Advances in Applied Clifford Algebras

$(1,1)$ -Forms Acting on Spinors on Kähler Surfaces

Rafael de Freitas Leão

Abstract. It is known that, for Dirac operators on Riemann surfaces twisted by line bundles with Hermitian-Einstein connections, it is possible to obtain estimates for the first eigenvalue in terms of the topology of the twisting bundle [8]. Attempts to generalize topological estimates for higher rank bundles or higher dimensional manifolds have been so far unsuccessful. In this work, we construct a class of examples, making explicit one problem that must be addressed in attempts to generalize such topological estimates.

Keywords. Spinors, curvature, Kähler surfaces.

1. Introduction

Let (M, q) be a spin Riemannian manifold, S the spinor bundle of M and D the Dirac operator associated with the Levi-Civita connection of (M, g) . There is an extensive literature concerning estimates for the first eigenvalue of this operator, [5]. The main techniques to obtain such estimates are based on the Wietzenböck formula

$$
D^2 = \nabla^* \nabla + \frac{1}{4}R.
$$

We may also consider the twisted Dirac operator. For this, let $E \to M$ be an Hermitian vector bundle with connection ∇^{A} , compatible with the Hermitian structure. Then, $\nabla^A \otimes \mathbb{I} + \mathbb{I} \otimes \nabla^S$ is a connection on the tensor product $\mathcal{S} \otimes E$, called the product connection, and we can consider the associated Dirac operator, D_A , in $\mathbb{S} \otimes E$.

For this operator the Witzenböck formula becomes

$$
D_A^2 = \nabla^{A^*} \nabla^A + \frac{1}{4}R + F_A,
$$

where F_A is the curvature 2-form of the connection ∇^A viewed as an operator on $\mathbb{S} \otimes E$.

In order to obtain estimates for the first eigenvalue of D_A we need to understand how F_A acts on spinors. One special case, where it is possible to obtain a nice characterization of F_A , is that of Hermitian-Einstein connections on Riemann surfaces.

In general, let (M, q, J) be a Kähler manifold of complex dimension n. In this case, M is naturally a $\text{Spin}^{\mathbb{C}}$ -manifold and the spinor bundle associated to this structure can be identified with $\wedge^{0,*}M$. If $E \to M$ is a holomorphic Hermitian vector bundle over M then we have 1

$$
\mathbb{S}_{\mathbb{C}} \otimes E \simeq \wedge^{0,*} M \otimes E = \Omega^{0,*}(E).
$$

In the particular case of Riemann surfaces, in order to get estimates for the first eigenvalue of D_A , it is sufficient to know how F_A acts on $\wedge^{0,0} \otimes E =$ $\Omega^{0,0}(E)$. Restricted to $\Omega^{0,0}(E)$, the Weitzenböck formula can be written as

$$
D_A^2 = \nabla^{A^*} \nabla^A - i\Lambda F_A,
$$

where ΛF_A is the contraction of the curvature 2-form F_A by the Kähler form ω.

If we impose that the connection ∇^A is the Hermitian-Einstein connection² the above Weitzenböck formula provides the estimate $[8]$

$$
\lambda \ge -\frac{2n}{2n-1} \frac{\pi \deg(E)}{(n-1)! \text{rk}(E) \text{vol}(M)}.\tag{1}
$$

involving topological data of the bundle $E \to M$. Using the calculations of [1],it is known that this estimate is sharp for Riemann surfaces.

The key argument for Riemann surfaces is that we can restrict the analysis to $\Omega^{0,0}(E)$. This is possible because on manifolds with even dimension the spinor bundle decomposes as $\mathbb{S} = \mathbb{S}^+ \oplus \mathbb{S}^-$ and, if $D_A \psi = \lambda \psi$ is an eigenspinor with non null eigenvalue λ , then $\psi = \psi^+ + \psi^-$ with $\psi^{\pm} \neq 0$ and we can restrict the analysis to \mathbb{S}^+ or \mathbb{S}^- . Furthermore, for Riemann surfaces, $\mathbb{S}^+ \simeq \wedge^{0,0} M$, and if the connection ∇^A is Hermitian-Einstein the restriction of F_A to \mathbb{S}^{\pm} is a definite operator and its norm can be calculated by a topological constant.

For higher dimensional manifolds, this argument does not work because we have $\mathbb{S}^+ = \bigoplus_{p \ even} \wedge^{0,p} M$ and $\mathbb{S}^- = \bigoplus_{p \ odd} \wedge^{0,p} M$, and to determine the action of F_A on \mathbb{S}^{\pm} we need to know the action of F_A on $(0, p)$ -forms, which, in general, is not simple.

