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Abstract. Since Immanuel Kant’s Inaugural Dissertation of 1770 we
assume that the concepts of space and time are not abstracted from
sensations of external things. But outer experience is considered possi-
ble at all only through an inner representation of space and time within
the cognitive system. In this work we describe a representation which is
both inner and outer. We add to the Kantian imagination that “forms
of nature, matter, space and time are intelligible, perceivable and com-
prehensible”, the idea that these four are indeed intelligent, perceiving,
grasping and clear. They are active systems with their own intelligence.
In this paper on the mind-matter interface we create the mathematical
prerequisites for an appropriate system representation. We show that
there is an oriented logic core within the space–time algebra. This logic
core is a commutative subspace from which not only binary logic, but
syntax with arbitrary real and complex truth classifiers can be derived.
Space–time algebra too is obtained from this inner grammar by two
rearrangements of four basic forms of connectives. When we conceive
the existence of a few features like polarity between two appearances,
identification and rearrangement of the latter as basic and primordial
to human cognition and construction, the intelligence of space–time is
prior to cognition, as it contains within its representation the basic
self-reference necessary for the intelligible de-convolution of space–time.
Thus the process of nature extends into the inner space.
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1. Prologue

We are a part of nature. This part, Kant had said, has in itself some represen-
tation of the outer space. Why ‘the outer space’, why not just ‘outer space’?
We are using the definite article because we are sure about the definite exis-
tence of events out there in space moving in time. Space may be conceived
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as both inner and outer, in a definite way. We use to consider space not only
outside or surrounding us, but also inside. Space extends into and includes
the location where we are. The volume of our body signifies the space we
occupy. But things are even more sophisticated. Space extends as a struc-
tural event into our inner. Space is an energy invading the mind. Now that
we see we are both in nature and in space, we are part of nature and part
of space, is it not natural and rational to give to space the same intelligence
that nature, by the time, has given to us?

2. A Few Words on Constructivism

We say that the outer is constructed on the basis of inner representations. As
soon as we think about these inner systems of representations, they are con-
structed as well, and so appear as outer objects. Even what we say about the
moon is considered as constructed. But radical constructivism cannot allege
that the moon would vanish if we all closed our eyes. Post war constructivists
stated: “The environment does not contain any information. The environment
is as it is”. ([14], p. 189) Here we touch an important argument developed
in second order cybernetics (SOC), namely what ([9], p. 418) calls a slippery
slope argument on observer-dependencies. We may see it as an observation
that discloses the variability of observer-observed-dependencies. We have to
realize a specific transfer of attributes within a relation between observer and
observed. Foerster considers ‘obscenity’ as an example. Obscenity is not a
property of things. Müller points out, the attribute ‘obscene’ has to be trans-
ferred away from the image of the observed back to the observer. Processing
along the slippery slope, another group of attributes like ‘aesthetic’, ‘beauti-
ful’, ‘satisfying’ “seem to reside within the observer as well”. Foerster made
a difference between attributes like the ‘green’ of ‘green spinach’ and ‘good’
or ‘beautiful’ like in ‘good spinach’ which would articulate rather a relation
between observer and observed. Actually it seems that even the ‘green’ is
brought forth by some specific relation between men and spinach, but mov-
ing on the ‘slippery slope’ we may locate the attributes sometimes more at
the location of the observed and at other times rather in the observer. At
one extreme of the slope we have the environment that does not contain any
information. Here the environment is as it is. But at this extreme we can also
have the observer/observed both as that which is as it is. Now, with reference
to this view, there is something happening when we think about such simple
things like arrays of polarities in an unspecified domain of void. Consider for
instance such an open sequence like . . . ,+1,−1,+1,−1,+1,−1, . . ., which
may separate from another such sequence . . . ,+1,−1,+1,−1,+1,−1 . . . we
see an identity. Or we are aware of a difference, namely only by juxtaposing
these two

. . . ,+1,−1,+1,−1,+1,−1, . . . (2.1)

. . . ,−1,+1,−1,+1,−1,+1, . . .

Actually there might be no difference at all, but a difference can be produced
by one step in time. This beautiful construction has been made by ([6,7]).
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Now, suppose that such polarities could constitute matter and space–time.
The process of separating them in void and juxtaposing them in opposition
does not transfer any attribute, because the observer is the observed. The
difference is an illusion correlated with time. So this innermost element of a
process of polarities which is the most fundamental brick in the cosmic archi-
tecture is utterly free of the observer-observed dichotomy. It is not dominated
by the inner-outer demarcation line. Now, material and biological things can
develop on this basis. If we unfurl the process and remove some confused
parts from the muddle of our insight, we can perhaps design the right circuit
layout for a cognitive brain, a one that lives integrated within the universal
whole. May be we cannot. In that case we shall go on wondering why there
is something and not nothing.

3. Algebras and Clifford Algebra

In a series of papers we shall be going into some fundamental unity between
logic and geometric structures of physics. These connections have been passed
by unrealized since more than hundred years. In fundamental investigation of
logic algebraic structures that relate to geometric Clifford algebra of space–
time, the following list of algebras is useful. Pondering each of these will
promote comprehension of this grand affiliation between logic and geometry.

