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Abstract. We extend known results about commutative C*-algebras gen-
erated Toeplitz operators over the unit ball to the supermanifold setup.
This is obtained by constructing commutative C*-algebras of super
Toeplitz operators over the super ball B? 9 and the super Siegel do-
main UP!? that naturally generalize the previous results for the unit ball
and the Siegel domain. In particular, we obtain one such commutative
C™-algebra for each even maximal Abelian subgroup of automorphisms
of the super ball.
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1. Introduction

In [4] it was proved, under mild conditions, that a C*-algebra generated by
Toeplitz operators is commutative on each weighted Bergman space of the
unit disk if and only if there is a pencil of hyperbolic geodesics of the unit disk
such that the symbols of the Toeplitz operators are constant on the cycles of
this pencil. In fact, the cycles are the orbits of a one-parameter subgroup of
isometries for the hyperbolic geometry on the unit disk. We note that there
are three different non-conjugate model classes of such subgroups: elliptic,
parabolic and hyperbolic. This provides us with the following scheme: the
C*-algebra generated by Toeplitz operators is commutative on each weighted
Bergman space on the unit disk if and only if there is a maximal Abelian
subgroup of Mobius transformations such that the symbols of the Toeplitz
operators are invariant under the action of this subgroup.

A generalization of this scheme was given in [8-10]. The generalization
is obtained by considering a maximal Abelian subgroup of biholomorphisms
of the unit ball, then the C*-algebra generated by the Toeplitz operators
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whose symbols are invariant under the action of such subgroup is commuta-
tive on each weighted Bergman space. It was also noted that there are five
different non-conjugate model classes of such subgroups: quasi-elliptic, quasi-
parabolic, quasi-hyperbolic, nilpotent, and quasi-nilpotent. We refer to the
above mentioned works for further details.

On the other hand, the general theory of non-perturbative quantization
for a class of Hermitian symmetric supermanifolds (a particular case is the
super ball) was developed in [2,3]. Such quantization is based on the notion
of super Toeplitz operator defined on a suitable Z,-graded Hilbert space of
superholomorphic functions that effectively defines super Bergman spaces.
These quantized supermanifolds yield the C*-algebra generated by such su-
per Toeplitz operators. Along these lines, in [5] it is given an exhaustive
description of the super Toeplitz operators over the super ball using classical
Toeplitz-type operators.

Recently and quite unexpectedly it was observed in [6,7,11] that there
are five different non-conjugate classes of maximal abelian supergroups of
isomorphisms of the super disk labeled by the names super-elliptic, quasi-
elliptic, super-parabolic, quasi-parabolic and quasi-hyperbolic. In these works
it is proved that the C*-algebra of super Toeplitz operators whose symbols
are invariant under the action of one of these subgroups is commutative on
each weighted super Bergman space.

The main goal of this work is to extend the previous results and theory
to the case of the super unit ball B?1? and its unbounded realization UP!?, the
super Siegel domain.

Hence, we introduce in Sect. 2 the super Bergman space for the super
Siegel domain and prove its unitary equivalence with the super Bergman
space of the super ball. This allows us to use the known theory to compute
the super Bergman projection and define the super Toeplitz operators on the
super Siegel domain.

With the above setup, we obtain the full list of even maximal Abelian
subgroups of the group of automorphisms of the super unit ball. Our clas-
sification is based on the analysis of the corresponding maximal Abelian
subalgebras that are described in Theorem 3.2. This is used in Sect. 3 to give
an explicit description of the actions of the even maximal Abelian subgroups
on the super unit ball. Most of these are easier to present in the super Siegel
domain. There exists 5 non-equivalent types of even maximal Abelian sub-
groups for our supermanifold setup, one of them depending on a parameter
for a total of n+2 different conjugacy classes. We label the five types with the
names quasi-elliptic, quasi-parabolic, nilpotent, quasi-hyperbolic, and quasi-
nilpotent.

Section 4 introduces a super Bargmann transform corresponding to each
one of the conjugacy classes of even maximal Abelian subgroups mentioned
above. These super Bargmann transforms generalize those presented in [9].
At the same time, our transforms allow us to prove that the C*-algebra
generated by the Toeplitz operators whose symbols are invariant by one of
the even maximal Abelian subgroups is commutative. This is obtained in
Sect. 6 and is thus the core of this work. The relevant results, for each type
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of even maximal Abelian subgroups, are Theorems 6.1, 6.2, 6.3, 6.4, 6.5. We
note that our results have the same strength of those for the classical case
in that our approach using a super Bargmann transform allows us to realize
the commuting Toeplitz operators in each case as multiplication operators.

2. Weighted Super Bergman Spaces and Projections
For p > 1, let O(BP) denote the algebra of holomorphic functions ¢ (21, . . ., 2p)
on the open unit ball
B = {z=(21,..,2) : |z = |21+ +|2* < 1}
in CP.
For p > 1, let O(UP) denote the algebra of all functions ¢ (w1, ..., wy)
that are holomorphic on the Siegel domain

U? = {w = (w',w,) = (wy,...,wpy) €CP: Im(w,) — |w'|* > 0},
where w’ € CP~1L.
Definition 2.1. For v > p, the weighted Bergman space
HZ(B?) = O(BP) N L2(B”, )
consists of all holomorphic functions on BP which are square-integrable for
the probability measure
dp, = c,(1 —22)" P dz, v >p,

where the normalizing constant is given by

I'()
(v —p)
with 2w = 21wy + - - - + 2w, on CP and dz is the Lebesgue measure. Corre-
spondingly, the weighted Bergman space

Hy(UP) = O(UP) N L*(U”, dfiy )
consists of all holomorphic functions on UP which are square-integrable for
the probability measure

L =

!,/

dp, = %(Im(wp) —w'w' )Pz, v > p,
where dz is the Lebesgue measure.
It is well-known (see [12]) that H2(BP) has the reproducing kernel
Kpgr o (z,w) = (1 — zw) ™",
for all z,w € BP. And that H2(UP) has the reproducing kernel
Ky (z,w) = (Zn;an — z’w’) V,

for all z,w € UP.
Let A, denote the complex Grassmann algebra with the generators
&1, .., &, satisfying the relations

&5+ 658 =0,
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for 1 <1i,j < gq. If we take @ :={1,...,q}, then we have
Aq :(C<§I 1 C Q>7

where 5 =&, -+ &, if I = {i; < --- < ip}. For disjoint subsets I, J we have
&r&y = €1,7€ 0 for some 7 ; = £1 whose value depends on the pair I, J.
The tensor product algebra

O(BP17) .= O(BP) ® A,
consists of all super-holomorphic functions
U(z,8) =) Wi,
IcQ
where ¥; € O(BP) for all I C Q. In a similar way, the tensor product algebra
O(UPI?) .= O(UP) ® A,

consists of all super-holomorphic functions. In this case we have a similar
expression for the super-holomorphic functions.

Let Ailc denote the complex Grassmann algebra with the generators
&1,...,&,, &, .., &, satisfying the relations

&i& +&& =0,
&5+ &6 =0,
&i&5 + &6 =0,
for 1 <i,j <gq.
Thus we have
A =Cl&g) 1,7 CQ),

where & = &, -+ &, and & = &, -+ &, if I = {iy < -+ < iy} and J =
{r--oaih
The tensor product algebra

C(BFI7) := C(BP) ® AT
consists of all continuous super functions

U= Y 48,

1,JCQ
where ¥y ; € C(BP) for all I,J C Q. Similarly
— c
C(UP9) := C(UP) ® A

consists of all continuous super functions

V= Z U 78187,

1,JCQ

where ¥y ; € C(UP) for all I, J C Q.
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There is a natural involution ¥ — W* on these spaces of super functions,

which is defined by
Z U1 €587,
1,JCQ

for ¥ as above.
The Berezin integral on V?!9 is defined by

/dzdgF(z,f):/fQ,Q(z)dz
vela %3

for F € C(V?19), where the normalization is given by

/ dedé€htn = 1,

yela
where VP is either BP or UP.

For any given morphism v between super domains we define
g oW
v (Z) = Ber (gw gf,) = Ber
13

0z’
where Z = (z1,...,2p,&1,...,&), W = (w1,...,wp,w1,...,wy) and where
the Berezinian is defined as follows

(2.1)

Ber (é g) = det(A — BD'C)det(D)™*. (2.2)

We refer to [1] for more details.