Despite the efforts to generalize the estimate to Hermitian-Einstein connections on higher dimension Kähler manifolds, the only results in the literature, known to the present author, such as [2, 6], are geometric estimates involving the pointwise eigenvalues of F_A that, in principle, does not carry

$$
\frac{2\pi \deg(E)}{(n-1)! \text{rk}(E) \text{vol}(M)}.
$$

¹When (M, g, J) is a Spin-manifold we have the relation $\mathcal{S}_{\mathbb{C}} = \mathcal{S} \otimes k^{-\frac{1}{2}}$ and we can treat the real case analogously.

²Recall that a connection ∇^A is Hermitian-Einstein if $\Lambda F_A = c \mathbb{I}_E$, where c is a topological constant given by

topological information. In this work we construct a class of examples showing that, without further hypothesis for $E \to M$ and ∇^{A} , the argument used on Riemann surfaces to obtain a topological estimate cannot be generalized. The main result is:

Main Theorem. Let $E \to M$ be a holomorphic line bundle over a Kähler surface³ (M, g, J). Let ∇^A be any connection on E compatible with the holomorphic structure and F_A the curvature 2-form of ∇^A . Then, as an operator acting on spinors, $F_A |_{\mathbb{S}^{\pm}}$ is indefinite for every $p \in M$ such that $F_A |_{\mathbb{S}^{\pm}} (p) \neq 0$.

This family of examples raises two natural questions:

- Is it possible to find examples where F_A acts as a definite operator on S⁺ or S−? If yes, is it possible to obtain a topological estimate for the first eigenvalue of the twisted Dirac operator?
- Knowing that $D_A \psi = \lambda \psi$ is an eigenspinor is it possible to simplify the action of F_A ? If yes, does this lead to a topological estimate?

2. Anti-Selfdual $U(1)$ Connections

Let M be a Kähler manifold with complex dimension 2. All complex manifolds carry a canonical $Spin^{\mathbb{C}}$ -structure, and in this structure the spinor bundle is explicitly described in terms of forms:

$$
S_{\mathbb{C}} \simeq \wedge^{0,*} M = \bigoplus_{i=0}^{2} \wedge^{0,i} M,
$$

\n
$$
S_{\mathbb{C}}^{+} \simeq \bigoplus_{i \text{ even}} \wedge^{0,i} M,
$$

\n
$$
S_{\mathbb{C}}^{-} \simeq \bigoplus_{i \text{ odd}} \wedge^{0,i} M.
$$

Consequently, the twisted case is described by

$$
\mathbb{S}_{\mathbb{C}} \otimes E \simeq \wedge^{0,*} M \otimes E = \Omega^{0,*}(E).
$$

This description is very useful, mainly because of two reasons. First, we can explicitly describe the action of $\mathcal{C}\ell(T^*M)$ on $\mathcal{S}_{\mathbb{C}}$. For this, consider an adapted frame $\{\xi^i, \bar{\xi}^i\}$ of $T^*M \otimes \mathbb{C}$. Then, in this frame, the Clifford action is given by:

$$
\xi^{i} = -\sqrt{2}\bar{\xi}^{i} \mathbf{I},
$$

\n
$$
\bar{\xi}^{i} = \sqrt{2}\bar{\xi}^{i} \wedge.
$$
\n(2)

Secondly, the twisted Dirac operator can be described in terms of Cauchy-Riemann operators: if ∇^A is a connection on $E \to M$, the complex structure of M produces the splitting

$$
\nabla^{A} = \partial_{A} + \bar{\partial}_{A},
$$

$$
\partial_{A} : \Omega^{p,q}(E) \to \Omega^{p+1,q}(E),
$$

$$
\bar{\partial}_{A} : \Omega^{p,q}(E) \to \Omega^{p,q+1}(E),
$$

 3 By a Kähler surface we understand a Kähler manifold of complex dimension 2.

and the twisted Dirac operator is given by

$$
D_A = \sqrt{2} \left(\partial_A + \bar{\partial}_A \right).
$$

The case of the twisted Dirac operator associated with a Spin-structure can also be described by these identifications; we must only remember that the two spinor spaces are related by $\mathbb{S}_{\mathbb{C}} = \mathbb{S} \otimes k^{-\frac{1}{2}}$, where $k = \wedge^{0,n} M$.

Another important fact about Kähler manifolds with complex dimension 2 is that the 2-forms decompose in self-dual forms, Ω^+ , and anti-self-dual forms, Ω^- , and that

$$
\Omega^{+} = \Omega^{2,0} \oplus \Omega^{0} \omega \oplus \Omega^{0,2},
$$

\n
$$
\Omega^{-} = \Omega_{0}^{1,1},
$$
\n(3)

where ω is the Kähler form and $\Omega_0^{1,1}$ is the space of (1,1)-forms orthogonal to ω [4].

