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Development of the Method of Quaternion
Typification of Clifford Algebra Elements

D.S. Shirokov

Abstract. In this paper we further develop the method of quaternion
typification of Clifford algebra elements suggested by the author in the
previous papers. On the basis of new classification of Clifford algebra
elements, it is possible to reveal and prove a number of new properties
of Clifford algebras. We use k-fold commutators and anticommutators.
In this paper we consider Clifford and exterior degrees and elementary
functions of Clifford algebra elements.
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1. Introduction

In this paper we develop the method of quaternion typification of Clifford
algebra elements. This method was suggested in [6]. On the basis of new
classification of Clifford algebra elements, it is possible to reveal and prove
a number of new properties of Clifford algebras. In our work we use k-fold
commutators and anticommutators. Also we consider Clifford and exterior
degrees and elementary functions of Clifford algebra elements. We develop
results of [6] and use results of [3] and [5].

2. Main Ideas of the Method of Quaternion Typification of
Clifford Algebra Elements

Let p, q be nonnegative integers such that p+ q = n, n ≥ 1. We consider the
Clifford algebra C�(p, q) over the fields of real or complex numbers. A detailed
description of the construction of the Clifford algebra C�(p, q) is given in [1]
and [3]. Let e be the identity element and let ea, a = 1, . . . , n be generators
of the Clifford algebra C�(p, q),

eaeb + ebea = 2ηabe,
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where η = ||ηab|| is the diagonal matrix, which diagonal contains p elements
equal to +1 and q elements equal to −1. The elements

ea1...ak = ea1 . . . eak , a1 < . . . < ak, k = 1, . . . , n

together with the identity element e form the basis in the Clifford algebra.
The number of basis elements equals 2n.

We denote the vector spaces spanned by the elements ea1...ak by

C�k(p, q). The elements of C�k(p, q) are denoted by
k

U and called elements
of rank k.

Also we have classification of Clifford algebra elements based on the
notion of parity:

C�(p, q) = C�even(p, q) ⊕ C�odd(p, q), (2.1)

where

C�even(p, q) = C�0(p, q) ⊕ C�2(p, q) ⊕ C�4(p, q) ⊕ . . .

C�odd(p, q) = C�1(p, q) ⊕ C�3(p, q) ⊕ C�5(p, q) ⊕ . . .

Denote by [U, V ] the commutator and by {U, V } the anticommutator of
Clifford algebra elements U, V ∈ C�(p, q)

[U, V ] = UV − V U, {U, V } = UV + V U (2.2)

and note that

UV =
1
2
[U, V ] +

1
2
{U, V }. (2.3)

Consider the Clifford algebra as the vector space and represent it in the
form of the direct sum of four subspaces:

C�(p, q) = C�0(p, q) ⊕ C�1(p, q) ⊕ C�2(p, q) ⊕ C�3(p, q), (2.4)

where

C�0(p, q) = C�0(p, q) ⊕ C�4(p, q) ⊕ C�8(p, q) ⊕ . . . ,

C�1(p, q) = C�1(p, q) ⊕ C�5(p, q) ⊕ C�9(p, q) ⊕ . . . ,

C�2(p, q) = C�2(p, q) ⊕ C�6(p, q) ⊕ C�10(p, q) ⊕ . . . ,

C�3(p, q) = C�3(p, q) ⊕ C�7(p, q) ⊕ C�11(p, q) ⊕ . . .

and the right-hand sides are direct sums of subspaces whose dimensions differ
by 4. We suppose that C�k(p, q) = ∅ for k > p + q.

We use the following notations:

C�kl(p, q) = C�k(p, q) ⊕ C�l(p, q), 0 ≤ k < l ≤ 3.

C�klm(p, q) = C�k(p, q) ⊕ C�l(p, q) ⊕ C�m(p, q), 0 ≤ k < l < m ≤ 3.
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Consider the elements of the Clifford algebra C�(p, q) from different sub-
spaces

C�0(p, q), C�1(p, q), C�2(p, q), C�3(p, q), C�01(p, q), C�02(p, q),

C�03(p, q), C�12(p, q), C�13(p, q), C�23(p, q), C�012(p, q), (2.5)

C�013(p, q), C�023(p, q), C�123(p, q), C�0123(p, q) = C�(p, q).