We now recall a natural biholomorphism of supermanifolds between the
super p-ball BPl7 and the super Siegel domain UPI4.

We define the super Cayley transform from B?!9 to UP? in local coordi-
nates by

V(s 2ps €1y Eg) = (W1, o, Wy, W1, ., W), (2.3)
where
izk
= fork=1,...,p—1,
W 1+Zp7 r p
1—zp
w, =
P 1+zp
i€k
wk:l—&—zp’ fork=1,...,q.
The inverse transform is given by
—9;
ZE = thk, fork=1,...,p—1,
1 —1w,
14
- iwy,
1 —dw,’
—2iwy,
§k = — fork=1,...,q

1 — 2w,
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Lemma 2.2. Let Z = (2,£), U = (u,n), ¥(Z) = (w,w) = W and $(U) =
(v,¢) =V where ¢ is given by (2.3). Then, we have

(1+2u—&n)(1+2,) (1 +u,) L= (w?’% Ul — w() , (2.4)
(14 27 — £7) = (wp;Z“P — W' — w() 41 —iwy) " (T —vy) L, (2.5)
where 59 = 510_1 + e fqﬂ_q and 2 = z1W1 + -+ - + ZpWp.

Proof. Using the above and substituting ¢(Z) = (w,w) = W and ¥(U) =
(v,¢) =V on the left hand side of Eq. (2.4) it follows that

_ l[l—zp_. = _zq: i&, i
21 | 142, l—i-up k:11+zl’1+up 1—|—zp1+up
1

=<2[(1—zp)(1+up)+(1—up (1+2)] szuk—z&nk)

1 1
. (1+2p) (1 +p)

1 1 - a
= — 1—z,u, — 2LV — fkm
(1+Zp) (1+up) P kZ:l kz::l

= (14 2,) (1 +up) 11 + za — £7).

Its clear that 1+ z, = 2(1 — iw,) !, then we obtain (2.5). O

Definition 2.3. For any parameter v > p—g+1, the (weighted) super-Bergman
space

HE(]BP\‘I) C @(Bplq)
consists of all super-holomorphic functions ¥(z, &) which satisfy the square-
integrability condition
(W) z01a,,,
I'(v
N N C) dzdé(1 — 2z — 6V TP~y
e [ de1 - 2260 (5,0 (=) <
Brla
where 59 = 5151 + -4 fqéq and 2w = z;w; + - - - + 2,W,. Moreover
o L N () G g
T (v+q—p) Z T (v +|J| —p) Sourtavs

JCQ

In [5] the authors proved that the super Bergman space has a decom-
position in direct sum of classical Bergman space and gave an explicit ex-
pression for the super Bergman projection. If we take ¥ = ZMCQ Y€ €
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HZ2(BPI7) ¢ O(BPI9) then the inner product has the form

_ T B ipp1
(v +q—p) ]B/ dzd§(1 — 22 — £ TPPTIU(2,6)" (2, )
L T()
DI vrrw= D DR O] (2.6)
m=1 MCQ,|M|=m

Thus the super Bergman space over the super ball has an orthogonal
decomposition

Bplq Z HVer (B”) @ A™(C")
m=0
into a sum of weighted Bergman spaces for 0 < m < ¢, with multiplicity (’:;)
Moreover, this super Bergman space has the reproducing kernel property
L'(v)

i S _ _ vt+qg—p—1
T E— /dwdwl WO — ww)

Brla
X (1 —20—&0) "0 (w,w) = ¥(w,w).

Boia, V(2,6) =

In other words, H2(B”9) has the reproducing kernel
Kppia (2,6 w,w) = (1 — 20 — )"
Definition 2.4. For any parameter v > p—g+1, the (weighted) super-Bergman
space
HE(Up\q) c O(U”‘q)

consists of all super-holomorphic functions ¥(w,w) which satisfy the square-
integrability condition

(\I/‘\IJ)UP\GJ/ = L) ) / dwdw(Im(w,) — ww! — WQ)V+Q*P*1

4P (v +q—p
Urla
X U(z,w) " ¥(w,w) < oo,
where £o = {101 + -+ - + Ewg and 2@ = 21wy + - -+ + 2p_1Wp—1. Where one
can prove that
— v+q—p—1
L (wp — Y _ i — ww)

47T (v + ¢ — p) 2i
_ v+|J 1
=3 ! =y ) e
AT+ [T —p) 2 QEL

We now observe that the Berezinian of the Jacobian matrix of the trans-
formation v given by (2.3) satisfies

W/(Z) = Ber (‘3 g) — det(A) - det(C ),
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where
A = Diagonal(i(1+ 2z,) "1, .. i(1+2,) 71 —2i(1 4 2,) %)
and
C = Diagonal(i(1 + 2,) %, ... i(1+2,) 7).
As a consequence we obtain that ¢/(Z) = —2iP~91(1 + 2,)97P~! and

analogously (™) (W) = —2P=%97P~1(1 — ja,, )2 P71,

Definition 2.5. We define the operator U, : H2(BPI9) — H2(UPI9) given by

GY) = 06 W) (= )

1—1w,

and its adjoint U : H2(UP17) — H2(BPl7) given by

vz 2) = w2 ()

Theorem 2.6. The operator U, : H2(BPI9) — HZ2(UPI9) is unitary.

Proof. Consider ¥ € H2(BPl9). Then we have
I'(v)

U0 g, = ———
VW) = o0t 1)

/ dzd€(1 — 22 — €67 TP (2, €)7 U2, €).

Brla

Using Lemma 2.2 and the change of variable given by the super Cayley
transform (2.3) on the right side of the above equation, we obtain

B O N P P
WPF(y+q_p)U/d dw(yp™) (W) (=) (W)

X (Tm(wy) — w'w! — wi) FIP= 1 a1 (1 — oy, )=t o]

X (U= ) )02~ 1 (= (W))W (= (W)

r'(v) _ I P —
=—— | dwdwd? (1 — dw,) TP (1 — dw,,)1P L
oy [ duwde (=) T =)
Urla
_ v+q—p—1
x <“’”2,“’P — W' wo> AP (1 = ) rrap
1

X (1 —dwp) = 1) HI7P= 10 (¢~ (W) W (™ (W)
T w =y o N\
_—) / dwdw (2,—wz —ww>

47T (v 4+q—p i
Urla

<Jwwov (5 _2w)} o) () |
= (U (B)[U (1)) e
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Corollary 2.7. If U =3, o ¢¥mém € O, (UP19), then we have

— v+qg—p—1
%/dwdw wp—wp e N
mPI(v 4+ q —p) 2i

ogdl

X ¥ (w,w) Z T +m) Z 121 () 10 gm-

MCQ,|M|=m

In other words, there is an orﬁhogonal decomposition
{Up\q Z 2 W (UP) @ A™(CY)

into a sum of weighted Bergman spaces for 0 < m < q, whose corresponding
multiplicities are (7:;)

Proof. We rewrite the operator U, as follows

v+| M|
UV<W><W>=Z(—z’)”“wmwol(w))( 2 ) rr

MeO 1 —1w,
= Z qu+\M|(¢M)( Jwar,

McCQ

where V,, 4, : H2,, (BP) — HZ_ (UP) is defined by
9 v+| M|
_ -1
Venf) = 105" ) (=) -

Since we known that V,, 1, is a unitary operator, the result follows. O

Proposition 2.8. Forv > p and ¥ = ZMCQ Varéar € O, (UPI9), we have the
reproducing kernel property

B F(l/) v, —U_p . B v+q—p—1
Porag W) = =t [ dvac (252 — i - ¢
Urla

X (wp2—ivp — W'’ — wC) B U(v,¢) = ¥(w,w).

In particular, H2(UP19) has the reproducing kernel

KUP\‘Z,Z/(wawava C) = (wpm o - wlﬂl - LUC) .

Proof. We know that U, is unitary, therefore the Bergman projection over
H?(UPl) is given by

P,,’Uplq - UuPy,]Bp\qU;a
thus Pypiq, () is given by

I'(v)

m /dudn(l—uﬁfnﬁ)”ﬂ]*p*l(lfzﬁffﬁ)ﬂ’U;(\If(V)) .

Brla
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Using the change of variable (2.3), taking W = (w,w) = ¢(z,&) = ¥(Z),
V = (v,¢) =¢(u,n) = (U) and Lemma 2.2, we obtain

P[UPW,V(\I!)

