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Abstract. We extend known results about commutative C∗-algebras gen-
erated Toeplitz operators over the unit ball to the supermanifold setup.
This is obtained by constructing commutative C∗-algebras of super
Toeplitz operators over the super ball B

p|q and the super Siegel do-
main U

p|q that naturally generalize the previous results for the unit ball
and the Siegel domain. In particular, we obtain one such commutative
C∗-algebra for each even maximal Abelian subgroup of automorphisms
of the super ball.
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1. Introduction

In [4] it was proved, under mild conditions, that a C∗-algebra generated by
Toeplitz operators is commutative on each weighted Bergman space of the
unit disk if and only if there is a pencil of hyperbolic geodesics of the unit disk
such that the symbols of the Toeplitz operators are constant on the cycles of
this pencil. In fact, the cycles are the orbits of a one-parameter subgroup of
isometries for the hyperbolic geometry on the unit disk. We note that there
are three different non-conjugate model classes of such subgroups: elliptic,
parabolic and hyperbolic. This provides us with the following scheme: the
C∗-algebra generated by Toeplitz operators is commutative on each weighted
Bergman space on the unit disk if and only if there is a maximal Abelian
subgroup of Mobius transformations such that the symbols of the Toeplitz
operators are invariant under the action of this subgroup.

A generalization of this scheme was given in [8–10]. The generalization
is obtained by considering a maximal Abelian subgroup of biholomorphisms
of the unit ball, then the C∗-algebra generated by the Toeplitz operators
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whose symbols are invariant under the action of such subgroup is commuta-
tive on each weighted Bergman space. It was also noted that there are five
different non-conjugate model classes of such subgroups: quasi-elliptic, quasi-
parabolic, quasi-hyperbolic, nilpotent, and quasi-nilpotent. We refer to the
above mentioned works for further details.

On the other hand, the general theory of non-perturbative quantization
for a class of Hermitian symmetric supermanifolds (a particular case is the
super ball) was developed in [2,3]. Such quantization is based on the notion
of super Toeplitz operator defined on a suitable Z2-graded Hilbert space of
superholomorphic functions that effectively defines super Bergman spaces.
These quantized supermanifolds yield the C∗-algebra generated by such su-
per Toeplitz operators. Along these lines, in [5] it is given an exhaustive
description of the super Toeplitz operators over the super ball using classical
Toeplitz-type operators.

Recently and quite unexpectedly it was observed in [6,7,11] that there
are five different non-conjugate classes of maximal abelian supergroups of
isomorphisms of the super disk labeled by the names super-elliptic, quasi-
elliptic, super-parabolic, quasi-parabolic and quasi-hyperbolic. In these works
it is proved that the C∗-algebra of super Toeplitz operators whose symbols
are invariant under the action of one of these subgroups is commutative on
each weighted super Bergman space.

The main goal of this work is to extend the previous results and theory
to the case of the super unit ball Bp|q and its unbounded realization U

p|q, the
super Siegel domain.

Hence, we introduce in Sect. 2 the super Bergman space for the super
Siegel domain and prove its unitary equivalence with the super Bergman
space of the super ball. This allows us to use the known theory to compute
the super Bergman projection and define the super Toeplitz operators on the
super Siegel domain.

With the above setup, we obtain the full list of even maximal Abelian
subgroups of the group of automorphisms of the super unit ball. Our clas-
sification is based on the analysis of the corresponding maximal Abelian
subalgebras that are described in Theorem 3.2. This is used in Sect. 3 to give
an explicit description of the actions of the even maximal Abelian subgroups
on the super unit ball. Most of these are easier to present in the super Siegel
domain. There exists 5 non-equivalent types of even maximal Abelian sub-
groups for our supermanifold setup, one of them depending on a parameter
for a total of n+2 different conjugacy classes. We label the five types with the
names quasi-elliptic, quasi-parabolic, nilpotent, quasi-hyperbolic, and quasi-
nilpotent.

Section 4 introduces a super Bargmann transform corresponding to each
one of the conjugacy classes of even maximal Abelian subgroups mentioned
above. These super Bargmann transforms generalize those presented in [9].
At the same time, our transforms allow us to prove that the C∗-algebra
generated by the Toeplitz operators whose symbols are invariant by one of
the even maximal Abelian subgroups is commutative. This is obtained in
Sect. 6 and is thus the core of this work. The relevant results, for each type
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of even maximal Abelian subgroups, are Theorems 6.1, 6.2, 6.3, 6.4, 6.5. We
note that our results have the same strength of those for the classical case
in that our approach using a super Bargmann transform allows us to realize
the commuting Toeplitz operators in each case as multiplication operators.

2. Weighted Super Bergman Spaces and Projections

For p ≥ 1, let O(Bp) denote the algebra of holomorphic functions ψ(z1, . . . , zp)
on the open unit ball

B
p = {z = (z1, . . . , zp) : |z|2 = |z1|2 + · · · + |zp|2 < 1}

in C
p.
For p ≥ 1, let O(Up) denote the algebra of all functions ψ(w1, . . . , wp)

that are holomorphic on the Siegel domain

U
p = {w = (w′, wp) = (w1, . . . , wp) ∈ C

p : Im(wp) − |w′|2 > 0},

where w′ ∈ C
p−1.

Definition 2.1. For ν > p, the weighted Bergman space

H2
ν (Bp) = O(Bp) ∩ L2(Bp, dμν)

consists of all holomorphic functions on B
p which are square-integrable for

the probability measure

dμν = cν(1 − zz̄)ν−p−1dz, ν > p,

where the normalizing constant is given by

cν =
Γ(ν)

πpΓ(ν − p)
with zw̄ = z1w̄1 + · · · + zpw̄p on C

p and dz is the Lebesgue measure. Corre-
spondingly, the weighted Bergman space

H2
ν (Up) = O(Up) ∩ L2(Up, dμ̃ν)

consists of all holomorphic functions on U
p which are square-integrable for

the probability measure

dμ̃ν =
cν

4
(Im(wp) − w′w̄′)ν−p−1dz, ν > p,

where dz is the Lebesgue measure.

It is well-known (see [12]) that H2
ν (Bp) has the reproducing kernel

KBp,ν(z, w) = (1 − zw̄)−ν ,

for all z, w ∈ B
p. And that H2

ν (Up) has the reproducing kernel

KUp,ν(z, w) =
(

zn − w̄n

2i
− z′w̄′

)−ν

,

for all z, w ∈ U
p.

Let Λq denote the complex Grassmann algebra with the generators
ξ1, . . . , ξq satisfying the relations

ξiξj + ξjξi = 0,



366 R. Quiroga-Barranco and A. Sánchez-Nungaray Adv. Appl. Clifford Algebras

for 1 ≤ i, j ≤ q. If we take Q := {1, . . . , q}, then we have

Λq = C〈ξI : I ⊂ Q〉,
where ξI = ξi1 · · · ξik

if I = {i1 < · · · < ik}. For disjoint subsets I, J we have
ξIξJ = εI,JξI∪J for some εI,J = ±1 whose value depends on the pair I, J .

The tensor product algebra

O(Bp|q) := O(Bp) ⊗ Λq

consists of all super-holomorphic functions

Ψ(z, ξ) =
∑
I⊂Q

ΨIξI ,

where ΨI ∈ O(Bp) for all I ⊂ Q. In a similar way, the tensor product algebra

O(Up|q) := O(Up) ⊗ Λq

consists of all super-holomorphic functions. In this case we have a similar
expression for the super-holomorphic functions.

Let ΛC

q denote the complex Grassmann algebra with the generators
ξ1, . . . , ξq, ξ̄1, . . . , ξ̄q satisfying the relations

ξiξj + ξjξi = 0,

ξ̄iξ̄j + ξ̄j ξ̄i = 0,

ξiξ̄j + ξj ξ̄i = 0,

for 1 ≤ i, j ≤ q.
Thus we have

ΛC

q = C〈ξIξ
∗
J : I, J ⊂ Q〉,

where ξI = ξi1 · · · ξik
and ξ∗

I = ξ̄jl
· · · ξ̄j1 if I = {i1 < · · · < ik} and J =

{j1 . . . , jl}.
The tensor product algebra

C(Bp|q) := C(Bp) ⊗ ΛC

q

consists of all continuous super functions

Ψ =
∑

I,J⊂Q

ΨI,JξIξ
∗
J ,

where ΨI,J ∈ C(Bp) for all I, J ⊂ Q. Similarly

C(Up|q) := C(Up) ⊗ ΛC

q

consists of all continuous super functions

Ψ =
∑

I,J⊂Q

ΨI,JξIξ
∗
J ,

where ΨI,J ∈ C(Up) for all I, J ⊂ Q.
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There is a natural involution Ψ �→ Ψ∗ on these spaces of super functions,
which is defined by

Ψ∗ =
∑

I,J⊂Q

Ψ̄I,JξJξ∗
I ,

for Ψ as above.
The Berezin integral on V

p|q is defined by∫
Vp|q

dzdξF (z, ξ) =
∫
Vp

fQ,Q(z)dz

for F ∈ C(Vp|q), where the normalization is given by∫
Vp|q

dzdξξ∗
QξQ = 1,

where V
p is either B

p or U
p.

For any given morphism γ between super domains we define

γ′(Z) = Ber
(∂w

∂z
∂ω
∂z

∂w
∂ξ

∂ω
∂ξ

)
= Ber

∂W

∂Z
, (2.1)

where Z = (z1, . . . , zp, ξ1, . . . , ξq), W = (w1, . . . , wp, ω1, . . . , ωq) and where
the Berezinian is defined as follows

Ber
(

A B
C D

)
= det(A − BD−1C) det(D)−1. (2.2)

We refer to [1] for more details.
We now recall a natural biholomorphism of supermanifolds between the

super p-ball Bp|q and the super Siegel domain U
p|q.

We define the super Cayley transform from B
p|q to U

p|q in local coordi-
nates by

ψ(z1, . . . , zp, ξ1, . . . , ξq) = (w1, . . . , wp, ω1, . . . , ωq), (2.3)
where

wk =
izk

1 + zp
, for k = 1, . . . , p − 1,

wp = i
1 − zp

1 + zp
,

ωk =
iξk

1 + zp
, for k = 1, . . . , q.

The inverse transform is given by

zk =
−2iwk

1 − iwp
, for k = 1, . . . , p − 1,

zp = i
1 + iwp

1 − iwp
,

ξk =
−2iωk

1 − iwp
, for k = 1, . . . , q.
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Lemma 2.2. Let Z = (z, ξ), U = (u, η), ψ(Z) = (w,ω) = W and ψ(U) =
(v, ζ) = V where ψ is given by (2.3). Then, we have

(1 + zū − ξη̄)(1 + zp)−1(1 + up)−1 =
(

wp − v̄p

2i
− w′v̄′ − ωζ̄

)
, (2.4)

(1 + zū − ξη̄) =
(

wp − v̄p

2i
− w′v̄′ − ωζ̄

)
4(1 − iwp)−1(1 − ivp)−1, (2.5)

where ξθ̄ = ξ1θ̄1 + · · · + ξq θ̄q and zw̄ = z1w̄1 + · · · + zpw̄p.

