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Abstract. We consider an arbitrary finite-dimensional commutative as-
sociative algebra, Am

n , with unit, over the field of complex number with
m idempotents. Let e1 = 1, e2, e3 be elements of Am

n which are linearly
independent over the field of real numbers. We consider monogenic (i.e.
continuous and differentiable in the sense of Gateaux) functions of the
variable xe1+ye2+ze3, where x, y, z are real. For mentioned monogenic
function we prove curvilinear analogues of the Cauchy integral theorem,
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1. Introduction

The Cauchy integral theorem and Cauchy integral formula for the holomor-
phic function of the complex variable are a fundamental result of the classical
complex analysis. Analogues of these results are also an important tool in
commutative algebras of dimensional more that 2.

In the paper of Lorch [1] for functions differentiable in the sense of
Lorch in an arbitrary convex domain of commutative associative Banach
algebra, some properties similar to properties of holomorphic functions of
complex variable (in particular, the curvilinear integral Cauchy theorem and
the integral Cauchy formula, the Taylor expansion and the Morera theorem)
are established. Blum [2] withdrew a convexity condition of a domain in the
mentioned results from [1].

Let us note that a priori/the differentiability of a function in the sense
of Gateaux is a restriction weaker than the differentiability of this function
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in the sense of Lorch. Therefore, we consider a monogenic functions defined
as a continuous and differentiable in the sense of Gateaux. Also we assume
that a monogenic function is given in a domain of three-dimensional subspace
of an arbitrary commutative associative algebra with unit over the field of
complex numbers. In this situation the results established in the papers [1,2]
is not applicable for a mentioned monogenic function, because it deals with
an integration along a curve on which the function is not given, generally
speaking.

In the papers [3–5] for monogenic function the curvilinear analogues of
the Cauchy integral theorem, the Cauchy integral formula and the Morera
theorem are obtained in special finite-dimensional commutative associative
algebras.

In this paper, we generalize results of the papers [3–5] for an arbitrary
commutative associative algebra over the field of complex numbers.

Let us note that some analogues of the curvilinear Cauchy integral the-
orem and the Cauchy integral formula for another classes of functions in
special commutative algebras are established in the papers [6–10].

2. The Algebra A
m
n

Let N be the set of natural numbers. We fix the numbers m,n ∈ N such that
m ≤ n. Let A

m
n be an arbitrary commutative associative algebra with unit

over the field of complex number C. Cartan [11, pp. 33–34] proved that in the
algebra A

m
n there exist a basis {Ik}n

k=1 satisfies the following multiplication
rules:

1. ∀ r, s ∈ [1,m] ∩ N: IrIs =
{

0 if r �= s,
Ir if r = s;

2. ∀ r, s ∈ [m + 1, n] ∩ N: IrIs =
∑n

k=max{r,s}+1 Υs
r,kIk;

3. ∀ s ∈ [m + 1, n] ∩ N ∃!us ∈ [1,m] ∩ N∀ r ∈ [1,m] ∩ N:

IrIs =

{
0 if r �= us,

Is if r = us.
(2.1)

Furthermore, the structure constants Υs
r,k ∈ C satisfy the associativity

conditions:

(A1). (IrIs)Ip = Ir(IsIp) ∀ r, s, p ∈ [m + 1, n] ∩ N;
(A2). (IuIs)Ip = Iu(IsIp) ∀u ∈ [1,m] ∩ N ∀ s, p ∈ [m + 1, n] ∩ N.

Obviously, the first m basis vectors {Iu}m
u=1 are the idempotents and, re-

spectively, form a semi-simple subalgebra. Also the vectors {Ir}n
r=m+1 form

a nilpotent subalgebra of algebra A
m
n . The unit of A

m
n is the element 1 =∑m

u=1 Iu. Therefore, we will write that the algebra A
m
n is a semi-direct sum

of the m-dimensional semi-simple subalgebra S and (n − m)-dimensional
nilpotent subalgebra N , i.e.

A
m
n = S ⊕s N.

In the cases where A
m
n has some specific properties, the following propo-

sitions are true.
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Proposition 2.1. ([15]) If there exists the unique u0 ∈ [1,m] ∩ N such that
Iu0Is = Is for all s = m + 1, . . . , n, then the associativity condition (A2) is
satisfied.

Thus, under the conditions of Proposition 1, the associativity condition
(A1) is only required. It means that the nilpotent subalgebra of A

m
n with

the basis {Ir}n
r=m+1 can be an arbitrary commutative associative nilpotent

algebra of dimension n−m. We note that such nilpotent algebras are fully de-
scribed for the dimensions 1, 2, 3 in the paper [12], and some four-dimensional
nilpotent algebras can be found in the papers [13,14].

Proposition 2.2. ([15]) If all ur are different in the multiplication rule 3, then
IsIp = 0 for all s, p = m + 1, . . . , n.

Thus, under the conditions of Proposition 2, the multiplication table
of the nilpotent subalgebra of Am

n with the basis {Ir}n
r=m+1 consists only of

zeros, and all associativity conditions are satisfied.
The algebra A

m
n contains m maximal ideals

Iu :=

{
n∑

k=1, k �=u

λkIk : λk ∈ C

}
, u = 1, 2, . . . ,m,

the intersection of which is the radical

R :=

{
n∑

k=m+1

λkIk : λk ∈ C

}
.

We define m linear functionals fu : Am
n → C putting

fu(Iu) = 1, fu(ω) = 0 ∀ω ∈ Iu, u = 1, 2, . . . ,m.