— 2 v F(I/) Vo — U, - B v+q—p—1
= <1_iwp> 47T (v 4 q — p) /dvdg< p2z‘ P _ o CC)

Urla

< (21— iuy) )T 0y T (V) ( ! )

14+,
I'(v) Y

v, — _ _
— d d P p I v+qg—p—1
T+ q=p) / v 6(721' Vv — (Q)
Urla

w5 N\ 1 \"( 2V
() ()

_ F(V) Up — 171) 17 \v+qg—p—1
T N oE— / dvd(( 5 v'v" —¢C)
Urla

X (ujp;% —w'v’ —wC) U(V).
i

3. The Super-Group SU(p, 1|q) and Its Even MASG’s

There is a super Lie group denoted by SU(p, 1|¢) that is naturally associated
to the super unit ball B”? and whose definition we now recall (see [2]). The
base manifold of SU(p, 1|q) is the Lie group SU(p, 1) xSU(q). For the structure
sheaf we use the Grassmann algebra A(Mp444+1(C)), where M1 441(C) is the
space of complex square matrices of size (p + ¢+ 1) X (p+ ¢+ 1), and we
consider the tensor product

C=(SU(p, 1)) @ A(Mp+44+1(C))-

The variables corresponding to the matrix entries are given the following
parity assignments

= 0, ifl<jk<p+lorp+l<jk<p+gq+1,
o) =rie) = { § B

Thus we have that the super-matrix has a natural block decomposition

as follows
(A C
’V - D B 9

where A and B are even square matrices with sizes (p + 1) x (p + 1) and
q X q, respectively, and C' and D are odd matrices with sizes ¢ x (p + 1)
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and (p+ 1) x g, respectively. The structure sheaf of SU(p, 1|q) is obtained by
considering the set of matrices v as above that satisfy

Bery =1, Y Jp1147 = Jp1jg>

where
I, 0 0
Jp1g=1(0 -1 0
0 0 —1I,

In particular, the Lie super algebra su(p,1|q) of SU(p, 1]q) is given by
the set of matrices v that satisfy the conditions

StI‘(’y) = 0) W*Jp,l\q + Jp,1|q’7* = 0;

where str(y) = tr(A) — tr(B) and tr(A) are the usual supertrace and trace,
respectively. Since the parity of the entries for such matrices is defined as
above, we conclude that the Lie algebra of even elements of su(p, 1|¢) is given
by

auptlgo = { (3 ) A€up1).B € o) () = u(B)}.

On the other hand, the super Siegel domain realization U?1 of the super
unit ball BPI9 together with the super Cayley transform introduced before
yield another realization of the super Lie group SU(p, 1|g). More precisely,
we obtain the super Lie group SU(K),|,) whose base Lie group is

SU(Kp) x SU(g),

where SU(K,,) is the Lie group of unitary transformation of the pseudo-
Hermitian form on CP*! whose matrix is the following (see [10] for compari-
son)

2, ;1 0 0
K,=| 0 0 —i
0 i 0

The structure sheaf of SU(Kp,) is given by the set of matrices v as
above that now satisfy

Ber(y) =1, v"Kye7 = Kpjq,

K 0
K= (5 0.

In particular, the super Lie algebra of SU(K),|,), denoted by su(K,),
has the following Lie algebra as space of even elements

aulin={ (5 ) Au)NB < ula) ) =u(m)}.

Here, we have used the notation where u(X,) denotes the Lie algebra
of the Lie group U(X,) of unitary transformations for the pseudo-Hermitian
product with matrix K.

where
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We note that SU(p, 1|q), SU(K},) and their Lie algebras are conjugated
through the super Cayley transform considered before. At the base manifold
level this implies that su(p, 1) and su(kK),) are conjugate.

Definition 3.1. An even maximal Abelian subalgebra of su(p,1|g), or an
even MASA for short, is a maximal Abelian subalgebra of the Lie algebra
su(p,1]/g)o. An even maximal Abelian subgroup of SU(p,1|g), or an even
MASG, is a connected super Lie subgroup of SU(p, 1|q) whose Lie super
algebra is an even MASA.

We now list the collection of all even MASA of su(p, 1|¢) up to conjugacy.
Note that since su(p, 1|¢) and su(K),) are conjugated the even MASA of both
super Lie algebras correspond to each other. In particular, the conjugacy
classes of even MASA’s can be described in terms of either one of these
super Lie algebras. Also note that it follows from the above remarks that
the maximal Abelian subalgebras of su(p,1) and su(K,) correspond to each
other as well.

Theorem 3.2. For every even MASA b of su(p,1|q) there exist mazximal
Abelian subalgebras b1 C u(p,1) and hy C u(q) such that b is conjugate
to the even MASA

b1 Mo o = {<61 g) :Aeby,Bebtr(A) = tr(B)}.

Furthermore, we can assume that Hs is the Lie subalgebra of diagonal
matrices in u(q) and that by is given by one of the following where D(k)
denotes the Lie algebra of kxk diagonal matrices with pure imaginary entries.

1. Quasi-elliptic: The Lie subalgebra of diagonal matrices in u(p,1).
2. Quasi-parabolic: The Lie subalgebra of su(K,) that consists of the ma-
trices of the form

D 0 0
0 =z 0],
0 0 z

where D € D(p— 1), z € C and tr(D) 4 2ilm (z) = 0.
3. Quasi-hyperbolic: The Lie subalgebra of su(K,) that consists of the ma-
trices of the form

D 0 O
0 w al,
0 0 iy

where D € D(p— 1), a,y € R and tr(D) + 2iy = 0.
4. Nilpotent: The Lie subalgebra of su(K,) that consists of the matrices of

the form
0o 0 o
2tb 0 al,
0 0 0

where a € R and b € RP~L,
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5. Quasi-nilpotent: For some k such that 1 < k < p—2, the Lie subalgebra
of su(K,) that consists of the matrices of the form

D 0 0 O
0 wylyp—1 0 b
0 2ib wooa |’
0 0 0

where a,y € R, b € RP*=1 D € D(k) and tr(D) +iy(p — k +1) = 0.

Proof. Let h be an even MASA subalgebra of su(p, 1|g). In particular, b is a
MASA (maximal Abelian subalgebra) of su(p, 1|¢)o. We first note that

su(p, 1|q)o ~ su(p,1) x u(q)

as Lie algebras where the isomorphism is given by the assignment

(g‘ g) - (A— piltr(A)IpH,B) .
And so, we can consider ) as a MASA of su(p, 1) x u(q).

Let by and by be the projections of h into the first and second factors,
respectively. Hence, b and b, are both Abelian Lie algebras. It is clear that
h C b1 X ho and the maximality of h implies that h = h; X bho. Furthermore,
the same argument shows that h; and hy are MASA’s of su(p,1) and u(g),
respectively. It is well known that there is a single conjugacy class of MASA’s
of u(q) with a representative given by D(q). The conjugacy classes of MASA’s
of su(p,1) are also known and they are listed in [10]. From this and the
above isomorphism of Lie algebras the result now follows directly. It is also
important to note that the MASA’s of u(p,1) are of the form h; x R where
b1 is a MASA of su(p,1). O

After exponentiating the even MASA’s listed above we obtain the fol-
lowing even MASG’s viewed through their actions on either B?l? or UPI4. The
content of Theorem 3.2 is that, up to conjugacy, these are the only MASG’s
of SU(p, 1]q).

