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leading to a duality for certain binary and ternary differential operators.

Mathematics Subject Classification. Primary 17A40; Secondary 13B05.

Keywords. Noncommutative Galois extension, ternary Clifford algebra,
ternary Clifford analysis, quark model.

A concept of noncommutative Galois extension is proposed for a certain
class of associative algebras. Binary Clifford algebras with negative signature
are characterized in terms of successive binary Galois extensions. Ternary
Clifford algebras are introduced by means of ternary triples and a process
of successive ternary Galois extensions is described by means of nonion alge-
bra. Dirac and Laplace operators are discussed in the context of binary and
ternary Clifford algebras. A description of su(3) is given by means of Gell-
Mann matrices and binary extensions. A ternary structure is proposed for
su(3), leading to a ternary Dirac operator which provides a duality between
the associated binary and ternary Laplace operators.

1. Noncommutative Galois Extensions

Here we introduce the idea of noncommutative Galois extension as indicated
in [7,8]. For simplicity, we assume that all algebras are defined over R or C,
are associative and unital (not necessarily commutative).

Definition 1.1. Let A and Ã be algebras such that A is a subalgebra of Ã and
suppose that there are an element τ ∈ Ã and a positive integer n such that
τn = 1 and τk �∈ A for k = 1, 2, . . . , n − 1. We denote by A[τ ] the smallest
subalgebra of Ã containing both A and τ and call it noncommutative Galois
extension of A by τ or, for short, an extension of A by τ .
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Noncommutative extensions are usually not easy to control, even when
both A and Ã are free algebras. Hence we restrict ourselves to extensions
A[τ ] such that for any x ∈ A there exists x′ ∈ A satisfying

τx = x′τ.

In this case A[τ ] is said to be semi-commutative and the extension can be
written in the most familiar expression as

A[τ ] =
{
a0 + a1τ + · · · + an−1τ

n−1|a0, a1, . . . , an−1 ∈ A
}

.

All extensions we consider here are assumed to be semi-commutative.
We mainly discuss in this paper certain class of binary and ternary

Clifford algebras. The algebraic structure of these algebras can be described
by means of binary and ternary Galois extensions, defined as follows.

Definition 1.2. An extension A[τ ] is said to be a binary extension when τ2 = 1.
In the same way, when τ3 = 1 we say that A[τ ] a ternary extension.

In the following we have examples of a binary and a ternary extension
the will apear in the discussions along the paper.

Example. Let H be the quaternion algebra, generated over R by the unity 1
and the elements {i, j,k} subject to the relations

i2 = −1, j2 = −1, k2 = −1
ij + ji = 0, jk + kj = 0, ki + ik = 0

ij = k, jk = i, ki = j.

By these relations the elements of H can be written as

a01 + a1i + a2j + a3k = a01 + a2j + i(a11 + a3j).

Thus H = C[i], when we consider C = {a01 + a2j|a0, a2 ∈ R}, showing that
H is a binary extension.

Example. The 3 × 3 matrices defined by

T1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , T2 =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , T3 =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

satisfy T 2
2 = T3 and T 3

2 = T1. In this case the unity 1 is given by the identity
matrix T1 and the extension B given by

B = C[T2] = {θ1T1 + θ2T2 + θ3T3|θ1, θ2, θ3 ∈ C}.

is a ternary extension called (complex) cubic algebra. Since T1, T2, T3 have
only real entries the extension R[T2] is also defined, being a ternary counter-
part of complex numbers.

If A[τ ] is an extension of A by τ ∈ Ã and τ ′ ∈ Ã − A we can construct
an extension of A[τ ] by τ ′. This extension is indicated by A[τ, τ ′] and is called
successive extension of A[τ ] by τ ′. In the first example, given above, observe
that H = C[i] and C = R[j]. Hence, it follows that H = R[i, j].
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2. Binary and Ternary Clifford Algebras

Binary and ternary algebras have extensively been studied in various domains
of theoretical and mathematical physics [4,6]. In particular, ternary algebras
plays an important role in the description of quarks by means of a ternary
generalization of Pauli’s principle [5].