Since the kernels of functionals fu are, respectively, the maximal ideals Iu,
then these functionals are also continuous and multiplicative (see [16, p. 147]).

3. Monogenic Functions

We consider the vectors e1 = 1, e2, e3 in A
m
n which are linearly independent

over the field of real number R. It means that the equality

α1e1 + α2e2 + α3e3 = 0, α1, α2, α3 ∈ R,

holds if and only if α1 = α2 = α3 = 0.
Supposing that the vectors e1 = 1, e2, e3 have the following decomposi-

tions with respect to the basis {Ik}n
k=1:

e1 = 1, e2 =
n∑

k=1

akIk, e3 =
n∑

k=1

bkIk, (3.1)

where ak, bk ∈ C.
Let ζ := xe1 + ye2 + ze3, where x, y, z ∈ R. It is also obvious that

ξu := fu(ζ) = x + yau + zbu, u = 1, 2, . . . ,m. Let E3 := {ζ = xe1 + ye2 +
ze3 : x, y, z ∈ R} be the linear span of vectors e1, e2, e3 over the field of
real numbers R. We note that in the further investigations, it is essential
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assumption: fu(E3) = C for all u = 1, 2, . . . ,m, where fu(E3) is the image of
E3 under the mapping fu. Obviously, it holds if and only if for every fixed
u = 1, 2, . . . ,m at least one of the numbers au or bu belongs to C \ R.

To a set Q ⊂ R
3 we associate the set Qζ := {ζ = xe1 + ye2 + ze3 :

(x, y, z) ∈ Q} in E3. We also note that the topological properties of a set Qζ

in E3 are understood as a corresponding topological properties of a set Q in
R

3. For example, a homotopicity of a curve γζ ⊂ E3 to the zero, means a
homotopicity of γ ⊂ R

3 to the zero, etc.
Let Ω be a domain in R

3. A continuous function Φ : Ωζ → A
m
n is

monogenic in Ωζ if Φ is differentiable in the sense of Gateaux in every point
of Ωζ , i.e. if for every ζ ∈ Ωζ there exists an element Φ′(ζ) ∈ A

m
n such that

lim
ε→0+0

(Φ(ζ + εh) − Φ(ζ))ε−1 = hΦ′(ζ) ∀h ∈ E3. (3.2)

Φ′(ζ) is the Gateaux derivative of the function Φ in the point ζ.
Consider the decomposition of a function Φ : Ωζ → A

m
n with respect to

the basis {Ik}n
k=1:

Φ(ζ) =
n∑

k=1

Uk(x, y, z) Ik. (3.3)

In the case where the functions Uk : Ω → C are R-differentiable in Ω,
i.e. for every (x, y, z) ∈ Ω,

Uk(x + Δx, y + Δy, z + Δz) − Uk(x, y, z) =
∂Uk

∂x
Δx +

∂Uk

∂y
Δy +

∂Uk

∂z
Δz

+ o
(√

(Δx)2 + (Δy)2 + (Δz)2
)

, (Δx)2 + (Δy)2 + (Δz)2 → 0,

the function Φ is monogenic in the domain Ωζ if and only if the following
Cauchy–Riemann conditions are satisfied in Ωζ :

∂Φ
∂y

=
∂Φ
∂x

e2,
∂Φ
∂z

=
∂Φ
∂x

e3. (3.4)

Expansion of the resolvent is of the form

(te1 − ζ)−1 =
m∑

u=1

1
t − ξu

Iu +
n∑

s=m+1

s−m+1∑
k=2

Qk,s

(t − ξus
)k

Is

∀ t ∈ C : t �= ξu, u = 1, 2, . . . ,m, (3.5)

where Qk,s are determined by the following recurrence relations:

Q2,s := Ts, Qk,s =
s−1∑

r=k+m−2

Qk−1,r Br, s, k = 3, 4, . . . , s − m + 1. (3.6)

with

Ts := yas + zbs, Br,s :=
s−1∑

k=m+1

TkΥk
r,s, s = m + 2, . . . , n,

and natural numbers us are defined in the rule 3 of the multiplication table
of the algebra A

m
n .
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From relation (3.5), follows that the points (x, y, z) ∈ R
3 corresponding

to the noninvertible elements ζ ∈ A
m
n form the straight lines

Lu :

{
x + y Re au + z Re bu = 0,

y Im au + z Im bu = 0

in the three-dimensional space R
3.

Denote by Du ⊂ C the image of Ωζ under the mapping fu, u =
1, 2, . . . , m. A constructive description of all monogenic functions in algebra
A

m
n by means of holomorphic functions of the complex variable are obtained

in the paper [15]. Namely, it is proved the theorem:
Let a domain Ω ⊂ R

3 be convex in the direction of the straight lines
Lu and fu(E3) = C for all u = 1, 2, . . . ,m. Then any monogenic function
Φ : Ωζ → A

m
n can be expressed in the form

Φ(ζ) =
m∑

u=1

Iu
1

2πi

∫
Γu

Fu(t)(te1 − ζ)−1 dt

+
n∑

s=m+1

Is
1

2πi

∫
Γus

Gs(t)(te1 − ζ)−1 dt, (3.7)

where Fu is a certain holomorphic function in a domain Du; Gs is a certain
holomorphic function in a domain Dus

; Γq is a closed Jordan rectifiable curve
lying in the domain Dq surround a point ξq and containing no points ξ�,
�, q = 1, 2, . . . , m, � �= q.