Quasi-elliptic group of super biholomorphisms of the super unit ball B?? is
isomorphic to TP with the following group action:

(t,8):(2,0) € BPl — (tz,s0) = (t121, ... tpzp, 5101, ..., 840,) € BPle,

for each t = (t1,...,%p, S1,...,5q).
Note that if the super function F' is invariant under the action of the
quasi-elliptic group, then

F(z,8) =Y f1(ré,
ICQ

where r = (r1,...,rp) = (|21],. .., |2p])-
Quasi-parabolic group of biholomorphisms of the super Siegel domain UP!? is
isomorphic to T?~! x R x T? with the following group action:

(t,h,s): (2, 2p,0) € UPI0 s (2 2, + h, s0) € UPIY,
for each (t,h,s) € TP~1 x R x T,
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In this case, if the super function F' is invariant under the action of the
quasi-parabolic group, then

F(z,6) = > fr(r',Im (2,))&:€],

IcQ

where ' = (r1,...,7p—1) = (Jz1], .- -, [2p=1])-
Quasi-hyperbolic group of biholomorphisms of the Siegel domain UP!? is iso-
morphic to TP~! x R, x T? with the following group action:

(t,r,8) : (2, 2p,0) € UPI s (#1282 12, rY/250) € UPIY,

for each (¢,7,5) € TP~ x Ry x TY.
We now have that, if the super function F is invariant under the action
of the quasi-hyperbolic group, then

F(Zaf) = Z ff(pla ceey Pn—1, arg(z’ﬂ - Z|Z/‘2))|Zn - Z.|Z/|2|_‘I|§I€;a

IcQ
where 2’ = (21,...,2p—1) and

_ |2
VIZE A+ [en — il

Pk

fork=1,...,n—1.
Nilpotent group of biholomorphisms of the Siegel domain UP!9 is isomorphic
to R?7! x R x T? with the following group action:

(b, h,s): (2, 2p,0) € UPI s (2 b, 2, + h + 22" - b+i|b|%, s0) € UPI9,

for each (b, h,s) € RP~1 x R x T4.
In this case, we have that if the super function F' is invariant under the
action of the nilpotent group, then

F(z,6) = fr(lm2/,Imz, — |/|*)&,
ICQ

where 2/ = (21,...,2p_1).

Quasi-nilpotent group of biholomorphisms of the Siegel domain UPIY is iso-
morphic to T¥ x RP~#=1 x R x T? where 0 < k < p — 1, with the following
group action:

(t,b,h,s) : (2,2 2p,0) €EUPIU (2 2" 4+ b, 2, + h+ 232" - b+ i|b]?, s0) € UPIY,

for each (t,b,h,s) € TF x RP7*=1 x R x Tq.
And for this case, we have that if the super function F' is invariant under
the action of the quasi-nilpotent group, then

F(Z7§) = Z fI(T7 ylalmzn - |Z/|2)£I§;7

IcQ

where r = (|z1],...,]2k]), ¥ = Imw’, and v’ = (zg41, ..., 2p—1)-
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4. Super Bargmann Transform

In [9] it was introduced a Bargmann type transform for each of the five
cases on the unit ball. These Bargmann transforms are used in [9] to provide
very useful descriptions of the Bergman spaces in terms of coordinates cor-
responding to the actions of maximal abelian subgroups. In this section we
define Bargmann type transforms corresponding to the even MASA’s con-
sidered above. These transforms are natural analogues of those defined in
[9]

4.1. Quasi-Elliptic Case

Denote by 7(B?) the base of the unit ball B?, considered as a Reinhardt
domain. In other words, we have

T(BP) = {r=(r1,...,7) = (|21}, -, %)) : P> =13+ -+ 72 € [0,1)},

which is contained in ]Rﬂ. Consider in CP the polar coordinates zp = tirg,
where r, € Ry and tx € T, for £k = 1,...,p. Then, with respect to the
identification

z=(21,...,2p) = (t1ir1, ..., tprp) = (t,7),

where t = (t1,...,t,) € TP,r = (r1,...,1p) € 7(BP), we have B? = TP x
7(BP), and

Ly(BY, pu) = Lo(T") @ Lao(7(B), 1),

where
2 ot 2 525 ’

and the measure du, (r) in Ly(7(BP), u,) is given by

I'(v)

1— 2\v—p—1 )
T —p) (1—17r°) rdr

dp,(r) =

We denote the discrete Fourier transform F : La(T) — Iy = l2(Z) by

1 i

Of course, the operator F is unitary and

We consider the operator
U= Fy ® 1+ Lo(T?) ® Lo(B?, 1,) > 12(27) & La(B, ),
where F,y = F ®---® F. As in [9], we use the isometric embedding
Roy : 12(Z1) — 15(ZP) @ La(BP, ),
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defined by

n!T'(v) .
0, for n € ZP\ZE
Hence, it is easily seen that the map

RG ¢ 12(Z7) @ Lo(B, py) — 12(Z4)

(W)W ent™, for n € 2P

RO,V : {Cn}neZ’_;_ = Cn(’/‘) = {

satisfies

AN 12
Ri: (0bneay - (B0 /fn ",

zy

In [9] the authors introduced the operator R, = Rg ,U from La(B?, p,,)
onto l5(Z% ) and the adjoint operator R}, = U* Ry, from lo(Z" ) onto H2(BP).
They proved that R} is the isometric isomorphism from l3(Z%) onto the
subspace H2(BP).

Furthermore, we have

RVR?: =1: ZQ(Z{;_) — ZQ(Z{,’)_),

(4.1) R;R, = Par, : Ly(B”, 1)) — HJ(B),
where Pgr ., is the Bergman projection.

The inner product in (I2(Z%))?" is given by

<{aM,n}nezi)McQ7 ({barntnezn ) rcq)

_ _Iv)
Z I V—|—|MD Z am nbyvin

P
nezy

Definition 4.1. Consider the operator
Ry plg) : H(BP9) — (I5(21))*
defined by

Ry (pl0) ijngw = (Ryqm|(¥r)) mcq,
McCQ

whose explicit expression is given by

Rl/,(p|q) Z szgM
McQ
_ oy (@0PT(|n| + v+ M)\ .
= [ (2m) 2 ( (0 + M) 1/JMZ 27y 40y (2)
287 McQ

The adjoint operator
R} o) (I(Z5))*" — HZ(B19)
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is defined by

R:;,(p\q)(({CM,n}neZi)MCQ) = Z R;+\M|({CM,n}neZ§’r)§M7
McCQ

whose explicit expression is now
R, oo (({earntnezr ) rcq)

)P (|In| + v 1/2
-3 [ o (BT

|
e nezh n!l(v)

Theorem 4.2. The operators
Ry (plg) - HY (BP) — (12(Z1))*
and

R}, ooy + (2(Z8))*" — HE(BP')

J(plg) -

are 1sometric isomorphisms. Furthermore, we have
Ry o) B oy = 1+ (12(Z))*" — (12(Z5))*
R} ol Rus(olgy = 1 + HL(BP19) — HJ(BP1).

Proof. First, we will prove that R, (,|4) is a unitary operator. We first take
an element ({CM,n}nGZﬁ’r)MCQ) in (Io(Z%))?", then

I HR;(p|q)(({CMW}nEZﬁ_)MCQ)”[2531)\(17,/

Z Ry ({ensntnezs )um, Z Ry ({enrntnezn )em

McCQ McCQ

Brla,p
< I'(v) 2
=2 Twtm > MR an(emntnez ) Eoprm:
m=1 MCQ,|M|=m
By (4.1) we know that R, is an isometric isomorphism, then
I = Z F V + |M| Z |CM n| {CM,n}neZ’_j_)MCQ”?IQ(ZQ))ZQ7
McQ I/
which proves our claim. O

4.2. Quasi-Parabolic Case

We define D? = CP~! x R x R, whose points we denote by (2, u,v). Consider
the space Lo(DP, 1, ), where n, is given by

rw)
47T (v — p)
Consider the operator Uy : La(BP, p1,,) — Lo(DP,7,) defined by

UO(f)(Z/v U,U) = f(ﬁ:(z',u,v)),

v—p—1

m (= u,v) =
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where k(2',u,v) = (2/,u + iv + i|w’|). It is clear that the operator is unitary
and the inverse operator is given by

Us ' (F)(z) = f(k7(2)).
We represent the space La(DP,n,) as the following tensor product
Ly(D?,1,) = Lo(CP™1) @ La(R) © La(Ry, 1),

and consider the unitary operator Uy = I ® F'® I acting on it. Here F' is the
standard Fourier transform on Ls(R) and f(2/,u,v) — Uy f(2/,&,v).
On the other hand, we have the decomposition

Ly(DP,n,) = La(R1) @ La(TP™1) © La(R) ® La(Ry,7,),

where

(TP~ = ®L2< dt’“).