We say that these elements have different quaternion types (or types).
Elements of subspaces C�0(p, q), C�1(p, q), C�2(p, q), C�3(p, q) are called ele-
ments of the main quaternion types. Elements of other types are represented
in the form of sums of elements of the main quaternion types. Suppose that
the zero element of the Clifford algebra C�(p, q) belongs to any quaternion
type. So, we have classification of elements of the Clifford algebra C�(p, q) on
15 quaternion types.

We denote elements of quaternion type k by
k

U . Sometimes we denote

subspace C�k(p, q) by k and any Clifford algebra element
k

U∈ C�k(p, q) by k.
When we write “quaternion type k” we mean by k a symbol of quaternion
type (not a Clifford algebra element). Then [k, l] ⊆ m means that commutator
of any two Clifford algebra elements of quaternion types k and l belongs to
subspace m = C�m(p, q).

We have the following properties (see [6]):

[k, k] ⊆ 2, k = 0, 1, 2, 3;

[k, 2] ⊆ k, k = 0, 1, 2, 3; (2.6)

[0, 1] ⊆ 3, [0, 3] ⊆ 1, [1, 3] ⊆ 0,

{k, k} ⊆ 0, k = 0, 1, 2, 3;

{k, 0} ⊆ k, k = 0, 1, 2, 3; (2.7)

{1, 2} ⊆ 3, {1, 3} ⊆ 2, {2, 3} ⊆ 1.

3. Threefold Commutators and Anticommutators

Let’s define threefold commutator and threefold anticommutator of three ele-
ments U, V,W of Clifford algebra C�(p, q):

[U, V,W ] = UVW −WV U, (3.1)

{U, V,W} = UVW + WV U.

Using (2.2), we get

[[U, V ],W ] = UVW − V UW −WUV + WV U = {U, V,W} − {V,U,W},
{{U, V },W} = UVW + V UW + WUV + WV U = {U, V,W} + {V,U,W},
{[U, V ],W} = UVW − V UW + WUV −WV U = [U, V,W ] − [V,U,W ],

[{U, V },W ] = UVW + V UW −WUV −WV U = [U, V,W ] + [V,U,W ],



486 D.S. Shirokov Adv. Appl. Clifford Algebras

[U, V,W ] =
1
2
({[U, V ],W} + [{U, V },W ]), (3.2)

{U, V,W} =
1
2
([[U, V ],W ] + {{U, V },W}),

UV W =
1
4
([[U, V ],W ] + {{U, V },W} + [{U, V },W ] + {[U, V ],W}) =

=
1
2
([U, V,W ] + {U, V,W}).

Theorem 3.1. 1. For elements U, V,W ∈ C�(p, q) of the given quaternion
types k, l,m (2.5) the following elements

[[
k

U,
l

V ],
m

W ], {{ k

U,
l

V }, m

W}, { k

U,
l

V ,
m

W} (3.3)

have the same quaternion type r, i.e. in the other notation we have

[[k, l],m], {{k, l},m}, {k, l,m} ⊆ r. (3.4)

Besides, quaternion type does not depend on transposition of
k

U,
l

V ,
m

W
in (3.3) (or k, l,m in (3.4)).

2. For elements U, V,W ∈ C�(p, q) of the given quaternion types k, l,m
(2.5) the following elements

{[ kU,
l

V ],
m

W}, [{ k

U,
l

V }, m

W ], [
k

U,
l

V ,
m

W ] (3.5)

have the same quaternion type r, i.e.

{[k, l],m}, [{k, l},m], [k, l,m] ⊆ r. (3.6)

Besides, quaternion type does not depend on transposition of
k

U,
l

V ,
m

W
in (3.5) (or k, l,m in (3.6)).