4. Cauchy Integral Theorem for a Curvilinear Integral

Let γ be a Jordan rectifiable curve in R
3. For a continuous function Ψ : γζ →

A
m
n of the form

Ψ(ζ) =
n∑

k=1

Uk(x, y, z) Ik + i

n∑
k=1

Vk(x, y, z) Ik, (4.1)

where (x, y, z) ∈ γ and Uk : γ → R, Vk : γ → R, we define an integral along
a Jordan rectifiable curve γζ by the equality:

∫
γζ

Ψ(ζ)dζ :=
n∑

k=1

Ik

∫
γ

Uk(x, y, z)dx +
n∑

k=1

e2Ik

∫
γ

Uk(x, y, z)dy

+
n∑

k=1

e3Ik

∫
γ

Uk(x, y, z)dz + i

n∑
k=1

Ik

∫
γ

Vk(x, y, z)dx

+ i

n∑
k=1

e2Ik

∫
γ

Vk(x, y, z)dy + i

n∑
k=1

e3Ik

∫
γ

Vk(x, y, z)dz,

where dζ := dx + e2dy + e3dz.
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Also we define a surface integral. Let Σ be a piece-smooth surface in R
3.

For a continuous function Ψ : Σζ → A
m
n of the form (4.1), where (x, y, z) ∈ Σ

and Uk : Σ → R, Vk : Σ → R, we define a surface integral on Σζ with the
differential form dxdy, by the equality

∫
Σζ

Ψ(ζ)dxdy :=
n∑

k=1

Ik

∫
Σ

Uk(x, y, z)dxdy + i

n∑
k=1

Ik

∫
Σ

Vk(x, y, z)dxdy.

In the similar way we defined the integrals with the forms dydz and dzdx.
If a function Φ : Ωζ → A

m
n is continuous together with partial derivatives

of the first order in a domain Ωζ , and Σ is a piece-smooth surface in Ω, and
the edge γ of surface Σ is a rectifiable Jordan curve, then the analogue of the
Stokes formula is true, as we can see in the following:

∫
γζ

Ψ(ζ)dζ =
∫
Σζ

(
∂Ψ
∂x

e2 − ∂Ψ
∂y

)
dxdy +

(
∂Ψ
∂y

e3 − ∂Ψ
∂z

e2

)
dydz

+
(

∂Ψ
∂z

− ∂Ψ
∂x

e3

)
dzdx. (4.2)

Now, the next theorem is a result of the formula (4.2) and the equalities (3.4).

Theorem 4.1. Suppose that Φ : Ωζ → A
m
n is a monogenic function in a

domain Ωζ , and Σ is a piece-smooth surface in Ω, and the edge γ of surface
Σ is a rectifiable Jordan curve. Then∫

γζ

Φ(ζ)dζ = 0. (4.3)

In the case where a domain Ω is convex, then by the usual way (see,
e.g., [17]) the equality (4.3) can be proved for an arbitrary closed Jordan
rectifiable curve γζ .

In the case where a domain Ω is arbitrary, then similarly to the proof
of Theorem 3.2 [2] we can prove the following

Theorem 4.2. Let Φ : Ωζ → A
m
n be a monogenic function in a domain Ωζ .

Then for every closed Jordan rectifiable curve γ homotopic to a point in Ω,
the equality (4.3) is true.

5. The Morera Theorem

To prove the analogue of Morera theorem in the algebra A
m
n , we introduce

auxiliary notions and prove some auxiliary statements.
Let us consider the algebra A

m
n (R) with the basis {Ik, iIk}n

k=1 over the
field R which is isomorphic to the algebra A

m
n over the field C. In the algebra

A
m
n (R) there exist another basis {ek}2n

k=1, where the vectors e1, e2, e3 are the
same as in the Sect. 3.
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For the element a :=
∑2n

k=1 akek, ak ∈ R we define the Euclidian norm

‖a‖ :=

√√√√ 2n∑
k=1

a2
k.

Accordingly, ‖ζ‖ =
√

x2 + y2 + z2 and ‖e1‖ = ‖e2‖ = ‖e3‖ = 1.
Using the Theorem on equivalents of norms, for the element b :=

∑n
k=1

(b1k + ib2k)Ik, b1k, b2k ∈ R we have the following inequalities

|b1k + ib2k| ≤
√√√√ 2n∑

k=1

(
b2
1k + b2

2k

) ≤ c‖b‖, (5.1)

where c is a positive constant which does not depend on b.

Lemma 5.1. If γ is a closed Jordan rectifiable curve in R
3 and function Ψ :

γζ → A
m
n is continuous, then∥∥∥∥∥

∫
γζ

Ψ(ζ) dζ

∥∥∥∥∥ ≤ c

∫
γζ

‖Ψ(ζ)‖‖dζ‖, (5.2)

where c is a positive absolutely constant.

Proof. Using the representation of function Ψ in the form (4.1) for (x, y, z) ∈
γ, we obtain∥∥∥∥∥

∫
γζ

Ψ(ζ)dζ

∥∥∥∥∥ ≤
n∑

k=1

‖Ik‖
∫
γ

∣∣Uk(x, y, z) + iVk(x, y, z)
∣∣ dx

+
n∑

k=1

‖e2Ik‖
∫
γ

∣∣Uk(x, y, z) + iVk(x, y, z)
∣∣ dy

+
n∑

k=1

‖e3Ik‖
∫
γ

∣∣Uk(x, y, z) + iVk(x, y, z)
∣∣ dz.

Now, we can use the inequality (5.1) for b = Ψ(ζ) and the inequalities
‖esIk‖ ≤ cs, s = 1, 2, 3, where cs are positive absolutely constants, we obtain
the relation (5.2). �

Using Lemma 5.1, for functions taking values in the algebra A
m
n , the

following Morera theorem can be established in the usual way.