As before, we consider the discrete Fourier transform F : Lo(TP) —
lo = l3(Z), and consider the unitary operator Uy = I @ F(,_1) ® I ® I acting
from

Lz(RTI) ® Lo(TP™!) ® La(R) ® La(Ry, 1)
onto
Ly(REY) @ 15(ZP ) @ La(R) ® Lo(Ry, 1)
= 1(ZP7, Ly(RE) @ La(R) ® Lo(Ry, 1),

where ‘7:(13*1) =F®---@F and f(z/v 57 U) = {UQf(Tv n, §7 v)}nEZi"*I
We now the consider isometric embedding

Ryo: bo(Z57 La(Ry)) — o(ZP7, La(RYT) ® La(R) @ La(Ry, 1))
defined by the assignment
Ru,O{bn(g)}nezifl

In|+v—1 % Jio
= {XZil(n)XRJr(E) (2(27{-)1('?5()1/) > Tnef(\z| —H))bn(g)} )

p—1
neLy

where the function b, (§) is extended by zero for € €R\R; and n € prl\Zﬁ_l.
Its adjoint
Ry 1o(ZP7 1 Ly(RY) @ Ly(R) ® La(Ry,m)) — 1o(Z5 ", Lo(Ry))
is given by the expression
Ry o {dn(r, &, 0) b ez

1
B 2(27T)P(2€)\n\+u—1 20 (12’ P 4v) e, v’ P71
— XR+(§)(W /r e dn(r,f,v)rdrfdv
Rn

nezh !
n [9] the authors introduced the operator R, = R U from Lo(UP, )
onto lo(Z5 ", Ly(R)), and the adjoint operator R = U* Ry, from lo(Z% ",
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Ly(R,)) onto H2(UP) where U = UUyUp. They proved that R} is the isomet-
ric isomorphism of [y (Zﬂ’__l, Lo(R,)) onto the subspace H2(UP). Furthermore,
we have

RyR, =1:15(Z57 La(Ry)) — l2(Z57", La(R4))
RiR, = Povy  La(UP, 1) — H2(UP),
where Py» ,, is the Bergman projection of Lo(UP, p,) to HZ(UP).
The inner product in (Io (fol, Ly(R1)))?" is given by
<({aM,n(f)}ngzi—1)MCQ7 ({bM,n(f)}ngzi—l)MCQ>

"t o | (@@ baun©) e,

nezh
Definition 4.3. Consider the operator
Ry plgy + HE(UP) — (12(Z 7", La(R4)))™
defined by

Ruolay | D Uaréar | = (Ruinn (0a0)) yrc
MCQ

whose explicit expression is given by

Ru,(p|q) Z 'LZJMgM

MCQ
_ -z 2(2m)P (2) I +rHMI=1 3
= ({(QW) < T+ M) >

< [ e e = ) o)

zht
+ McCQ
Its adjoint operator is
RS gy (2(Z27 La(R))% — HE(UPY)
defined by
R;,(p\q)(({bM,n(g)}neZP 1 MCQ Z RV“I"M' {bM n( )}nEZﬁfl)EMa

McCQ

whose explicit expression is now given by

R 10 ({020 ()} )

26 In\+v+|M| 1

DI CUREDY / (e ) b (O)(=)" e de | €.

MCQ neZp 1
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Theorem 4.4. The operators
Ry ylq) + Ho(UP19) — (1o(Z5", Lo(R4)))*
and
R} o)+ (2(Z7", La(R4))* — HZ(UP1Y)
are isometric isomorphisms. Furthermore, we have
Ro ol By oy = 1 = (2(Z7", La(Ry)))* — (227, La(R1)))
R (o) Boplay = 1+ HE(UP19) — HY(UP1Y).

q

The proof of this result is similar to that of Theorem 4.2.

4.3. Nilpotent Case
We consider the space

Ly(DP,n,) = Ly(CP™1) ® La(R) ® La(Ry, 1),

and the unitary operator U; = I ® F'® I acting on it, where F' is the Fourier
transform on Lao(R).

Using the standard Cartesian coordinates 2’ = (z1,...,2p—1) and ¢’ =
(Y1, -+, Yp—1), where 2, = x), + iyg, in CP~1 = RP~1 x RP~1 we have

Ly(DP,n,) = Ly(RP™1) @ Lo(RP™1) ® Ly(R) ® La(Ry,my).

Consider the unitary operator Us = F{,,_1) ® [ @ [ ® I, where F(,,_;) =
Fi1®...®F,_1is (p—1)-dimensional Fourier transform, acting on this tensor
decomposition.

Consider the change of variables

uk:T\l/ggk—\/gyk, ’Uk:%\/ggk"‘\/gyka kzla"'7p_17

which is equivalent to

gk:\/g(uk"_vk)a (—Uk+vk), kzla"’vp_]~7

1
Yk = 7=
2V¢
and the corresponding unitary operator Uz acting on Lo(RP™1) @ Lo (RP™1) ®
L2 (R) ® L2 (R+, T)y) by the rule

(%@@hﬂam¢<waw+umg%

where v’ = (u1,...,up—1) and v' = (vq,...,vp_1).
In this case, we consider the isometric embedding
Roy: Lay(RP™! X Ry) — Lo(RP™Y) @ Ly(RP) @ La(R) ® La(Ry,m,)

given by the assignment

(7’(1,’ + rU,) 757 ’U> )

’
[v’12

1
S 4(26)"7F \?
Ro,((uW, &) =n""5 e 2 xR, (§) (cl,l“(z/p)> ('),
where the function ¢ (v, €) is extended by zero for £ € R\R, for each v’ €
RP~!. The adjoint operator

Rj, : La(RPTH) @ Lo(RPTH) © Lo(R) © La(Ry, 1) — Lo(RP™H x Ry)
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obviously has the form

R, (p(u',v',€,0))

1

_ _p—1 —{v—ﬂ 4(2§)y_p 2 /A d /cl l/—p—ld

F / e 3 7@[‘@—}?) f' v & v)dv i v.
RP—1 xR,

In [9] the authors introduced the operator R, = Ry U from Lo(D?, 1i,,)
onto Ly(RP™ x Ry ) and the adjoint operator R} from Lo(RP~! x R, ) onto
the subspace AZ(DP). They proved that R} is the isometric isomorphism of
Ly(RP~! x R,) onto the subspace H2(UP). Furthermore

R.R,=1:LyRPI xRy) — Ly(RPE x Ry),
RyR, = Bps,, : L2(D”, i) — Azzz(]D)p>v

where Bpp , is the Bergman projection.
Now we define the analogue of the Bargmann transform for the super
case.

Definition 4.5. Consider the operator
Ry plg) : Hy (UP1?) — (Lo(RP™! x Ry))*
defined by

Ry (plo) Z Yavén | = (Ru+\M|(7/JM))MCQ~
McCQ

Whose adjoint operator
Ry g+ (L2(RPT! x Ry))* — HZ(UP)

is defined by
R, oy (a1 (W ) asc@) = D Rurian (ar(0/,€)) s

MCQ
The inner product in (Ly(RP~! x R;))?" is given by
((mr (' 5))MCQ (¢M( LE))mcq)
= Z T u+|M| Y (U, €), dar (', €))Ly (ry)-
McQ
Theorem 4.6. The operators
Ry (plq) : H(UP19) — (La(RP™ x Ry))*
and
R} o) (La(RP™ x Ry))?' — HZ(UPI)
are isometric isomorphisms. Furthermore
Ry o) By oy = 1+ (L2(RP™F X R1))* — (Lo(RP! x Ry))>
R} oy Ruplgy = 1« HJ(UP19) — HZ(UPY).
The proof is similar to that of Theorem 4.2.
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4.4. Quasi-Nilpotent Case
Given an integer 1 < k < n — 2, we will write points of D? as z = (2/, v/, z,),
where 2/ € C* and w’ € CP~F~!  and points of D? as (2',w’, (), respectively.
According to this notation we represent
Ly(DP,1,) = Ly(C*) © Lo(CP1) @ Lo(R) @ La(Ry, 10)-

Applying, as in the previous two cases, the unitary operator U; = I ®
I ® F® I, we have that the image A;(DP) = Uy (Ao (DP)).

Now introducing in CF the polar coordinates, z; = 7t;, where r; €
Ry, t; € S'=T,1=1,...,k, and Cartesian coordinates in CP~F=1 g/ =
(.171, e )wp—k:—l>7 ZU/ = (yla e ayp—k—l); where Wy, = xm+lym7 m = 17 BRI 2

k — 1, we have that Lo(IDP, n,) decomposes as the tensor product
Lo(RE rdr) ® La(T*) @ Lo(RP* 1) @ Loy(RPF71) @ Ly(R) ® La(Ry,my).