Much of the algebraic structure involved in these constructions can be
recovered by Galois extensions where the binary or ternary character is de-
scribed by particular properties of the extension. This is the case for binary
Clifford algebras, that can be obtained by successive binary extensions. By
the other side ternary Clifford algebras are characterized by means of ternary
triples whose role in the generation of these algebras will be more evident
when we consider complex 3 × 3 matrices.

2.1. Binary Clifford Algebras

Binary Clifford algebras are the usual Clifford algebras defined by a relation
on the generators as described for example in [9,10]. We use here the term
“binary” to distinguish these algebras from their ternary analogous.

To our purposes it will be enough to consider Clifford algebras defined
by a negative signature, since they will be directly related to the positive
Laplace operator, as described in [9].

Definition 2.1. An associative algebra generated over R by a unity 1 and the
elements {θ1, θ2, . . . , θn} subject to the relations

θaθb + θbθa = −2δab1,

for all a, b = 1, . . . , n is said to be a binary Clifford algebra.

Complex numbers can be obtained as a binary extension of real num-
bers and quaternions as a binary extension of complex numbers. This reason-
ing can be improved, characterizing binary Clifford algebras by an inductive
process of binary extensions, sometimes called basic construction [7,8].

Theorem 2.2. A binary Clifford algebra can be obtained by a process of suc-
cessive noncommutative Galois extensions.

Proof. Let Cm be a binary Clifford algebra generated by a unity 1 and ele-
ments θ1, θ2, . . . , θm, subject to the relations θaθb + θbθa = −2δab1. Define
new generators as

Θa = θa ⊗
(

1 0
0 −1

)
, Θm+1 = 1 ⊗

(
0 1

−1 0

)

where a = 1, 2, . . . ,m. Hence, it is not difficult to check that the algebra
Cm+1 generated by the elements Θ1,Θ2, . . . ,Θm,Θm+1 is a binary Clifford
algebra which can be written as Cm+1 = Cm[Θm+1]. �

The basic process of extension can also include other algebras, as binary
involutive Clifford algebras. These are generated over R by a unity 1 and
elements {θ1, θ2, . . . , θn, θ1, θ2, . . . , θn} subject to

θaθb + θbθa = −2δab1, θaθb + θbθa = −2δab1.

for all a, b = 1, . . . , m.
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Let Cm be such an involutive algebra and I, J be the matrices

I =
(

1 0
0 1

)
, J =

(
0 1

−1 0

)
.

We define extended generators by the following block matrices

Θa = θa ⊗
(

I 0
0 −I

)
, Θm+1 = 1 ⊗

(
0 I

−I 0

)
,

Θa = θa ⊗
(

0 J
−J 0

)
, Θm+1 = 1 ⊗

(
0 J
J 0

)
.

Since J2 = −I it is not difficult to check that the algebra Cm+1, generated by
the elements Θ1,Θ2, . . . ,Θm,Θm+1, Θ1, Θ2, . . . , Θm+1, is a binary involutive
Clifford algebra with Cm+1 = Cm[Θm+1, Θm+1].

Observe that the extended generators may satisfy additional binary re-
lations

ΘaΘb = −ΘbΘa, ΘbΘa = −ΘaΘb

once the original generators θa, θb satisfy similar relations. This is the case
when consistence commutation relations on the generators and its conjugate
are required to merge both in a bigger algebra [4,5].

2.2. Ternary Clifford Algebra

Ternary Clifford algebras appear in literature as a ternary generalization of
binary Clifford algebras. In [2] these algebras are introduced by relations on
ternary products of generators while in [1,5] by means of relations on pair
of generators, involving the primitive cubic root of 1. Following the lines
of [6,7] we present here a definition of ternary Clifford algebras based on
ternary triples.

