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Abstract. Recently, several discussions on the possible observability of
4-vector fields have been published in literature. Furthermore, several
authors recently claimed existence of the helicity = 0 fundamental field.
We re-examine the theory of antisymmetric tensor fields and 4-vector
potentials. We study the massless limits. In fact, a theoretical motiva-
tion for this venture is the old papers of Ogievetskĭı and Polubarinov,
Hayashi, and Kalb and Ramond. They proposed the concept of the
notoph, whose helicity properties are complementary to those of the
photon. We analyze the quantum field theory with taking into account
mass dimensions of the notoph and the photon. We also proceed to de-
rive equations for the symmetric tensor of the second rank on the basis
of the Bargmann-Wigner formalism They are consistent with the general
relativity. Particular attention has been paid to the correct definitions of
the energy-momentum tensor and other Nöther currents. We estimate
possible interactions, fermion-notoph, graviton-notoph, photon-notoph.
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1. Introduction

In this presentation we re-examine the theory of the 4-vector field, the an-
tisymmetric tensor fields of the second ranks and the spin-2 fields coming
from the modified Bargmann–Wigner formalism. In the series of the pa-
pers [1,2,8,10] we tried to find connection between the theory of the quan-
tized antisymmetric tensor (AST) field of the second rank (and that of the
corresponding 4-vector field) with the 2(2s + 1) Weinberg-Tucker-Hammer
formalism [28,29]. Several previously published works [17,18,23] introduced
the concept of the notoph (the Kalb-Ramond field) which is constructed on
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the basis of the antisymmetric tensor “potentials”, cf. [3,5–7]. It represents
itself the non-trivial spin-0 field. We posed the problems: are the massless
quantized AST potential and the quantized 4-vector field are transverse or
longitudinal fields (in the sense if the helicity h = ±1 or h = 0)? can the
electromagnetic potential be a 4-vector in a quantized theory? contradictions
with the Weinberg theorem “that no symmetric tensor field of rank s can be
constructed from the creation and annihilation operators of massless particles
of spin s”? how should the massless limit be taken?

After the anonymous referee (see the Acknowledgments), we noted that
(1) “. . . In natural units (c = � = 1) . . . a lagrangian density, since the ac-
tion is dimensionless, has dimension of [energy]4”; (2) One can always renor-
malize the lagrangian density and “one can obtain the same equations of
motion. . . by substituting L → (1/MN )L, where M is an arbitrary energy
scale”, cf. [8]; (3) the right physical dimension of the field strength tensor
Fμν is [energy]2; “the transformation Fμν → (1/2m)Fμν (which was re-
garded in Refs. [11,15]) . . . requires a more detailed study . . . [because] the
transformation above changes its physical dimension: it is not a simple nor-
malization transformation”. Furthermore, in the first papers on the notoph
the authors used the normalization of the 4-vector Fμ field, which is related
to a third-rank antisymmetric field tensor, to [energy]2 and, hence, the anti-
symmetric tensor “potentials” Aμν , to [energy]1. We discuss these problems
on the basis of the generalized Bargmann-Wigner formalism [4]. The Proca
and Maxwell formalisms are generalized, [10]. In the next section we consider
the spin-2 equations. A field of the rest mass m and the spin s ≥ 1

2 is rep-
resented by a completely symmetric multispinor of rank 2s. The particular
cases s = 1 and s = 3

2 have been considered in the textbooks, e. g., Ref. [20].
Nevertheless, questions of the redundant components of the higher-spin rel-
ativistic equations are not yet understood in detail [19]. In the last sections
we discuss the questions of quantization, interactions and relations between
various higher-spin theories.