In this paper we only want to study the relationship between the
four algebra structures A2, A4, A5 and A8 shown in Table 1. In order
to be able to do so, we must at first give a minimal definition of
Clifford algebra. The real Clifford algebra generated by the Minkowski
space R

3,1 has base unit vectors {e1, e2, e3, e4} and Lorentz Metric {+ +
+−} or briefly {3, 1}. ‘Time’ is connected with the fourth unit vec-
tor e4. This algebra, denoted by Cl3,1, is called the Minkowski alge-
bra. As a linear vectorspace it is spanned by 16 Grassmann monomials
{Id, e1, e2, e3, e4, e12, e13, e14, e23, e24, e34, e123, e124, e134, e234, e1234}. These h-
ave the signature {+ + + + − − − + − + + − + + +−} or briefly {10, 6}.
Like in every Clifford algebra there can be defined a geometric product in
the Minkowski algebra which is called Clifford product. This product can be
decomposed into a commutative and a non-commutative component given
by the inner, scalar product and the outer or wedge product of vectors
a, b ∈ Cl3,1. 1 The Clifford product between vectors a, b is given by

ab = a · b + a ∧ b (3.1)

where

a · b =
1
2
(ab + ba) = b · a symmetric part (3.2)

a ∧ b =
1
2
(ab − ba) = −b ∧ a anti-symmetric part (3.3)

1We are taking for granted some basic knowledge in Clifford Algebra which can be amended
by reading ([8], Chapter 3) or ([3], Chapter 1).
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The exterior or Grassmann product a ∧ b (a wedge b) represents the anti-
symmetric part of the Clifford product. The unit vectors satisfy the following
equations:

eij
def= ei ∧ ej = eiej = −ej ∧ ei = −ejei = −eji (3.4)

Those Cartan subalgebras, having three (quaternion) generators ‘i, j, k’ with
positive definite signature, can be formed in the standard representation of
the Minkowski Algebra Cl3,1, they give us six algebras of Cotessarines. The
first of these is the Clifford Algebra spanned by the following four magnitudes
([12]).

ch1
def= {Id, e1, e24, e124} (3.5)

We verify

e21 = +Id because of first ‘+’ in signature bracket {+ + +−}of space R
3,1

(3.6)

and also

e224 = e24e24 = −e42e24 = −e4(e2e2)e4
= −e4Ide4 = −Ide4e4 = −Id(−Id) = +Id (3.7)

because of the second ‘+’ and the ‘−’ in the last entry of the signature bracket
{+ + +−}. The same sign can be obtained by an analogous calculation for
the squared e124. Hence we define the four magnitudes {Id, i, j, k} as unit
multivectors thusly

Id i = e1 j = e24 k = e124 cotessarines (3.8)
+ + + + signatures

We have to show that the three cotessarines commute. We have

e1e24 = e124 and further
e24e1 = e241 = −e214 = +e124 = e1e24 (3.9)

We calculate

e24e124 = e24e241 = e224e1 = Ide1 = e1 as well as
e124e24 = e1e

2
24 = e1Id = e1 (3.10)

Hamilton Quaternions H are isomorphic with the Clifford Algebra Cl0,2.
In the Minkowski Algebra Cl3,1 they can be represented in standard rep-
resentation either by the bivectors {e12, e23, e13}, or by the ‘timespace’
{e4, e123, e1234}. Both have signature {− − −}. Connected with Hamilton’s
Quaternions is the abelian group Q8, the ‘Quaternion Group’, the smallest
of all Hamiltonian Groups.
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4. Minimal Logic Alphabet

To tune in, let us first consider a few statements from several media, to get
some examples for statements in binary Boolean logic:

UN-Security Council, 4th September 2013; President Putin is not
entirely disclaiming military intervention against the regime in Damascus.

Spiegel Online, 5th September 2013; US-Russia Stalemate: Merkel must
take the Initiative on Syria. A Commentary by Frank-Walter Steinmeier. [. . . ]
Instead of standing idly on the sidelines, Mrs. Merkel should take advantage
of the summit in St. Petersburg and seize the initiative of finding a political
solution.

Aljazeera, 6th September 2013; G20 leaders remain divided over Syria
action Vladimir Putin leads opposition to possible US unilateral strike, as
US envoy accuses Russia of holding UN hostage.

Standard, 8th September 2013; The Gulf Cooperation Council (GCC)
urges the International Community to immediate military intervention in
Syria.

Yahoo News, 8th September 2013; President Barack Obama braced for
a key week in his push to persuade sceptical Americans to back strikes against
the Syrian regime.

Spiegel Online, 9th September 2013; (In Petersburg) Merkel did not give
Obama allegiance, pointed to Europe and left for Germany. Italians, French
and Spanish politicians straightforwardly signed the leaflet of the Americans
without the German.

Slate, 9th September 2013; At his press conference on Friday, the pres-
ident (Obama) explained that Syria’s chemical weapons use was not enough
of a direct threat to cause him to act without congressional approval. “I put
it before Congress because I could not honestly claim that the threat posed
by Assad’s use of chemical weapons on innocent civilians and women and
children posed an imminent, direct threat to the United States.” 2

That strand of statements A,B,C,. . . we would be interested to analyse
is built up by sentences like

A. actor, group, institution, nation. . . favors military intervention against
Syria

B. actor, group, institution, nation . . . rejects military intervention against
Syria

C. actor, group, institution, nation . . . favors to delay immediate action and
put the case before Congress and so on.

For such statements we can construct a binary logic structure that involves
marked and unmarked logic states in the sense of Spencer Brown. In this
paper we shall not do this, but we shall use the binary connectives only.