Proof. Using the above and substituting ψ(Z) = (w,ω) = W and ψ(U) =
(v, ζ) = V on the left hand side of Eq. (2.4) it follows that(

wp − v̄p

2i
− w′v′ − ωζ̄

)

=

(
1
2i

[
i
1 − zp

1 + zp
− i

1 − up

1 + up

]
−

p−1∑
k=1

izk

1 + zp

iuk

1 + up
−

q∑
k=1

iξk

1 + zp

iηk

1 + up

)

=

(
1
2

[(1 − zp)(1 + up) + (1 − up)(1 + zp)] −
p−1∑
k=1

zkuk −
q∑

k=1

ξkηk

)

× 1
(1 + zp)

1
(1 + ūp)

=
1

(1 + zp)
1

(1 + ūp)

(
1 − zpup −

p−1∑
k=1

zkvk −
q∑

k=1

ξkηk

)

= (1 + zp)−1(1 + up)−1(1 + zū − ξη̄).

Its clear that 1 + zp = 2(1 − iwp)−1, then we obtain (2.5). �

Definition 2.3. For any parameter ν > p−q+1, the (weighted) super-Bergman
space

H2
ν (Bp|q) ⊂ O(Bp|q)

consists of all super-holomorphic functions Ψ(z, ξ) which satisfy the square-
integrability condition

(Ψ|Ψ)Bp|q,ν

=
Γ(ν)

πpΓ(ν + q − p)

∫
Bp|q

dzdξ(1 − zz̄ − ξξ̄)ν+q−p−1Ψ(z, ξ)∗Ψ(z, ξ) < ∞,

where ξθ̄ = ξ1θ̄1 + · · · + ξq θ̄q and zw̄ = z1w̄1 + · · · + zpw̄p. Moreover

(1 − zz̄ − ξξ̄)ν+q−p−1

πpΓ(ν + q − p)
=
∑
J⊂Q

(1 − zz̄)ν+|J|−p−1

πpΓ(ν + |J | − p)
ξ∗
Q\JξQ\J

In [5] the authors proved that the super Bergman space has a decom-
position in direct sum of classical Bergman space and gave an explicit ex-
pression for the super Bergman projection. If we take Ψ =

∑
M⊂Q ψMξM ∈



Vol. 26 (2016) Toeplitz Operators on the Super Unit Ball 369

H2
ν (Bp|q) ⊂ O(Bp|q) then the inner product has the form

Γ(ν)
πpΓ(ν + q − p)

∫
Bp|q

dzdξ(1 − zz̄ − ξξ̄)ν+p−p−1Ψ(z, ξ)∗Ψ(z, ξ)

=
q∑

m=1

Γ(ν)
Γ(ν + m)

∑
M⊂Q,|M |=m

‖ψM (z)‖2
Bp,ν+m. (2.6)

Thus the super Bergman space over the super ball has an orthogonal
decomposition

H2
ν (Bp|q) =

q∑
m=0

H2
ν+m(Bp) ⊗ Λm(C�)

into a sum of weighted Bergman spaces for 0 ≤ m ≤ q, with multiplicity
(
m
q

)
.

Moreover, this super Bergman space has the reproducing kernel property

PBp|q,νΨ(z, ξ) =
Γ(ν)

πpΓ(ν + q − p)

∫
Bp|q

dwdω(1 − ww̄ − ωω̄)ν+q−p−1

× (1 − zw̄ − ξω̄)−νΨ(w,ω) = Ψ(w,ω).

In other words, H2
ν (Bp|q) has the reproducing kernel

KBp|q,ν(z, ξ, w, ω) = (1 − zw̄ − ξω̄)−ν .

Definition 2.4. For any parameter ν > p−q+1, the (weighted) super-Bergman
space

H2
ν (Up|q) ⊂ O(Up|q)

consists of all super-holomorphic functions Ψ(w,ω) which satisfy the square-
integrability condition

(Ψ|Ψ)Up|q,ν =
Γ(ν)

4πpΓ(ν + q − p)

∫
Up|q

dwdω(Im(wp) − w′w̄′ − ωω̄)ν+q−p−1

× Ψ(z, ω)∗Ψ(w,ω) < ∞,

where ξω̄ = ξ1ω̄1 + · · · + ξqω̄q and z′w̄′ = z1w̄1 + · · · + zp−1w̄p−1. Where one
can prove that

1
4πpΓ(ν + q − p)

(
wp − w̄p

2i
− w′w̄′ − ωω̄

)ν+q−p−1

=
∑
J⊂Q

1
4πpΓ(ν + |J | − p)

(
wp − w̄p

2i
− w′w̄′

)ν+|J|−p−1

ω∗
Q\JωQ\J .

We now observe that the Berezinian of the Jacobian matrix of the trans-
formation ψ given by (2.3) satisfies

ψ′(Z) = Ber
(

A B
0 C

)
= det(A) · det(C−1),
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where

A = Diagonal(i(1 + zp)−1, . . . , i(1 + zp)−1,−2i(1 + zp)−2)

and

C = Diagonal(i(1 + zp)−1, . . . , i(1 + zp)−1).

As a consequence we obtain that ψ′(Z) = −2ip−q+1(1 + zp)q−p−1 and
analogously (ψ−1)′(W ) = −2p−qiq−p−1(1 − iwp)q−p−1.

Definition 2.5. We define the operator Uν : H2
ν (Bp|q) → H2

ν (Up|q) given by

Uν(Ψ)(W ) = Ψ(ψ−1(W ))
(

2
1 − iwp

)ν

,

and its adjoint U∗
ν : H2

ν (Up|q) → H2
ν (Bp|q) given by

U∗
ν (Ψ)(Z) = Ψ(ψ(Z))

(
1

1 + zp

)ν

.

Theorem 2.6. The operator Uν : H2
ν (Bp|q) → H2

ν (Up|q) is unitary.

Proof. Consider Ψ ∈ H2
ν (Bp|q). Then we have

(Ψ|Ψ)Bp|q,ν =
Γ(ν)

πpΓ(ν + q − p)

∫
Bp|q

dzdξ(1 − zz̄ − ξξ̄)ν+q−p−1Ψ(z, ξ)∗Ψ(z, ξ).

Using Lemma 2.2 and the change of variable given by the super Cayley
transform (2.3) on the right side of the above equation, we obtain

Γ(ν)
πpΓ(ν + q − p)

∫
Up|q

dwdω(ψ−1)′(W )(ψ−1)′(W )

× (Im(wp) − w′w̄′ − ωω̄)ν+q−p−14ν+q−p−1((1 − iwp)−1)ν+q−p−1

× (1 − iwp)−1)ν+q−p−1Ψ(ψ−1(W ))∗Ψ(ψ−1(W ))

=
Γ(ν)

πpΓ(ν + q − p)

∫
Up|q

dwdω4p−q(1 − iwp)q−p−1(1 − iwp)q−p−1

×
(

wp − w̄p

2i
− w′z̄′ − ωω̄

)ν+q−p−1

4ν+q−p−1((1 − iwp)−1)ν+q−p−1

× (1 − iwp)−1)ν+q−p−1Ψ(ψ−1(W ))∗Ψ(ψ−1(W ))

=
Γ(ν)

4πpΓ(ν + q − p)

∫
Up|q

dwdω

(
wp − w̄p

2i
− w′z̄′ − ωω̄

)ν+q−p−1

×
[
Ψ(ψ−1(W ))

(
2

1 − iwp

)ν]∗ [
Ψ(ψ−1(W ))

(
2

1 − iwp

)ν]

= (Uν(Ψ)|Uν(Ψ))Up|q,ν .

�
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Corollary 2.7. If Ψ =
∑

M⊂Q ψMξM ∈ Oν(Up|q), then we have

Γ(ν)
πpΓ(ν + q − p)

∫
Up|q

dwdω

(
wp − w̄p

2i
− w′w̄′ − ωω̄

)ν+q−p−1

× Ψ(w,ω)∗Ψ(w,ω) =
q∑

m=1

Γ(ν)
Γ(ν + m)

∑
M⊂Q,|M |=m

‖ψM (z)‖2
Up,ν+m.

In other words, there is an orthogonal decomposition

H2
ν (Up|q) =

q∑
m=0

H2
ν+m(Up) ⊗ Λm(Cq)

into a sum of weighted Bergman spaces for 0 ≤ m ≤ q, whose corresponding
multiplicities are

(
m
q

)
.

Proof. We rewrite the operator Uν as follows

Uν(Ψ)(W ) =
∑

M⊂Q

(−i)|M |ψM (ψ−1
0 (w))

(
2

1 − iwp

)ν+|M |
ωM

=
∑

M⊂Q

(−i)|M |Vν+|M |(ψM )(w)ωM ,

where Vν+m : H2
ν+m(Bp) → H2

ν+m(Up) is defined by

Vν+m(f) = f(ψ−1
0 (w))

(
2

1 − iwp

)ν+|M |
.

Since we known that Vν+m is a unitary operator, the result follows. �

Proposition 2.8. For ν > p and Ψ =
∑

M⊂Q ψMξM ∈ Oν(Up|q), we have the
reproducing kernel property

PUp|q,νΨ(w,ω) =
Γ(ν)

πpΓ(ν + q − p)

∫
Up|q

dvdζ

(
vp − v̄p

2i
− v′v̄′ − ζζ̄

)ν+q−p−1

×
(

wp − v̄p

2i
− w′v̄′ − ωζ̄

)−ν

Ψ(v, ζ) = Ψ(w,ω).

In particular, H2
ν (Up|q) has the reproducing kernel

KUp|q,ν(w,ω, v, ζ) =
(

wp − v̄p

2i
− w′v̄′ − ωζ̄

)−ν

.

Proof. We know that Uν is unitary, therefore the Bergman projection over
H2

ν (Up|q) is given by

Pν,Up|q = UνPν,Bp|qU∗
ν ,

thus PUp|q,ν(Ψ) is given by

Uν

⎡
⎣ Γ(ν)

πpΓ(ν + q − p)

∫
Bp|q

dudη(1−uū−ηη̄)ν+q−p−1(1−zū−ξη̄)−νU∗
ν (Ψ(V ))

⎤
⎦.
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Using the change of variable (2.3), taking W = (w,ω) = ψ(z, ξ) = ψ(Z),
V = (v, ζ) = ψ(u, η) = ψ(U) and Lemma 2.2, we obtain

PUp|q,ν(Ψ)

=
(

2
1 − iwp

)ν Γ(ν)
4πpΓ(ν + q − p)

∫
Up|q

dvdζ

(
vp − v̄p

2i
− v′v̄′ − ζζ̄

)ν+q−p−1

× (2(1 − ivp)−1)ν(2(1 − ivp)−1)νΨ(V )
(

1
1 + up

)ν

×
[(

wp − v̄p

2i
− w′v̄′ − ωζ̄

)
4(1 − iwp)−1(1 − ivp)−1

]−ν

=
Γ(ν)

4πpΓ(ν + q − p)

∫
Up|q

dvdζ(
vp − v̄p

2i
− v′v̄′ − ζζ̄)ν+q−p−1

×
(

wp − v̄p

2i
− w′v̄′ − ωζ̄

)−ν

Ψ(V )
(

1
1 + up

)ν ( 2
1 − ivp

)ν

=
Γ(ν)

4πpΓ(ν + q − p)

∫
Up|q

dvdζ(
vp − v̄p

2i
− v′v̄′ − ζζ̄)ν+q−p−1

×
(

wp − v̄p

2i
− w′v̄′ − ωζ̄

)−ν

Ψ(V ).