2. 4-Potentials and Antisymmetric Tensor Fields.
Normalization

The spin-0 and spin-1 particles can be constructed by taking the direct prod-
uct of 4-spinors [4,20]. The set of basic equations for s = 0 and s = 1 are
written:

[iγμ∂μ − m]αβ Ψβγ(x) = 0, (2.1)

[iγμ∂μ − m]γβ Ψαβ(x) = 0. (2.2)

We expand the 4 × 4 matrix field function into the antisymmetric and sym-
metric parts in the standard way

Ψ[αβ] = Rαβφ + γ5
αδRδβ

˜φ + γ5
αδγ

μ
δτRτβ

˜Aμ, (2.3)

Ψ{αβ} = γμ
αδRδβAμ + σμν

αδRδβFμν , (2.4)
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where R=CP . The explicit form of this matrix can be chosen: R=
(

iΘ 0
0 −iΘ

)

,

Θ = −iσ2, provided that γμ matrices are in the Weyl representation. The
Eqs. (2.1, 2.2) lead to the Kemmer set of the s = 0 equations:

mφ = 0, (2.5)

m˜φ = −i∂μ
˜Aμ, (2.6)

m ˜Aμ = −i∂μ
˜φ, (2.7)

and to the Proca-Duffin-Kemmer set of the equations in the s = 1 case:1

∂αFαμ +
m

2
Aμ = 0, (2.10)

2mFμν = ∂μAν − ∂νAμ, (2.11)

In the meantime, the textbooks equations are obtained from (2.10, 2.11) after
the normalization change Aμ → 2mAμ or Fμν → 1

2mFμν . Of course, one can
investigate other sets of equations with different normalization of the Fμν

and Aμ fields. Are all these systems of equations equivalent? As we shall see,
to answer this question is not trivial. We want to relate it to the question
of the good behaviour in the massless limit, which must be taken in the end
of all calculations only, i. e., for physical quantities. In order to be able to
answer the question about the behaviour of eigenvalues of the spin operator
Ji = 1

2εijkJjk in the massless limit one should know the behaviour of the
fields Fμν and/or Aμ in the massless limit. We choose the usual definitions
(p. 209 of [30]) for polarization vectors εμ(0, σ):

εμ(0,+1) = − 1√
2

⎛

⎜

⎜

⎝

0
1
i
0

⎞

⎟

⎟

⎠

, εμ(0, 0) =

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

, εμ(0,−1) =
1√
2

⎛

⎜

⎜

⎝

0
1
−i
0

⎞

⎟

⎟

⎠

.

(2.12)

Then, (p̂i = pi/ | p |, γ = Ep/m), p. 68 of Ref. [30],

εμ(p, σ) = Lμ
ν(p)εν(0, σ), (2.13)

L0
0(p) = γ , Li

0(p) = L0
i(p) = p̂i

√

γ2 − 1 , (2.14)

Li
k(p) = δik + (γ − 1)p̂ip̂k (2.15)

for the 4-vector potential field,

Aμ(xμ) =
∑

σ=0,±1

∫

d3p
(2π)3

1
2Ep

[

εμ(p, σ)a(p, σ)e−ip·x

+ (εμ(p, σ))cb†(p, σ)e+ip·x]

.
(2.16)

1 We could use another symmetric matrix γ5σμνR in the expansion of the symmetric
spinor of the second rank [15]. In this case the equations will read

i∂α
˜F αμ +

m

2
Bμ = 0, (2.8)

2im ˜F μν = ∂μBν − ∂νBμ. (2.9)

in which the dual tensor ˜F μν = 1
2
εμνρσFρσ presents, because we used that in the Weyl

representation γ5σμν = i
2
εμνρσσρσ ; Bμ is the corresponding vector potential.
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The normalization of the field functions in the momentum representation is
thus chosen to the negative unit, ε∗

