definition and Properties of Quaternions mathbbH
	2.1. Basic Facts About Quaternions
	2.2. Quaternions and Reflections and Rotations in Three and Four Dimensions
	2.3. Quaternion Domain Functions

	3. The Quaternion Domain Fourier Transform
	4. Properties of the QDFT
	5. Conclusion
	Acknowledgements
	References