2http://www.slate.com/articles/newsandpolitics/politics/2013/09/
barackobama’scaseforstrikingsyriathepresident’sargumentsformilitary.html.

http://www.slate.com/articles/newsandpolitics/politics/2013/09/barackobama'scase for striking syria the president's arguments for military.html
http://www.slate.com/articles/newsandpolitics/politics/2013/09/barackobama'scase for striking syria the president's arguments for military.html
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Table 2. Logic identification of 2 statements

Table 3. Truth table for logic equivalence

A B A ≡ B
1 1 1
1 0 0
0 1 0
0 0 1

Table 4. Truth table for logic exclusive disjunction

A B A �= B
1 1 0
1 0 1
0 1 1
0 0 0

Table 5. Exclusive disjunction of two statements

5. Alphabet of Binary Connectives

Suppose we have (A) American president favors military intervention, and
(B) German government favors military intervention. We want to classify the
possible relations between (A) and (B). One of 16 possible relations is based
on identification. That is, the German government may or could identify its
attitude with the attitude of the White House. We represent this event by
fourfold Table 2.

This is the same as the binary arrangement in Table 3.
Statements A,B are connected by identification. They are equivalent.

They may, however, just as well, be connected by dis-identification, the exclu-
sive disjunction or XOR, Table 4.

This connective can also be represented by a fourfold diagram:
There are more possibilities to relate A with B, since there are 16 ‘binary

connectives’. For example (Tables 5, 6, 7, 8).
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Table 6. Truth table for logic conjunction

A B A ∧ B
1 1 1
1 0 0
0 1 0
0 0 0

Table 7. Conjunction of two statements

Table 8. Logic NAND and its minimal lettershape

Table 9. Logic truth and full mark

This has a dual, namely the logic ‘NAND’ meaning that A implies negat-
ing B.

When the AND is geometrically superimposed with its dual, we obtain
logic truth as in Table 9.

Each of the 16 binary connectives has a dual connective given by its
logic opposite, and both superimposed give us the filled up fourfold table
often interpreted as ‘truth’. From now on we represent this by the square or
‘full containment’. To get a geometric alphabet it is possible to still improve
the representation a little. We take the four edges of the square as the interior
of the four cells. That is, if the inner of a cell is marked by full , we draw
an edge, if the inner is not marked we do not draw an edge. Hence we obtain
the new alphabet.
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Table 10. LICO

5.1. Letters for the minimal logic alphabet

Note that the last symbol (blank) cannot yet be interpreted as the ‘unmarked
state’ in the sense of Spenser Brown’s ‘Laws of Form’. To promote under-
standing of this ‘geometric alphabet’ we suggest, imagine at first the fourfold
table of a connective and draw the figure arising from it:

This procedure provides most conveniently arranged horizontal letter
shapes such as 	, 
, ���� � � | | or � or �≡ , = or ≡, which, in similar
form, are here provided by some symbol packages of TeX. Next we turn
fourfold table by π

4 and carry quarters to edges in a square. We let the upper
left hand quarter be the upper edge, and the upper right hand one become
the right hand edge, and the lower right quarter becomes the bottom edge,
and the lower left hand quarter turns into the left handed edge. Therefore,
an ‘implication’ having table

has an iconic symbol �. Taking a further look at ‘XOR’, we find it has letter
| | whereas its dual is ‘identification’ and has letter =. In this way we obtain
a linear iconic alphabet based on squares (Table 10).

6. Connecting the Algebra Structures

In this section we want to show that we have at least six natural ways to rep-
resent logic binary connectives in geometric terms. First there is the familiar
manner of writing connectives of any order as well formed terms in Boolean
algebra. Then we have the 16 LICO letters capable of ‘idemposition’, so we
can adjoin two LICO letters by geometrically superimposing them. Third
we have the Lico vectors formed in the basis of four fundamental LICO let-
ters, fourth we obtain a natural representation within the idempotent lattice
of the Clifford algebra Cl3,1, from this we obtain in the form of diagonals
of matrix representations the fourfold strings formed by four numbers from
{0, 1}, fifth we have them as color vectors, four-vectors in the commutative
Cartan subalgebras, the color spaces chχ ⊂ Cl3,1 and sixth we can use finite



898 B. Schmeikal Adv. Appl. Clifford Algebras

Table 11. Generators of binary logic space

Table 12. Logic quad-locations corresponding with four-
fold array of quaternions Id, I, J,K

or infinite polarity strings. This construction is natural. For instance we know
from physics that the Cartan subalgebras provide the invariants of quantum
motion. In this image binary logic presents itself as a 4-dimensional, com-
mutative vector space. This logic can immediately be generalized to real and
complex truth classifiers and arbitrarily many generative statements of any
order. It is not immediately visible that the linear iconic alphabet is con-
nected with physics. It requires some insight into the whole mathematics of
logic and geometric algebra to see this relation. LICO contains a small mor-
phogenetic core or root structure of cognition and space–time equivalent with
only four units of a vector space. After neat analysis these base units turn out
as graded unit multivectors identical with the generators of a commutative
Cartan subalgebra of the geometric Clifford algebra of the Minkowski space.
This ‘root structure’ is essentially given by the four symbols represented in
Table 11 and logic quad-locations in Table 12.

These will give us, by transpositions, not only Hamilton’s quaternions,
but even the 16 unit monomials or basis vectors of the Minkowskian space–
time algebra. Recall the truth tables of these four connectives! How important
these geometric numbers are in science applications, should be known from
the investigation of Quaternion and Clifford calculus by [2], and [12].

