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Abstract. We show that a semi-commutative Galois extension of a uni-
tal associative algebra can be endowed with the structure of a graded
q-differential algebra. We study the first and higher order noncommuta-
tive differential calculus of semi-commutative Galois extension induced
by the graded q-differential algebra. As an example we consider the
quaternions which can be viewed as the semi-commutative Galois ex-
tension of complex numbers.
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1. Introduction

Let Ã be an associative unital C-algebra and A be its subalgebra. Assume
that there is an element τ ∈ Ã which does not belong to subalgebra A and
τN = 1, where N ≥ 2 is an integer and 1 is the identity element of Ã . A non-
commutative Galois extension of A by means of τ is the smallest subalgebra
A [τ ] ⊂ Ã such that A ⊂ A [τ ], and τ ∈ A [τ ]. A notion of noncommutative
Galois extension of associative unital complex algebra was introduced and
studied in the series of papers [10–13]. It should be mentioned here that in
the papers [12,13] a concept of binary and ternary noncommutative Galois
extension was studied in the relation with a ternary Clifford algebra, and
it was shown there that these structures can be applied to theoretical ele-
mentary particle physics in order to construct an elegant algebraic model for
quarks.

A concept of a graded q-differential algebra can be viewed as a result of
development of idea of transition from the equation d2 = 0 to the more gen-
eral equation dN = 0, where d is a differential of graded differential algebra
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and N ≥ 2 is an integer. This idea was proposed and developed with the help
of primitive Nth root of unity in the paper [8], where the author introduced
the notions of N -complex and generalized cohomologies of N -complex. Later
this idea was developed in the paper [7], where the authors introduced and
studied a notion of graded q-differential algebra. It was shown [2–5] that a
notion of a graded q-differential algebra can be applied in noncommutative
geometry in order to construct a noncommutative generalization of differen-
tial forms and a concept of connection.

In this paper we apply the methods of graded q-differential algebras to
a semi-commutative Galois extension of an associative unital C-algebra. We
show that a semi-commutative Galois extension can be endowed with the
structure of graded q-differential algebra. We study the first and higher order
noncommutative differential calculus induced by the N -differential of graded
q-differential algebra. We introduce a derivative and differential with the help
of first order noncommutative differential calculus developed in the papers
[1,6].

2. Graded q-Differential Algebra Structure
of Noncommutative Galois Extension

In this section our aim is to show that given a noncommutative Galois exten-
sion we can construct a graded q-differential algebra, where q is a primitive
Nth root of unity.

Let A = ⊕k∈ZN
A k = A 0⊕A 1⊕· · ·⊕A N−1 be a ZN -graded associative

unital C-algebra with identity element denoted by 1. Obviously the subspace
A 0 of elements of degree 0 is the subalgebra of a graded algebra A . Every
subspace A k of homogeneous elements of degree k ≥ 0 can be viewed as the
A 0-bimodule.

Let us remind several basic notions of q-calculus, where q is a complex
number. The graded q-commutator of two homogeneous elements u, v ∈ A
is defined by

[v, u]q = v u − q|v||u|u v.

A graded q-derivation of degree m of a graded algebra A is a linear mapping
d : A → A of degree m, i.e. d : A i → A i+m, which satisfies the graded
q-Leibniz rule

d(u v) = d(u) v + qmlu d(v), (2.1)

where u is a homogeneous element of degree l, i.e. u ∈ A l. A graded q-
derivation d of degree m is called an inner graded q-derivation of degree m
induced by an element v ∈ A m if

d(u) = [v, u]q = v u − qmlu v, (2.2)

where u ∈ A l.
Now let q be a primitive Nth root of unity, for instant q = e2πi/N . Then