Definition 2.3. Given an associative C-algebra A with unity 1, we say that
a triple of generators {θ1, θ2, θ3} is a ternary triple when the following com-
mutation relations hold

θaθbθc + θbθcθa + θcθaθb = 3habc1

where habc is a totally symmetric tensor whose only non vanishing compo-
nents are

h111 = h222 = h333 = 1, h123 = h231 = h312 = j2, h213 = h321 = h132 = j,

with j = e
2π
3 i, the primitive cubic root of 1. The algebra A is said to be a

ternary Clifford algebra when it is generated by a system of ternary triples.

If A is an involutive C-algebra with unity 1, we say that a triple of
generators {θ1, θ2, θ3} is a ternary triple when

θaθbθc + θbθcθa + θcθaθb = 3habc1, θaθbθc + θbθcθa + θcθaθb = 3habc1.

A is said to be a ternary involutive Clifford algebra when it is generated by
a system of ternary triples.

If A is endowed with additional relations on ternary triples given by
θaθb = kabθ

bθa, with kab ∈ {j, j2}, we say it is a j-ternary involutive Clifford
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algebra or, for short, a j-ternary Clifford algebra. This is usually the case
when binary relations are imposed on “quark” and “anti-quark” [5] to provide
constitutive relations between a ternary triple {θ1, θ2, θ3} and its associated
conjugate triple {θ1, θ2, θ3}.

Example. Consider the generators Q1, Q2, Q3 given by the complex matrices

Q1 =

⎛

⎝
0 j 0
0 0 j2

1 0 0

⎞

⎠ , Q2 =

⎛

⎝
0 j2 0
0 0 j
1 0 0

⎞

⎠ , Q3 =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ .

As the following equalities hold

Q1Q2 = jQ2Q1, Q2Q3 = jQ3Q2, Q3Q1 = jQ1Q3,

it can be verified that the C-algebra generated by the elements {Q1, Q2, Q3}
is a ternary Clifford algebra. In addition, by taking hermitian conjugates
Q1 = Q†

1, Q2 = Q†
2, Q3 = Q†

3 we also get

Q1Q2 = jQ2Q1, Q2Q3 = jQ3Q2, Q3Q1 = jQ1Q3.

It is not difficult to check that the C-algebra generated by the elements
{Q1, Q2, Q3, Q1, Q2, Q3} is a j-ternary Clifford algebra.

A characterization of ternary Clifford algebras by means of successive
extensions is not as straightforward as it was done for binary case. This
happens because the definition of these algebras by means of a system of
ternary triples does not impose additional restrictions on elements of different
triples. By the other hand, in [2] a discussion is presented for some algebras
where the relation XY = jY X holds for generators X and Y . In these cases
it can be checked that {X,Y, (jXY )2} is a ternary triple, and a ternary
extension process can be defined [7,8]. In the following we give more detail
on these particular algebras.

3. Nonion Algebra and Galois Extensions

Nonion algebra provides the simplest example of a ternary Clifford algebra,
being generated by two ternary elements subject to a semi-commutativity
condition. In this case ternary triples can be obtained from the generators of
nonion algebra, being represented by complex 3 × 3 matrices.

3.1. Nonion Algebra

Nonion algebra was introduced by Pierce [11] and Sylvester [12] as a ternary
analogous to Hamilton quaternions.

