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(1,1)-Forms Acting on Spinors on Kähler
Surfaces

Rafael de Freitas Leão

Abstract. It is known that, for Dirac operators on Riemann surfaces
twisted by line bundles with Hermitian-Einstein connections, it is possi-
ble to obtain estimates for the first eigenvalue in terms of the topology
of the twisting bundle [8]. Attempts to generalize topological estimates
for higher rank bundles or higher dimensional manifolds have been so
far unsuccessful. In this work, we construct a class of examples, making
explicit one problem that must be addressed in attempts to generalize
such topological estimates.
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1. Introduction

Let (M, g) be a spin Riemannian manifold, S the spinor bundle of M and
D the Dirac operator associated with the Levi-Civita connection of (M, g).
There is an extensive literature concerning estimates for the first eigenvalue
of this operator, [5]. The main techniques to obtain such estimates are based
on the Wietzenböck formula

D2 = ∇∗∇+
1

4
R.

We may also consider the twisted Dirac operator. For this, let E → M
be an Hermitian vector bundle with connection ∇A, compatible with the
Hermitian structure. Then, ∇A ⊗ I + I ⊗ ∇S is a connection on the tensor
product S⊗E, called the product connection, and we can consider the asso-
ciated Dirac operator, DA, in S⊗ E.

For this operator the Witzenböck formula becomes

D2
A = ∇A∗

∇A +
1

4
R+ FA,

where FA is the curvature 2-form of the connection ∇A viewed as an operator
on S⊗ E.
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In order to obtain estimates for the first eigenvalue of DA we need to
understand how FA acts on spinors. One special case, where it is possible to
obtain a nice characterization of FA, is that of Hermitian-Einstein connections
on Riemann surfaces.

In general, let (M, g, J) be a Kähler manifold of complex dimension n. In

this case, M is naturally a SpinC-manifold and the spinor bundle associated
to this structure can be identified with ∧0,∗M . If E → M is a holomorphic
Hermitian vector bundle over M then we have1

SC ⊗ E � ∧0,∗M ⊗ E = Ω0,∗(E).

In the particular case of Riemann surfaces, in order to get estimates for
the first eigenvalue of DA, it is sufficient to know how FA acts on ∧0,0 ⊗E =
Ω0,0(E). Restricted to Ω0,0(E), the Weitzenböck formula can be written as

D2
A = ∇A∗∇A − iΛFA,

where ΛFA is the contraction of the curvature 2-form FA by the Kähler form
ω.

If we impose that the connection ∇A is the Hermitian-Einstein connec-
tion2 the above Weitzenböck formula provides the estimate [8]

λ ≥ − 2n

2n− 1

π deg(E)

(n− 1)!rk(E)vol(M)
. (1)

involving topological data of the bundle E → M . Using the calculations of
[1],it is known that this estimate is sharp for Riemann surfaces.

The key argument for Riemann surfaces is that we can restrict the anal-
ysis to Ω0,0(E). This is possible because on manifolds with even dimension
the spinor bundle decomposes as S = S+⊕S− and, if DAψ = λψ is an eigen-
spinor with non null eigenvalue λ, then ψ = ψ+ + ψ− with ψ± �= 0 and we
can restrict the analysis to S+ or S−. Furthermore, for Riemann surfaces,
S+ � ∧0,0M , and if the connection ∇A is Hermitian-Einstein the restric-
tion of FA to S± is a definite operator and its norm can be calculated by a
topological constant.

For higher dimensional manifolds, this argument does not work because
we have S+ = ⊕p even ∧0,pM and S− = ⊕p odd ∧0,pM , and to determine the
action of FA on S± we need to know the action of FA on (0, p)-forms, which,
in general, is not simple.