μ(p, σ)εμ(p, σ) = −1. We observe that
in the massless limit all the defined polarization vectors of the momentum
space do not have good behaviour; the functions describing spin-1 particles
tend to infinity.2 Nevertheless, after renormalizing the polarization vectors,
e. g., εμ → uμ ≡ mεμ we come to the field functions in the momentum
representation:

uμ(p,+1) = − N√
2m

⎛

⎜

⎜

⎜

⎝

pr

m + p1pr

Ep+m

im + p2pr

Ep+m
p3pr

Ep+m

⎞

⎟

⎟

⎟

⎠

, uμ(p,−1)=
N√
2m

⎛

⎜

⎜

⎜

⎝

pl

m + p1pl

Ep+m

−im + p2pl

Ep+m
p3pl

Ep+m

⎞

⎟

⎟

⎟

⎠

,

(2.17)

uμ(p, 0) =
N

m

⎛

⎜

⎜

⎜

⎝

p3
p1p3

Ep+m
p2p3

Ep+m

m + p2
3

Ep+m

⎞

⎟

⎟

⎟

⎠

, (2.18)

(N = m and pr,l = p1 ± ip2) which do not diverge in the massless limit. Two
of the massless functions (with σ = ±1) are equal to zero when a particle,
described by this field, is moving along the third axis (p1 = p2 = 0, p3 �= 0).
The third one (σ = 0) is

uμ(p3, 0) |m→0=

⎛

⎜

⎜

⎝

p3
0
0
p2
3

Ep

⎞

⎟

⎟

⎠

≡

⎛

⎜

⎜

⎝

Ep

0
0

Ep

⎞

⎟

⎟

⎠

, (2.19)

and at the rest (Ep = p3 → 0) also vanishes. Thus, such a field opera-
tor describes the “longitudinal photons” what is in the complete accordance
with the Weinberg theorem B − A = h for massless particles (we use the
D(1/2, 1/2) representation). The change of the normalization can lead to the
change of physical content described by the classical field. In the quantum
case one should somehow fix the form of commutation relations by some
physical principles. They may be fixed by requirements of the dimensionless
of the action in the natural unit system (apart from the requirements of the
translational and rotational invariancies; the accustomed behaviour of the
Feynman-Dyson propagator, etc.).

Furthermore, it is easy to find the properties of the physical fields Fμν

[defined as in (2.10, 2.11), for instance] in the massless zero-momentum limit.
It is straightforward to find B(+)(p, σ) = i

2mp × u(p, σ), E(+)(p, σ) =
i

2mp0u(p, σ)− i
2mpu0(p, σ) and the corresponding negative-energy strengths

for the field operator (in general, the complex-valued one).

2 It is interesting to remind that some authors tries to inforce the Stueckelberg’s Lagrangian

in order to overcome the difficulties related to the m → 0 limit (or the Proca theory →
Quantum Electrodynamics). The Stueckelberg’s Lagrangian is well known to contain an
additional term which may be put in correspondence to some scalar (longitudinal) field
(cf. also [26]).
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For the sake of completeness let us present the vector corresponding to
the “time-like” polarization:

uμ(p, 0t) =
N

m

⎛

⎜

⎜

⎝

Ep

p1
p2
p3

⎞

⎟

⎟

⎠

, B(±)(p, 0t) = 0, E(±)(p, 0t) = 0 . (2.20)

The polarization vector uμ(p, 0t) has good behaviour in m → 0, N = m
(and also in the subsequent limit p → 0) and it may correspond to some
field (particle). As one can see the field operator composed of the states of
longitudinal polazrizations (e.g., as the “positive-energy” solution) and time-
like (e.g., as the “negative-energy” solution) may describe a situation when
a particle and an antiparticle have opposite intrinsic parities.

3. Lagrangian, Energy-Momentum Tensor and Angular
Momentum. Photon-Notoph Equations

We begin with the Lagrangian, including, in general, mass term3:

L = 1
4 (∂μAνα)(∂μAνα) − 1

2 (∂μAμα)(∂νAνα)
− 1

2 (∂μAνα)(∂νAμα) + 1
4m2AμνAμν .