qN = 1, 1 + q + · · · + qN−1 = 0.
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A graded q-differential algebra is a graded associative unital algebra A en-
dowed with a graded q-derivation d of degree one which satisfies dN = 0. In
what follows a graded q-derivation d of a graded q-differential algebra A will
be referred to as a graded N -differential. Thus a graded N -differential d of a
graded q-differential algebra is a linear mapping of degree one which satisfies
a graded q-Leibniz rule and dN = 0. It is useful to remind that a graded
differential algebra is a graded associative unital algebra equipped with a
differential d which satisfies the graded Leibniz rule and d2 = 0. Hence it is
easy to see that a graded differential algebra is a particular case of a graded
q-differential algebra when N = 2, q = −1, and in this sense we can consider
a graded q-differential algebra as a generalization of a concept of graded dif-
ferential algebra. Given a graded associative algebra A we can consider the
vector space of inner graded q-derivations of degree one of this algebra and
put the question: under what conditions an inner graded q-derivation of de-
gree one is a graded N -differential? The following theorem gives answer to
this question.

Theorem 2.1. Let A be a ZN -graded associative unital C-algebra and d(u) =
[v, u]q be its inner graded q-derivation induced by an element v ∈ A 1. The
inner graded q-derivation d is the N -differential, i.e. it satisfies dN = 0, if
and only if vN = ±1.

Our aim in this section is to show that we can apply this theorem to a
noncommutative Galois extension to construct a graded q-differential algebra
with N -differential satisfying dN = 0. First of all we remind a notion of a
noncommutative Galois extension [10–13].

Definition 2.2. Let Ã be an associative unital C-algebra and A ⊂ Ã be its
subalgebra. If there exist an element τ ∈ Ã and an integer N ≥ 2 such that

(i) τN = ±1,
(ii) τk /∈ A for any integer 1 ≤ k ≤ N − 1, then the smallest subalgebra

A [τ ] of Ã which satisfies
(iii) A ⊂ A [τ ],
(iv) τ ∈ A [τ ],
is called the noncommutative Galois extension of A by means of τ .

In this paper we will study a particular case of a noncommutative Galois
extension which is called a semi-commutative Galois extension [13]. We will
give a definition of a semi-commutative Galois extension with the help of left
and right A -modules generated by τ . Let A 1

l [τ ] and A 1
r [τ ] be respectively

the left and right A -modules generated by τ . Obviously we have

A 1
l [τ ] ⊂ A [τ ], A 1

r [τ ] ⊂ A [τ ].

Definition 2.3. A noncommutative Galois extension A [τ ] is said to be a right
(left) semi-commutative Galois extension if A 1

r [τ ] ⊂ A 1
l [τ ] (A 1

l [τ ] ⊂ A 1
r [τ ]).

If A 1
r [τ ] ≡ A 1

l [τ ] then a noncommutative Galois extension will be referred to
as a semi-commutative Galois extension, and in this case A 1[τ ] = A 1

r [τ ] =
A 1

l [τ ] is the A -bimodule.
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It is well known that a bimodule over an associative unital algebra A
freely generated by elements of its basis induces the endomorphism from an
algebra A to the algebra of square matrices over A . In the case of semi-
commutative Galois extension we have only one generator τ and it induces
the endomorphism of an algebra A . Indeed let A [τ ] be a semi-commutative
Galois extension and A 1[τ ] be its A -bimodule generated by [τ ]. Any ele-
ment of the right A -module A 1

r [τ ] can be written as τ x, where x ∈ A . On
the other hand A [τ ] is a semi-commutative Galois extension which means
A 1

r [τ ] ≡ A 1
l [τ ], and hence each element x τ of the left A -module can be

expressed as τ φτ (x), where φτ (x) ∈ A . It is easy to verify that the linear
mapping φ : x → φτ (x) is the endomorphism of subalgebra A , i.e. for any
elements x, y ∈ A we have φτ (xy) = φτ (x)φτ (y). This endomorphism will
play an important role in our differential calculus, and in what follows we
will also use the notation φτ (x) = xτ . Thus

u τ = τ φτ (x), u τ = τ uτ .

It is clear that

φN
τ = idA , uτN = u,

because for any u ∈ A it holds u τN = τN φN (u) and taking into account
that τN = 1 we get φN

τ (u) = u.