�

3. The Super-Group SU(p, 1|q) and Its Even MASG’s

There is a super Lie group denoted by SU(p, 1|q) that is naturally associated
to the super unit ball Bp,q and whose definition we now recall (see [2]). The
base manifold of SU(p, 1|q) is the Lie group SU(p, 1)×SU(q). For the structure
sheaf we use the Grassmann algebra Λ(Mp+q+1(C)), where Mp+q+1(C) is the
space of complex square matrices of size (p + q + 1) × (p + q + 1), and we
consider the tensor product

C∞(SU(p, 1)) ⊗ Λ(Mp+q+1(C)).

The variables corresponding to the matrix entries are given the following
parity assignments

p(γjk) = p(γjk) =
{

0, if 1 ≤ j, k ≤ p + 1 or p + 1 < j, k ≤ p + q + 1,
1, otherwise.

Thus we have that the super-matrix has a natural block decomposition
as follows

γ =
(

A C
D B

)
,

where A and B are even square matrices with sizes (p + 1) × (p + 1) and
q × q, respectively, and C and D are odd matrices with sizes q × (p + 1)
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and (p + 1) × q, respectively. The structure sheaf of SU(p, 1|q) is obtained by
considering the set of matrices γ as above that satisfy

Berγ = 1, γ∗Jp,1|qγ = Jp,1|q,

where

Jp,1|q =

⎛
⎝Ip 0 0

0 −1 0
0 0 −Iq

⎞
⎠ .

In particular, the Lie super algebra su(p, 1|q) of SU(p, 1|q) is given by
the set of matrices γ that satisfy the conditions

str(γ) = 0, γ∗Jp,1|q + Jp,1|qγ∗ = 0,

where str(γ) = tr(A) − tr(B) and tr(A) are the usual supertrace and trace,
respectively. Since the parity of the entries for such matrices is defined as
above, we conclude that the Lie algebra of even elements of su(p, 1|q) is given
by

su(p, 1|q)0 =
{(

A 0
0 B

)
: A ∈ u(p, 1), B ∈ u(q), tr(A) = tr(B)

}
.

On the other hand, the super Siegel domain realization U
p|q of the super

unit ball Bp|q together with the super Cayley transform introduced before
yield another realization of the super Lie group SU(p, 1|q). More precisely,
we obtain the super Lie group SU(Kp|q) whose base Lie group is

SU(Kp) × SU(q),

where SU(Kp) is the Lie group of unitary transformation of the pseudo-
Hermitian form on C

p+1 whose matrix is the following (see [10] for compari-
son)

Kp =

⎛
⎝2Ip−1 0 0

0 0 −i
0 i 0

⎞
⎠ .

The structure sheaf of SU(Kp|q) is given by the set of matrices γ as
above that now satisfy

Ber(γ) = 1, γ∗Kp|qγ = Kp|q,

where

Kp|q =
(

Kp 0
0 −Iq

)
.

In particular, the super Lie algebra of SU(Kp|q), denoted by su(Kp|q),
has the following Lie algebra as space of even elements

su(Kp|q)0 =
{(

A 0
0 B

)
: A ∈ u(Kp), B ∈ u(q), tr(A) = tr(B)

}
.

Here, we have used the notation where u(Kp) denotes the Lie algebra
of the Lie group U(Kp) of unitary transformations for the pseudo-Hermitian
product with matrix Kp.
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We note that SU(p, 1|q), SU(Kp|q) and their Lie algebras are conjugated
through the super Cayley transform considered before. At the base manifold
level this implies that su(p, 1) and su(Kp) are conjugate.

Definition 3.1. An even maximal Abelian subalgebra of su(p, 1|q), or an
even MASA for short, is a maximal Abelian subalgebra of the Lie algebra
su(p, 1|q)0. An even maximal Abelian subgroup of SU(p, 1|q), or an even
MASG, is a connected super Lie subgroup of SU(p, 1|q) whose Lie super
algebra is an even MASA.

We now list the collection of all even MASA of su(p, 1|q) up to conjugacy.
Note that since su(p, 1|q) and su(Kp|q) are conjugated the even MASA of both
super Lie algebras correspond to each other. In particular, the conjugacy
classes of even MASA’s can be described in terms of either one of these
super Lie algebras. Also note that it follows from the above remarks that
the maximal Abelian subalgebras of su(p, 1) and su(Kp) correspond to each
other as well.

Theorem 3.2. For every even MASA h of su(p, 1|q) there exist maximal
Abelian subalgebras h1 ⊂ u(p, 1) and h2 ⊂ u(q) such that h is conjugate
to the even MASA

h1 �0 h2 =
{(

A 0
0 B

)
: A ∈ h1, B ∈ h2, tr(A) = tr(B)

}
.

Furthermore, we can assume that h2 is the Lie subalgebra of diagonal
matrices in u(q) and that h1 is given by one of the following where D(k)
denotes the Lie algebra of k×k diagonal matrices with pure imaginary entries.

1. Quasi-elliptic: The Lie subalgebra of diagonal matrices in u(p, 1).
2. Quasi-parabolic: The Lie subalgebra of su(Kp) that consists of the ma-

trices of the form ⎛
⎝D 0 0

0 z 0
0 0 z

⎞
⎠ ,

where D ∈ D(p − 1), z ∈ C and tr(D) + 2iIm (z) = 0.
3. Quasi-hyperbolic: The Lie subalgebra of su(Kp) that consists of the ma-

trices of the form ⎛
⎝D 0 0

0 iy a
0 0 iy

⎞
⎠ ,

where D ∈ D(p − 1), a, y ∈ R and tr(D) + 2iy = 0.
4. Nilpotent: The Lie subalgebra of su(Kp) that consists of the matrices of

the form ⎛
⎝ 0 0 bt

2ib 0 a
0 0 0

⎞
⎠ ,

where a ∈ R and b ∈ R
p−1.
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5. Quasi-nilpotent: For some k such that 1 ≤ k ≤ p− 2, the Lie subalgebra
of su(Kp) that consists of the matrices of the form⎛

⎜⎜⎝
D 0 0 0
0 iyIp−k−1 0 bt

0 2ib iy a
0 0 0 iy

⎞
⎟⎟⎠ ,

where a, y ∈ R, b ∈ R
p−k−1, D ∈ D(k) and tr(D) + iy(p − k + 1) = 0.

Proof. Let h be an even MASA subalgebra of su(p, 1|q). In particular, h is a
MASA (maximal Abelian subalgebra) of su(p, 1|q)0. We first note that

su(p, 1|q)0 � su(p, 1) × u(q)

as Lie algebras where the isomorphism is given by the assignment(
A 0
0 B

)
�→
(

A − 1
p + 1

tr(A)Ip+1, B

)
.

And so, we can consider h as a MASA of su(p, 1) × u(q).
Let h1 and h2 be the projections of h into the first and second factors,

respectively. Hence, h1 and h2 are both Abelian Lie algebras. It is clear that
h ⊂ h1 × h2 and the maximality of h implies that h = h1 × h2. Furthermore,
the same argument shows that h1 and h2 are MASA’s of su(p, 1) and u(q),
respectively. It is well known that there is a single conjugacy class of MASA’s
of u(q) with a representative given by D(q). The conjugacy classes of MASA’s
of su(p, 1) are also known and they are listed in [10]. From this and the
above isomorphism of Lie algebras the result now follows directly. It is also
important to note that the MASA’s of u(p, 1) are of the form h1 × R where
h1 is a MASA of su(p, 1). �

After exponentiating the even MASA’s listed above we obtain the fol-
lowing even MASG’s viewed through their actions on either Bp|q or Up|q. The
content of Theorem 3.2 is that, up to conjugacy, these are the only MASG’s
of SU(p, 1|q).
Quasi-elliptic group of super biholomorphisms of the super unit ball Bp|q is
isomorphic to T

p+q with the following group action:

(t, s) : (z, θ) ∈ B
p|q �→ (tz, sθ) = (t1z1, . . . , tpzp, s1θ1, . . . , sqθq) ∈ B

p|q,

for each t = (t1, . . . , tp, s1, . . . , sq).
Note that if the super function F is invariant under the action of the

quasi-elliptic group, then

F (z, ξ) =
∑
I⊂Q

fI(r)ξIξ
∗
I ,

where r = (r1, . . . , rp) = (|z1|, . . . , |zp|).
Quasi-parabolic group of biholomorphisms of the super Siegel domain U

p|q is
isomorphic to T

p−1 × R × T
q with the following group action:

(t, h, s) : (z′, zp, θ) ∈ U
p|q �→ (tz′, zp + h, sθ) ∈ U

p|q,

for each (t, h, s) ∈ T
p−1 × R × T

q.
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In this case, if the super function F is invariant under the action of the
quasi-parabolic group, then

F (z, ξ) =
∑
I⊂Q

fI(r′, Im (zn))ξIξ
∗
I ,

where r′ = (r1, . . . , rp−1) = (|z1|, . . . , |zp−1|).
Quasi-hyperbolic group of biholomorphisms of the Siegel domain U

p|q is iso-
morphic to T

p−1 × R+ × T
q with the following group action:

(t, r, s) : (z′, zp, θ) ∈ U
p|q �→ (r1/2tz′, rzp, r

1/2sθ) ∈ U
p|q,

for each (t, r, s) ∈ T
p−1 × R+ × T

q.
We now have that, if the super function F is invariant under the action

of the quasi-hyperbolic group, then

F (z, ξ) =
∑
I⊂Q

fI(ρ1, . . . , ρn−1, arg(zn − i|z′|2))|zn − i|z′|2|−|I|ξIξ
∗
I ,

where z′ = (z1, . . . , zp−1) and

ρk =
|zk|√|z′|2 + |zn − i|z′|2| ,

for k = 1, . . . , n − 1.