(3.2)

The Lagrangian leads to the equation of motion in the following form:
1
2
(� + m2)Aμν + (∂μA ,α

αν − ∂νA ,α
αμ ) = 0, (3.3)

It is this equation for antisymmetric-tensor-field components that follows
from the Proca-Duffin-Kemmer consideration provided that m �= 0 and in
the final expression one takes into account the Klein-Gordon equation.

Following the variation procedure one can obtain the energy-momentum
tensor:

Θλβ = 1
2

[

(∂λAμα)(∂βAμα) − 2(∂μAμα)(∂βAλ
α)

− 2(∂μAλα)(∂βAμα)
] − Lgλβ .

(3.4)

One can also obtain that for rotations xμ′
= xμ + ωμνxν the corresponding

variation of the wave function is found from the formula:

δAαβ =
1
2
ωκτTαβ,μν

κτ Aμν .

3 Here we use the notation Aμν for the AST due to possible different “mass dimensions”
of the fields. The massless (m = 0) Lagrangian is connected with the Lagrangians used in
other theories by adding the total derivative:

LCFT = L +
1

2
∂μ (Aνα∂νAμα − Aμα∂νAνα) . (3.1)

The Kalb-Ramond gauge-invariant form (with respect to the “gauge” transformations
Aμν → Aμν + ∂νΛμ − ∂μΛν), Refs. [17,18,23], is obtained only if one uses the Fermi
procedure mutatis mutandis by removing the additional “phase” field λ(∂μAμν)2 from
the Lagrangian. This has certain analogy with the QED, where the question, whether the
Lagrangian is gauge-invariant or not, is solved depending on the presence of the term
λ(∂μAμ)2.
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The generators of infinitesimal transformations are defined as

Tαβ,μν
κτ =

1
2
gαμ(δβ

κ δν
τ − δβ

τ δν
κ) +

1
2
gβμ(δν

κδα
τ − δν

τ δα
κ )

+
1
2
gαν(δμ

κ δβ
τ − δμ

τ δβ
κ) +

1
2
gβν(δα

κ δμ
τ − δα

τ δμ
κ). (3.5)

It is Tαβ,μν
κτ , the generators of infinitesimal transformations, that enter in the

formula for the relativistic spin tensor:

Jκτ =
∫

d3x
[

∂L
∂(∂Aαβ/∂t)

Tαβ,μν
κτ Aμν

]

. (3.6)

As a result one obtains:
Jκτ =

∫

d3x [(∂μAμν) (g0κAντ − g0τAνκ) − (∂μAμ
κ) A0τ

+ (∂μAμ
τ ) A0κ + Aμ

κ (∂0Aτμ + ∂μA0τ + ∂τAμ0)
− Aμ

τ (∂0Aκμ + ∂μA0κ + ∂κAμ0)] .
(3.7)

Furthermore, one should choose space-like normalized vector nμnμ =
−1, for example n0 = 0, n = p̂ = p/|p|. One can find the explicit form of
the relativistic spin after lengthy calculations:

(Wμ · nμ) = −(W · n) = −1
2
εijknkJ ijp0, (3.8)

Jk = εijk

∫

d3x
[

A0i(∂μAμj) + A j
μ (∂0Aμi + ∂μAi0 + ∂iA0μ)

]

. (3.9)

Now it becomes obvious that the application of the generalized Lorentz condi-
tions leads in such a formulation to the fact that the resulting Kalb-Ramond
field is longitudinal (helicity h = 0). All the components of the angular mo-
mentum tensor for this case are identically equated to zero.