Proposition 2.4. Let A [τ ] be a semi-commutative Galois extension of A by
means of τ , and A k

l [τ ],A k
r [τ ] be respectively the left and right A -modules

generated by τk, where k = 1, 2, . . . , N − 1. Then A k
l [τ ] ≡ A k

r [τ ] = A k[τ ] is
the A -bimodule, and

A [τ ] = ⊕N−1
k=0 A k[τ ] = A 0[τ ] ⊕ A 1[τ ] ⊕ · · · ⊕ A N−1[τ ],

where A 0[τ ] ≡ A .

Evidently the endomorphism of A induced by the A -bimodule struc-
ture of Ak[τ ] is φk, where φ : A → A is the endomorphism induced by the
A -bimodule A 1[τ ]. We will also use the notation φk(x) = xτk .

It follows from Proposition 2.4 that a semi-commutative Galois exten-
sion A [τ ] has a natural ZN -graded structure which can be defined as follows:
we assign degree zero to each element of subalgebra A , degree 1 to τ and
extend this graded structure to a semi-commutative Galois extension A [τ ]
by determining the degree of a product of two elements as the sum of degree
of its factors. The degree of a homogeneous element of A [τ ] will be denoted
by | |. Hence |u| = 0 for any u ∈ A and |τ | = 1.

Proposition 2.5. Let q be a primitive N th root of unity. A semi-commutative
Galois extension A [τ ], equipped with the ZN -graded structure described above
and with the inner graded q-derivation d = [τ, ]q induced by τ , is the graded
q-differential algebra, and d is its N -differential. For any element ξ of semi-
commutative Galois extension A [τ ] written as a sum of elements of right
A -modules A k[τ ]
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ξ =
N−1∑

k=0

τk uk = 1u0 + τ u1 + τ2 u2 + · · · τN−1 uN−1, uk ∈ A ,

it holds

dξ =
N−1∑

k=0

τk+1(uk − qk (uk)τ ), (2.3)

where uk → (uk)τ is the endomorphism of A induced by the bimodule struc-
ture of A 1[τ ].

3. First Order Differential Calculus of Noncommutative Galois
Extension

In this section we develop a first order differential calculus of noncommutative
Galois extension induced by the structure of graded q-differential algebra
and its N -differential d. Let us remind that in noncommutative geometry
a differential calculus is a triple (A , d,M ), where A is a unital associative
algebra, M is an A -bimodule, d is a linear mapping d : A → M which
satisfies Leibniz rule. If this calculus is a coordinate calculus [6] then one can
introduce the partial derivatives induced by this calculus.

Let A [τ ] be a semi-commutative Galois extension of an algebra A by
means of τ . Thus we have an algebra A and A -bimodule A 1[τ ]. Next we have
the N -differential d : A [τ ] → A [τ ] induced by τ , and if we restrict this N -
differential to the subalgebra A of Galois extension A [τ ] then d : A → A 1[τ ]
satisfies the Leibniz rule. Consequently we have the first order differential
calculus which can be written as the triple (A , d,A 1[τ ]). In order to describe
the structure of this first order differential calculus we will need the vector
space endomorphism Δ : A → A defined by

Δu = u − uτ , u ∈ A .

For any elements u, v ∈ A this endomorphism satisfies

Δ(u v) = Δ(u) v + uτ Δ(v).

Let us assume that there exists an element x ∈ A such that the element
Δx ∈ A is invertible, and the inverse element will be denoted by Δx−1.
The differential dx of an element x can be written in the form dx = τ Δx
which clearly shows that dx has degree one, i.e. dx ∈ A 1[τ ], and hence
dx can be used as generator for the right A -module A 1[τ ]. Let us denote
by φdx : u → φdx(u) = udx the endomorphism of A induced by bimodule
structure of A 1[τ ] in the basis dx. Then

udx = Δx−1 uτ Δx = AdΔ x uτ . (3.1)

Definition 3.1. For any element u ∈ A we define the right derivative du
dx ∈ A

(with respect to x) by the formula

du = dx
du

dx
. (3.2)
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Analogously one can define the left derivative with respect to x by means
of the left A -module structure of A 1[τ ]. Further we will only use the right
derivative which will be referred to as the derivative and often will be denoted
by u′

x. Thus we have the linear mapping
d

dx
: A → A ,

d

dx
: u 	→ u′

x.