Definition 3.1. The associative algebra generated over C by a unity 1, and
elements X and Y subjected to

X3 = Y 3 = 1, XY = jY X

with j the primitive cubic root of 1, is called nonion algebra.
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As pointed before {X,Y, (jXY )2} is a ternary triple, showing that non-
ion algebra is a ternary Clifford algebra. The structure of this algebra is
particularly evident when we consider its lowest dimensional representation,
given by 3 × 3 complex matrices. Sylvester [12] showed that these matrices
generate the full algebra M3(C) where a basis can be written as

Q1 =

⎛

⎝
0 j 0
0 0 j2

1 0 0

⎞

⎠ , Q2 =

⎛

⎝
0 j2 0
0 0 j
1 0 0

⎞

⎠ , Q3 =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ ,

Q1 =

⎛

⎝
0 0 1
j2 0 0
0 j 0

⎞

⎠ , Q2 =

⎛

⎝
0 0 1
j 0 0
0 j2 0

⎞

⎠ , Q3 =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ ,

R1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , R2 =

⎛

⎝
1 0 0
0 j 0
0 0 j2

⎞

⎠ , R3 =

⎛

⎝
1 0 0
0 j2 0
0 0 j

⎞

⎠ .

A full multiplication table is given in [6,7].
For a nonion algebra generated over C by elements X and Y the condi-

tions X3 = Y 3 = 1 and XY = jY X allow us to consider ternary extensions,
whose structure can be described as follows.

Proposition 3.2. A nonion algebra N can be obtained by successive ternary
extensions and it is isomorphic to the full matrix algebra M3(C).

Proof. Suppose that N is a nonion algebra generated over C by two elements
X and Y subject to X3 = Y 3 = 1 and XY = jY X. By defining N1 = C[X]
we have a ternary extension. Besides, it follows that N = N1[Y ], show-
ing that N is also a ternary extension by the adjunction of Y to N1. Since
1,X, Y,X2, Y 2,XY,X2Y,XY 2 and (XY )2 are linearly independent genera-
tors for N = N1[Y ], an algebra isomorphism ϕ : N → M3(C) is defined. �

The isomorphism indicated in the proposition is not unique. It can be
defined on the generators and then extended to all the algebra, for example,
as ϕ(X) = Q1 and ϕ(Y ) = Q2. Besides, as C[X] is isomorphic to B, we also
refer to C[X] as a cubic algebra.

Ternary extensions in nonion algebra can also be characterized by the
action of adjoint representations defined on the generators.

Definition 3.3. An automorphism ϕ : M3(C) → M3(C) is said to be inner if
there exists an invertible element U ∈ M3(C) such that

ϕ(Z) = U−1ZU,

for all Z ∈ M3(C). In this case ϕ is called adjoint representation defined by
U , and indicated by AdU .

As an example let us consider the generators R1, R2, R3, Q1, Q2, Q3,
Q1, Q2, Q3. As they are invertible in M3(C) it is possible to compute their
adjoints. For the triple Q1, Q2, Q3, for example, we have

AdQs
Rk = jk−1Rk, AdQs

Qk = jk−1Qk, AdQs
Qk = jk−1Qk
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where s, k = 1, 2, 3. Other adjoints can be easily calculated by using multi-
plication table found in [6,7].

The elements T1 = R1, T2 = Q3 and T3 = Q3 generate the cubic algebra
B = C[T2] which is a commutative ternary sub-algebra of the nonion algebra
M3(C). When N = B[X] = M3(C) is an extension over B, with X ∈ M3(C),
we can calculate the group of all C-automorphisms σ : M3(C) → M3(C)
such that σ|

B
= 1B. First notice that every automorphism σ : B[X] → B[X]

is inner, since B[X] = M3(C) is a matrix algebra [10]. Thus, there is an
invertible element U ∈ M3(C) such that σ(Z) = U−1ZU for all Z ∈ B[X].
As σ|

B
= 1B we have σ(T2) = T2 and U will be of form

U = aT1 + bT2 + cT3,

where a, b, c ∈ C are not all simultaneously null. As {T1, T2, T3} is a cyclic
group of order 3 it is isomorphic to Z3 showing that the group of all such
automorphisms is the group (C[Z3])

∗, of invertible elements in the group
algebra C[Z3].