Fourfold polarity strings can be put in correspondence with what is
denoted as ‘quad locations’. They form base units Id = [+1,+1,+1,+1], unit
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Table 13. Two multiplication tables of Klein four groups
for bit strings and multivectors of ch1

Id e f g Id e1 e24 e124
e Id g f e1 Id e124 e24
f g Id e e24 e124 Id e1
g f e Id e124 e24 e1 Id

scalar; e = [+1,+1,−1,−1] = e1, unit vector; f = [+1,−1,−1,+1] = e24,
directed unit area; g = [+1,−1,+1,−1] = e124, directed unit volume in
Cl3,1. What is so special about these unit vectors? First of all, they form
a commutative 4-dimensional vector space. The vectors of this space can
be conceived as elements of the fourfold real ring 4

R given by real valued
quadruples. The four base units commute and satisfy the multiplication table
of the Klein 4 group. Multiplication is carried out component-wise, e. g. :

ef = e1e24 = [+1,+1,−1,−1][+1,−1,−1,+1] = [+1,−1,+1,−1] = g (6.1)

So we obtain multiplication rules (Table 13).
Every element of this chromatic space, we denote it as ch1, can be

given in two forms, namely either as vector φ = u + xe1 + ye24 + ze124
within the Clifford algebra Cl3,1 generated by the units {e1, e2, e3, e4}, or as
a linear combination of mutually annihilating primitive idempotents. In the
Clifford algebra of Minkowski space these primitive idempotents can be given
in standard form

f1 =
1
2
(Id + e1)

1
2
(Id + e24) (6.2)

f2 =
1
2
(Id + e1)

1
2
(Id − e24)

f3 =
1
2
(Id − e1)

1
2
(Id − e24)

f4 =
1
2
(Id − e1)

1
2
(Id + e24).

Note the peculiar order of the sign combinations; in physics this order turns
out substantial for phenomena of entanglement. These primitive idempotents
span a commutative subspace, the ‘color-space’ ch1. Let us calculate those
primitive idempotents using the above representation in 4

R and find out how
their corresponding binary sequences and respectively polarity strings may
look like

f1 =
1
2
(Id + e1)

1
2
(Id + e24)

=
1
2
[+2,+2, 0, 0]

1
2
[+2, 0, 0,+2] =

1
4
[4, 0, 0, 0] = [1, 0, 0, 0]

f2 =
1
2
(Id + e1)

1
2
(Id − e24)

=
1
2
[+2,+2, 0, 0]

1
2
[0,+2,+2, 0] =

1
4
[0, 4, 0, 0] = [0, 1, 0, 0]
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Table 14. Idempotents are bars of square in a LICO letter
shape

f3 =
1
2
(Id − e1)

1
2
(Id − e24)

=
1
2
[0, 0,+2,+2]

1
2
[0,+2,+2, 0] =

1
4
[0, 0, 4, 0] = [0, 0, 1, 0]

f4 =
1
2
(Id − e1)

1
2
(Id + e24)

=
1
2
[0, 0,+2,+2]

1
2
[+2, 0, 0,+2] =

1
4
[0, 0, 0, 4] = [0, 0, 0, 1] (6.3)

Every vector φ = u + xe1 + ye24 + ze124 of a commutative color space can
be written as a linear combination of the orthogonal primitive idempotents
(Table 14)

φ = a1f1 + a2f2 + a3f3 + a4f4 (6.4)

with coefficients

a1 = u + x + y + z (6.5)
a2 = u + x − y − z

a3 = u − x − y + z

a4 = u − x + y − z

Theorem 1. Every letter in the LICO alphabet is a vector.

Proof. Consider the conjunction. The connective A ∧ B � [1, 0, 0, 0] can
be represented by the first primitive idempotent f1. Further A ∧ ¬B �
[0, 1, 0, 0] = f2. ¬A ∧ ¬B � [0, 0, 1, 0] = f3 und finally the ¬A ∧ B �
[0, 0, 0, 1] = f4. So we have the simple correspondence between elements in
algebras A5 and A8.

But we have a suspicion that we shall later prefer an equivalent repre-
sentation which allows us to factor in the temporal iteration of a sequence
([7], [11]), that is, sequences in A4. Then we could prefer to represent every
zero by a minus one. That is, in iterant algebra we prefer iterant views
such as A ∧ ¬A � [+1,−1,−1,−1] over the image A ∧ ¬A � [+1, 0, 0, 0]
which both can represent a truth table for conjunction and both allow us
to represent that view in the same vector space ch1. Henceforth, we con-
sider two representations. First as an idempotent element in Cl3,1, sec-
ond in the representation over {−1,+1}. We have in this peculiar view for
example A ≡ B �It [+1,−1,+1,−1] the alternating iterant. In the idem-
potent representation this is obtained by converting every −1 into zero,
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that is, we have A ≡ B �Cl [+1, 0,+1, 0]. We can test if that is compat-
ible with our previous result, namely that logic identity A ≡ B should be
represented by the unit space–time volume e124. Consider the color space
ch1 = spanR{Id, e1, e24, e124}. We are recalling the Table 11 of correspon-
dences for coming calculations. Before listing all 16 connectives in a special
table, let us carry out two calculations of these geometric representations
by hand and show their meaning. Consider at first the Boolean ‘false’ or
contradictory statement A ∧ ¬A. We denote it by the LICO letter

which is a fourfold zero in 4
R. Notice, we consider � as a symbol for the

unit scalar Id in ch1. If we work with a display of truth tables over the pair
{1,−1}, we have a representation in iterant algebra as false ≡ A ∧ ¬A �It