According to [23, Eqs.(9, 10)] we proceed in the construction of the “po-
tentials” for the notoph (by taking, in fact, the 4-cross product of polarization
vectors):

F̃μν(p) ∼ Aμν(p) = N
[

ε(1)μ (p)ε(2)ν (p) − ε(1)ν (p)ε(2)μ (p)
]

. (3.10)

On using explicit forms for the polarization vectors in the momentum space
one obtains

Aμν(p) =
iN2

m

⎛

⎜

⎜

⎝

0 −p2 p1 0
p2 0 m + prpl

p0+m
p2p3

p0+m

−p1 −m − prpl

p0+m 0 − p1p3
p0+m

0 − p2p3
p0+m

p1p3
p0+m 0

⎞

⎟

⎟

⎠

, (3.11)

i.e., it coincides with the longitudinal components of the antisymmetric tensor
obtained in Refs. [1, Eqs. (2.14, 2.17)] and [11, Eqs. (17b, 18b)] within the
normalization and different choice of the spin basis. The longitudinal states
reduce to zero in the massless case under appropriate normalization, and if
the s = 1 particle moves along with the third axis only.

Finally, we agree with the previous authors, e. g., Ref. [24], see Eq. (4)
therein, about the gauge non-invariance of the division of the angular momen-
tum of the electromagnetic field into the “orbital” and “spin” part, Eq. (3.9).
We proved again that for the antisymmetric tensor field J ∼ ∫

d3x (E × A).
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So, what people actually do (when speaking on the Ogievetskĭı-Polubarinov-
Kalb-Ramond field) is: When N = m they considered the gauge part of the
4-vector field functions. Then, they gauged A of the transverse modes on
choosing pr = pl = 0 in the massless limit [see formulas (2.17)]. The reader,
of course, can consider this procedure as the usual gauge transformation,
Aμ → Aμ + ∂μχ. Under this choice the E(p, 0) and B(p, 0) are equal to zero
in massless limit. But, the gauge part of uμ(p, 0) is not. The spin angular
momentum can still be zero.

On the other hand, for the spin 1 one can start from

[γαβpαpβ − Apαpα + Bm2]Ψ = 0, (3.12)

where pμ = −i∂μ and γαβ are the Barut-Muzinich-Williams covariantly de-
fined 6 × 6 matrices. Then, the corresponding equations follow straightfor-
wardly for the AST fields of different parities [8].

Bargmann and Wigner claimed explicitly that they constructed (2s +
1) states. Meanwhile, the Weinberg-Tucker-Hammer theory has essentially
2(2s + 1) components. Therefore, we now apply

Ψ{αβ} = (γμR)αβ(camAμ + cfFμ) + (σμνR)αρ(cAm(γ5)ρβAμν + cF IρβFμν) .
(3.13)

Thus, Aμ, Aμν and Fμ, Fμν have different mass dimension. The constants ci

are some numerical dimensionless coefficients. The substitution of the above
expansion into the Bargmann-Wigner set, Ref. [20], gives us new Proca-like
equations:

cam(∂μAν −∂νAμ)+cf (∂μFν − ∂νFμ)= icAm2εαβμνAαβ +2mcF Fμν , (3.14)

cam2Aμ + cfmFμ = icAmεμναβ∂νAαβ +2cF ∂νFμν . (3.15)

In the case ca = 1, cF = 1
2 and cf = cA = 0 they are reduced to the or-

dinary Proca equations. In the general case we obtain dynamical equations
which connect the photon, the notoph and their potentials. The divergent (in
m → 0) parts of field functions and those of dynamical variables should be
removed by the corresponding gauge (or the Kalb-Ramond gauge) transfor-
mations. Apart from these dynamical equations we can obtain a number of
constraints by means of the subtraction of the equations of the Bargmann-
Wigner system [instead of the addition as for (3.14, 3.15)]. In fact, they give
˜Fμν ∼ imAμν and Fμ ∼ mAμ. Thus, after the suitable choice of the dimen-
sionless coefficients ci the Lagrangian density for the photon-notoph field can
be proposed:

L = LProca + LNotoph = −1
8
FμFμ − 1

4
FμνFμν +

m2

2
AμAμ +

m2

4
AμνAμν ,

(3.16)

The limit m → 0 may be taken for dynamical variables, in the end of calcu-
lations only. Furthermore, it is logical to introduce the normalization scalar
field ϕ(x) and consider the expansion:

Ψ{αβ} = (γμR)αβ(ϕAμ) + (σμνR)αβFμν . (3.17)
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Then, we arrive at the set of equations, which in the case of the constant scalar
field ϕ = 2m, can again be reduced to the system of the Proca equations.