Nilpotent group of biholomorphisms of the Siegel domain U
p|q is isomorphic

to R
p−1 × R × T

q with the following group action:

(b, h, s) : (z′, zp, θ) ∈ U
p|q �→ (z′ + b, zp + h + 2iz′ · b + i|b|2, sθ) ∈ U

p|q,

for each (b, h, s) ∈ R
p−1 × R × T

q.
In this case, we have that if the super function F is invariant under the

action of the nilpotent group, then

F (z, ξ) =
∑
I⊂Q

fI(Im z′, Im zn − |z′|2)ξIξ
∗
I ,

where z′ = (z1, . . . , zp−1).
Quasi-nilpotent group of biholomorphisms of the Siegel domain U

p|q is iso-
morphic to T

k × R
p−k−1 × R × T

q where 0 < k < p − 1, with the following
group action:

(t, b, h, s) : (z′, z′′, zp, θ)∈U
p|q �→(tz′, z′′ + b, zp + h + 2iz′ · b + i|b|2, sθ)∈U

p|q,

for each (t, b, h, s) ∈ T
k × R

p−k−1 × R × T
q.

And for this case, we have that if the super function F is invariant under
the action of the quasi-nilpotent group, then

F (z, ξ) =
∑
I⊂Q

fI(r, y′, Im zn − |z′|2)ξIξ
∗
I ,

where r = (|z1|, . . . , |zk|), y′ = Im w′, and w′ = (zk+1, . . . , zp−1).
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4. Super Bargmann Transform

In [9] it was introduced a Bargmann type transform for each of the five
cases on the unit ball. These Bargmann transforms are used in [9] to provide
very useful descriptions of the Bergman spaces in terms of coordinates cor-
responding to the actions of maximal abelian subgroups. In this section we
define Bargmann type transforms corresponding to the even MASA’s con-
sidered above. These transforms are natural analogues of those defined in
[9]

4.1. Quasi-Elliptic Case

Denote by τ(Bp) the base of the unit ball B
p, considered as a Reinhardt

domain. In other words, we have

τ(Bp) = {r = (r1, . . . , rp) = (|z1|, . . . , |zp|) : r2 = r2
1 + · · · + r2

n ∈ [0, 1)},

which is contained in R
p
+. Consider in C

p the polar coordinates zk = tkrk,
where rk ∈ R+ and tk ∈ T, for k = 1, . . . , p. Then, with respect to the
identification

z = (z1, . . . , zp) = (t1r1, . . . , tprp) = (t, r),

where t = (t1, . . . , tp) ∈ T
p, r = (r1, . . . , rp) ∈ τ(Bp), we have B

p = T
p ×

τ(Bp), and

L2(Bp, μν) = L2(Tp) ⊗ L2(τ(Bp), μν),

where

L2(Tp) =
p⊗

k=1

L2

(
T,

dtk
itk

)
,

and the measure dμν(r) in L2(τ(Bp), μν) is given by

dμν(r) =
Γ(ν)

πpΓ(ν − p)
(1 − r2)ν−p−1rdr.

We denote the discrete Fourier transform F : L2(T) �→ l2 = l2(Z) by

F : f �→ cn =
1√
2π

∫
T

f(t)t−n dt

it
.

Of course, the operator F is unitary and

F−1 = F∗ : {cn}n∈Z �→ f =
1√
2π

∑
n∈Z

cntn.

We consider the operator

U = F(p) ⊗ I : L2(Tp) ⊗ L2(Bp, μν) �→ l2(Zp) ⊗ L2(Bp, μν),

where F(p) = F ⊗ · · · ⊗ F . As in [9], we use the isometric embedding

R0,ν : l2(Z
p
+) −→ l2(Zp) ⊗ L2(Bp, μν),
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defined by

R0,ν : {cn}n∈Z
p
+

�→ cn(r) =

{(
(2π)pΓ(|n|+ν)

n!Γ(ν)

)1/2

cnrn, for n ∈ Z
p
+

0, for n ∈ Z
p\Zp

+

.

Hence, it is easily seen that the map

R∗
0,ν : l2(Zp) ⊗ L2(Bp, μν) −→ l2(Z

p
+)

satisfies

R∗
0,ν : {fn(r)}n∈Z

p
+

�→

⎧⎪⎨
⎪⎩
(

(2π)pΓ(|n| + ν)
n!Γ(ν)

)1/2 ∫
τ(Bp)

fn(r)rndμν

⎫⎪⎬
⎪⎭

Z
p
+

.

In [9] the authors introduced the operator Rν = R∗
0,νU from L2(Bp, μν)

onto l2(Z
p
+) and the adjoint operator R∗

ν = U∗R0,ν from l2(Z
p
+) onto H2

ν (Bp).
They proved that R∗

ν is the isometric isomorphism from l2(Z
p
+) onto the

subspace H2
ν (Bp).

Furthermore, we have

RνR∗
ν = I : l2(Z

p
+) → l2(Z

p
+),

R∗
νRν = PBp,ν : L2(Bp, μν) → H2

ν (Bp),(4.1)

where PBp,ν is the Bergman projection.
The inner product in (l2(Z

p
+))2

q

is given by

〈{aM,n}n∈Z
p
+
)M⊂Q, ({bM,n}n∈Z

p
+
)M⊂Q〉

=
∑

M⊂Q

Γ(ν)
Γ(ν + |M |)

⎛
⎝∑

n∈Z
p
+

aM,nbM,n

⎞
⎠ .

Definition 4.1. Consider the operator

Rν,(p|q) : H2
ν (Bp|q) → (l2(Z

p
+))2

q

,

defined by

Rν,(p|q)

⎛
⎝∑

M⊂Q

ψMξM

⎞
⎠ = (Rν+|M |(ψM ))M⊂Q,

whose explicit expression is given by

Rν,(p|q)

⎛
⎝∑

M⊂Q

ψMξM

⎞
⎠

=

⎛
⎜⎝
⎧⎨
⎩(2π)− p

2

(
(2π)pΓ(|n| + ν + |M |)

n!Γ(ν + |M |)
)1/2∫

Bp

ψMzndμν+|M |(z)

⎫⎬
⎭

Z
p
+

⎞
⎟⎠

M⊂Q

.

The adjoint operator

R∗
ν,(p|q) : (l2(Z

p
+))2

q → H2
ν (Bp|q)
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is defined by

R∗
ν,(p|q)(({cM,n}n∈Z

p
+
)M⊂Q) =

∑
M⊂Q

R∗
ν+|M |({cM,n}n∈Z

p
+
)ξM ,

whose explicit expression is now

R∗
ν,(p|q)(({cM,n}n∈Z

p
+
)M⊂Q)

=
∑

M⊂Q

⎛
⎝(2π)− p

2

∑
n∈Z

p
+

(
(2π)pΓ(|n| + ν + |M |)

n!Γ(ν)

)1/2

cM,nzn ξM

⎞
⎠ .

Theorem 4.2. The operators

Rν,(p|q) : H2
ν (Bp|q) → (l2(Z

p
+))2

q

and

R∗
ν,(p|q) : (l2(Z

p
+))2

q → H2
ν (Bp|q)

are isometric isomorphisms. Furthermore, we have

Rν,(p|q)R∗
ν,(p|q) = I : (l2(Z

p
+))2

q → (l2(Z
p
+))2

q

,

R∗
ν,(p|q)Rν,(p|q) = I : H2

ν (Bp|q) → H2
ν (Bp|q).

Proof. First, we will prove that Rν,(p|q) is a unitary operator. We first take
an element ({cM,n}n∈Z

p
+
)M⊂Q) in (l2(Z

p
+))2

q

, then

I = ‖R∗
ν,(p|q)(({cM,n}n∈Z

p
+
)M⊂Q)‖2

Bp|q,ν

=

⎛
⎝∑

M⊂Q

Rν+|M |({cM,n}n∈Z
p
+
)ξM ,

∑
M⊂Q

Rν+|M |({cM,n}n∈Z
p
+
)ξM

⎞
⎠

Bp|q,ν

=
q∑

m=1

Γ(ν)
Γ(ν + m)

∑
M⊂Q,|M |=m

‖Rν+|M |({cM,n}n∈Z
p
+
)‖2

Up,ν+m.

By (4.1) we know that Rν is an isometric isomorphism, then

I =
∑

M⊂Q

Γ(ν)
Γ(ν + |M |)

∑
n∈Z

p
+

|cM,n|2 = ‖({cM,n}n∈Z
p
+
)M⊂Q‖2

(l2(Z
p
+))2

q ,

which proves our claim. �

4.2. Quasi-Parabolic Case

We define D
p = C

p−1 ×R×R+ whose points we denote by (z′, u, v). Consider
the space L2(Dp, ην), where ην is given by

ην(z′, u, v) =
Γ(ν)

4πpΓ(ν − p)
vν−p−1.

Consider the operator U0 : L2(Bp, μν) −→ L2(Dp, ην) defined by

U0(f)(z′, u, v) = f(κ(z′, u, v)),
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where κ(z′, u, v) = (z′, u + iv + i|w′|). It is clear that the operator is unitary
and the inverse operator is given by

U−1
0 (f)(z) = f(κ−1(z)).

We represent the space L2(Dp, ην) as the following tensor product

L2(Dp, ην) = L2(Cp−1) ⊗ L2(R) ⊗ L2(R+, ην),

and consider the unitary operator U1 = I ⊗ F ⊗ I acting on it. Here F is the
standard Fourier transform on L2(R) and f(z′, u, v) �→ U1f(z′, ξ, v).

On the other hand, we have the decomposition

L2(Dp, ην) = L2(R
p−1
+ ) ⊗ L2(Tp−1) ⊗ L2(R) ⊗ L2(R+, ην),

where

L2(Tp−1) =
p−1⊗
k=1

L2

(
T,

dtk
itk

)
.

As before, we consider the discrete Fourier transform F : L2(Tp) �→
l2 = l2(Z), and consider the unitary operator U2 = I ⊗ F(p−1) ⊗ I ⊗ I acting
from

L2(R
p−1
+ ) ⊗ L2(Tp−1) ⊗ L2(R) ⊗ L2(R+, ην)

onto

L2(R
p−1
+ ) ⊗ l2(Zp−1) ⊗ L2(R) ⊗ L2(R+, ην)

= l2(Zp−1, L2(R
p−1
+ ) ⊗ L2(R) ⊗ L2(R+, ην),

where F(p−1) = F ⊗ · · · ⊗ F and f(z′, ξ, v) �→ {U2f(r, n, ξ, v)}n∈Zp−1

We now the consider isometric embedding

Rν,0 : l2(Z
p−1
+ , L2(R+)) → l2(Zp−1, L2(R

p−1
+ ) ⊗ L2(R) ⊗ L2(R+, ην))

defined by the assignment

Rν,0{bn(ξ)}n∈Z
p−1
+

=

{
χ

Z
p−1
+

(n)χR+(ξ)

(
2(2π)p(2ξ)|n|+ν−1

n!Γ(ν)

) 1
2

rneξ(|z′|2+v)bn(ξ)

}

n∈Z
p−1
+

,

where the function bn(ξ) is extended by zero for ξ∈R\R+ and n ∈ Z
p−1\Zp−1

+ .
Its adjoint

R∗
ν,0 : l2(Zp−1, L2(R

p−1
+ ) ⊗ L2(R) ⊗ L2(R+, ην)) → l2(Z

p−1
+ , L2(R+))

is given by the expression

R∗
ν,0 : {dn(r, ξ, v)}n∈Zp−1

=

⎧⎪⎨
⎪⎩χR+(ξ)

(
2(2π)p(2ξ)|n|+ν−1

n!Γ(ν)

) 1
2
∫
R

n
+

rneξ(|z′|2+v)dn(r, ξ, v)rdr
cνvν−p−1

4
dv

⎫⎪⎬
⎪⎭

n∈Z
p−1
+

.