[−1,−1,−1,−1]. Using the explicit representation of primitive idempotents
by Eq. 6.2 and summing up, we obtain indeed the negative identity. This can
be represented by an iterant or polarity string. This gives the first line in the
Table 15. Next we calculate a conjunction, A ∧ B in conventional notation,
denoted in iconic notation by the upper stroke. As the LICO letters denote
vectors in a linear 4-dimensional space, they can be depicted as a linear
combination of four letters, namely the upper bar is equal to or in ch1 as
(1/2)(−Id+ e+ f + g) which can be thought to be isomorphic with f1 − f2 −
f3−f4. By the aid of the Clifford representation we can calculate this term to
be equal to 1

2 (−Id+e1+e24+e124). The isomorphic Iterant can be portrayed
as a vector over 4

R or briefly as a polarity string A∧B �It [+1,−1,−1,−1].
Thus we obtain the first two lines of a table with 16 lines, namely

A ∧ ¬A �(cl) [0, 0, 0, 0] �(it) [−1,−1,−1,−1] (6.6)

A ∧ B �(Li)
1
2
(−�+� + �+ ≡) (6.7)

�(cl) f1 =
1
4
(Id + e1 + e24 + e124) �(it) [+1,−1,−1,−1]

If we consider the idempotent representation of any ‘Lico’ binary connective
in the Clifford algebra, denote it by Li with i = 1 . . . , 16, we have a defi-
nite representation by one four-vector in 4

R and by an idempotent in Cl3,1.
We can represent Cl3,1 by the Majorana algebra Mat(4, R) of 4 × 4-matrices
with real entries. Then the diagonal matrices with unit entries represent the
mutually annihilating primitive idempotents. In other words, the fourfold real
numbers in 4

R are nothing else than the diagonals of diagonal matrices of
Mat(4, R). In Table 15 we consider six important representations of binary
connectives Li, namely in terms of

1. Boolean term
2. Lico letter shape
3. Lico vector
4. Idempotent in Cl3,1

5. Multivector in color space ch1 ⊂ Cl3,1

6. Grade 4 iterant view
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Table 15. Correspondences in algebra structures A2, A5,
A7, A8, A4 in this succession

These define the six columns of the table. In the third column there appear
exactly four LICO letter shapes. These can be adjoined by ‘idemposition’.
For example, if we idempose

we get three upper bars, one left vertical bar, one right vertical bar, one
bottom bar, subtracting the square we form the term 1

2 (−�+� + �+ ≡). So
just one upper bar is left. Therefore we have the isomorphy of A ∧ B with
Lico-vector shown in Fig. 1. That is, completing the second line of Table 15,
we have the idempotent element f1 in column 4 and the Clifford number
(1/4)(Id + e1 + e24 + e124) in column 5. Last we calculate the expression
2f1 − Id and obtain (1/2)(−Id + e1 + e24 + e124) which has the diagonal
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Figure 1. Upper bar

Figure 2. Basic geometry of grade four iterant views

representation [+1,−1,−1,−1] and provides us an image for the iterant view
of the second Lico lettershape. Proceeding in this way, we obtain the Table
15 showing the six essential representations of the binary connectives.

The first lesson we have learned so far can be compiled as follows: There
is a linear iconic alphabet for logic expressions.3 Binary connectives are sim-
ple letter shapes in a square. Further, every connective can be represented in
a 4-dimensional commutative vector space. This space can be spanned either
by primitive idempotents or by graded commutative base units. The primi-
tive idempotents can and should be identified as those of a Clifford algebra
Cl3,1 of the Minkowski space or equivalently Cl2,2 in neutral signature, as
those are isomorphic algebras. The graded commuting base units are identi-
fied with the Cartan-subalgebra ch1 ⊂ Cl3,1 which, in physics, is correlated
with the isospin phenomena. Every connective can just as well be depicted
as an iterant and respectively as a polarity string built up by numbers +1
and −1 only. The correspondence is natural and universal. It has a trans-
disciplinary significance. It has both natural and cognitive roots. So let us go
one step further. The four letters �, �, �, ≡ can be seen as mathematical sym-
bols for elements of a vector space. These special elements are called polarity
strings and read like this [+,+,+,+], [+,+,−,−], [+,−,−,+], [+,−,+,−].
These are just abbreviations for vectors with unit entries

[+1,+1,+1,+1], [+1,+1,−1,−1], [+1,−1,−1,+], [+1,−1,+1,−1].

Sometimes, when we are interested to outline the local temporal iteration
of a particle process, we use these tokens as shorthand symbols for iterant
sequences of opposite polarity:

These so called iterant views grow out of a careful analysis of quan-
tum motion. In the style of Rowan Hamilton’s Algebra as the Science of
Pure Time, Kauffman had reformulated the complex numbers and expanded
the context of matrix algebra to an interpretation of the unit imaginary i
as an oscillatory process. He said, one can regard a wave function such as

3There exist two forms of mathematical junction with both algebraic and geometric mean-
ing, the adjunction and the idemposition. These admit two multiplication tables that sat-
isfy the Laws of Form. We shall find out, complex logic expressions can be represented by
geometric forms in a window of the plane and/or by linear writing, using the elementary
letter shapes.
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ψ(x, t) = exp(i(kx − ωt)) as containing a micro-oscillatory system with the
special synchronizations of the iterant view i = [+1,−1]η which is the prod-
uct of an iterant, isomorphic with the logic identity connective (Fig. 2),