Although we have considered Galois extensions over the cubic alge-
bra, the same reasoning can be performed for general ternary subalgebras
of M3(C) leading to the same invariance group. This fact holds also true
for more general algebras showing that noncommutative extensions will have
“continuous Galois group”.

3.2. Successive Ternary Extensions

Suppose that B is the cubic algebra generated over C by a ternary element
X, i.e., X3 = 1 and Xk �= 1 for k = 1, 2. If A is a ternary Clifford algebra
and {T1, T2, T3} is a ternary triple we can define the triples

{T1 ⊗ Xk, T2 ⊗ Xk, T3 ⊗ Xk}

for k = 1, 2, 3. Since X is ternary it is not difficult to see that each of these
triples is ternary, endowing A ⊗ B with a ternary Clifford algebra structure.
By means of the identification A = A ⊗ 1 we can think A ⊗ B as a ternary
extension of form A[X], which is called cubic algebra extension [7].

By the same reasoning, when N is the nonion algebra, A ⊗ N will also
be a ternary Clifford algebra. In fact, if X,Y are generators of N , with
B = C[X] and N = B[Y ], we can write A ⊗ N = (A ⊗ B)[1 ⊗ Y ] = A[X,Y ]
showing that A⊗N is a ternary Clifford algebra obtained by successive cubic
extensions.

Successive cubic extensions of a ternary Clifford algebra will produce
new ternary Clifford algebras. Unfortunately it is not clear that any ternary
Clifford algebra can be obtained in this way. This is directly related to the
chosen definition for a ternary Clifford algebra. In [1,2], for example, the
authors give different definitions for such algebras while here we use the idea
of ternary triples. These definitions coincide for nonion algebra although this
coincidence is not evident in higher dimensions.
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4. Basic Binary and Ternary Differential Operators

Dirac and Laplace operators are well known for real binary Clifford alge-
bras [9]. In ternary case these operators are not uniquely defined, and depend
on a choice of a particular ternary triple [6,7].

4.1. Binary Dirac and Laplace Operators

Consider the binary Clifford algebra generated on R by the unity 1 and the
elements {T1, T2, . . . , Tm} subject to the relations

TaTb + TbTa = −2δab1.

The binary Dirac operator is defined as

D =
m∑

k=1

Tk
∂

∂xk
.

Since the relation

(x1T1 + x2T2 + · · · + xmTm)2 = −(x2
1 + x2

2 + · · · + x2
m)1

holds for all x1, x2, . . . , xm ∈ R, it follows that

D2 = −
(

m∑

k=1

∂2

∂x2
k

)

1.

The operator D2 is called binary (positive) Laplace operator [9].

4.2. Ternary Dirac and Laplace Operators

In similar way we can introduce ternary Dirac and Laplace operators. To do
this let us consider a ternary Clifford algebra over C, with unity 1, and a
ternary triple {T1, T2, T3} subject to the relations

TaTbTc + TbTcTa + TcTaTb = 3habc1.

We introduce the ternary Dirac operator

D = T1
∂

∂x
+ T2

∂

∂y
+ T3

∂

∂z

and its conjugate operators as D∗ = jD and D∗∗ = j2D. Since the cubic
relation

(xT1 + yT2 + zT3)
3 =

(
x3 + y3 + z3 − 3xyz

)
1

holds for all x, y, z ∈ C it follows that

DD∗D∗∗ =
(

∂3

∂x3
+

∂3

∂y3
+

∂3

∂z3
− 3

∂3

∂x∂y∂z

)
1.

The operator on the right side is indicated by Δ(3) and it is called ternary
Laplace operator [7,8].

There are other choices for defining the conjugate operators. In fact,
from the property

(x + y + z)(x + j2y + jz)(x + jy + j2z) = x3 + y3 + z3 − 3xyz
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we may define

D∗ = T1
∂

∂x
+ j2T2

∂

∂y
+ jT3

∂

∂z
, D∗∗ = T1

∂

∂x
+ jT2

∂

∂y
+ j2T3

∂

∂z
.