In [9] the authors introduced the operator Rν = R∗
0,νU from L2(Up, μν)

onto l2(Z
p−1
+ , L2(R+)), and the adjoint operator R∗

ν = U∗R0,ν from l2(Z
p−1
+ ,
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L2(R+)) onto H2
ν (Up) where U = U2U1U0. They proved that R∗

ν is the isomet-
ric isomorphism of l2(Z

p−1
+ , L2(R+)) onto the subspace H2

ν (Up). Furthermore,
we have

RνR∗
ν = I : l2(Z

p−1
+ , L2(R+)) → l2(Z

p−1
+ , L2(R+))

R∗
νRν = PUp,ν : L2(Up, μν) → H2

ν (Up),

where PUp,ν is the Bergman projection of L2(Up, μν) to H2
ν (Up).

The inner product in (l2(Z
p−1
+ , L2(R+)))2

q

is given by

〈({aM,n(ξ)}n∈Z
p−1
+

)M⊂Q, ({bM,n(ξ)}n∈Z
p−1
+

)M⊂Q〉

=
∑

M⊂Q

Γ(ν)
Γ(ν + |M |)

⎛
⎜⎝ ∑

n∈Z
p−1
+

((aM,n(ξ), bM,n(ξ))L2(R+)

⎞
⎟⎠ .

Definition 4.3. Consider the operator

Rν,(p|q) : H2
ν (Up|q) → (l2(Z

p−1
+ , L2(R+)))2

q

defined by

Rν,(p|q)

⎛
⎝∑

M⊂Q

ψMξM

⎞
⎠ =

(
Rν+|M |(ψM )

)
M⊂Q

,

whose explicit expression is given by

Rν,(p|q)

⎛
⎝∑

M⊂Q

ψMξM

⎞
⎠

=

({
(2π)− p

2

(
2(2π)p(2ξ)|n|+ν+|M |−1

n!Γ(ν + |M |)
) 1

2

×
∫
Up

ψM (z)(z̄′)ne−iξzn(Imzn − |z′|)ν+|M |−p−1dv(z)

⎫⎬
⎭

Z
p−1
+

⎞
⎟⎠

M⊂Q

.

Its adjoint operator is

R∗
ν,(p|q) : (l2(Z

p−1
+ , L2(R+)))2

q → H2
ν (Up|q)

defined by

R∗
ν,(p|q)(({bM,n(ξ)}n∈Z

p−1
+

)M⊂Q) =
∑

M⊂Q

Rν+|M |({bM,n(ξ)}n∈Z
p−1
+

)ξM ,

whose explicit expression is now given by

R∗
ν,(p|q)(({bM,n(ξ)}

n∈Z
p−1
+

)M⊂Q)

=
∑

M⊂Q

⎛
⎜⎝(2π)− p

2
∑

n∈Z
p−1
+

∫
R+

(
2(2π)p(2ξ)|n|+ν+|M|−1

n!Γ(ν + |M |)
) 1

2

bn,M (ξ)(z′)neiξzndξ

⎞
⎟⎠ ξM .
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Theorem 4.4. The operators

Rν,(p|q) : H2
ν (Up|q) → (l2(Z

p−1
+ , L2(R+)))2

q

and

R∗
ν,(p|q) : (l2(Z

p−1
+ , L2(R+)))2

q → H2
ν (Up|q)

are isometric isomorphisms. Furthermore, we have

Rν,(p|q)R∗
ν,(p|q) = I : (l2(Z

p−1
+ , L2(R+)))2

q → (l2(Z
p−1
+ , L2(R+)))2

q

R∗
ν,(p|q)Rν,(p|q) = I : H2

ν (Up|q) → H2
ν (Up|q).

The proof of this result is similar to that of Theorem 4.2.

4.3. Nilpotent Case

We consider the space

L2(Dp, ην) = L2(Cp−1) ⊗ L2(R) ⊗ L2(R+, ην),

and the unitary operator U1 = I ⊗ F ⊗ I acting on it, where F is the Fourier
transform on L2(R).

Using the standard Cartesian coordinates x′ = (x1, . . . , xp−1) and y′ =
(y1, . . . , yp−1), where zk = xk + iyk, in C

p−1 = R
p−1 × R

p−1, we have

L2(Dp, ην) = L2(Rp−1) ⊗ L2(Rp−1) ⊗ L2(R) ⊗ L2(R+, ην).

Consider the unitary operator U2 = F(p−1) ⊗ I ⊗ I ⊗ I, where F(p−1) =
F1 ⊗ . . .⊗Fp−1 is (p−1)-dimensional Fourier transform, acting on this tensor
decomposition.

Consider the change of variables

uk =
1

2
√

ξ
ξk −

√
ξyk, vk =

1
2
√

ξ
ξk +

√
ξyk, k = 1, . . . , p − 1,

which is equivalent to

ξk =
√

ξ (uk + vk) , yk =
1

2
√

ξ
(−uk + vk), k = 1, . . . , p − 1,

and the corresponding unitary operator U3 acting on L2(Rp−1)⊗L2(Rp−1)⊗
L2(R) ⊗ L2(R+, ην) by the rule

(U3ϕ)(u′, v′, ξ, v) = ϕ

(√
ξ (u′ + v′) ,

1
2
√

ξ
(−u′ + v′) , ξ, v

)
,

where u′ = (u1, . . . , up−1) and v′ = (v1, . . . , vp−1).
In this case, we consider the isometric embedding

R0,ν : L2(Rp−1 × R+) −→ L2(Rp−1) ⊗ L2(Rp−1) ⊗ L2(R) ⊗ L2(R+, ην)

given by the assignment

R0,ν(ψ(u′, ξ)) = π− p−1
4 e−ξv− |v′|2

2 χR+(ξ)
(

4(2ξ)ν−p

cνΓ(ν − p)

) 1
2

ψ(u′, ξ),

where the function ψ(u′, ξ) is extended by zero for ξ ∈ R\R+ for each u′ ∈
R

p−1. The adjoint operator

R∗
0,ν : L2(Rp−1) ⊗ L2(Rp−1) ⊗ L2(R) ⊗ L2(R+, ην) −→ L2(Rp−1 × R+)
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obviously has the form

R∗
0,ν(ϕ(u′, v′, ξ, v))

= π− p−1
4

∫
Rp−1×R+

e−ξv− |v′|2
2

(
4(2ξ)ν−p

cνΓ(ν − p)

) 1
2

f(u′, v′, ξ, v) dv′ cν

4
vν−p−1dv.

In [9] the authors introduced the operator Rν = R∗
0,νU from L2(Dp, μ̃ν)

onto L2(Rp−1 × R+) and the adjoint operator R∗
ν from L2(Rp−1 × R+) onto

the subspace A2
ν(Dp). They proved that R∗

ν is the isometric isomorphism of
L2(Rp−1 × R+) onto the subspace H2

ν (Up). Furthermore

RνR∗
ν = I : L2(Rp−1 × R+) −→ L2(Rp−1 × R+),

R∗
νRν = BDp,ν : L2(Dp, μ̃ν) −→ A2

ν(Dp),

where BDp,ν is the Bergman projection.
Now we define the analogue of the Bargmann transform for the super

case.

Definition 4.5. Consider the operator

Rν,(p|q) : H2
ν (Up|q) → (L2(Rp−1 × R+))2

q

defined by

Rν,(p|q)

⎛
⎝∑

M⊂Q

ψMξM

⎞
⎠ =

(
Rν+|M |(ψM )

)
M⊂Q

.

Whose adjoint operator

R∗
ν,(p|q) : (L2(Rp−1 × R+))2

q → H2
ν (Up|q)

is defined by

R∗
ν,(p|q)(ψM (u′, ξ))M⊂Q) =

∑
M⊂Q

Rν+|M |(ψM (u′, ξ))ξM .

The inner product in (L2(Rp−1 × R+))2
q

is given by

〈(ψM (u′, ξ))M⊂Q, (φM (u′, ξ))M⊂Q〉

=
∑

M⊂Q

Γ(ν)
Γ(ν + |M |) (ψM (u′, ξ), φM (u′, ξ))L2(R+).

Theorem 4.6. The operators

Rν,(p|q) : H2
ν (Up|q) → (L2(Rp−1 × R+))2

q

and

R∗
ν,(p|q) : (L2(Rp−1 × R+))2

q → H2
ν (Up|q)

are isometric isomorphisms. Furthermore

Rν,(p|q)R∗
ν,(p|q) = I : (L2(Rp−1 × R+))2

q → (L2(Rp−1 × R+))2
q

R∗
ν,(p|q)Rν,(p|q) = I : H2

ν (Up|q) → H2
ν (Up|q).

The proof is similar to that of Theorem 4.2.
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4.4. Quasi-Nilpotent Case

Given an integer 1 ≤ k ≤ n − 2, we will write points of Dp as z = (z′, w′, zn),
where z′ ∈ C

k and w′ ∈ C
p−k−1, and points of Dp as (z′, w′, ζ), respectively.

According to this notation we represent

L2(Dp, ην) = L2(Ck) ⊗ L2(Cp−k−1) ⊗ L2(R) ⊗ L2(R+, ην).

Applying, as in the previous two cases, the unitary operator U1 = I ⊗
I ⊗ F ⊗ I, we have that the image A1(Dp) = U1(A0(Dp)).

Now introducing in C
k the polar coordinates, zl = rltl, where rl ∈

R+, tl ∈ S1 = T, l = 1, . . . , k, and Cartesian coordinates in C
p−k−1, x′ =

(x1, . . . , xp−k−1), y′ = (y1, . . . , yp−k−1), where wm = xm+iym, m = 1, . . . , p−
k − 1, we have that L2(Dp, ην) decomposes as the tensor product

L2(Rk
+, rdr) ⊗ L2(Tk) ⊗ L2(Rp−k−1) ⊗ L2(Rp−k−1) ⊗ L2(R) ⊗ L2(R+, ην).

Consider the unitary operator U2 = I ⊗ F(k) ⊗ F(p−k−1) ⊗ I ⊗ I ⊗ I
acting from L2(Dp, ην) onto

L2(Rk
+, rdr) ⊗ l2(Zk ⊗ L2(Rp−k−1) ⊗ L2(Rp−k−1) ⊗ L2(R) ⊗ L2(R+, ην)

= l2(Zk, L2(Rk
+, rdr) ⊗ L2(Rp−k−1) ⊗ L2(Rp−k−1) ⊗ L2(R) ⊗ L2(R+, ην)),

where F(k) = F ⊗· · ·⊗F is the k-dimensional discrete Fourier transform and
F(p−k−1) = F ⊗ · · · ⊗ F is the (p − k − 1)-dimensional Fourier transform.