≡:= [+,−] := +1,−1,+1,−1,+1,−1,+1,−1, . . . i :=≡ η (6.8)

with the shift operator η; this has the algebraic property [a, b]η = η[b, a] and
ηη = Id. Given an iterant [a, b] = a, b, a, b, a, b, . . . , we can think of [b, a] as
the same process with a shift of one time step. It is obvious that the quantity
i = ≡ η = [+1,−1]η has the required algebraic property, namely

ii = [+1,−1]η[+1,−1]η = [+1,−1]ηη[−1,+1] = [+1,−1]Id[−1,+1]
= Id[+1,−1][−1,+1] = Id[−1,−1] = −Id (6.9)

with the two-fold identity operation Id = [+1,+1].
This model has great explanatory power. Kauffman could derive the

Schrödinger equation with its Brownian motion and Heisenberg uncertainty,
[5] could design the iterant views for a 2-dimensional Dirac equation and ana-
lytically reconstructed the Feynman and Hibbs checkerboard model of the
Dirac propagator ([1], Problem 2–6, pp. 34–36). In two recent works (2012,
2013) I showed how the iterant model can be extended onto the Clifford alge-
bra of the Minkowski space. In accordance with the idea of primordial obser-
vation and the symmetries of the octahedral permutation group S4 for quad
locations we defined time shift operators η and t. These turned out funda-
mental for the iteration of fourfold locations in a relativistic space–time. �

7. Generalization of Logic Space

We keep polarities as basic events in physics. Consider a basis {Id,A,B,≡}
which provides a 4 × 4-table of truth values. But we allow for real or even
complex entries. That is, algebraically, we consider the Cartan algebra over
real and complex numbers, not only binary entries. In this way we obtain the
first extension of binary connectives. The four quantities {Id, e, f, g} defined
as binary, or synonymously as polarity strings, are given by

Lemma 2. Every compound statement A � B constituted by two statements
{A,B} in logic with arbitrary real or complex truth values can be represented
in 4-dimensional commutative vector space.

The four quantities {Id, e, f, g} defined as binary, or synonymously as
polarity strings, are given by

Id := [+1,+1,+1,+1] unit scalar; (7.1)
e := [+1,+1,−1,−1] = e1 unit vector;
f = [+1,−1,−1,+1] = e24 directed unit area;
g = [+1,−1,+1,−1] = e124 directed unit volume in Clifford algebra.

These span a commutative 4-dimensional vector space, with the familiar
binary connectives given by linear combinations shown in Table 15. Obvi-
ously the logic does not halt here. Because we obtained a vector space ch1
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Table 16. Basic geometry of grade 4 iterant views

over the real numbers, and this has a definite logic interpretation. Since the
linear factors of the representation of any vector in that logic (color) space,
the logic coordinates, represent a real degree of freedom that can be inter-
preted as truth value. This is not necessarily equal zero or one.

Example. We want to represent the compound statement A � B where both
A is ‘half true’ and the connective ‘A implies B’ is half true. This can indeed
be calculated by linear algebra in color space:

A � B :=
1
2
A ∧ 1

2
(A → B)

=
1
2
(f1 + f2) +

1
2
(f1 + f3 + f4) =

1
8
(5Id + e1 + e24 + e124) (7.2)

We allow for truth tables of a quite general form
with a, b, c, d ∈ C.4 Introducing such truth values as in Table 16, we have a
commutative logic color space

L := L(2, C) := C ⊗ ch1 (7.3)
= {uId + xe + yf + zg|u, x, y, z ∈ C}

Having introduced the commutative linear color space, it has become possible
to match every possible connection between two statements with a real vector
which is at the same time a peculiar graded multivector in the Minkowskian
space–time algebra.

Definition 3. A logic space for compound statements of finite degree with
complex truth values can be defined as a product space having form

L(C) := ⊗nL (7.4)

8. Deriving Space–Time-Algebra from Its Logic Basis

In a quite general sense we would like to conceive the basis of a geometric
algebra in terms of a Cartesian product having form cl = S × J where S is
some small set of symmetries and J a small set of binary sequences. Let us go
into that problem for the case of the Clifford algebra Cl3,1 generated by the

4Surprisingly this resembles a superposition of strongly interacting particles in isospin
space ch1.
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Minkowski space R
3,1. Consider, as before, the small module of self-inverse

elements

J(4) := {Id, e, f, g} (8.1)

together with the set T(4) of double transpositions in the symmetric group
S4

T4 := {id, σ, φ, τ} with permutations in cycle notation (8.2)
id = (1)(2)(3)(4), φ = (1 3)(2 4), σ = (1 2)(3 4), τ = (1 4)(2 3)

It is obvious that σσ = φφ = ττ = id. Following Kauffman’s definition of a
temporal shift operator, we should have to shift the symmetry operator to
the right side after application, that is, take binary sequences x, x

′ ∈ J(4),
and some transposition ω ∈ T(4), then we demand

ωx = x
′
ω (8.3)

Investigate for example the multiplication of φ with f . We should have

φf = (1 2)(3 4)[+1,−1,−1,+1] = [−1,+1,+1,−1](1 2)(3 4) = −fφ (8.4)

There is something very important that can be learned from this assembly,
namely we have

(φf)2 = φfφf = −fφφf = −fidf = −idff = −idId = −Id (8.5)

which tells us that the magnitude φf is a ‘hypercomplex’ number. Follow-
ing this recipe, we calculate three multiplication tables which we need to
formulate the main theorem.