Theorem 5.2. If a function Φ : Ωζ → A
m
n is continuous in a domain Ωζ and

satisfies the equality ∫
∂�ζ

Φ(ζ)dζ = 0 (5.3)

for every triangle �ζ such that closure �ζ ⊂ Ωζ , then the function Φ is
monogenic in the domain Ωζ .
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6. Cauchy Integral Formula for a Curvilinear Integral

Let ζ0 := x0e1+y0e2+z0e3 be a point in a domain Ωζ ⊂ E3. In a neighborhood
of ζ0 contained in Ωζ let us take a circle Cζ(ζ0, ε) of radius ε with the center
at the point ζ0. By Cu(ξ(0)

u , ε) ⊂ C we denote the image of Cζ(ζ0, ε) under the
mapping fu, u = 1, 2, . . . ,m. We assume that the circle Cζ(ζ0, ε) embraces
the set {ζ − ζ0 : (x, y, z) ∈ ⋃m

u=1 Lu}. It means that the curve Cu(ξ(0)
u , ε)

bounds some domain D′
u and fu(ζ0) = ξ

(0)
u ∈ D′

u, u = 1, 2, . . . ,m.
We say that the curve γζ ⊂ Ωζ embraces once the set {ζ −ζ0 : (x, y, z) ∈⋃m

u=1 Lu}, if there exists a circle Cζ(ζ0, ε) which embraces the mentioned set
and is homotopic to γζ in the domain Ωζ \ {ζ − ζ0 : (x, y, z) ∈ ⋃m

u=1 Lu}.
Since the function ζ−1 is continuous on the curve Cζ(0, ε), then there

exists the integral

λ :=
∫

Cζ(0,ε)

ζ−1dζ. (6.1)

The following theorem is an analogue of Cauchy integral theorem for
monogenic function Φ : Ωζ → A

m
n .

Theorem 6.1. Suppose that a domain Ω ⊂ R
3 is convex in the direction of the

straight lines Lu and fu(E3) = C for all u = 1, 2, . . . ,m. Suppose also that
Φ : Ωζ → A

m
n is a monogenic function in Ωζ . Then for every point ζ0 ∈ Ωζ

the following equality is true:

λ Φ(ζ0) =
∫
γζ

Φ(ζ)(ζ − ζ0)−1dζ, (6.2)

where γζ is an arbitrary closed Jordan rectifiable curve in Ωζ , that embraces
once the set {ζ − ζ0 : (x, y, z) ∈ ⋃m

u=1 Lu}.

Proof. Inasmuch as γζ is homotopic to Cζ(ζ0, ε) in the domain Ωζ \ {ζ − ζ0 :
(x, y, z) ∈ ⋃m

u=1 Lu}, it follows from Theorem 4.2 that
∫
γζ

Φ(ζ)(ζ − ζ0)−1dζ =
∫

Cζ(ζ0,ε)

Φ(ζ)(ζ − ζ0)−1dζ. (6.3)

Taking into account the equality (6.3) we represent the integral on the
right-hand side of equality (6.2) as the sum of the following two integrals:

∫
γζ

Φ(ζ)(ζ − ζ0)−1dζ =
∫

Cζ(ζ0,ε)

(Φ(ζ) − Φ(ζ0))(ζ − ζ0)−1dζ

+ Φ(ζ0)
∫

Cζ(ζ0,ε)

(ζ − ζ0)
−1

dζ =: J1 + J2.
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Let us note that from the relation (6.3) follows that if there exist the
integral in the equality (6.1) then it does not depend on ε. As a consequence
of the equalities (6.1), (6.3), we have the following relation

J2 = Φ(ζ0)
∫

Cζ(0,ε)

τ−1dτ = λ Φ(ζ0), (6.4)

where τ := ζ − ζ0.
The integrand in the integral J1 is bounded by a constant which does

not depend on ε: when ε → 0 the integrand tends to Φ′(ζ0) (see [15, Lemma
5]). Therefore, using the Lemma 5.1, the integral J1 tends to zero as ε → 0.
The theorem is proved. �

In the following, we will prove that the constant λ is an invertible ele-
ment in A

m
n .

7. A Constant λ

In some special algebras (see [3–5]) the Cauchy integral formula (6.2) has the
form

Φ(ζ0) =
1

2πi

∫
γζ

Φ(ζ)(ζ − ζ0)−1dζ, (7.1)

i.e.

λ = 2πi. (7.2)

In this section we indicate a set of algebras A
m
n for which (7.2) holds.

In this a way, we consider first some auxiliary statements.
As a consequence of the expansion (3.5), we obtain the following equal-

ity:

ζ−1 =
n∑

k=1

Ãk Ik (7.3)

with the coefficients Ãk determined by the following relations:

Ãu =
1
ξu

, u = 1, 2, . . . ,m,

Ãs =
s−m+1∑

k=2

Q̃k,s

ξk
us

, s = m + 1,m + 2, . . . , n,

(7.4)

where Q̃k,s are determined by the following recurrence relations:

Q̃2,s := −Ts, Q̃k,s = −
s−1∑

r=k+m−2

Q̃k−1,r Br, s, k = 3, 4, . . . , s − m + 1.