Next consider the change of variables

um =
1

2
√

ξ
ξm −

√
ξym, vm =

1
2
√

ξ
ξm +

√
ξym, m = 1, . . . , p − k − 1,

which is equivalent to

ξm =
√

ξ (um + vm) , ym =
1

2
√

ξ
(−um + vm), m = 1, . . . , p − k − 1.

Then, there is a corresponding unitary operator U3 acting on

l2(Zk, L2(Rk
+, rdr) ⊗ L2(Rp−k−1) ⊗ L2(Rp−k−1) ⊗ L2(R) ⊗ L2(R+, ην))

by the assignment

U3{dp(r, ξ′, y′, ξ, v)}p∈Zk =
{

dp

(
r,
√

ξ (u′ + v′) ,
1

2
√

ξ
(−u′ + v′) , ξ, v

)}
p∈Zk

,

where u′ = (u1, . . . , up−k−1) and v′ = (v1, . . . , vp−k−1).
In [9] it is introduced the isometric imbedding R0,ν from the Hilbert

space l2(Zk
+, L2(Rp−k−1 × R+)) into

l2(Zk, (L2(Rk
+, rdr) ⊗ L2(Rp−k−1) ⊗ L2(Rp−k−1) ⊗ L2(R) ⊗ L2(R+, ην)),

which maps {cn(u′, ξ)}n∈Z
k
+

to
{

π− p−k−1
4 χZk

+
(n)χR+(ξ)

(
2k+2(2ξ)|n|+ν−p+k

cνn!Γ(ν − p)

) 1
2

rne−ξ(|r|2+v)− |v′|2
2 cn(u′, ξ)

}

n∈Zk

,

where the functions cn(u′, ξ)) are extended by zero for ξ ∈ R\R+ for each
u′ ∈ R

p−k−1 and each n ∈ Z
k.
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The adjoint operator R∗
0,ν acts from

l2(Zk, (L2(Rk
+, rdr) ⊗ L2(Rp−k−1) ⊗ L2(Rp−k−1) ⊗ L2(R) ⊗ L2(R+, ην))

onto l2(Zk
+, L2(Rp−k−1 × R+)) and maps a sequence {dn(r, u′, v′, ξ, v)}n∈Zk

into

R∗
0,ν({dn(r, u′, v′, ξ, v)}n∈Zk)

=

⎧⎪⎨
⎪⎩π− p−k−1

4

(
2k+2

cν

(2ξ)|n|+ν−p+k

n! Γ(ν − p)

) 1
2 ∫

R
k
+×Rp−k−1×R+

rne−ξ(|r|2+v)− |v′|2
2

× dn(r, u′, v′, ξ, v) rdr dv′ cνvν−p−1

4
dv

}
n∈Z

k
+

.

In [9] the authors introduce the operator Rν = R∗
0,νU from L2(Dp, μ̃ν)

onto l2(Zk
+, L2(Rp−k−1 × R+)), and the adjoint operator R∗

ν being the iso-
metric isomorphism of l2(Zk

+, L2(Rp−k−1 × R+)) onto the subspace A2
ν(Dp)

of L2(Dp, μ̃ν). Furthermore

RνR∗
ν = I : l2(Zk

+, L2(Rp−k−1 × R+)) −→ l2(Zk
+, L2(Rp−k−1 × R+)),

R∗
νRν = BDp,ν : L2(Dp, μ̃ν) −→ A2

ν(Dp),

where BDp,ν is the Bergman projection.

Definition 4.7. Consider the operator

Rν,(p|q) : H2
ν (Up|q) → (l2(Zk

+, L2(Rp−k−1 × R+)))2
q

defined by

Rν,(p|q)

⎛
⎝∑

M⊂Q

ψMξM

⎞
⎠ = (Rν+|M |(ψM ))M⊂Q.

The adjoint operator

R∗
ν,(p|q) : (l2(Zk

+, L2(Rp−k−1 × R+)))2
q → H2

ν (Up|q)

is defined by

R∗
ν,(p|q)({cM,n(u′, ξ)}n∈Z

k
+
)M⊂Q) =

∑
M⊂Q

Rν+|M |({cM,n(u′, ξ)}n∈Z
k
+
)ξM ,

where the inner product in (l2(Zk
+, L2(Rp−k−1 × R+)))2

q

is given by

〈({aM,n(u′, ξ)}n∈Z
k
+
)M⊂Q, ({bM,n(u′, ξ)}n∈Z

k
+
)M⊂Q〉

=
∑

M⊂Q

Γ(ν)
Γ(ν + |M |)

∑
n∈Z

k
+

(aM,n(u′, ξ), bM,n(u′, ξ))L2(Rp−k−1×R+).

Theorem 4.8. The operators

Rν,(p|q) : H2
ν (Up|q) → (l2(Zk

+, L2(Rp−k−1 × R+)))2
q

and

R∗
ν,(p|q) : (l2(Zk

+, L2(Rp−k−1 × R+)))2
q → H2

ν (Up|q)
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are isometric isomorphisms. Furthermore

Rν,(p|q)R∗
ν,(p|q) = I : (l2(Zk

+, L2(Rp−k−1 × R+)))2
q

→ (l2(Zk
+, L2(Rp−k−1 × R+)))2

q

R∗
ν,(p|q)Rν,(p|q) = I : H2

ν (Up|q) → H2
ν (Up|q).

The proof is similar to that of Theorem 4.2.

4.5. Quasi-Hyperbolic Case

We represent D
p = C

p−1 × R × R+ in the form C
p−1 × Π, where Π is the

upper half-plane, and introduce in D
p the “non-isotropic” upper semi-sphere

Ω = {(z′, ζ) ∈ C
p−1 × Π : |z′|2 + |ζ| = 1 }.

The points of Ω admit the natural parameterization

zk = sktk, where sk ∈ [0, 1), tk ∈ S1, k = 1, . . . , p − 1,

ζ = ρeiθ, where ρ ∈ (0, 1], θ ∈ (0, π),

and
p−1∑
k=1

s2
k + ρ = 1.

This in turn induces the following representation of the points (z′, ζ) ∈
D

p = C
p−1 × Π

zk = r
1
2 sktk, k = 1, . . . , p − 1, ζ = rρeiθ,

where r ∈ R+.
We represent now D

p = τ(Bp−1) × T
p−1 × R+ × (0, π), where

τ(Bp−1) =

{
s = (s1, . . . , sp−1) ∈ R

p−1
+ :

p−1∑
k=1

s2
k < 1

}

is the base (in the sense of a Reinhardt domain) of the unit ball Bp−1, and
T

p−1 = S1 × · · · × S1 is the p − 1 dimensional torus.
Introduce the new coordinate system (s, t, r, θ) in D

p, where we have
s = (s1, . . . , sp−1) ∈ τ(Bp−1), t = (t1, . . . , tp−1) ∈ T

p−1, r ∈ R+, and θ ∈
(0, π), which is connected with the old one (z′, ζ) by the formulas

sk =
|zk|√|z′|2 + |ρ| , tk =

zk

|zk| , r = |z′|2 + |ρ|, θ = arg ζ, (4.2)

or
zk = r

1
2 sktk, ζ = r(1 − |s|2)eiθ,

where k = 1, . . . , p − 1.
A direct computation shows that under the change of variables (4.2) we

have

dv(z′, ζ) = rp(1 − |s|2)
p−1∏
k=1

skdsk

p−1∏
k=1

dtk
itk

drdθ,

and
ην =

cν

4
rν−p−1(1 − |s|2)ν−p−1 cν

4
sinν−p−1 θ.
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Introduce the unitary operator U1 = I ⊗ F(p−1) ⊗ Mν ⊗ I which acts
from the space

L2(τ(Bp−1), (1 − |s|2)ν−psds) ⊗ L2(Tp−1)

⊗ L2(R+, rν−1dr) ⊗ L2

(
(0, π),

cν

4
sinν−p−1 θdθ

)

onto the space

l2
(
Z

p−1, L2(τ(Bp−1), (1 − |s|2)ν−psds) ⊗ L2(R) ⊗ L2

(
(0, π),

cν

4
sinν−p−1 θdθ

))
,

where the Mellin transform Mν : L2(R+, rν−1dr) −→ L2(R) is given by

(Mνψ)(ξ) =
1√
2π

∫
R+

r−iξ+ ν
2 −1 ψ(r)dr,

and the inverse is as follows

(M−1
ν ψ)(r) =

1√
2π

∫
R

r−iξ− ν
2 ψ(ξ)dξ,

and F(p−1) = F⊗· · ·⊗F is the (p−1)-dimensional discrete Fourier transform.

Introduce the isometric imbedding R0,ν of the space l2(Z
p−1
+ , L2(R))

into the space

l2
(
Z

p−1
+ , L2(τ(Bp−1), (1 − |s|2)ν−psds) ⊗ L2(R) ⊗ L2

(
(0, π),

cν

4
sinν−p−1 θdθ

))

by the rule

R0,ν : {cn(ξ)}n∈Z
p−1
+

�−→ {cn(ξ)αn,ν(ξ)βn,ν(s, ξ, θ)}n∈Zp−1 ,

where the functions βn,ν = βn,ν(s, ξ, θ) and αn,ν(ξ) are given by

βn,ν = sn[1 − (1 + i)|s|2]− ν+|n|
2 +iξe

−2(ξ+i ν+|n|
2 ) arctan[(1−i |s|2

1−|s|2 ) tan θ
2+ |s|2

1−|s|2 ]
.

(4.3)
and

αn,ν(ξ) =

⎛
⎜⎝

∫
τ(Bp−1)×(0,π)

|βn,ν(s, ξ, θ)|2(1 − |s|2)ν−p cν

4
sinν−p−1 θ sdsdθ

⎞
⎟⎠

− 1
2

.

(4.4)
The adjoint operator R∗

0,ν which acts from

l2
(
Z

p−1
+ , L2(τ(Bp−1), (1 − |s|2)ν−psds) ⊗ L2(R) ⊗ L2

(
(0, π),

cν

4
sinν−p−1 θdθ

))
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onto the space l2(Z
p−1
+ , L2(R)) has obviously the form

R∗
0,ν({dn(s, ξ, θ)}n∈Zp−1)

=

{
αn,ν(ξ)

∫
τ(Bp−1)×(0,π)

βn,ν(s, ξ, θ) dn(s, ξ, θ) (1 − |s|2)ν−p

× cν

4
sinν−p−1 θ sdsdθ

}

n∈Z
p−1
+

.