In abstract algebra there is a familiar procedure to represent so called
generalized quaternion groups by semi-direct products. A similar thing can
be applied here. Namely, consider the group

G := J(4) ∪ −J(4) � Z
3
2 (8.6)

We define the semi-direct product G � T(4) by the rule

(x, ω) · (x
′
, ω

′
) = (xω(x

′
), ωω

′
) with x, x

′ ∈ G, and ω, ω
′ ∈ T(4) (8.7)

In this notation Kauffman’s rule to organize polarity strings takes the form
ωx = ω(x)ω for a special case of the Cartesian product ‘iterants × symme-
tries’, namely

(Id, ω) · (x, id) = (ω(x), ω) = (ω(x), id)(Id, ω) (8.8)

It is this peculiar rule that allows us to represent discrete diachronic processes
of relativistic quantum motion. As we shall see there is indeed a representa-
tion of G� T(4) in the matrixalgebra Mat(4, R), that is, the identities id and
Id turn out to be the same matrix. In order to derive the Clifford Algebra
of the Minkowski space from a semi-direct product of polarity strings and
temporal transpositions, we need two symmetry operators only, namely the
cyclic time of period 4 and the tangle time of period 2. We have iteration
time

t := (1 2 3 4) (8.9)



Vol. 26 (2016) Four Forms Make a Universe 907

cyclic quaternion temporal shift, element of the symmetric group S4 and
tangle-time

η := (1 2) (8.10)

transposition in the symmetric group S4 which is a torsion of quadrants.

9. Derivation of Clifford Algebra of Minkowski Space from Its
Logic Basis

Theorem 4. The iterant algebra with four grades is isomorphic with the Clif-
ford algebra Cl3,1

Proof. Consider the three real iterants e, f, g we are already familiar with

e = [+1,+1,−1,−1], f = [+1,−1,−1,+1], g = [+1,−1,+1,−1] (9.1)

together with the permutation operators σ = (1 2)(34), φ = (1 3)(2 4), τ =
(1 4)(2 3). These are generated by iteration time t and tangle time η.
Sequences are iterated by iteration time t and by tangle-time η and applied to
iterants of degree 4. The iterant time t can be represented by a permutation
4-cycle (1 2 3 4) and the tangle time by a 2-cycle (1 2). These two generate
the symmetric group S4 . We used the three operators σ, φ, τ ∈ S4 which
shall satisfy the Eq. 8.8.

σ[a, b, c, d] = [b, a, d, c]σ (9.2)
φ[a, b, c, d] = [c, d, a, b]φ
τ [a, b, c, d] = [d, c, b, a]τ

These can be derived from the generating iterant- and tangle-time operators
in the following manner

φ = t2 = (1 2 3 4)(1 2 3 4) = (1 3)(2 4), portrayed as cycles
τ = ηφη = (2 1)((1 3)(2 4))(2 1) = (1 4)(2 3)
σ = τφ

Now there exist nine possibilities to let any permutation operator act on the
unit iterants. Among these nine products there are six quaternions. Among
those there are the three we already know from the analysis of quad locations.
Three of the nine squared give the identity Id. The nine terms are

eσ, eφ, eτ, fσ, fφ, fτ, gσ, gφ, gτ

The idea to proof theorem 7 is challenged once we understand why among
these nine we have six instead of three quaternions. That is, there are indeed
two sets of quaternions, and this is also true in the Clifford algebra of
Minkowski space. Namely, if we consider the Clifford algebra Cl3,1 in a stan-
dard basis, we realize that we have a triple of bivectors which represent
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Table 17. multiplication tables and commutation relations

Id e f g id σ φ τ Id e f g
e Id g f σ id τ φ σ eσ −fσ −gσ
f g Id e φ τ id σ φ −eφ −fφ gφ
g f e Id τ φ σ id τ −eτ fτ −gτ

quaternions, the bivectors {e12, e23, e13} and we have a further triple of time-
like quaternions with different grades, the time–space {e4, e123, e1234} . If we
pose these two sets of quaternions in a proper way, we can see

e12 e4 e124

e23 e123 =⇒ e1

e13 e1234 e24

how quaternions are carried to the Cartan subalgebra, that is to the color
space of logic units. The Clifford product in each row gives a component of
the first color space, each of which squared gives the Identity. Therefore it
is reasonable to assume that the six quantities �, �, �, ≡, φ, τ generate a
geometric algebra that includes even more than just two sets of quaternions.
This could be the Clifford algebra Cl3,1 of the Minkowski space. We can use
the above relation to get the base units, one after the other. To abbreviate
the proof, let us factor in how the six quantities �, �, �, ≡, φ, τ interact. We
formulate as

Lemma 5. The polarity strings e, f, g constitute the commutative algebra of a
Klein-4 group; all the same the permutations σ, φ, τ satisfy the same algebra.
The mixed products of polarity strings and permutations commute or anti-
commute according to Table 17.