Proposition 3.2. For any element u ∈ A we have
du

dx
= Δx−1 Δu. (3.3)

The derivative (3.2) satisfies the twisted Leibniz rule, i.e. for any two elements
u, v ∈ A it holds

d

dx
(u v) =

du

dx
v + φdx(u)

dv

dx
=

du

dx
v + AdΔ x uτ

dv

dx
.

We have constructed the first order differential calculus with one vari-
able x, and it is natural to study a transformation rule of the derivative of this
calculus if we choose another variable. From the point of view of differential
geometry we will study a change of coordinate in one dimensional space. Let
y ∈ A be an element of A such that Δ y = y − yτ is invertible.

Proposition 3.3. Let x, y be elements of A such that Δx,Δ y are invertible
elements of A . Then

dy = dx y′
x,

d

dx
= y′

x

d

dy
, dx = dy x′

y,
d

dy
= x′

y

d

dx
,

where x′
y = (y′

x)−1.

Indeed we have dy = τ Δ y, dx = τ Δx. Hence τ = dx Δx−1 and

dy = dx (Δx−1Δ y) = dx y′
x.

If u is any element of A the for the derivatives we have
du

dx
= Δx−1 Δu = (Δx−1 Δ y) (Δ y−1 Δu) = y′

x

du

dy
.

As an example of the structure of graded q-differential algebra induced by
dτ on a semi-commutative Galois extension we can consider the quaternion
algebra H. The quaternion algebra H is associative unital algebra generated
over R by i, j, k which are subjected to the relations

i2 = j2 = k2 = −1, i j = −j i = k, j k = −k j = i, k i = −i k = j,

where 1 is the unity element of H. Given a quaternion

q = a0 1 + a1 i + a2 j + a3 k

we can write it in the form q = (a0 1 + a2 j) + i (a1 + a3 j). Hence if we
consider the coefficients of the previous expression z0 = a0 1 + a2 j, z1 =
a1 + a3 j as complex numbers then q = z0 1 + i z1 which clearly shows that
the quaternion algebra H can be viewed as the semi-commutative Galois
extension C[i]. Evidently in this case we have N = 2, q = −1, and Z2-graded
structure defined by |1| = 0, |i| = 1. Hence we can use the terminology of
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superalgebras. It is easy to see that the subspace of odd elements (degree
1) can be considered as the bimodule over the subalgebra of even elements
a1 + b j and this bimodule induces the endomorphism φ : C → C, where
φ(z) = z̄. Let d be the differential of degree one (odd degree operator) induced
by i. Then making use of (2.3) for any quaternion q we have

dq = d(z0 1 + i z1) = −(z̄1 + z1)1.

Obviously d2q = 0.

4. Higher Order Differential Calculus

Our aim in this section is to develop a higher order differential calculus of a
semi-commutative Galois extension A [τ ]. This higher order differential cal-
culus is induced by the graded q-differential algebra structure. In Sect. 2 it is
mentioned that a graded q-differential algebra can be viewed as a generaliza-
tion of a concept of graded differential algebra if we take N = 2, q = −1. It is
well known that one of the most important realizations of graded differential
algebra is the algebra of differential forms on a smooth manifold. Hence we
can consider the elements of the graded q-differential algebra constructed by
means of a semi-commutative Galois extension A [τ ] and expressed in terms
of differential dx as noncommutative analogs of differential forms with ex-
terior differential d which satisfies dN = 0. In order to stress this analogy
we will consider an element x ∈ A as analog of coordinate, the elements
of degree zero as analogs of functions, elements of degree k as analogs of
k-forms, and we will use the corresponding terminology. It should be pointed
out that because of the equation dN = 0 there are higher order differentials
dx, d2x, . . . , dN−1x in this algebra of differential forms.