Despite the efforts to generalize the estimate to Hermitian-Einstein con-
nections on higher dimension Kähler manifolds, the only results in the liter-
ature, known to the present author, such as [2, 6], are geometric estimates
involving the pointwise eigenvalues of FA that, in principle, does not carry

1When (M, g, J) is a Spin-manifold we have the relation SC = S ⊗ k−
1
2 and we can treat

the real case analogously.
2Recall that a connection ∇A is Hermitian-Einstein if ΛFA = cIE , where c is a topological
constant given by

2π deg(E)

(n− 1)!rk(E)vol(M)
.
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topological information. In this work we construct a class of examples show-
ing that, without further hypothesis for E → M and ∇A, the argument used
on Riemann surfaces to obtain a topological estimate cannot be generalized.
The main result is:

Main Theorem. Let E → M be a holomorphic line bundle over a Kähler sur-
face3 (M, g, J). Let ∇A be any connection on E compatible with the holomor-
phic structure and FA the curvature 2-form of ∇A. Then, as an operator act-
ing on spinors, FA |S± is indefinite for every p ∈ M such that FA |S± (p) �= 0.

This family of examples raises two natural questions:

• Is it possible to find examples where FA acts as a definite operator on
S+ or S−? If yes, is it possible to obtain a topological estimate for the
first eigenvalue of the twisted Dirac operator?

• Knowing that DAψ = λψ is an eigenspinor is it possible to simplify the
action of FA? If yes, does this lead to a topological estimate?

2. Anti-Selfdual U(1) Connections

LetM be a Kähler manifold with complex dimension 2. All complex manifolds
carry a canonical SpinC-structure, and in this structure the spinor bundle is
explicitly described in terms of forms:

SC � ∧0,∗M = ⊕2
i=0 ∧0,i M,

S+C � ⊕i even ∧0,i M,

S−C � ⊕i odd ∧0,i M.

Consequently, the twisted case is described by

SC ⊗ E � ∧0,∗M ⊗ E = Ω0,∗(E).

This description is very useful, mainly because of two reasons. First, we
can explicitly describe the action of C�(T ∗M) on SC. For this, consider an
adapted frame {ξi, ξ̄i} of T ∗M ⊗ C. Then, in this frame, the Clifford action
is given by:

ξi· = −
√
2ξ̄i�,

ξ̄i· =
√
2ξ̄i ∧ .

(2)

Secondly, the twisted Dirac operator can be described in terms of Cauchy-
Riemann operators: if ∇A is a connection on E → M , the complex structure
of M produces the splitting

∇A = ∂A + ∂̄A,

∂A : Ωp,q(E) → Ωp+1,q(E),

∂̄A : Ωp,q(E) → Ωp,q+1(E),

3By a Kähler surface we understand a Kähler manifold of complex dimension 2.
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and the twisted Dirac operator is given by

DA =
√
2
(
∂A + ∂̄A

)
.

The case of the twisted Dirac operator associated with a Spin-structure can
also be described by these identifications; we must only remember that the
two spinor spaces are related by SC = S⊗ k−

1
2 , where k = ∧0,nM .

Another important fact about Kähler manifolds with complex dimension
2 is that the 2-forms decompose in self-dual forms, Ω+, and anti-self-dual
forms, Ω−, and that

Ω+ = Ω2,0 ⊕ Ω0ω ⊕ Ω0,2,

Ω− = Ω1,1
0 ,

(3)

where ω is the Kähler form and Ω1,1
0 is the space of (1,1)-forms orthogonal

to ω [4].
Using the adapted frame {ξi, ξ̄i} we can explicitly describe the action

of elements of Ω± on spinors. First, note that the Kähler form can be written
as

ω = i
(
ξ1 ∧ ξ̄1 + ξ2 ∧ ξ̄2

)
,

and a basis for Ω1,1
0 is given by {ξ1 ∧ ξ̄2, ξ2 ∧ ξ̄1, ξ1 ∧ ξ̄1 − ξ2 ∧ ξ̄2}. Therefore,

if FA ∈ Ω−, locally we can write

FA = aξ1 ∧ ξ̄2 + bξ2 ∧ ξ̄1 + c
(
ξ1 ∧ ξ̄1 − ξ2 ∧ ξ̄2

)
.

Proposition 1. If FA ∈ Ω−, the action of FA on S− is given by

FA = 2

(
c b
a −c

)
.

Proof. A 2-form α ∧ β acts on spinors through Clifford multiplication by
means of the identification

α ∧ β � 1

2
(αβ − βα) .