Next, the Tam-Happer experiments [27] on two laser-beams interac-
tion did not find satisfactory explanation in the framework of the ordinary
QED. In Refs. [22,25] a very interesting model has been proposed. It is based
on gauging the Dirac field on using the coordinate-dependent parameters
αμν(x). Thus, the second “photon” was introduced. The compensating 24-
component (in general) field Bμ,νλ reduces to the 4-vector field as follows:
Bμ,νλ = 1

4εμνλσaσ(x). As readily seen after comparison of these formulas
with those of Refs. [17,18,23], the second photon is nothing more than the
Ogievetskĭı-Polubarinov notoph within the normalization.

4. The Bargmann-Wigner Formalism for Spin 2

In this section we begin with the equations for the 4-rank symmetric spinor:

[iγμ∂μ − m]αα′ Ψα′βγδ = 0 , (4.1)
[iγμ∂μ − m]ββ′ Ψαβ′γδ = 0 , (4.2)

[iγμ∂μ − m]γγ′ Ψαβγ′δ = 0 , (4.3)

[iγμ∂μ − m]δδ′ Ψαβγδ′ = 0 . (4.4)

We proceed expanding the field function in the complete set of symmetric
matrices. In the beginning let us use the first two indices:

Ψ{αβ}γδ = (γμR)αβΨμ
γδ + (σμνR)αβΨμν

γδ . (4.5)

Next, we present the vector-spinor and tensor-spinor functions as

Ψμ
{γδ} = (γκR)γδG

μ
κ + (σκτR)γδF

μ
κτ , (4.6)

Ψμν
{γδ} = (γκR)γδT

μν
κ + (σκτR)γδR

μν
κτ , (4.7)

i. e., using the symmetric matrix coefficients in indices γ and δ. Hence, the
resulting tensor equations coincide with the equations obtained in Ref. [21].

However, we need to make symmetrization over two sets of indices
{αβ} and {γδ}. The total symmetry can be ensured if one contracts the
function Ψ{αβ}{γδ} with the antisymmetric matrices R−1

βγ , (R−1γ5)βγ and
(R−1γ5γλ)βγ , and equate all these contractions to zero. We obtain additional
constraints on the tensor field functions. We explicitly showed that all field
functions become to be equal to zero. Such a situation cannot be considered
as a satisfactory one because it does not give us any physical information.

We shall modify the formalism in the spirit of Ref. [15]. The field func-
tions take now into account γ5σμνR terms. Hence, the function Ψ{αβ}{γδ} can
be expressed as a sum of nine terms. The corresponding dynamical equations
are given in the following form:

2α2β4

m
∂νT μν

κ +
iα3β7

m
εμναβ∂ν

˜Tκ,αβ = α1β1G
μ

κ , (4.8)

2α2β5

m
∂νR μν

κτ +
iα2β6

m
εαβκτ∂ν

˜Rαβ,μν +
iα3β8

m
εμναβ∂ν

˜Dκτ,αβ
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−α3β9

2
εμναβελδκτDλδ

αβ = α1β2F
μ

κτ +
iα1β3

2
εαβκτ

˜Fαβ,μ, (4.9)

2α2β4T
μν

κ + iα3β7ε
αβμν

˜Tκ,αβ =
α1β1

m
(∂μG ν

κ − ∂νG μ
κ ), (4.10)