Consider the unitary operator Us = I @ F(i) @ Flp_p—1) @ I @ I @ 1
acting from Lo(DP,7,) onto

Lo(RY, rdr) ® Io(ZF @ Ly(RP*71) @ Ly(RP*1) @ Lo(R) @ La(Ry,7,)
= 1o(Z, Ly(RY, rdr) @ Ly(RP™F71) @ Lo(RP™1) ® Ly(R) © La(R+,1,.)),

where F(;) = F®---®F is the k-dimensional discrete Fourier transform and
Fp—k—1) = F®---®F is the (p — k — 1)-dimensional Fourier transform.
Next consider the change of variables

1 1
um:ﬁfm_\/gymv Um:ﬁ§m+\/gyma m=1,....p—k—-1,

which is equivalent to

gm:\/g(um'i‘vm)v Ym = (_um+vm)v m:17~'~7p_k_1'

1
2vE€
Then, there is a corresponding unitary operator Uz acting on
1o(ZF, Ly(RE ,rdr) @ Loy(RPF71) @ Ly(RPF1) @ Ly(R) ® La (R, 7))

by the assignment

UB{dp(Ta 5/3 y/agvv)}pEZ’“ = {dp (Tv \/g(u/ + ’Ul) ) ﬁg (711,/ + U/) 757’0)} ;

pEeZF
where v/ = (u1,...,up—g—1) and v’ = (v1,...,Vp_k—1)-
In [9] it is introduced the isometric imbedding Ry, from the Hilbert
space lo(Z% , Ly(RPF=1 x R})) into
Io(ZF, (La(RY, rdr) ® La(RP™ 1) @ Ly(RP™F71) @ La(R) @ La(Ry, 1)),
which maps {Cn(ul7§>}nezi to

2k+2(2€)\n\+vfp+k

p—k—1

{Tr_‘lxzkF (n)xe, (&) (

1
2 112
) rne_g(‘r‘z-’—v)_ 2 Cn(u/7£)} )

c,n!l(v — p) i

where the functions ¢, (v, §)) are extended by zero for ¢ € R\R, for each
u' € RP~F~1 and each n € ZF.
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The adjoint operator Rj ,, acts from
(2", (La(RY  rdr) @ Lo (RPF71) @ Ly(RP 7 @ La(R) ® La(Ry, 1))

onto lo(ZX, Ly(RP~F=1 x Ry)) and maps a sequence {d,,(r,u’,v’,&,v)},ezn
into

}%av({dn(raucq/ag;v)}nezk)

a2 (g § gt s- L2
¢, nll(v—p)

RE xRP—F—1 xR,
—p—1
c, P
X dy (ryu’ v € v) rdrdv'ylldv} .
nezk

In [9] the authors introduce the operator R, = Rg U from Ly (DP, i,)
onto lo(Z%, Ly(RP=F=1 x R.)), and the adjoint operator R}, being the iso-
metric isomorphism of lo(Z% , Lo(RP~#~1 x R )) onto the subspace A2 (D)
of Ly(DP, fi,,). Furthermore

R R, =1:15(Z%, LyRPF1 x Ry)) — Lo(ZX, Ly(RP7F1 X RY)),
RyR, = Bpr, : L2(D”, j1,,) — AE(D”%
where Bpp , is the Bergman projection.
Definition 4.7. Consider the operator
Ry (plg) - H(UP9) — (Io(Z4, Lo(RPF 1 X R4)))?
defined by

q

Ry | D varénr | = Rucing)(ar)) mrce-
McCQ

The adjoint operator
Ry plg) * (Ia(Z , Ly(RP™F71 x R.)))? — H2(UPl)
is defined by
R gy ({errn (W OYnezs Iuce) = D Ruvinn{enn (', ) bnezy Jeu,
MCQ

where the inner product in (lo(Z%, Lo (RP7F~1 x Ry)))?" is given by
(({anrn(u',€ )}neZ"‘ )arc@s ({oarn (v, &) bnez Jrca)

ST v+\ M|> > (@t (0,), basn (0, €)), oi-1 3.

nezk
Theorem 4.8. The operators
Ry (plq) : H2(UPI) — (Ip(Z%, Loy(RPF71 5 R, ))?

and
‘I

R}, ooy + (2(Zh, Ly(RPF1 x R1)) — HE(UPY)

v,(plg) -
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are isometric isomorphisms. Furthermore
Ry o) Ry oy = 1+ (lo(Zh, La(RPTF1 X Ry))*
— (12(Z5, Ly(R? ™1 x R )
Ry iy Boola) = 1 - H2(UPI9) — H2(UPI?).

plg

The proof is similar to that of Theorem 4.2.

4.5. Quasi-Hyperbolic Case

We represent D? = CP~! x R x R, in the form CP~! x II, where II is the
upper half-plane, and introduce in D?P the “non-isotropic” upper semi-sphere

Q={(=,Q)eCr ! xII: [P+ [¢(|=1}.
The points of 2 admit the natural parameterization
2k = Sgtp, where s €[0,1), t,€SY, k=1,...,p—1,
¢ =pe?,  where pc (0,1, 6¢€(0,7),
and
p—1
Z si4+p=1.
k=1
This in turn induces the following representation of the points (2, () €
DP = CP~! x II
zZp = r%sktk, k=1,....,.p—1, (= rpeie,

where € R
We represent now DP = 7(BP~1) x TP~1 x Ry x (0,7), where

p—1

k=1
is the base (in the sense of a Reinhardt domain) of the unit ball B?~1, and
TP~! = S x ... x S is the p — 1 dimensional torus.
Introduce the new coordinate system (s,t¢,7,6) in DP, where we have
s=(s1,...,8p-1) € TBP7Y), t = (t1,...,tp—1) € TP r € Ry, and 0 €
(0, 7), which is connected with the old one (2, () by the formulas

|2k _ %k

Sk = —m———— E= T
NEEET Bl

2 =rispty, ¢ =r(1—|s?)e’,

r=?+lpl, O=arg(,  (42)
or
where k =1,...,p— 1.

A direct computation shows that under the change of variables (4.2) we
have

p—1 p—1 dt
do(', Q) =17 (1 —|s*) [ ] swdsi [ == dras,
k=1 je (b
and .
N, = ZV PP — [s2)Y P sin P g,
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Introduce the unitary operator Uy = I ® F,_1) ® M, @ I which acts
from the space

Lo(r(B™1), (1 — [s]*)" Psds) @ Lo (TP~
® Ly(Ry, 7" tdr) ® Ly ((0 ), Zsm” P 19d9)

onto the space
b (2071, La(r(BP 1), (1 = |s[?)" "Psds) © La(R) © Lo ((0,m), 5 sin® 7~ 9d9) )

where the Mellin transform M,, : Lo(R,, 7~ tdr) — Lo(R) is given by

(M,1)(€ PR Y (r)dr,

=)

and the inverse is as follows

(M) () = = / I (e,

and F(,_1) = F®---@F is the (p—1)-dimensional discrete Fourier transform.
Introduce the isometric imbedding Ry, of the space lg(Zi_l,Lg(R))

into the space

-1 -1 2\v— v—p—1
s (z{; ,Lo(7(BPY), (1 — |s]?)" Psds) ® La(R) ® L ((o ), Zsm P 0d0))
by the rule

vi{en(é )} ezr~t T {en(§) an (&) Bnw(5,€,0) bnezr—1,

where the functions 3, = B, (s,€,0) and oy, () are given by

/Bnl, _ sn[]_ _ (1 +Z)|s|2] +\n|+2£ —2(5—4—1'“ ‘)arctan[(l ig ‘2)tan +1 :2].

(4.3)
and

N

o (€) = / B (5, € O)P(1 = [s[) 7> - sin” 7" 0 sdsd

7 (BP=1) % (0,m)
(4.4)
The adjoint operator Rj,, which acts from

I (Z?;l, La(r(B"™Y), (1 — |s|?)" Psds) ® La(R) ® Lo ((o, ), % sin” P~ ede))
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onto the space lg(Zﬂ’__l, L2(R)) has obviously the form
Ry, ({dn(s,€,0) bneze—1)

= {an,u(f) / ﬁn,U(&& 9) d’ﬂ(&fve) (1 - |S|2>y—p

T(BP—1)x(0,m)

X %’ sin” P71 g sdsd@}
nGZ’_fl
n [9] the authors introduced the operator R, = Rg U from Ly (DP, )
onto lg(Zﬂ’fl, L3(R)), and the adjoint operator R} being an isometric isomor-
phism from 12(2?;1’ Ly(R)) onto the subspace A2 (DP). Furthermore
R R, =1 :15(Z ", Ly(R)) — 12(Z57 ", La(R)),
RyR, = Byr,, : La(U”, i) — AZ(UP),
where Byy,, is the Bergman projection.