Before we describe the structure of higher order differentials forms it is
useful to introduce the polynomials Pk(x), Qk(x), where k = 1, 2, . . . , N . Let
us remind that Δx = x − xτ ∈ A . Applying the endomorphism τ we can
generate the sequence of elements

Δxτ = xτ − xτ2 ,Δxτ2 = xτ2 − xτ3 , . . . ,ΔxτN−1 = xτN−1 − x.

Obviously each element of this sequence is invertible. Now we define the
sequence of polynomials Q1(x), Q2(x), . . . , QN (x), where

Qk(x) = Δxτk−1Δxτk−2 . . . ΔxτΔx.

These polynomials can be defined by means of the recurrent relation

Qk+1(x) = (Qk(x))τΔx.

It should be mentioned that Qk(x) is the invertible element and

(Qk(x))−1 = Δx−1Δx−1
τ . . . Δx−1

τk−1 .

We define the sequence of elements P1(x), P2(x), . . . , PN (x) ∈ A by the re-
current formula

Pk+1(x) = Pk(x) − qk (Pk(x))τ , k = 1, 2, . . . , N − 1,
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and P1(x) = Δx. Clearly P1(x) = Q(x) and for the k = 2, 3 a straightforward
calculation gives

P2(x) = x − (1 + q)xτ + q xτ2 ,

P3(x) = x − (1 + q + q2)xτ + (q + q2 + q3)xτ2 − q3 xτ3 .

Proposition 4.1. If q is a primitive N th root of unity then there are the
identities

PN−1(x) + (PN−1(x))τ + · · · + (PN−1(x))τN−1 ≡ 0, PN (x) ≡ 0.

Now we will describe the structure of higher order differential forms. It
follows from the previous section that any 1-form ω, i.e. an element of A 1[τ ],
can be written in the form ω = dx u, where u ∈ A . Evidently d : A →
A 1[τ ], dω = dxu′

x. The elements of A 2[τ ] will be referred to as 2-forms. In
this case there are two choices for a basis for the right A -module A 2[τ ]. We
can take either τ2 or (dx)2 as a basis for A 2[τ ]. Indeed we have

(dx)2 = τ2 Q2(x).

It is worth mentioning that the second order differential d2x can be used as
the basis for A 2[τ ] only in the case when P2(x) is invertible. Indeed we have

d2x = τ2 P2(x), d2x = (dx)2 Q−1
2 (x)P2(x).

If we choose (dx)2 as the basis for the module of 2-forms A 2[τ ] then any
2-form ω can be written as ω = (dx)2 u, where u ∈ A . Now the differential
of any 1-form ω = dx u, where u ∈ A , can be expressed as follows

dω = (dx)2
(
q u′

x + Q−1
2 (x)P2(x)u

)
. (4.1)

It should be pointed out that the second factor of the right-hand side of
the above formula resembles a covariant derivative in classical differential
geometry. Hence we can introduce the linear operator D : A → A by the
formula

Du = q u′
x + Q−1

2 (x)P2(x)u, u ∈ A . (4.2)

If ω = dv, v ∈ A , i.e. ω is an exact form, then

dω = d2v = (dx)2 Dv′
x = (dx)2

(
q v′′

x + Q−1
2 (x)P2(x) v′

x

)
.

If we consider the simplest case N = 2, q = −1 then

d2v = 0, P2(x) ≡ 0, (dx)2 
= 0,

and from the above formula it follows that v′′
x = 0.