Using the action described in (2) we calculate

ξ1 ∧ ξ̄2 · ψ =
1

2

(
ξ1ξ̄2 − ξ̄2ξ1

)
· ψ

=
1

2

[
ξ1 ·

(
ξ̄2 · ψ

)
− ξ̄2 ·

(
ξ1 · ψ

)]

= −ξ̄1�
(
ξ̄2 ∧ ψ

)
+ ξ̄2 ∧

(
ξ̄1�ψ

)
.

For 4-manifolds S−C is just Ω0,1(E); so if ψ ∈ S−C we have4

ψ = ψ1ξ̄
1 + ψ2ξ̄

2,

and the above expression simplifies to

(ξ1 ∧ ξ̄2) · ψ = ψ1ξ̄
2 + ψ1ξ̄

2 = 2ψ1ξ̄
2

4Strictly, elements of Ω(0,1)(E) � Γ(E)⊗ ∧(0,1)M are of the form ψ = ψ1 ⊗ ξ̄1 + ψ2 ⊗ ξ̄2

and the Clifford action is given by c(α)(ψi ⊗ ξ̄i) = ψi ⊗ (c(α)ξ̄i). So, to simplify notation,
we just write ψi ⊗ ξ̄i ∼ ψiξ̄

i, and the action is as written.
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or, in matrix form,

(ξ1 ∧ ξ̄2) · ψ =

(
0 0
2 0

)
·
[

ψ1

ψ2

]
.

The other terms are calculated in the same manner and are given, in matrix
form, by

(ξ2 ∧ ξ̄1) · ψ =

(
0 2
0 0

)
·
[

ψ1

ψ2

]
,

(
ξ1 ∧ ξ̄1 − ξ2 ∧ ξ̄2

)
· ψ =

(
2 0
0 −2

)
·
[

ψ1

ψ2

]
,

and the result follows. �

To complete the characterization we need to know how FA acts on S+.

Proposition 2. The Clifford action of an (1, 1)-form α on sections of
∧0,n(M)⊗ E, ψn ∈ Ω0,n(E), is explicit given by

α · ψn = i(Λα)ψn, (4)

where Λα = ω�α is the contraction of α by the Kähler form ω.

Proof. In [8, Proposition1] it was proved that the action of an (1,1)-form, α,
on sections of E is given by −i(Λα). The same techniques can be used to
explicitly obtain the result. �

With this we can prove:

Theorem 1. If FA ∈ Ω− then, on points p ∈ M such that FA(p) �= 0 as a
2-form, FA(p), as an operator on Sp, is indefinite.

Proof. By the above proposition, the action of a (1,1)-form α on ∧0,0M and
∧0,2M is given by

α · ψ = ∓i(Λα)ψ,

where the sign is minus on ∧0,0M and plus on ∧0,2M .

Then, if FA ∈ Ω−, the decomposition (3) implies that ΛFA = 0, and
FA acts trivially on S+C . The only non trivial part is the action of FA on S−C ,
which is given by proposition (1).

With the same notation as in the previous proposition, and knowing
that the action of FA on SC is Hermitian [3] we find that the eigenvalues of
FA, as an operator on SC, are

{0,
√

c2 + ab,−
√
c2 + ab}.

Because the representation of C�(TM) on SC is faithful we conclude that

for points p ∈ M where FA(p) �= 0 the eigenvalues ±
√
c2 + ab cannot be zero,

so FA is indefinite. �
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3. Selfdual U(1) Connections

For compatible self-dual connections the decomposition (3) implies that the
curvature has the form FA = fω, where ω denotes the Kähler form and f is
a function on M .

Using proposition (2) and [8, Proposition1] we have:

Proposition 3. If FA is of type (1, 1), the action of FA on S+ � ∧0,0M⊕∧0,2M
is given by

FA = i

(
−ΛFA 0

0 ΛFA

)
.

Using this we have:

Theorem 2. If FA ∈ Ω+ then, on points p ∈ M such that FA(p) �= 0 as a
2-form, FA(p), as an operator on Sp, is indefinite.

Proof. Using the calculations of proposition (1) we can explicitly verify that
ω acts as a null operator on S−. Thus FA acts trivially on S− and the action
of FA on S+ is given by the above proposition. Therefore, for FA �= 0, FA is
indefinite. �

Combining theorems (1) and (2), and decomposition (3), we obtain the
main theorem.
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