Proof. Using (2.6), (2.7) and considering all variants we get that the following
expressions

[[
k

U,
l

V ],
m

W ] and {{ k

U,
l

V }, m

W}, {[ kU,
l

V ],
m

W} and [{ k

U,
l

V }, m

W ]

have the same quaternion type. Further we use (3.2). �

Remark 3.2. Taking into account the theorem statements, we often speak
about quaternion types of only two elements

{ k

U,
l

V ,
m

W}, [
k

U,
l

V ,
m

W ],

meaning also other four elements considered in the theorem. Quaternion type

does not depend on transposition
k

U,
l

V ,
m

W in the considered threefold com-
mutators and anticommutators.
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Let’s write down quaternion types of considered expressions in the case
of the main quaternion types:

k l m {k, l,m} [k, l,m] klm k l m {k, l,m} [k, l,m] klm

0 0 0 0 2 02 1 1 1 1 3 13
0 0 1 1 3 13 1 1 2 2 0 02
0 0 2 2 0 02 1 1 3 3 1 13
0 0 3 3 1 13 1 2 2 1 3 13
0 1 1 0 2 02 1 2 3 0 2 02
0 1 2 3 1 13 1 3 3 1 3 13
0 1 3 2 0 02 2 2 2 2 0 02
0 2 2 0 2 02 2 2 3 3 1 13
0 2 3 1 3 13 2 3 3 2 0 02
0 3 3 0 2 02 3 3 3 3 1 13

4. Some Formulas for Quaternion Types of 2-fold and 3-fold
Commutators and Anticommutators in the Cases of Main
Quaternion types

From (2.6) and (2.7) we have:

{k, l} =
{

(k + l + 2)mod 4, if k and l are odd ;
(k + l)mod 4, other cases .

[k, l] =
{

(k + l)mod 4, if k and l are odd;
(k + l + 2)mod 4, other cases.

or

[k, l] = (k + l + 1 + (−1)kl)mod 4, (4.1)

{k, l} = (k + l + 1 − (−1)kl)mod 4.

k

U
l

V⊆
{

02, if k + l even;
13, if k + l odd.

Statements of Theorem 3.1 can be written down more compactly in the
form of the following formulas, where k, l,m – main quaternion types:

[k, l,m] = (k + l + m + 1 + (−1)kl+km+lm)mod 4, (4.2)

{k, l,m} = (k + l + m + 1 − (−1)kl+km+lm)mod 4.

k

U
l

V
m

W⊆
{

02, if k + l + m even;
13, if k + l + m odd.

Below we give generalization of these formulas on k-fold commutators
and k-fold anticommutators.
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Further it will be not always convenient to use formulas (4.2) and (4.1).
Therefore, let us consider operations sharp �, flat � and natural � with the
following properties:

(0)� = 2, (1)� = 3, (2)� = 0, (3)� = 1,

(0)� = 1, (1)� = 0, (2)� = 3, (3)� = 2, (4.3)

(0)� = 3, (1)� = 2, (2)� = 1, (3)� = 0,

Note that

(k�)� = k, (k�)� = k, (k�)� = k,

k� = (k + 2)mod 4, k� = (k� + 2)mod 4,

k� = (k + (−1)k)mod 4 = (k + 2 − (−1)k)mod 4,

k� = (k − (−1)k)mod 4 = (k + 2 + (−1)k)mod 4.

By Theorem 3.1 and by these formulas, it follows that

∃r : [[k, l],m]�, {{k, l},m}�, {k, l,m}�, {[k, l],m}, [{k, l},m], [k, l,m] ⊆ r.

Let us consider trivial (identity) operation I with the property (k)I = k.
Then the following properties for operations I, �, �, � are fulfilled:

I ◦ I = � ◦ � = � ◦ � = � ◦ � = I,

I ◦ � = � ◦ I = � ◦ � = � ◦ � = �, (4.4)

I ◦ � = � ◦ I = � ◦ � = � ◦ � = �,

I ◦ � = � ◦ I = � ◦ � = � ◦ � = �.

These properties are similar to the properties of quaternions with respect to
the operation of composition ◦.