2α2β5R
μν

κτ + iα3β8ε
αβμν

˜Dκτ,αβ + iα2β6εαβκτ
˜Rαβ,μν

−α3β9

2
εαβμνελδκτDλδ

αβ =
α1β2

m
(∂μF ν

κτ − ∂νF μ
κτ )

+
iα1β3

2m
εαβκτ (∂μ

˜Fαβ,ν − ∂ν
˜Fαβ,μ) . (4.11)

In general, the coefficients αi and βi may now carry some dimension. The
essential constraints can be found in Ref. [12]. They are the results of con-
tractions of the field function with six antisymmetric matrices as above. As
a discussion, we note that in such a framework we, already, have physical
content because only certain combinations of field functions can be equal to
zero. In general, the fields F μ

κτ , ˜F μ
κτ , T μν

κ , ˜T μν
κ , and R μν

κτ , ˜R μν
κτ ,

D μν
κτ , ˜D μν

κτ can correspond to different physical states and the equations
describe couplings one state to another.

Furthermore, from the set of Eqs. (4.8–4.11) one obtains the second-
order equation for the symmetric traceless tensor of the second rank (α1 �= 0,
β1 �= 0):

1
m2

[∂ν∂μG ν
κ − ∂ν∂νG μ

κ ] = G μ
κ . (4.12)

After the contraction in indices κ and μ this equation is reduced to:

∂αGα
β = Fβ ,

1
m2

∂βF β = 0 , (4.13)

i. e., the equations which connect the analogue of the energy-momentum
tensor and the analogue of the 4-vector field.

5. Interactions

The possibility of terms such as σ · [A × A∗] appears to be related to the
matters of chiral interactions [13,14]. The Dirac field operator can always
be presented as a superposition of the self- and anti-self charge conjugate
field operators. The anti-self charge conjugate part can give the self charge
conjugate part after multiplying by the γ5 matrix, and vice versa. We derived

[iγμD∗
μ − m]ψs

1 = 0 , (5.1)

[iγμDμ − m]ψa
2 = 0. (5.2)

Both equations lead to the terms of interaction such as σ · [A×A∗] provided
that the 4-vector potential is considered as a complex function(al). In fact,
from (5.1) we have:

iσμ∇μχ1 − mφ1 = 0, iσ̃μ∇∗
μφ1 − mχ1 = 0. (5.3)

And, from (5.2) we have

iσμ∇∗
μχ2 − mφ2 = 0, iσ̃μ∇μφ2 − mχ2 = 0. (5.4)
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The meanings of σμ and σ̃μ are obvious from the definition of γ matrices.
The derivatives are defined:

Dμ = ∂μ − ieγ5Cμ + eBμ, ∇μ = ∂μ − ieAμ, (5.5)

and Aμ = Cμ+iBμ. Thus, relations with the magnetic monopoles can also be
established. From the above systems we extract the terms as ±e2σiσjAiA

∗
j ,

which lead to the discussed terms [13,14]. We would like to note that the
terms of the type σ · [A × A∗] can be reduced to (σ · ∇)V , where V is the
scalar potential.

Furthermore, one can come to the same conclusions not applying the
constraints on the creation/annihilation operators. It is possible to work with
self/anti-self charge conjugate fields and the Majorana anzatzen. Thus, it is
the γ5 transformation which distinguishes various field configurations (helic-
ity, self/anti-self charge conjugate properties etc) in the coordinate represen-
tation in the considered cases.

The most general relativistic-invariant Lagrangian for the symmetric
2nd-rank tensor is

L = −α1(∂αGαλ)(∂βGβλ) − α2(∂αGβλ)(∂αGβλ)

−α3(∂αGβλ)(∂βGαλ) + m2GαβGαβ . (5.6)

It leads to the equation
[

α2(∂α∂α) + m2
]

G{μν} + (α1 + α3)∂{μ| (∂αGα|ν}) = 0. (5.7)