Again we have DD∗D∗∗ = Δ(3) showing that the conjugate operators defined
in this way lead to the same ternary Laplace operator.

Nonion algebra provides the simplest examples of ternary Dirac op-
erators. Consider, for example, the triple {Q1, Q2, Q3} and its conjugate
{Q1, Q2, Q3} which define two Dirac operators. These operators give raise
to the same Laplace operator, indicating an equivalence among solutions. In
this direction, the authors in [4,6] define a Dirac operator by means of the
triple {Q1, Q2, Q3} and, acting three times with this operator, get a ternary
Laplace equation. Based on solutions of this third order equation an expla-
nation is proposed on why three quarks can form a freely propagating state
while a single quark cannot propagate. Another explanation for this is also
given in [5] where quarks are described in terms of colors and a system of cou-
pled equations defined on a binary extension of the nonion algebra generated
by Q3 and R2.

5. Galois Extension and Clifford Analysis for su(3)

Here we consider a representation M(su(3)), of the algebra su(3), in terms of
3 × 3 complex matrices. Then, by means of Gell-Mann basis, we investigate
binary and ternary extensions.

5.1. Basic Binary and Ternary extensions in M(su(3))
First notice that su(2) can be represented as a 3-dimensional real algebra
generated by {iσ1, iσ2, iσ3}, where σ1, σ2, σ3 are the Pauli matrices and
i =

√−1. Thus, taking into account the Gell-Mann basis [3] for M(su(3)),
we define the following 3 × 3 matrices

e1 =

⎛

⎝
0 i 0
i 0 0
0 0 0

⎞

⎠ , e2 =

⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ , e3 =

⎛

⎝
i 0 0
0 −i 0
0 0 0

⎞

⎠

e′
1 =

⎛

⎝
0 0 i
0 0 0
i 0 0

⎞

⎠ , e′
2 =

⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ , e′
3 =

⎛

⎝
i 0 0
0 0 0
0 0 −i

⎞

⎠

e′′
1 =

⎛

⎝
0 0 0
0 0 i
0 i 0

⎞

⎠ , e′′
2 =

⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠ , e′′
3 =

⎛

⎝
0 0 0
0 i 0
0 0 −i

⎞

⎠

These nine elements generate M(su(3)) but are not a basis (in fact we get a
basis omitting one of e3, e′

3 or e′′
3). They provide the following three copies

of su(2) inside M(su(3)):

L1 = span
R
{e1, e2, e3}, L2 = span

R
{e′

1, e
′
2, e

′
3}, L3 = span

R
{e′′

1 , e′′
2 , e′′

3}.
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When we consider the elements

e0 =

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ , e′
0 =

⎛

⎝
1 0 0
0 0 0
0 0 1

⎞

⎠ , e′′
0 =

⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠

and the extensions L̂1 = L1[e0], L̂2 = L2[e′
0] and L̂3 = L3[e′′

0 ], we have

Proposition 5.1. L̂1, L̂2 and L̂3 are binary extensions.

Proof. The relations

e21 = −e0, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2

show that L̂1 is a quaternion algebra which is a binary extension of C =
R[e0, e2]. Similarly we see that L̂2 and L̂3 are also binary extensions. �

We now investigate elements G ∈ M3(C) that can be adjoined to the
generators of L̂1, L̂2 and L̂3 to provide a ternary structure, i.e when G3 = I3.
One simple example is given by G = Q3. Unfortunately, we readily see that
L̂1[G] is not a Galois extension since the semi-commutativity condition does
not hold. However it is possible to give a characterization of M(su(3)) in terms
of adjoint representation. In fact we have L̂2 = AdG(L̂1) and L̂3 = AdG2(L̂1),
leading to

M(su(3)) = L̂1 + L̂2 + L̂3 = L̂1 + AdG(L̂1) + AdG2(L̂1).