Now we define the analogue operator for the super case

Definition 4.9. Consider the operator

Ry (plq) : HE(UP19) = (Io(Z57, Lo (R)))™

defined by

Ryig) | D ¥ménr | = Rogyan(¥nr))arcq-
McCQ

The adjoint operator
Ry () ¢ (12(Z5 1 Ly(R)))?

aq

— H(UP)
is defined by

R} oy {entn(©Ypezr-1)a1c) = Y Rusina)({earn(©)}ezn1)én,
McQ

where the inner product in (I2(Z%", Ly(R)))?" is given by
(({anm, n(g)}nezw Jmcs ({0mn ()} ezp—1)mcq)

- LT o X (@€ O,

nezh
Theorem 4.10. The operators
R P HY(UP) — (12(Z, Lo (R)))™

v,(plq)

and

R} g ¢ (2(Z571, La(R)))*" — Hy(UP1Y)

v,(pla)
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are isometric isomorphisms. Furthermore, we have
R ola) By iy = 1+ (2(Z571 La(R))* — (12(Z57", La(R)))?
R} o Ruplgy = 1 - HJ(UP19) — HZ(UPI9).

q

The proof is similar to that of Theorem 4.2.

5. Toeplitz Operators

Definition 5.1. For F' an element of C(B?!9) (an element of C(UP!9)), the super-

Toeplitz operator Ty on HZ2(BPI9) (on H2(UPI9), respectively) is defined by
TV = PY(F),

where P¥ denotes the orthogonal projection onto HZ(BP1) (onto H2(UPI7),

respectively).

In [5] the authors proved that every super Toeplitz operator T% on
H?2(BPI9) is given by the 29 x 2%-matrix. With respect to the decomposition

U= " ¢uénH (B,
MCQ
the super Toeplitz operator has the form

L+ |1 —p)

(TF)1.0 = Z |:‘€K\I,I€K\J,J (5.1)
IUICKCQ L(v+|J|—p)

x T (o o s (w) (1= ww) K= | (5.2)

Here, for 0 <i,j < ¢q, T ”'” denotes the Bergman-type Toeplitz operator
T (F) = Povif Posy : Hyy j(BP) — Hy(BP)
from H7, ;(BP) to HZ,,(BP).

The following proposition is a consequence of the above result and the
fact that HZ2(BPI9) is isometric to H2(UP), which is given by Theorem 2.6.

Proposition 5.2. With respect to the decomposition
U= Yy H(UP),

McCQ
the super Toeplitz operator T on HE(UP“J) is given by the 27 x 29-matrix

L(v+|1| —p)
(T = Z [EK\I TERNLI T, 1T = )
IUJCKCQ ( + |J| )

o N
< IO | Frvr s (w) (2@ —ww/> .

Here, for 0 <i,j <gq, TU+ denotes the Bergman-type Toeplitz operator

T:Lj (f) = u+ifPV+j HZJr] (UP) — H3+i(Up)
from HVH(U”) to HZ, ,(UP).
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Corollary 5.3. Let F be a super function of the form
F(z,8) = Y Fu(2)éméi
MCQ

Then the super Toeplitz operator T on H2(BPI9) (or H2(BPl9)) is given
by the 29 x 29 diagonal-matriz

v v+|T _
(T§)r1 = T (e (w) (1= ww) K1), (5.3)
ICKCQ
or
_ K|—|I
A v 11 wy—w, -\
(TE)rr = T | Frevu(w) (| —; w'w :
ICKCQ

6. Super Toeplitz Operators with Special Symbols
6.1. Quasi-Elliptic

We will call a super function F' quasi-elliptic if it is invariant under the action
of the quasi-elliptic group, in other words, when F' has the following form

F(2,6) = > Fir(r)éés,
IcQ
where r = (r1,...,7p) = (|z1],- - -, |2p])-
Theorem 6.1. Let F' be a bounded measurable quasi-elliptic super function.
Then the Toeplitz operator TY% acting on HZ2(BPI?) is unitarily equivalent to
the multiplication operator ypu,l = Ry pq)TER; () acting on (12(Z5 )%,
where R, 14y and R, (plq) 7€ giwen in Definition 4.1. The sequence

Yrw = ({vrw(n, M)}nGZTjr)MCQ
is given by
2T (In| + v + | M) Z

1% 7M:
Ve (n, M) nIT (v + [M] - p)

FK\M(T‘)T2n(1 — 7"2)”+|K‘_p_17"dr,

KEI]\/IT(BP)
where Iyy ={K CQ: M C K}.

Proof. For every super function F' the Toeplitz operator is unitarily equiva-
lent to

Ry,(p|q)Tg‘Rz,(p|q) : (lQ(Zﬁ-))?Z - (l2(Zg-))2qv
where the components of the operator are
(R, ol To RS (1)) 1.7 = B r(TE) 1,0 R4 g)- (6.1)

Now, we consider a super function of the form F = EICQ Fr(r)ér&s
and using Corollary 5.3 we have that the Toeplitz operator has the form

0 I#J

(Te)1.0 = {ZKEII T:L‘]I“(FK\I(T)O —|rP)EI-HY T =g (6.2)
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From the above equation and 6.1 we have

(Bl TR, (plg) ) 1.7
_{ 0 [#J
T\ Zker, RBovinPosinf(Fes () (1 = [r )N P Ry =T

By Theorem 10.1 in [9] the above operators are multiplication operators
then

Z Ry 111 Py (Freva (r) (1 — |r|2)‘K‘_|I|)Pu+|I\th+|I|({Cn,I}HGZi)
KeTr

=4 lan () 3 /(FK\I(r)(l—rZ)'K'—‘”)

KGIIT(]BP)

X r2"(1 - r2)”+|1|_p_1rdr} an}

= lyyir)(n) Z FK\I(r)r2”(1 - TQ)VJFIK‘*p*lrdr Cn,I ,

KeT
i & Br) nez

p
nezl

where
2PT(In| 4+ v + |1])

b = R T =p)

O

6.2. Quasi-Parabolic Case

We will call a super function F' quasi-parabolic if it is invariant under the
action of the quasi-parabolic group, in other words, when F' has the following
form

2,6) =D fi(rIm (20))Er€T,
IcQ

where r = (r1,...,7p-1) = (J21], .. -, |2p—1])-
Theorem 6.2. Let F' be a bounded measurable quasi-parabolic super func-
tion. Then the Toeplitz operator T¥% acting on H2(DPI?) is unitarily equivalent

o1 . v D% . -1
to the multiplication operator yg, I = Rv,(plq)TFRu,(mq) acting on (lo(Z5,
Ly(Ry )%, where Ry (plq) and R} . are given in Definition 4.3. The se-
quence

e = ({vEe(n, & M)}, ) mice

is given by
(25)\n|+v+\M|—1
nlI'(v + | M| —p)

« Z FK\M ! U+T) n —2§(U+r) 1/+|K\ —p— 1d’l‘d1}
KGIMR;D
T+

’YF’V(’ILf, M) =
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where r = (T17-'~7TP—1)7 \/;: (ﬁlv"wﬁp—l)? r= Ty T and
Iy ={KCQ:MCK}.