In [9] the authors introduced the operator Rν = R∗
0,νU from L2(Dp, μ̃ν)

onto l2(Z
p−1
+ , L2(R)), and the adjoint operator R∗

ν being an isometric isomor-
phism from l2(Z

p−1
+ , L2(R)) onto the subspace A2

ν(Dp). Furthermore

RνR∗
ν = I : l2(Z

p−1
+ , L2(R)) −→ l2(Z

p−1
+ , L2(R)),

R∗
νRν = BUp,ν : L2(Up, μ̃ν) −→ A2

ν(Up),

where BUp,ν is the Bergman projection.
Now we define the analogue operator for the super case

Definition 4.9. Consider the operator

Rν,(p|q) : H2
ν (Up|q) → (l2(Z

p−1
+ , L2(R)))2

q

defined by

Rν,(p|q)

⎛
⎝∑

M⊂Q

ψMξM

⎞
⎠ = (Rν+|M |(ψM ))M⊂Q.

The adjoint operator

R∗
ν,(p|q) : (l2(Z

p−1
+ , L2(R)))2

q → H2
ν (Up|q)

is defined by

R∗
ν,(p|q)({cM,n(ξ)}n∈Z

p−1
+

)M⊂Q) =
∑

M⊂Q

Rν+|M |({cM,n(ξ)}n∈Z
p−1
+

)ξM ,

where the inner product in (l2(Z
p−1
+ , L2(R)))2

q

is given by

〈({aM,n(ξ)}n∈Z
p−1
+

)M⊂Q, ({bM,n(ξ)}n∈Z
p−1
+

)M⊂Q〉

=
∑

M⊂Q

Γ(ν)
Γ(ν + |M |)

∑
n∈Z

p−1
+

(aM,n(ξ), bM,n(ξ))L2(R+).

Theorem 4.10. The operators

Rν,(p|q) : H2
ν (Up|q) → (l2(Z

p−1
+ , L2(R)))2

q

and

R∗
ν,(p|q) : (l2(Z

p−1
+ , L2(R)))2

q → H2
ν (Up|q)
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are isometric isomorphisms. Furthermore, we have

Rν,(p|q)R∗
ν,(p|q) = I : (l2(Z

p−1
+ , L2(R)))2

q → (l2(Z
p−1
+ , L2(R)))2

q

R∗
ν,(p|q)Rν,(p|q) = I : H2

ν (Up|q) → H2
ν (Up|q).

The proof is similar to that of Theorem 4.2.

5. Toeplitz Operators

Definition 5.1. For F an element of C(Bp|q) (an element of C(Up|q)), the super-
Toeplitz operator T ν

F on H2
ν (Bp|q) (on H2

ν (Up|q), respectively) is defined by

T ν
F Ψ = P ν(FΨ),

where P ν denotes the orthogonal projection onto H2
ν (Bp|q) (onto H2

ν (Up|q),
respectively).

In [5] the authors proved that every super Toeplitz operator T ν
F on

H2
ν (Bp|q) is given by the 2q × 2q-matrix. With respect to the decomposition

Ψ =
∑

M⊂Q

ψMξMH2
ν (Bp|q),

the super Toeplitz operator has the form

(T ν
F )I,J =

∑
I∪J⊂K⊂Q

[
εK\I,IεK\J,J

Γ(ν + |I| − p)
Γ(ν + |J | − p)

(5.1)

× T
ν+|J|
ν+|I| (FK\I,K\J (w)(1 − ww)|K|−|I|)

]
. (5.2)

Here, for 0 ≤ i, j ≤ q, T ν+j
ν+i denotes the Bergman-type Toeplitz operator

T ν+j
ν+i (f) = Pν+ifPν+j : H2

ν+j(B
p) → H2

ν+i(B
p)

from H2
ν+j(B

p) to H2
ν+i(B

p).
The following proposition is a consequence of the above result and the

fact that H2
ν (Bp|q) is isometric to H2

ν (Up|q), which is given by Theorem 2.6.

Proposition 5.2. With respect to the decomposition

Ψ =
∑

M⊂Q

ψMξMH2
ν (Up|q),

the super Toeplitz operator T ν
F on H2

ν (Up|q) is given by the 2q × 2q-matrix

(T ν
F )I,J =

∑
I∪J⊂K⊂Q

[
εK\I,IεK\J,J

Γ(ν + |I| − p)
Γ(ν + |J | − p)

× T
ν+|J|
ν+|I|

(
FK\I,K\J(w)

(
wp − w̄p

2i
− w′w̄′

)|K|−|I|)]
.

Here, for 0 ≤ i, j ≤ q, T ν+j
ν+i denotes the Bergman-type Toeplitz operator

T ν+j
ν+i (f) = Pν+ifPν+j : H2

ν+j(U
p) → H2

ν+i(U
p)

from H2
ν+j(U

p) to H2
ν+i(U

p).
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Corollary 5.3. Let F be a super function of the form

F (z, ξ) =
∑

M⊂Q

FM (z)ξMξ∗
M .

Then the super Toeplitz operator T ν
F on H2

ν (Bp|q) (or H2
ν (Bp|q)) is given

by the 2q × 2q diagonal-matrix

(T ν
F )I,I =

∑
I⊂K⊂Q

T
ν+|I|
ν+|I| (FK\I(w)(1 − ww)|K|−|I|), (5.3)

or

(T ν
F )I,I =

∑
I⊂K⊂Q

T
ν+|I|
ν+|I|

(
FK\I(w)

(
wp − w̄p

2i
− w′w̄′

)|K|−|I|)
.

6. Super Toeplitz Operators with Special Symbols

6.1. Quasi-Elliptic

We will call a super function F quasi-elliptic if it is invariant under the action
of the quasi-elliptic group, in other words, when F has the following form

F (z, ξ) =
∑
I⊂Q

FI(r)ξIξ
∗
I ,

where r = (r1, . . . , rp) = (|z1|, . . . , |zp|).
Theorem 6.1. Let F be a bounded measurable quasi-elliptic super function.
Then the Toeplitz operator T ν

F acting on H2
ν (Bp|q) is unitarily equivalent to

the multiplication operator γF,νI = Rν,(p|q)T ν
F R∗

ν,(p|q) acting on (l2(Z
p
+))2

q

,
where Rν,(p|q) and R∗

ν,(p|q) are given in Definition 4.1. The sequence

γF,ν = ({γF,ν(n,M)}n∈Z
p
+
)M⊂Q

is given by

γF,ν(n,M)=
2pΓ(|n| + ν + |M |)
n!Γ(ν + |M | − p)

∑
K∈IM

∫
τ(Bp)

FK\M (r)r2n(1 − r2)ν+|K|−p−1rdr,

where IM = {K ⊂ Q : M ⊂ K}.
Proof. For every super function F the Toeplitz operator is unitarily equiva-
lent to

Rν,(p|q)T ν
F R∗

ν,(p|q) : (l2(Z
p
+))2

q → (l2(Z
p
+))2

q

,

where the components of the operator are

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J = Rν+|I|(T ν
F )I,JR∗

ν+|J|. (6.1)

Now, we consider a super function of the form F =
∑

I⊂Q FI(r)ξIξ
∗
I

and using Corollary 5.3 we have that the Toeplitz operator has the form

(T ν
F )I,J =

{
0 I �= J∑

K∈II
T

ν+|I|
ν+|I| (FK\I(r)(1 − |r|2)|K|−|I|) I = J

(6.2)
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From the above equation and 6.1 we have

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J

=
{

0 I �= J∑
K∈II

Rν+|I|Pν+|I|(FK\I(r)(1 − |r|2)|K|−|I|)Pν+|I|R∗
ν+|I| I = J

.

By Theorem 10.1 in [9] the above operators are multiplication operators
then∑

K∈II

Rν+|I|Pν+|I|(FK\I(r)(1 − |r|2)|K|−|I|)Pν+|I|R∗
ν+|I|({cn,I}n∈Z

p
+
)

=

⎧⎪⎨
⎪⎩

⎡
⎢⎣lν+|I|(n)

∑
K∈II

∫
τ(Bp)

(FK\I(r)(1 − r2)|K|−|I|)

× r2n(1 − r2)ν+|I|−p−1rdr
]
cn,I

}
n∈Z

p
+

=

⎧⎪⎨
⎪⎩

⎡
⎢⎣lν+|I|(n)

∑
K∈II

∫
τ(Bp)

FK\I(r)r2n(1 − r2)ν+|K|−p−1rdr

⎤
⎥⎦ cn,I

⎫⎪⎬
⎪⎭

n∈Z
p
+

,

where

lν+|I|(n) =
2pΓ(|n| + ν + |I|)
n!Γ(ν + |I| − p)

.

�
6.2. Quasi-Parabolic Case

We will call a super function F quasi-parabolic if it is invariant under the
action of the quasi-parabolic group, in other words, when F has the following
form

F (z, ξ) =
∑
I⊂Q

fI(r, Im (zn))ξIξ
∗
I ,

where r = (r1, . . . , rp−1) = (|z1|, . . . , |zp−1|).
Theorem 6.2. Let F be a bounded measurable quasi-parabolic super func-
tion. Then the Toeplitz operator T ν

F acting on H2
ν (Dp|q) is unitarily equivalent

to the multiplication operator γF,νI = Rν,(p|q)T ν
F R∗

ν,(p|q) acting on (l2(Z
p−1
+ ,

L2(R+)))2
q

, where Rν,(p|q) and R∗
ν,(p|q) are given in Definition 4.3. The se-

quence

γF,ν = ({γF,ν(n, ξ,M)}n∈Z
p−1
+

)M⊂Q

is given by

γF,ν(n, ξ,M) =
(2ξ)|n|+ν+|M |−1

n!Γ(ν + |M | − p)

×
∑

K∈IM

∫
R

p
+

FK\M (
√

r′, v + r̂)rne−2ξ(v+r̂)vν+|K|−p−1drdv,
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where r = (r1, . . . , rp−1),
√

r = (
√

r1, . . . ,
√

rp−1), r̂ = r1 + · · · + rp−1 and
IM = {K ⊂ Q : M ⊂ K}.
Proof. For every super function F the Toeplitz operator is unitarily equiva-
lent to

Rν,(p|q)T ν
F R∗

ν,(p|q) : (l2(Z
p−1
+ , L2(R+)))2

q → (l2(Z
p−1
+ , L2(R+)))2

q

,

where the components of the operator are

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J = Rν+|I|(T ν
F )I,JR∗

ν+|J|. (6.3)

Now, we consider a super function F =
∑

I⊂Q FI(r, Im(zn))ξIξ
∗
I and

using Corollary 5.3 we obtain

(T ν
F )I,J =

{
0 I �= J∑

K∈II
T

ν+|I|
ν+|I| (FK\I(r, v + r̂)v|K|−|I|) I = J

.

From the above equation and 6.3 we have

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J

=
{

0 I �= J∑
K∈II

Rν+|I|Pν+|I|(FK\I(r, v + r̂)(v)|K|−|I|)Pν+|I|R∗
ν+|I| I = J

.