Proposition 4.2. Let A [τ ] be a semi-commutative Galois extension of algebra
A by means of τ , which satisfies τ2 = 1, and d be the differential of the graded
differential algebra induced by an element τ as it is shown in Proposition 2.5.
Let x ∈ A be an element such that Δx is invertible. Then for any element
u ∈ A it holds u′′

x = 0, where u′
x is the derivative (3.2) induced by d. Hence

any element of an algebra A is linear with respect to x.
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The quaternions considered as the noncommutative Galois extension of
complex numbers (Sect. 3) provides a simple example for the above proposi-
tion. Indeed in this case τ = i,A ≡ C, where the imaginary unit is identified
with j, (a1 + b j)τ = a1 − b j. Hence we can choose x = a1 + b j iff b 
= 0.
Indeed in this case Δx = x − xτ = a1 + b j − a1 + b j = 2b j, and Δx is
invertible iff b 
= 0. Now any z = c1 + d j ∈ A can be uniquely written in
the form z = c̃1 + d̃ x iff ∣∣∣∣

1 a
0 b

∣∣∣∣ = b 
= 0.

Thus any z ∈ A is linear with respect to x.
Now we will describe the structure of module of k-forms A k[τ ]. We

choose (dx)k as the basis for the right A -module A k[τ ], then any k-form ω
can be written ω = (dx)k u, u ∈ A . We have the following relations

(dx)k = τk Qk(x), dkx = τk Pk(x).

In order to get a formula for the exterior differential of a k-form ω we need the
polynomials Φ1(x),Φ2(x), . . . ,ΦN−1(x) which can be defined by the recurrent
relation

Φk+1(x) = AdΔx(Φk) + qk−1Φ1(x), k = 1, 2, . . . , N − 1, (4.3)

where Φ1(x) = Q−1
2 (x)P2(x). These polynomials satisfy the relations d(dx)k

= (dx)k+1Φk(x) and given a k-form ω = (dx)k u, u ∈ A we find its exterior
differential as

dω = (dx)k+1
(
qk u′

x + Φk(x)u
)

= (dx)k+1 D(k)u.

The linear operator D(k) : A → A , k = 1, 2, . . . , N − 1 introduced in the
previous formula has the form

D(k)u = qk u′
x + Φk(x)u, (4.4)

and, as it was mentioned before, this operator resembles a covariant derivative
of classical differential geometry. It is easy to see that the operator (4.2) is
the particular case of (4.4), i.e. D(1) ≡ D.

5. Conclusions

A graded q-differential algebra structure arises in a very natural way in the
case of a semi-commutative Galois extension. The first order differential cal-
culus of this algebra allows us to introduce the derivative and construct the
noncommutative analog of differential forms with a differential satisfying
dN = 0. Though we have an analogy with differential forms it should be
mentioned that the calculus of differential forms with a differential dN = 0
considered in the present paper has some differences from the classical dif-
ferential forms on a smooth manifold. First of all if we consider the simplest
case of our calculus when N = 2, q = −1 then d2 = 0 not because of skew-
commutativity of differentials in a wedge product (and the property of second
order derivatives which do not depend on the order of differentiation), but
simply because of the fact that the second order derivative of any function
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of our calculus is zero, i.e. we have only linear functions (Proposition 4.2).
Secondly a peculiar property of our calculus is the appearance of higher order
differentials of “coordinate” dx, d2x, . . . , dN−1x. As it was mentioned before
in the case of these higher order differentials a differential d induces the op-
erator (4.2, 4.4) which is very similar to a covariant derivative of classical
differential geometry. It is worth to mention here that an analogous result
was obtained in the paper [1], where the authors constructed analogs of dif-
ferential forms on a smooth manifold with exterior differential d3 = 0, and
it was shown that in the case of second order differentials one should use a
covariant derivative.

A reduced quantum plane can be viewed as the algebra generated by
x, y which obey the relations x y = q y x, xN = yN = 1. It should be
pointed out that this algebra is the particular case of a generalized Clifford
algebra. Obviously a reduced quantum plane can be considered as the semi-
commutative Galois extension of the algebra generated by x by means of y.
We intend to apply the approach developed in the present paper to a reduced
quantum plane to study it with the help of graded q-differential algebra and
the corresponding calculus of analogs of differential forms.
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