Proof. For every super function F the Toeplitz operator is unitarily equiva-
lent to

Ry o) TH R, (1) (2(ZE7 Y, La(R1)))* — (lo(Z5, La(R)))™,
where the components of the operator are
(R”v(p‘Q)Tg‘R;,(Mq))I,J = Ry+|I| (TE‘)I,JR;_FU‘ . (63)

Now, we consider a super function F' = 37, o Fr(r,Im(2,))¢€] and
using Corollary 5.3 we obtain

%) 0 I1#J
F)IJ = Sker, T:J_FFI\II‘\(FK\I(T’U+7@)DIK|*IU) I=J"

From the above equation and 6.3 we have

(o ola) TE R, (419 1,7
_ 0 I+
- { Yker, Rovin Poin) (Frva (o + #) () KIINB Ry L 1= 0
By Theorem 10.2 in [9] the above operators are multiplication operators

> Rugn Posyn (Fios (7, v+ 7) (0) K171
KeI;

X Pv+\I\R;+|I\ ({Cn,l(f)}nezi_l)

(26)Inl+v+11-1 I N Ml K=
=42 n!D(v + M| —p) /( ar(Vr v+ |
KeI;

. Ri
y rne_zg(v+v*)vv+\fl—P—ldrdv] Cn,I(f)}
nEZi71

| (2€)Inl+v+11-1

) | nlT(v + | M] - p) ZR/FK\I(W’H?Q)

KeTrop

« rn€—25(v+f)UV+\K|_p_1drdv] Cn,I(f)} :
nEszfl

6.3. Nilpotent Case

We will call a super function F nilpotent if it is invariant under the action of
the Nilpotent group, in other words, when F' has the following form

F(2,8) = filmz,Tmz, — |'[*)&r;,
I1CQ

where 2/ = (21,..., 2p—1).
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Theorem 6.3. Let F' be a bounded measurable nilpotent super function. Then
the Toeplitz operator T} acting on H, E(U”'q) is unitarily equivalent to the mul-
tiplication operator ypyl = Ry (p)TER;, (), acting on (Lo(RP~1 x R, ),
where Ry, (p1q) and R are given in Definition 4.5. The function

*

v,(pla)
YFv = (’YF,U(UI7 Ea M))MCQ

is given by

26 v +IM|=p

e (W6 M) = ’”(rg() + M| —p) 2
> _

T v p KEIMR"—1><R+

1 /2
—— (= +0'),v)e 20 W K==L gy gy,
2v¢
where Tyy = {K CQ: M C K}, v € R"! and £ € Ry

X Fre\

Proof. For every super function F' the Toeplitz operator is unitarily equiva-
lent to

Ry plg) TP R, (L2(RP™ x Ry ) — (L2(RP x Ry)),

J(plg) -
where the components of the operator are

(Ro ol TF RS (p1g)) 1.0 = Boin/(TE) 1,0 R4 - (6.4)
Now, we consider a super function of the form
F=> F(Imz,Imz, - |[))¢&.
1CQ
Using (5.3) we obtain

0

) I+4J
= {ZKEL T Fre (T ! T 2, — 2l 1=

(6.5)

From the above equation and 6.4 we have

(B, 1) TF R, (1) ) 1.
"\ Zker, Borin Povin(Fena (6, 0) )P Ry T =T

By Theorem 10.3 in [9] the above operators are the multiplication op-
erators

> RosinPosin(Fea (0, 0) )P Ry (en(0,€))
KeTIr

— (26)v+IMI=p . (1_ o )
" |& e [ e (gt

Rr—IxR4

712
x e~ 2v=lv v”+|K|_p_1dv’dv} cr(u€).
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6.4. Quasi-Nilpotent Case

We will call a super function F' quasi-nilpotent if it is invariant under the
action of the quasi-nilpotent group, in other words, when F' has the following
form

F(z,6) = > fi(ry Imz, — |2/ )&s€],

IcQ

where r = (|z1],...,]2k]), ¥ = Imw’, and w’' = (z41,- .-, 2p—1)-

Theorem 6.4. Let F' be a bounded measurable quasi-nilpotent super function.
Then the Toeplitz operator T§ acting on HE(U"‘I) is unitarily equivalent
to the multiplication operator yp, I = R,y TR} acting on (lg(Zﬁ,
Ly(RP=F=1 xR, )))¥, where R, (pq) and R
The function

J(pla)

(plq) OT€ given in Definition 4.7.

v = {yrw(n, o', §, M)}, con Jucq
is given by

p—k—1

9&)InlH+v+| M| —p+k
YEw(n,u' & M) =n" 2 (20)

n!T'(v+ M| —p)

KeInm ke
RE xR—F—1 xRy

1

X Fr\m <\/77, —Qﬁ(—u’—kv’),v—l—m +...+7‘k> P

% e—2§(v+r1+...+rk)—\v'|2 Uu+|K\—p—1drdv/dv’
where Iyy = {K CQ: M C K}, /1 = (\/T1,...,\/1}), n € ZE W/ e Rn=F~1
and £ € Ry

Proof. For every super function F' the Toeplitz operator is unitarily equiva-
lent to

Ry o) TER, (1 (l2(Zh, Lo(RPTFT1 x Ry
— (2(Z, Ly (RPF1 x Ry)))™,
where the components of the operator are
(B ol TE R, (plg) 1.0 = B (TE) 10 Ry 4 ) (6.6)

Now, we consider a super function of the form F' = ZICQ Fi(r,y , Im z,—
|2/|2)€1¢5 and using Corollary 5.3 we obtain

(Tg)rg = " o
F)LJ = EKEII TV:‘lllll(FK\I(Tv vy, Im z, — |Z'|2)U|K|_|I‘) I=7J"

v

(6.7)

From the above equation and 6.6 we have
(B plo) TP R, (plg) ) 1.

_{ 0 T4
N ZKGII RuHIIPquII\(FK\I(T, y'»U)(U)lKl_m)PVHIIR,tHI\ I'=J"
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In particular by Theorem 10.4 in [9] the following operator is a multi-
plication operator

Z R0/ Py ir)(Frev g (ry ', v) (v )K= P, ) By (en 1 (W', 6))
KeTr

_ —pko1 (28)Inl+v+IM|—ptk
=Y et /

Ketr RE xRn—k—1xRy

1
X FK\M(W,T\/E(—U’ +v),v+r1+ . 1)

x ™ e 26 @TTb ) =01 K =1 gyt gy [en.1(u',€)].
O
6.5. Quasi-Hyperbolic Case

We will call a super function F' quasi-nilpotent if it is invariant under the
action of the Quasi-nilpotent group, in other words, when F' has the following
form

%8 =Y filsts s sn1, arg(zn —il2'1%))]z0 — il P75,
IcQ
where
|2k
VIZP + Tz =il
E=1,...,n—1and 2’ = (21,...,2p-1).

S =

Theorem 6.5. Let F' be a bounded measurable quasi-nilpotent super function.
Then the Toeplitz operator Ty acting on HE(U”"I) is unitarily equivalent
to the multiplication operator yp,I = Ry, (p)T7 R, (vla) acting on (lg(Z’fl,
Ly(R)))?", where R, (,)q) and R
tion

(plq) @re given in Definition 4.9. The func-

YFv = ({VF,V(na§7M)}neZﬁ_*1)MCQ
is given by
Ve (& M) = Yl (€ / Frova (5,0) 1 Bnvrina (5,6, 0))?
KeTy 7B 1)x(0,7)
x (1— |s|2)”+‘M|*7’% sin’ T EI=P=1 9 sdsde,
where Iy = {K C Q : M C K}, and the functions a,(§) and 5,(s,&,0) are
given by (4.4) and (4.3), respectively.

Proof. For every super function F' the Toeplitz operator is unitarily equiva-
lent to

‘1

Ry (i) TERS, 1y ¢ (2(Z57 1, L2(R)))*" — (12(Z57, La(R)))™,
where the components of the operator are
(Bo, ol TF RS (p1g)) 1.0 = Boin/(TE) 1,0 R4 - (6.8)



396 R. Quiroga-Barranco and A. Sanchez-Nungaray Adv. Appl. Clifford Algebras

Now, we consider a super function of the form F' =3, Fi(s, )71
£r&7 and using Corollary 5.3 we obtain

0 I+

(T = {Zm, T (e s, OV p =y (69)

From the above equation and 6.8 we have
(B ol T By (p1) ) 1.7

_{ 0 47
\ Xker, BorinPorin(Freva (s, 0) SHE OV PRy I=J"

By Theorem 10.5 in [9] the above operators are multiplication operators

> RoiinPosin Fioa(s,0)sin™1V0P, Ry (enr(€))
KeTIr

= Z ai,l/Jr‘I‘(g) / FK\I(S70) Sin‘K‘_ul 0|ﬂn,u+|l|(87§aa)|2
Kt 7(B1)x(0,r)
x (1— |s|2)”+|”_p% sin” t1=P=1 9 sdsdf - [c, 1 (v, €)]

- Z ai,V—HI\(E) / FK\I(Sao) ‘5n,u+|l|(57§79)|2
K&t T(Br1)x(0,7)

x (1-— |s|2)”+|”_p% sin” HEI=P=1 9 sdsdf) - [c, 1 (v, €)).
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