In the case α2 = 1 > 0 and α1 + α3 = −1 it coincides with Eq. (4.12). There
is no any problem to obtain the dynamical invariants for the fields of the
spin 2 from the above Lagrangian. The mass dimension of Gμν is [energy]1.
We now present possible relativistic interactions of the symemtric 2-rank
tensor. The simplest ones should be the the following ones: Lint

(1) ∼ GμνFμF ν ,
Lint
(2) ∼ (∂μGμν)F ν , Lint

(3) ∼ Gμν(∂μF ν). The term (∂μGα
α)Fμ vanishes due

to the constraint of tracelessness.
It is also interesting to note that thanks to the possible terms

V (F ) = λ1(FμFμ) + λ2(FμFμ)(FνF ν) (5.8)

we can give the mass to the G00 component of the spin-2 field. This is due
to the possibility of the Higgs spontaneous symmetry breaking:

Fμ(x) =

⎛

⎜

⎜

⎝

v + ∂0χ(x)
g1

g2

g3

⎞

⎟

⎟

⎠

, (5.9)

with v being the vacuum expectation value, v2 = (FμFμ) = −λ1/2λ2 > 0.
Other degrees of freedom of the 4-vector field are removed since they are the
Goldstone bosons. As one can readily seen, this expression does not permit
an arbitrary phase for Fμ, which is only possible if the 4-vector would be the
complex one.

Next, since the interaction of fermions with notoph, for instance, are
that of the order ∼ e2 in the initial Lagrangian, it is more difficult to observe
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it. However, as far as I know the theoretical precision calculus in QED (the
Landé factor, the anomalous magnetic moment, the hyperfine splittings in
positronium and muonium, and the decay rates of o-Ps and p-Ps) are near the
order corresponding to the 4th–5th loops, where the difference may appear
with the experiments, cf. [9].

6. Conclusions

We considered the Bargmann-Wigner formalism in order to derive the equa-
tions for the AST fields, and for the symmetric tensor of the 2nd rank.
We introduced the additional normalization scalar field in the Bargmann-
Wigner formalism in order to account for possible physical significance of the
Ogievetskii-Polubarinov–Kalb-Ramond modes. Both the antisymmetric ten-
sor fields and the 4-vector fields may have third helicity state in the massless
limits. This problem is connected with the problem of the observability of the
gauge [26]. We introduced the additional symmetric matrix in the Bargmann-
Wigner expansion (γ5σμνR) in order to account for the dual fields. The con-
sideration was similar to Ref. [16]. The problem was discussed, what are the
the correct definitions of the energy-momentum tensor and other Nöther cur-
rents in the electromagnetic theory, the relativistic theory of gravitation, the
general relativity, and their generalizations. Furthermore, we discussed the
interactions of notoph, photon and graviton. Probably, the notivarg should
also be taken into account. In order to analize its dynamical invariants and
interactions one should construct the Lagrangian from the analogs of the
Riemann tensor, such as ˜Dμν,αβ . The notoph-graviton interaction may give
the mass to spin-2 particles in the way similar to the spontaneous-symmetry-
breaking Higgs formalism.
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e-mail: valeri@fisica.uaz.edu.mx

Received: October 11, 2014.

Accepted: March 21, 2015.

http://arxiv.org/abs/hep-th/9712036
http://arxiv.org/abs/math-ph/9805017
http://arxiv.org/abs/math-ph/9805017
http://arxiv.org/abs/hep-ph/9801287
http://arxiv.org/abs/hep-ph/9801287
http://arxiv.org/abs/physics/9804010

	Translational and Rotational Properties of Tensor Fields in Relativistic Quantum Mechanics
	Abstract
	1. Introduction
	2. 4-Potentials and Antisymmetric Tensor Fields. Normalization
	3. Lagrangian, Energy-Momentum Tensor and Angular Momentum. Photon-Notoph Equations
	4. The Bargmann-Wigner Formalism for Spin 2
	5. Interactions
	6. Conclusions
	Acknowledgements
	References