(7.5)

where Ts and Br,s are the same as in the equalities (3.6), and natural numbers
us are defined in the rule 3 of the multiplication table of the algebra A

m
n .
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Taking into account the equality (7.3) and the relation

dζ = dxe1 + dye2 + dze3 =
m∑

u=1

(
dx + dy au + dz bu

)
Iu

+
n∑

r=m+1

(dy ar + dz br)Ir =
m∑

u=1

dξu Iu +
n∑

r=m+1

dTr Ir,

we have the following equality

ζ−1dζ =
m∑

u=1

Ãu dξu Iu +
n∑

r=m+1

Ãur
dTr Ir

+
n∑

s=m+1

Ãs dξus
Is +

n∑
s=m+1

n∑
r=m+1

Ãs dTr IsIr =:
n∑

k=1

σk Ik. (7.6)

Now, taking into account the denotation (7.6) and the equality (7.4),
we calculate:∫

Cζ(0,R)

m∑
u=1

σu Iu =
m∑

u=1

Iu

∫
Cu(ξu,R)

dξu

ξu
= 2πi

m∑
u=1

Iu = 2πi.

Therefore,

λ = 2πi +
n∑

k=m+1

Ik

∫
Cζ(0,R)

σk. (7.7)

We note that from the relations (7.7), (7.3), and (7.4) that λ is an invertible
element.

Thus, the equality (7.2) holds if and only if∫
Cζ(0,R)

σk = 0 ∀ k = m + 1, . . . , n. (7.8)

But, for satisfying the equality (7.8) the differential form σk must be a total
differential of some function. We note that the property of being a total
differential is invariant under admissible transformations of coordinates [18,
Theorem 2, p. 328]. In our situation, if we show that σk is a total differential
of some function depend of the variables Tm+1

ξ , . . . , Tk

ξ , then it means that σk

is a total differential of some function depending on x, y, z.

7.1.

In this subsection we indicate a set of algebras in which the vectors (3.1)
chosen arbitrarily and the equality (7.2) holds. We remind that an arbitrary
commutative associative algebra, A

m
n , with unit over the field of complex

number C can be represented as A
m
n = S ⊕s N , where S is m-dimensional

semi-simple subalgebra and N is (n − m)-dimensional nilpotent subalgebra
(see Sect. 2).

Theorem 7.1. If Am
n ≡ S, then the equality (7.2) holds.
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The proof immediately follows from the conditions σk ≡ 0 for k =
m + 1, . . . , n and (7.7). This theorem is obtained in the paper [5].

Theorem 7.2. If Am
n = S ⊕s N and N is a zero nilpotent subalgebra, then the

equality (7.2) holds.

Proof. From the condition of theorem follows that in the relations (7.4) all
Bk,p = 0. Therefore, (7.4) takes the form

Ãk = − Tk

ξ2
uk

, k = m + 1, . . . , n. (7.9)

Since IsIr = 0 for r, s = m + 1, . . . , n, then from the denotation (7.6)
and the identity (7.9), we obtain

σk =
dTk

ξuk

+Ãk dξuk
=

dTk

ξuk

− Tk

ξ2
uk

dξuk
=d

(
Tk

ξuk

)
=: dτk, k = m + 1, . . . , n.

Under the transformation (x, y, z) → τk the circle Cζ(0, R) maps into a closed
smooth curve C̃ (Jordan or not) and the singularity ξuk

= 0 maps on τk = ∞.
Consequently, in an interior of the curve C̃ does not exist singular points. By
the Cauchy theorem in complex plane [18, p. 90], we have:∫

Cζ(0,R)

σk =
∫

C̃

dτk = 0.

So, the equality (7.2) is a consequence of the last relation and (7.7). The
theorem is proved. �

The Theorem 7.2 implies the formula (7.1) for monogenic functions in
the three-dimensional algebra A2 which was investigated in the paper [19].

Further we consider the case when N in non-zero nilpotent subalgebra.
For this goal we establish an explicitly form of σm+1, σm+2, σm+3 and σm+4.

From the relation (7.6) follows the equalities

σm+1 =
dTm+1

ξum+1

+ Ãm+1 dξum+1 ,

σk =
dTk

ξuk

+ Ãk dξuk
+

k−1∑
r,s=m+1

Ãr dTsΥs
r,k, k = m + 2, . . . , n.

(7.10)

Now, the equalities (7.4) and (7.5) imply the following equalities:

Ãm+1 = − Tm+1

ξ2
um+1

, Ãm+2 = − Tm+2

ξ2
um+2

+
T 2

m+1

ξ3
um+2

Υm+1
m+1,m+2,

Ãm+3 = − Tm+3

ξ2
um+3

+
T 2

m+1

ξ3
um+3

Υm+1
m+1,m+3 + 2

Tm+1Tm+2

ξ3
um+3

Υm+1
m+2,m+3

− T 3
m+1

ξ4
um+3

Υm+1
m+1,m+2Υ

m+1
m+2,m+3 +

T 2
m+2

ξ3
um+3

Υm+2
m+2,m+3

−T 2
m+1Tm+2

ξ4
um+3

Υm+2
m+2,m+3Υ

m+1
m+1,m+2,
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Ãm+4 = − Tm+4

ξ2
um+4

+
T 2

m+1

ξ3
um+4

Υm+1
m+1,m+4 + 2

Tm+1Tm+3

ξ3
um+4

Υm+1
m+3,m+4

+ 2
Tm+1Tm+2

ξ3
um+4

Υm+1
m+2,m+4 + 2

Tm+2Tm+3

ξ3
um+4

Υm+2
m+3,m+4 +

T 2
m+2

ξ3
um+4

×Υm+2
m+2,m+4 − T 3

m+1

ξ4
um+4

Υm+1
m+1,m+2Υ

m+1
m+2,m+4 − T 2

m+1Tm+2

ξ4
um+4

Υm+1
m+1,m+2

×Υm+2
m+2,m+4 − T 2

m+1Tm+3

ξ4
um+4

Υm+1
m+1,m+2Υ

m+2
m+3,m+4 +

T 2
m+3

ξ3
um+4

Υm+3
m+3,m+4

− T 3
m+1

ξ4
um+4

Υm+1
m+1,m+3Υ

m+1
m+3,m+4 − T 2

m+1Tm+2

ξ4
um+4

Υm+1
m+1,m+3Υ

m+2
m+3,m+4

−T 2
m+1Tm+3

ξ4
um+4

Υm+1
m+1,m+3Υ

m+3
m+3,m+4 − 2

T 2
m+1Tm+2

ξ4
um+4

Υm+1
m+2,m+3

×Υm+1
m+3,m+4−2

Tm+1T
2
m+2

ξ4
um+4

Υm+1
m+2,m+3Υ

m+2
m+3,m+4−2

Tm+1Tm+2Tm+3

ξ4
um+4

×Υm+1
m+2,m+3Υ

m+3
m+3,m+4 +

T 4
m+1

ξ5
um+4

Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+1
m+3,m+4

+
T 3

m+1Tm+2

ξ5
um+4

Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+2
m+3,m+4

+
T 3

m+1Tm+3

ξ5
um+4

Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+3
m+3,m+4 − Tm+1T

2
m+2

ξ4
um+4

×Υm+2
m+2,m+3Υ

m+1
m+3,m+4 − T 3

m+2

ξ4
um+4

Υm+2
m+2,m+3Υ

m+2
m+3,m+4 − T 2

m+2Tm+3

ξ4
um+4

×Υm+2
m+2,m+3Υ

m+3
m+3,m+4 +

T 3
m+1Tm+2

ξ5
um+4

Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+1
m+3,m+4

+
T 2

m+1T
2
m+2

ξ5
um+4

Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+2
m+3,m+4

+
T 3

m+1Tm+2Tm+3

ξ5
um+4

Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+3
m+3,m+4.

Finally, a consequence of the previous equalities and the relations (7.10)
is the following differential representation of σm+1, σm+2, σm+3 and σm+4:

σm+1 = d

(
Tm+1

ξum+1

)
, σm+2 = d

(
Tm+2

ξum+2

− 1
2
Υm+1

m+1,m+2

T 2
m+1

ξ2
um+2

)
, (7.11)

σm+3 = d

(
Tm+3

ξum+3

− 1
2
Υm+1

m+1,m+3

T 2
m+1

ξ2
um+3

− Υm+1
m+2,m+3

Tm+1Tm+2

ξ2
um+3

−1
2
Υm+2

m+2,m+3

T 2
m+2

ξ2
um+3

+
1
3
Υm+1

m+1,m+2Υ
m+1
m+2,m+3

T 3
m+1

ξ3
um+3

)

+Υm+1
m+1,m+2Υ

m+2
m+2,m+3 σ

(1)
m+3, (7.12)
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σm+4 = d

(
Tm+4

ξum+4

− 1
2
Υm+1

m+1,m+4

T 2
m+1

ξ2
um+4

− Υm+1
m+3,m+4

Tm+1Tm+3

ξ2
um+4

−Υm+1
m+2,m+4

Tm+1Tm+2

ξ2
um+4

− 1
2
Υm+2

m+2,m+4

T 2
m+2

ξ2
um+4

− Υm+2
m+3,m+4

×Tm+2Tm+3

ξ2
um+3

+
1
3
Υm+1

m+1,m+2Υ
m+1
m+2,m+4

T 3
m+1

ξ3
um+4

− 1
2
Υm+3

m+3,m+4

T 2
m+3

ξ2
um+4

+
1
3
Υm+1

m+1,m+3Υ
m+1
m+3,m+4

T 3
m+1

ξ3
um+4

− 1
4
Υm+1

m+1,m+2Υ
m+1
m+2,m+3Υ

m+1
m+3,m+4

× T 4
m+1

ξ4
um+4

+
1
3
Υm+2

m+2,m+3Υ
m+2
m+3,m+4

T 3
m+2

ξ3
um+4

)
Υm+1

m+1,m+2Υ
m+2
m+2,m+4 σ

(1,2)
m+4

+Υm+1
m+1,m+2Υ

m+2
m+3,m+4 σ

(2,2)
m+4 + Υm+1

m+1,m+3Υ
m+2
m+3,m+4 σ

(3,2)
m+4

+Υm+3
m+3,m+4Υ

m+1
m+1,m+3 σ

(4,3)
m+4 + Υm+1

m+2,m+3Υ
m+1
m+3,m+4 σ

(5,1)
m+4

+Υm+1
m+2,m+3Υ

m+2
m+3,m+4 σ

(6,2)
m+4 + Υm+1

m+2,m+3Υ
m+3
m+3,m+4 σ

(7,3)
m+4

−Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+2
m+3,m+4 σ

(8,2)
m+4 − Υm+1

m+1,m+2Υ
m+1
m+2,m+3

×Υm+3
m+3,m+4σ

(9,3)
m+4 + Υm+2

m+2,m+3Υ
m+1
m+3,m+4 σ

(10,1)
m+4 + Υm+2

m+2,m+3

×Υm+3
m+3,m+4 σ

(11,3)
m+4 − Υm+2

m+2,m+3Υ
m+1
m+1,m+2Υ

m+1
m+3,m+4 σ

(12,1)
m+4

−Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+2
m+3,m+4 σ

(13,2)
m+4 − Υm+2

m+2,m+3Υ
m+1
m+1,m+2

×Υm+3
m+3,m+4 σ

(14,3)
m+4 , (7.13)

where

σ
(1)
m+3 :=

T 2
m+1

ξ3
um+3

(
dTm+2 − Tm+2

ξum+3

dξum+3

)
, (7.14)

and σ
(�,r)
m+4, � = 1, 2, . . . , 14 are determined by the following relations:

σ
(�,r)
m+4 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 2
m+1

ξ3
um+4

g(r) for � = 1, 2, 3, 4,

2 Tm+1Tm+2
ξ3

um+4
g(r) for � = 5, 6, 7,

T 3
m+1

ξ4
um+4

g(r) for � = 8, 9,

T 2
m+2

ξ3
um+4

g(r) for � = 10, 11,

T 2
m+1Tm+2

ξ4
um+4

g(r) for � = 12, 13, 14,

(7.15)

where g(r) := dTm+r − Tm+r

ξum+4
dξum+4 .

Theorem 7.3. If Am
n = S ⊕s N and dimC N ≤ 3, then the equality (7.2) holds.
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Proof. From the equality (7.11) for σm+1, we have

σm+1 = d

(
Tm+1

ξum+1

)
=: dτm+1.

Now, the identity
∫

Cζ(0,R)
σm+1 = 0 is proved as in Theorem 7.2.

Consider σm+2 from the equality (7.11), which is a total differential
of the certain function depending on the variables Tm+1

ξum+2
, Tm+2

ξum+2
. Under the

transformation (x, y, z) → ( Tm+1
ξum+2

, Tm+2
ξum+2

) the circle Cζ(0, R) maps into a

closed smooth curve ˜̃
C (Jordan or not) and the singularity ξum+2 = 0 maps

on ∞. Consequently, in an interior of the curve ˜̃
C does not exist singular

points. Then by the Cauchy theorem in the space C
2 [18, p. 334], we have:∫

Cζ(0,R)

σm+2(x, y, z) =
∫
˜̃
C

σm+2

(
Tm+1

ξum+2

,
Tm+2

ξum+2

)
= 0.

Finally, we prove the equality (7.8) for k = m + 3. In the paper [12],
is described all commutative associative nilpotent algebras over the field C

of dimension 1, 2, 3. From results of the paper [12, (Table 1)], immediately
follows that for all mentioned algebras the relation Υm+1

m+1,m+2Υ
m+2
m+2,m+3 = 0

is always satisfied. Therefore, the equality (7.12) implies that under the con-
ditions of theorem, σm+3 is always a total differential of the certain function
depending on the variables Tm+1

ξum+3
, Tm+2

ξum+3
, Tm+3

ξum+3
.

Now as before, under the transformation (x, y, z) → ( Tm+1
ξum+3

, Tm+2
ξum+3

,

Tm+3
ξum+3

) the circle Cζ(0, R) maps into a closed smooth curve Ĉ (Jordan or

not) and the singularity ξum+3 = 0 maps on ∞. Hence, in an interior of the
curve Ĉ does not exist singular points. Then by the Cauchy theorem in the
space C

3 [18, p. 334], we have:∫
Cζ(0,R)

σm+3(x, y, z) =
∫

Ĉ

σm+3

(
Tm+1

ξum+3

,
Tm+2

ξum+3

,
Tm+3

ξum+3

)
= 0.

So, the equality (7.2) is a consequence of the last relation and (7.7). The
theorem is proved. �

Let us note that from the Theorem 7.3 follows the formula (7.1), for
monogenic functions in the three-dimensional algebra A3 (see [3]) and in the
three-dimensional algebra A2, which was considered in the paper [19].

Theorem 7.4. Let A
m
n = S ⊕s N and dimC N = 4. Then the equality (7.2)

holds if the following relations are satisfied

Υm+1
m+1,m+2Υ

m+2
m+2,m+3 = Υm+1

m+1,m+2Υ
m+2
m+2,m+4 = Υm+1

m+1,m+3Υ
m+2
m+3,m+4

= Υm+3
m+3,m+4Υ

m+1
m+1,m+3 = Υm+1

m+2,m+3Υ
m+1
m+3,m+4 = Υm+1

m+2,m+3Υ
m+2
m+3,m+4

= Υm+1
m+2,m+3Υ

m+3
m+3,m+4 = Υm+1

m+1,m+2Υ
m+1
m+2,m+3Υ

m+2
m+3,m+4
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= Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+3
m+3,m+4 = Υm+2

m+2,m+3Υ
m+1
m+3,m+4

= Υm+2
m+2,m+3Υ

m+3
m+3,m+4 = Υm+2

m+2,m+3Υ
m+1
m+1,m+2Υ

m+1
m+3,m+4

= Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+2
m+3,m+4 = Υm+2

m+2,m+3Υ
m+1
m+1,m+2Υ

m+3
m+3,m+4 = 0.

(7.16)

Proof. From the equalities (7.12) and (7.13), it is obvious that under con-
ditions (7.16) expressions for σm+3 and σm+4 are total differentials. Further
proof is similar to proof of the Theorem 7.3. �

Further we consider some examples of algebras, which satisfy the rela-
tions (7.16).

Examples.

• Consider the algebra with the basis {I1 := 1, I2, I3, I4, I5} and multipli-
cation rules:

I2
2 = I3, I2 I4 = I5

and other products are zeros (for nilpotent subalgebra see [14, Table
21], algebra J69 and [13, page 590], algebra A1,4).