Using the adapted frame $\{\xi^i, \bar{\xi}^i\}$ we can explicitly describe the action of elements of Ω^{\pm} on spinors. First, note that the Kähler form can be written as

$$
\omega = i \left(\xi^1 \wedge \bar{\xi}^1 + \xi^2 \wedge \bar{\xi}^2 \right),
$$

and a basis for $\Omega_0^{1,1}$ is given by $\{\xi^1 \wedge \bar{\xi}^2, \xi^2 \wedge \bar{\xi}^1, \xi^1 \wedge \bar{\xi}^1 - \xi^2 \wedge \bar{\xi}^2\}$. Therefore, if F_A ∈ Ω⁻, locally we can write

$$
F_A = a\xi^1 \wedge \bar{\xi}^2 + b\xi^2 \wedge \bar{\xi}^1 + c(\xi^1 \wedge \bar{\xi}^1 - \xi^2 \wedge \bar{\xi}^2).
$$

Proposition 1. If $F_A \in \Omega^-$, the action of F_A on \mathbb{S}^- is given by

$$
F_A = 2 \begin{pmatrix} c & b \\ a & -c \end{pmatrix}.
$$

Proof. A 2-form $\alpha \wedge \beta$ acts on spinors through Clifford multiplication by means of the identification

$$
\alpha \wedge \beta \simeq \frac{1}{2} \left(\alpha \beta - \beta \alpha \right).
$$

Using the action described in (2) we calculate

$$
\xi^1 \wedge \bar{\xi}^2 \cdot \psi = \frac{1}{2} \left(\xi^1 \bar{\xi}^2 - \bar{\xi}^2 \xi^1 \right) \cdot \psi
$$

=
$$
\frac{1}{2} \left[\xi^1 \cdot (\bar{\xi}^2 \cdot \psi) - \bar{\xi}^2 \cdot (\xi^1 \cdot \psi) \right]
$$

=
$$
-\bar{\xi}^1 \cdot (\bar{\xi}^2 \wedge \psi) + \bar{\xi}^2 \wedge (\bar{\xi}^1 \cdot \psi).
$$

For 4-manifolds $\mathbb{S}_{\mathbb{C}}^-$ is just $\Omega^{0,1}(E)$; so if $\psi \in \mathbb{S}_{\mathbb{C}}^-$ we have⁴

$$
\psi = \psi_1 \bar{\xi}^1 + \psi_2 \bar{\xi}^2,
$$

and the above expression simplifies to

$$
(\xi^1\wedge\bar\xi^2)\cdot\psi=\psi_1\bar\xi^2+\psi_1\bar\xi^2=2\psi_1\bar\xi^2
$$

⁴Strictly, elements of $\Omega^{(0,1)}(E) \simeq \Gamma(E) \otimes \wedge^{(0,1)}M$ are of the form $\psi = \psi_1 \otimes \bar{\xi}^1 + \psi_2 \otimes \bar{\xi}^2$ and the Clifford action is given by $c(\alpha)(\psi_i \otimes \bar{\xi}^i) = \psi_i \otimes (c(\alpha)\bar{\xi}^i)$. So, to simplify notation, we just write $\psi_i \otimes \bar{\xi}^i \sim \psi_i \bar{\xi}^i$, and the action is as written.

or, in matrix form,

$$
(\xi^1 \wedge \bar{\xi}^2) \cdot \psi = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}.
$$

The other terms are calculated in the same manner and are given, in matrix form, by

$$
(\xi^2 \wedge \bar{\xi}^1) \cdot \psi = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \cdot \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix},
$$

$$
(\xi^1 \wedge \bar{\xi}^1 - \xi^2 \wedge \bar{\xi}^2) \cdot \psi = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \cdot \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix},
$$

and the result follows. $\hfill \square$

To complete the characterization we need to know how F_A acts on \mathbb{S}^+ .

Proposition 2. The Clifford action of an $(1, 1)$ -form α on sections of $\wedge^{0,n}(M)\otimes E$, $\psi_n \in \Omega^{0,n}(E)$, is explicit given by

$$
\alpha \cdot \psi_n = i(\Lambda \alpha)\psi_n,\tag{4}
$$

where $\Lambda \alpha = \omega \alpha$ is the contraction of α by the Kähler form ω .

Proof. In [8, Proposition1] it was proved that the action of an $(1,1)$ -form, α , on sections of E is given by $-i(\Lambda \alpha)$. The same techniques can be used to explicitly obtain the result. explicitly obtain the result.