By Theorem 10.2 in [9] the above operators are multiplication operators∑
K∈II

Rν+|I|Pν+|I|(FK\I(r′, v + r̂)(v)|K|−|I|)

× Pν+|I|R∗
ν+|I|({cn,I(ξ)}n∈Z

p−1
+

)

=

⎧⎪⎨
⎪⎩

⎡
⎢⎣ ∑

K∈II

(2ξ)|n|+ν+|I|−1

n!Γ(ν + |M | − p)

∫
R

p
+

(FK\I(
√

r′, v + r̂)v|K|−|I|)

× rne−2ξ(v+r̂)vν+|I|−p−1drdv
]
cn,I(ξ)

}
n∈Z

p−1
+

=

⎧⎪⎨
⎪⎩

⎡
⎢⎣ (2ξ)|n|+ν+|I|−1

n!Γ(ν + |M | − p)

∑
K∈II

∫
R

p
+

FK\I(
√

r′, v + r̂)

× rne−2ξ(v+r̂)vν+|K|−p−1drdv
]
cn,I(ξ)

}
n∈Z

p−1
+

.

�

6.3. Nilpotent Case

We will call a super function F nilpotent if it is invariant under the action of
the Nilpotent group, in other words, when F has the following form

F (z, ξ) =
∑
I⊂Q

fI(Im z′, Im zn − |z′|2)ξIξ
∗
I ,

where z′ = (z1, . . . , zp−1).
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Theorem 6.3. Let F be a bounded measurable nilpotent super function. Then
the Toeplitz operator T ν

F acting on H2
ν (Up|q) is unitarily equivalent to the mul-

tiplication operator γF,νI = Rν,(p|q)T ν
F R∗

ν,(p|q) acting on (L2(Rp−1 × R+))2
q

,
where Rν,(p|q) and R∗

ν,(p|q) are given in Definition 4.5. The function

γF,ν = (γF,ν(u′, ξ,M))M⊂Q

is given by

γF,ν(u′, ξ,M) =
(2ξ)ν+|M |−p

π
p−1
2 Γ(ν + |M | − p)

∑
K∈IM

∫
Rn−1×R+

× FK\M (
1

2
√

ξ
(−u′ + v′), v)e−2ξv−|v′|2 vν+|K|−p−1dv′dv,

where IM = {K ⊂ Q : M ⊂ K}, u′ ∈ R
n−1 and ξ ∈ R+.

Proof. For every super function F the Toeplitz operator is unitarily equiva-
lent to

Rν,(p|q)T ν
F R∗

ν,(p|q) : (L2(Rp−1 × R+))2
q → (L2(Rp−1 × R+))2

q

,

where the components of the operator are

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J = Rν+|I|(T ν
F )I,JR∗

ν+|J|. (6.4)

Now, we consider a super function of the form

F =
∑
I⊂Q

FI(Im z′, Im zn − |z′|2)ξIξ
∗
I .

Using (5.3) we obtain

(T ν
F )I,J =

{
0 I �= J∑

K∈II
T

ν+|I|
ν+|I| (FK\I(Im z′, Im zn − |z′|2)v|K|−|I|) I = J

. (6.5)

From the above equation and 6.4 we have

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J

=
{

0 I �= J∑
K∈II

Rν+|I|Pν+|I|(FK\I(y′, v)(v)|K|−|I|)Pν+|I|R∗
ν+|I| I = J

.

By Theorem 10.3 in [9] the above operators are the multiplication op-
erators∑

K∈II

Rν+|I|Pν+|I|(FK\I(y′, v)(v)|K|−|I|)Pν+|I|R∗
ν+|I| (cI(u′, ξ))

=

⎡
⎢⎣ ∑

K∈II

(2ξ)ν+|M |−p

π
p−1
2 Γ(ν + |M | − p)

∫
Rn−1×R+

FK\M

(
1

2
√

ξ
(−u′ + v′), v

)

× e−2ξv−|v′|2 vν+|K|−p−1dv′dv
]
cI(u′, ξ).

�
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6.4. Quasi-Nilpotent Case

We will call a super function F quasi-nilpotent if it is invariant under the
action of the quasi-nilpotent group, in other words, when F has the following
form

F (z, ξ) =
∑
I⊂Q

fI(r, y′, Im zn − |z′|2)ξIξ
∗
I ,

where r = (|z1|, . . . , |zk|), y′ = Im w′, and w′ = (zk+1, . . . , zp−1).

Theorem 6.4. Let F be a bounded measurable quasi-nilpotent super function.
Then the Toeplitz operator T ν

F acting on H2
ν (Up|q) is unitarily equivalent

to the multiplication operator γF,νI = Rν,(p|q)T ν
F R∗

ν,(p|q) acting on (l2(Zk
+,

L2(Rp−k−1 ×R+)))2
q

, where Rν,(p|q) and R∗
ν,(p|q) are given in Definition 4.7.

The function

γF,ν = ({γF,ν(n, u′, ξ,M)}n∈Z
k
+
)M⊂Q

is given by

γF,ν(n, u′, ξ,M) = π− p−k−1
2

(2ξ)|n|+ν+|M |−p+k

n! Γ(ν + |M | − p)

∑
K∈IM

∫
R

k
+×Rn−k−1×R+

× FK\M

(√
r,

1
2
√

ξ
(−u′ + v′), v + r1 + . . . + rk

)
rp

× e−2ξ(v+r1+...+rk)−|v′|2 vν+|K|−p−1drdv′dv,

where IM = {K ⊂ Q : M ⊂ K}, √
r = (

√
r1, . . . ,

√
rk), n ∈ Z

k
+, u′ ∈ R

n−k−1

and ξ ∈ R+.

Proof. For every super function F the Toeplitz operator is unitarily equiva-
lent to

Rν,(p|q)T ν
F R∗

ν,(p|q) : (l2(Zk
+, L2(Rp−k−1 × R+)))2

q

→ (l2(Zk
+, L2(Rp−k−1 × R+)))2

q

,

where the components of the operator are

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J = Rν+|I|(T ν
F )I,JR∗

ν+|J|. (6.6)

Now, we consider a super function of the form F =
∑

I⊂Q FI(r, y′, Im zn−
|z′|2)ξIξ

∗
I and using Corollary 5.3 we obtain

(T ν
F )I,J =

{
0 I �= J∑

K∈II
T

ν+|I|
ν+|I| (FK\I(r, y′, Im zn − |z′|2)v|K|−|I|) I = J

. (6.7)

From the above equation and 6.6 we have

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J

=
{

0 I �= J∑
K∈II

Rν+|I|Pν+|I|(FK\I(r, y′, v)(v)|K|−|I|)Pν+|I|R∗
ν+|I| I = J

.
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In particular by Theorem 10.4 in [9] the following operator is a multi-
plication operator∑

K∈II

Rν+|I|Pν+|I|(FK\I(r, y′, v)(v)|K|−|I|)Pν+|I|R∗
ν+|I|(cn,I(u′, ξ))

=
∑

K∈II

π− p−k−1
2

(2ξ)|n|+ν+|M |−p+k

n! Γ(ν + |M | − p)

∫
R

k
+×Rn−k−1×R+

× FK\M (
√

r,
1

2
√

ξ
(−u′ + v′), v + r1 + . . . + rk)

× rn e−2ξ(v+r1+...+rk)−|v′|2 vν+|K|−p−1drdv′dv · [cn,I(u′, ξ)].

�
6.5. Quasi-Hyperbolic Case

We will call a super function F quasi-nilpotent if it is invariant under the
action of the Quasi-nilpotent group, in other words, when F has the following
form

F (z, ξ) =
∑
I⊂Q

fI(s1, . . . , sn−1, arg(zn − i|z′|2))|zn − i|z′|2|−|I|ξIξ
∗
I ,

where

sk =
|zk|√|z′|2 + |zn − i|z′|2| ,

k = 1, . . . , n − 1 and z′ = (z1, . . . , zp−1).

Theorem 6.5. Let F be a bounded measurable quasi-nilpotent super function.
Then the Toeplitz operator T ν

F acting on H2
ν (Up|q) is unitarily equivalent

to the multiplication operator γF,νI = Rν,(p|q)T ν
F R∗

ν,(p|q) acting on (l2(Z
p−1
+ ,

L2(R)))2
q

, where Rν,(p|q) and R∗
ν,(p|q) are given in Definition 4.9. The func-

tion

γF,ν = ({γF,ν(n, ξ,M)}n∈Z
p−1
+

)M⊂Q

is given by

γF,ν(n, ξ,M) =
∑

K∈IM

α2
n,ν+|M |(ξ)

∫
τ(Bn−1)×(0,π)

FK\M (s, θ) |βn,ν+|M |(s, ξ, θ)|2

× (1 − |s|2)ν+|M |−p cν+|M |
4

sinν+|K|−p−1 θ sdsdθ,

where IM = {K ⊂ Q : M ⊂ K}, and the functions αp(ξ) and βp(s, ξ, θ) are
given by (4.4) and (4.3), respectively.

Proof. For every super function F the Toeplitz operator is unitarily equiva-
lent to

Rν,(p|q)T ν
F R∗

ν,(p|q) : (l2(Z
p−1
+ , L2(R)))2

q → (l2(Z
p−1
+ , L2(R)))2

q

,

where the components of the operator are

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J = Rν+|I|(T ν
F )I,JR∗

ν+|J|. (6.8)
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Now, we consider a super function of the form F =
∑

I⊂Q FI(s, θ)r−|I|

ξIξ
∗
I and using Corollary 5.3 we obtain

(T ν
F )I,J =

{
0 I �= J∑

K∈II
T

ν+|I|
ν+|I| (FK\I(s, θ)r−|K\I|v|K|−|I|) I = J

. (6.9)

From the above equation and 6.8 we have

(Rν,(p|q)T ν
F R∗

ν,(p|q))I,J

=
{

0 I �= J∑
K∈II

Rν+|I|Pν+|I|(FK\I(s, θ) sin|K|−|I| θ)Pν+|I|R∗
ν+|I| I = J

.

By Theorem 10.5 in [9] the above operators are multiplication operators∑
K∈II

Rν+|I|Pν+|I|FK\I(s, θ) sin|K|−|I| θPν+|I|R∗
ν+|I|(cn,I(ξ))

=
∑

K∈II

α2
n,ν+|I|(ξ)

∫
τ(Bn−1)×(0,π)

FK\I(s, θ) sin|K|−|I| θ |βn,ν+|I|(s, ξ, θ)|2

× (1 − |s|2)ν+|I|−p cν+|I|
4

sinν+|I|−p−1 θ sdsdθ · [cn,I(u′, ξ)]

=
∑

K∈II

α2
n,ν+|I|(ξ)

∫
τ(Bn−1)×(0,π)

FK\I(s, θ) |βn,ν+|I|(s, ξ, θ)|2

× (1 − |s|2)ν+|I|−p cν+|I|
4

sinν+|K|−p−1 θ sdsdθ · [cn,I(u′, ξ)].

�
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