• Consider the algebra with the basis {I1 := 1, I2, I3, I4, I5} and multipli-
cation rules:

I2
2 = I3

and other products are zeros (for nilpotent subalgebra see [13, page
590], algebra A1,2 ⊕ A2

0,1).
• The algebra with the basis {I1 := 1, I2, I3, I4, I5} and multiplication

rules:

I2
2 = I3, I2

4 = I5

and other products are zeros (for nilpotent subalgebra see [13, page 590],
algebra A1,2 ⊕ A1,2).

• The algebra with the basis {I1 := 1, I2, I3, I4, I5} and multiplication
rules:

I2
2 = I3, I2 I3 = I4

and other products are zeros (for nilpotent subalgebra see [14, Table
21], algebra J71).

Now we consider an example of algebra, which does not satisfy the
relations (7.16). Moreover, we choose the vectors e1, e2, e3 of the form (3.1)
such that the equality (7.2) is not true.

Example. Consider the algebra A5 with the basis {1, ρ, ρ2, ρ3, ρ4}, where ρ5 =
0 (see [4] and [10, par. 11]). Here n = 5, m = 1. It is obvious that Υ2

2,3Υ
3
3,4 = 1

and the relations (7.16) are not true. Consider the vectors:

e1 = 1, e2 = i + ρ2 + ρ4, e3 = (1 − i)ρ +
(

1
4

− 3
4

i

)
ρ3,
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which are linearly independent over R and satisfy the equality

e2
1 + e2

2 + e2
3 = 0.

Let ζ = xe1 + ye2 + ze3. In the algebra A5 for given ζ, we have

ξu2 = ξu3 = ξu4 = ξu5 = x + iy =: ξ.

The inverse element ζ−1 is of the form (7.3), where

Ã0 = 1
ξ , Ã1 = z(i−1)

ξ2 , Ã2 = − y
ξ2 + z2(1−i)2

ξ3 ,

Ã3 = 1
4

z(3i−1)
ξ2 + 2yz(1−i)

ξ3 − z3(1−i)3

ξ4 ,

Ã4 = − y
ξ2 + y2+ 1

2 z2(1−i)(1−3i)

ξ3 − 3yz2(1−i)2

ξ4 + z4(1−i)4

ξ5 .

Let us set

Cζ(0, R) := {ζ = xe1 + ye2 ∈ E3 : x2 + y2 = R2}. (7.17)

On the circle of integration (7.17), we obtain:

Ã0 =
1
ξ
, Ã1 = Ã3 = 0, Ã2 = − y

ξ2
, Ã4 = − y

ξ2
+

y2

ξ3
. (7.18)

As a consequence of the equations (7.10), (7.18) on the circle (7.17) we obtain
the following expression

σ5 =
(

1
ξ

− y

ξ2

)
dy +

(
− y

ξ2
+

y2

ξ3

)
dξ.

It is easy to calculate that ∫
Cζ(0,R)

σ5 =
πi

2

and ∫
Cζ(0,R)

σ1 =
∫

|ξ|=R

dξ

ξ
= 2πi,

∫
Cζ(0,R)

σk = 0, k = 2, 3, 4.

Hence, in this example

λ =
∫

Cζ(0,R)

ζ−1dζ = 2πi +
πi

2
ρ4.

7.2.

In this subsection we indicate sufficient conditions on a choose of the vectors
(3.1) for which the equality (7.2) is true. Let the algebra A

m
n be represented

as A
m
n = S ⊕s N . Let us note that the condition ζ ∈ E3 ⊂ S means that in

the decomposition (3.1) ak = bk = 0 for all k = m + 1, . . . , n.

Theorem 7.5. If Am
n = S ⊕s N and ζ ∈ E3 ⊂ S, then the equality (7.2) holds.

Proof. Since ζ ∈ S, then Tk = 0 for k = m + 1, . . . , n [see denotation (3.6)].
From (7.5), (7.4) follows that Ãk = 0, and now from (7.10) follows that
σk = 0 for k = m + 1, . . . , n. The equality (7.2) is a consequence of the
equality σk = 0 and the relation (7.7). �
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Let us note that by essentially the Theorem 7.5 generalizes the Theorem
3 of the paper [20].

Now we consider a case where ζ /∈ S. If Am
n = S ⊕s N and dimC N ≤ 3,

then by Theorem 7.3 the equality (7.2) holds for any ζ ∈ E3.

Theorem 7.6. Let A
m
n = S ⊕s N and dimC N = 4. Then the equality (7.2)

holds if the following two conditions are satisfied:

1. am+1 = bm+1 = 0;
2. at least one of the relations am+2 = bm+2 = 0 or am+3 = bm+3 = 0 are

true.

Proof. It follows from the condition of theorem that Tm+1 = 0 and at least
one of the equalities Tm+2 = 0 or Tm+3 = 0 are true. To prove (7.2) it is need
to prove the equality (7.8) for k = m + 1, . . . ,m + 4. The equality (7.8) is
proved in Theorem 7.3 for k = m + 1,m + 2. Under the condition Tm+1 = 0
from (7.14), we have σ

(1)
m+3 = 0. Since now σm+3 is a total differential, then

similar to proof of Theorem 7.3 can be proved the equality (7.8) for k = m+3.
Moreover, under the conditions of theorem from the denotation (7.15)

follows the equalities σ
(�,r)
m+4 = 0 for all � = 1, . . . , 14. Therefore, σm+4 is a

total differential, then similar to proof of Theorem 7.3 can be proved the
equality (7.8) for k = m + 4. �
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