With this we can prove:

Theorem 1. If $F_A \in \Omega^-$ then, on points $p \in M$ such that $F_A(p) \neq 0$ as a 2-form, $F_A(p)$, as an operator on \mathbb{S}_p , is indefinite.

Proof. By the above proposition, the action of a (1,1)-form α on $\wedge^{0,0}M$ and $\wedge^{0,2}$ *M* is given by

$$
\alpha \cdot \psi = \mp i(\Lambda \alpha) \psi,
$$

where the sign is minus on $\wedge^{0,0}M$ and plus on $\wedge^{0,2}M$.

Then, if $F_A \in \Omega^-$, the decomposition (3) implies that $\Lambda F_A = 0$, and F_A acts trivially on $\mathbb{S}_{\mathbb{C}}^+$. The only non trivial part is the action of F_A on $\mathbb{S}_{\mathbb{C}}^-$, which is given by proposition (1).

With the same notation as in the previous proposition, and knowing that the action of F_A on $\mathcal{S}_{\mathbb{C}}$ is Hermitian [3] we find that the eigenvalues of F_A , as an operator on $\mathbb{S}_{\mathbb{C}}$, are

$$
\{0, \sqrt{c^2 + ab}, -\sqrt{c^2 + ab}\}.
$$

Because the representation of $Cl(TM)$ on $\mathcal{S}_{\mathbb{C}}$ is faithful we conclude that for points $p \in M$ where $F_A(p) \neq 0$ the eigenvalues $\pm \sqrt{c^2 + ab}$ cannot be zero, so F_A is indefinite.

3. Selfdual $U(1)$ Connections

For compatible self-dual connections the decomposition (3) implies that the curvature has the form $F_A = f\omega$, where ω denotes the Kähler form and f is a function on M.

Using proposition (2) and [8, Proposition1] we have:

Proposition 3. If F_A is of type (1, 1), the action of F_A on $\mathbb{S}^+ \simeq \wedge^{0,0} M \oplus \wedge^{0,2} M$ is given by

$$
F_A = i \begin{pmatrix} -\Lambda F_A & 0 \\ 0 & \Lambda F_A \end{pmatrix}.
$$

Using this we have:

Theorem 2. If $F_A \in \Omega^+$ then, on points $p \in M$ such that $F_A(p) \neq 0$ as a 2-form, $F_A(p)$, as an operator on \mathbb{S}_p , is indefinite.

Proof. Using the calculations of proposition (1) we can explicitly verify that ω acts as a null operator on \mathbb{S}^- . Thus F_A acts trivially on \mathbb{S}^- and the action of F_A on \mathbb{S}^+ is given by the above proposition. Therefore, for $F_A \neq 0$, F_A is indefinite. indefinite. \Box

Combining theorems (1) and (2), and decomposition (3), we obtain the main theorem.

References

- [1] A. L. Almorox, C. Tejero Prieto, Holomorphic spectrum of twisted Dirac operators on compact Riemann surfaces. J. Geom. Phys. 56 (2006), 2069–2091.
- [2] Baum, H., Eigenvalue Estimates for Dirac Operators Coupled to Instantons. Ann. of Global Analysis and Geometry 12 (1994), 193-209.
- [3] H. B. Lawson & M.-L. Michelsohn, Spin Geometry, Princeton University Press 1989.
- [4] S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds. Oxford University Press, New York, 1990.
- [5] Friedrich, T. Dirac Operators in Riemannian Geometry. AMS 2000.
- $[6]$ N. Ginoux & G. Habib, The spectrum of the twisted Dirac operator on Kähler submanifolds of the complex projective space. Manuscripta math. 137 (2012), 215-231.
- [7] D. Husemoller, Fiber Bundles. Springer-Verlag 1994.
- [8] M. Jardim, R. F. Leão, On the spectrum of the twisted Dolbeault Laplacian over Kähler manifolds. Differential Geom. Appl. 27 (2009), 412-419.
- [9] K. D. Kirchberg An Estimation for the First Eigenvalue of the Dirac Operator on Closed Kähler Manifolds of Positive Scalar Curvature. Ann. Glob. Analysis and Geometry vol.4 No.3 (1986), 291-325.
- [10] L. I. Nicolaescu, Notes on Siberg-Witten Theory. AMS, 2000.

Rafael de Freitas Leão DM-IMECC Unicamp Rua Sergio Buarque de Holanda 651 Campinas, Sao Paulo, 13083-859 Brazil e-mail: leao79@gmail.com

Received: March 6, 2014. Accepted: November 7, 2014.