Hence we see that M(su(3)) can be obtained by a binary extension and an
adjoint extensions given by the ternary element G. In [7,8] the authors already
pointed out this fact and suggested that three quarks may be introduced by
the three binary extensions L̂1, L̂2, L̂3.

5.2. Ternary Structure on M(su(3)) and Differential Operators

Despite the generators {ek, e′
k, e′′

k} are not ternary triples, they satisfy sig-
nificant ternary conditions. For example, if X = xe2 + ye′

2 + ze′′
2 then it is

possible to verify that X3 = −(x2 + y2 + z2)X. In fact, by performing the
product X3 = (xe2 + ye′

2 + ze′′
2)3 we observe that the elements of the triple

{e2, e
′
2, e

′′
2} satisfy a series of ternary relations. Although our main interest

is M(su(3)), this observation motivates us to introduce the following general
definition.

Definition 5.2. The algebra generated over C by the elements {T1, T2, T3}
subject to

T 3
α = −Tα (α = 1, 2, 3)

T1T2T3 + T1T3T2 + T2T1T3 + T2T3T1 + T3T1T2 + T3T2T1 = 0
TαT 2

β + TβTαTβ + T 2
βTα = −Tα (α, β = 1, 2, 3, α �= β)

is called ternary algebra of quark type and the triple {T1, T2, T3} is said to be
of quark type.
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Thus, if X = xT1 + yT2 + zT3 it follows that X3 = −(x2 + y2 + z2)X
for all x, y, z ∈ C. In this case we say that that X determines the ternary
algebra generated by {T1, T2, T3}.

A ternary Dirac operator can be defined for the triple {T1, T2, T3} as

D = T1
∂

∂x
+ T2

∂

∂y
+ T3

∂

∂z
.

If Δ(3) = D3 is the corresponding ternary Laplace operator it follows that

Δ(3) = −
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
D = Δ(2)D,

where Δ(2) stands for the binary Laplace operator.
As Δ(2)D = DΔ(2), we have a duality between solutions. In fact, if ψ(3)

satisfies Δ(3)ψ(3) = 0 we define ψ(2) = Dψ(3). This leads to

Δ(2)ψ(2) = Δ(3)ψ(3) = 0.

By the other hand, when ψ(2) satisfies Δ(2)ψ(2) = 0 and there is ψ(3) such
that Dψ(3) = ψ(2), then

Δ(3)ψ(3) = Δ(2)ψ(2) = 0.

The elements of M(su(3)) defined as

X1 = θ1e1 + θ2e
′
2 + θ3e

′′
1

X2 = θ′
1e2 + θ′

2e
′
2 + θ′

3e
′′
2

X3 = θ′′
1 e3 + θ′′

2
1√
2
(e′

2 − e′′
2) + θ′′

3
1√
2
(e′

1 + e′′
1)

with θk, θ′
k, θ′′

k ∈ C, determine three distinct ternary algebras of quark type
that together generate M(su(3)). In addition, three corresponding Dirac op-
erators are defined, leading to a duality in each of these ternary algebra. In
this context, a question for further investigation is the role played by solu-
tions of these equations in the description of quark model, following the lines
of [4–6].

Finally, notice that X1, X2 and X3, as defined above, determine par-
ticular ternary algebras of quark type in M(su(3)) but unfortunately not
Ad-invariant by invertible elements of M(su(3)). Thus, another question for
further investigation is whether or not there are elements Y1, Y2 an Y3 deter-
mining ternary algebras of quark type, together generating M(su(3)), that
are Ad-invariant by invertible elements G1, G2, G3 ∈ M(su(3)) in the sense
that

AdG1(Y1) = Y2, AdG2(Y2) = Y3, AdG3(Y3) = Y1.

An investigation of this kind of invariance in quark models is proposed in [7,8]
by means of Galois extensions.
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