Just recall, direct component-wise multiplication gives the first sub-
table, the second is well known property of permutation group S4, the
third part can be verified: Use e = [+1,+1,−1,−1], σ = (1 2)(3 4), and
rule 8.8, σ[a, b, c, d] = [b, a, d, c]σ to get σe = (1 2)(3 4)[+1,+1,−1,−1] =
[+1,+1,−1,−1]σ = eσ, the matrix element in first row, first column; fur-
ther use f = [+1,−1,−1,+1], σ = (1 2)(3 4), and rule 8.8, σ[a, b, c, d] =
[b, a, d, c]σ to get σf = (1 2)(3 4)[+1,−1,−1,+1] = [−1,+1,+1,−1]σ =
−fσ, the matrix element in first row, second column; use g = [+1,−1,+1,−1]
and σ to verify σg = −gσ, the matrix element in first row, third column; and
so on until to τg = −gτ , the last matrix element in third row, third column.
Now it is clear how we place the elements e, f, g at the positions e1, e24, e124,
in the 16 element basis of Cl3,1 and if we put e2 = φ, e3 = τf and e4 = φf , we
get unit vectors with the appropriate signature (+ + +−) of the Minkowski
space in the opposite (Lorentz) metric. These satisfy the commutation rela-
tions of this Clifford algebra. The result of exterior multiplication gives us
the following representation of the Clifford algebra of Minkowski space Cl3,1

(Table 18).
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Table 18. Iterant representation of Cl3,1

Id e1 := e e2 := φ e3 := τf
e4 := φf e12 := eφ e13 := gτ e14 := gφ
e23 := σf e24 := f e34 := −σ e123 := σg
e124 := g e134 := −σe e234 := −τ e1234 := τe

Verify the signature of the Minkowski space, first its Cartan subalgebra:

e1e1 = e2 = [+1,+1,−1,−1](≡)[+1,+1,−1,−1] =
= [+1,+1,+1,+1] = Id

f2 = [+1,−1,−1,+1](≡)[+1,−1,−1,+1] = Id

g2 = [+1,−1,+1,−1](≡)[+1,−1,+1,−1] = Id

we indicate at the same time that component-wise multiplication is brought
forth by logical equivalence of sequences in the algebra (B,≡). Also we have
by the aid of Table 17

e3e3 = fτfτ = fττf = fIdf = ffId = IdId = Id

e4e4 = fφfφ = −φffφ = −φIdφ = −φφId = −IdId = −Id

We summarize the first result: e21 = e22 = e23 = Id, e24 = −Id. Next we verify
the (anti)commutation relations for Clifford algebra Cl3,1

[e1, e2] = eφ − φe = eφ + eφ = 2eφ

and the anticommutator

{e1, e2} = e1e2 + e2e1 = e12 + e21 = eφ + φe = eφ − eφ = 0

as required, and also

e13 + e31 = gτ + τg = gτgτ = 0

e23 + e32 = fσ + σf = fσfσ = 0

We calculate all further signatures of the unit monomials

e14 = eφf = −gφ; e214 = gφgφ = φIdφ = φφId = IdId = Id

e34 = fτφf = fσf = −σff = −σId = −σ; e234 = σ2 = Id

e123 = eσf = −σef = −σg = gσ;
e2123 = gσgσ = −σggσ = −σIdσ = −σσId = −Id

e134 = −eσ; e2134 = eσeσ = σeeσ = σIdσ = σσId = Id

e234 = −φσ = −τ ; e2234 = ττ = Id

e1234 = τe; e21234 = τeτe = −eττe = −eIde = −eeId = −IdId = −Id

�
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10. Matrix Representations

We can represent the iterants e, f as well as the period 2 permutation oper-
ators by 4x4-matrices as for example by

e =

⎛

⎜
⎜
⎝

1
1

−1
−1

⎞

⎟
⎟
⎠ ; f =

⎛

⎜
⎜
⎝

1
−1

−1
1

⎞

⎟
⎟
⎠

φ =

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠ ; σ =

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠ .

Taking into account that g = ef and τ = φσ we can calculate the matrices
of all 16 base units of the Clifford algebra. The generating Minkowski space
of the Clifford algebra is then given by the following standard representation

e1 = e =

⎛

⎜
⎜
⎝

1
1

−1
−1

⎞

⎟
⎟
⎠ ; e2 = φ =

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠

e3 = τf =

⎛

⎜
⎜
⎝

1
−1

−1
1

⎞

⎟
⎟
⎠ ; e4 = φf =

⎛

⎜
⎜
⎝

−1
1

1
−1

⎞

⎟
⎟
⎠ .

It is this peculiar representation where the four primitive idempotents fi

appear as diagonal matrices with unit entries in raw/column i and the sym-
metries of T(4) are positive definite, unitary permutation matrices. This is
not necessarily the case in other matrix representations since in Cl3,1 there
is a manifold of different representations for both T(4) and G. The equations
18 and all conditions satisfied by the monomials of Cl3,1 have been verified
by the computer programs of MAPLE Clifford.

11. Conclusion and Prospect

In this paper we have discovered the most fundamental relation between logic
and space–time geometry. The innermost commutative subspace of the Clif-
ford algebra of the Minkowski space is a Boolean logic structure which gives
rise to complex multi-valued logic on the one hand and to the isospin spaces
of angular 4-momenta of quantum motion on the other. We can denote this as
a morphogenetic structure of thought in the sense of the genetic structural-
ism. Mathematically, this logic core structure is a typical Cartan (sub)algebra
of SU(4) ⊂ Cl3,1 having rank three. With four generators {Id,A,B,≡} the
whole universal spook can be brought about. As we know the construction
plans of these elements, we can design the right circuit layout for the space-
like retinoid system of a cognitive brain ([13]), a one that lives integrated
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within the universal whole. And we can also get the Lie groups, the motion
groups of material bodies and the genetic code from this creature. We can
show how icons may lead to linear writing and the latter leads back to iconic
notation. These are subjects of prospect.
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