Consider 3-fold commutators and anticommutators with 2 given main
quaternion types. Then we have:

{0, 0, k},{1, 1, k}, {2, 2, k}, {3, 3, k} ⊆ k,

{0, 2, k},{1, 3, k} ⊆ k�, (4.5)

{0, 1, k},{2, 3, k} ⊆ k�,

{0, 3, k},{1, 2, k} ⊆ k�,

[0, 2, k],[1, 3, k] ⊆ k,

[0, 0, k],[1, 1, k], [2, 2, k], [3, 3, k] ⊆ k�, (4.6)

[0, 3, k],[1, 2, k] ⊆ k�,

[0, 1, k],[2, 3, k] ⊆ k�.

For 2-fold commutators and anticommutators we have the following formulas:

{k, k} ⊆ 0, {k, 0} ⊆ k, (4.7)

{k, 2} ⊆ k�, {k, 1} ⊆ k�, {k, 3} ⊆ k�,
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[k, k] ⊆ 2, [k, 2] ⊆ k, (4.8)

[k, 0] ⊆ k�, [k, 3] ⊆ k�, [k, 1] ⊆ k�.

So, for the main quaternion types we have:

{l, l, k}, [0, 2, k], [1, 3, k] ⊆ k,

[l, l, k], {0, 2, k}, {1, 3, k} ⊆ k�.

5. k-fold Commutators and Anticommutators

Let us give definitions for k-fold commutator and k-fold anticommutator of k
elements U1, U2, . . . , Uk of Clifford algebra C�(p, q):

[U1, U2, . . . , Uk] = U1U2 . . . Uk − Uk . . . U2U1; (5.1)

{U1, U2, . . . , Uk} = U1U2 . . . Uk + Uk . . . U2U1. (5.2)

Then

U1U2 . . . Uk =
1
2
([U1, U2, . . . , Uk] + {U1, U2, . . . , Uk}). (5.3)

Theorem 5.1. For elements U1, U2, . . . , Uk ∈ C�(p, q) the following formulas
are fulfilled:

U1U2 . . . Uk =
1

2k−1

2k−1∑
j=1

dk−1
j , (5.4)

[U1, U2, . . . , Uk] =
1

2k−2

2k−2∑
j=1

dk−1+

j , (5.5)

{U1, U2, . . . , Uk} =
1

2k−2

2k−2∑
j=1

dk−1−
j , (5.6)

where dk−1
j (j from 1 to 2k−1) – all possible expressions of the form

(. . . ((︸ ︷︷ ︸
k−1

U1, U2), U3), . . . , Uk),

where bracket “(” is “[” or “{”, dk−1+

j – expressions dk−1
j , where we have

odd number of commutators, dk−1−
j – expressions dk−1

j , where we have even
number of commutators.

For Clifford algebra elements U1, U2, . . . , Uk of given main quaternion types

a1, a2, . . . , ak all expressions dk−1+

j have the same quaternion type. This type

is a type (by (5.5)) of expression [U1, U2, . . . , Uk] and equals

[a1, a2, . . . , ak] = (a1 + a2 + . . . + ak + 1 + (−1)
∑k

i<j aiaj )mod 4. (5.7)
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For Clifford algebra elements U1, U2, . . . Uk of given main quaternion types

a1, a2, . . . , ak all expressions dk−1−
j have the same quaternion type. This type

is a type (by (5.6)) of expression {U1, U2, . . . , Uk} and equals

{a1, a2, . . . , ak} = (a1 + a2 + . . . + ak + 1 − (−1)
∑k

i<j aiaj )mod 4. (5.8)

For Clifford algebra elements U1, U2, . . . , Uk of given main quaternion types
a1, a2, . . . , ak the following formula is fulfilled:

a1

U1

a2

U2 . . .
ak

Uk⊆
{

02, if
∑k

j=1 aj even;
13, if

∑k
j=1 aj odd.

(5.9)

Proof. We use the method of mathematical induction. Formula (3.2) is a
partial case of formulas (5.4), (5.5), (5.6) in case k = 3. Suppose that formulas
(5.4), (5.5), (5.6) are valid for k > 3. Let us prove the validity of these formulas
for k + 1:

U1U2 . . . UkUk+1 =
1

2k−1
(
2k−1∑
j=1

dk−1
j )Uk+1

=
1

2k−1
(
1
2
[
2k−1∑
j=1

dk−1
j , Uk+1] +

1
2
{
2k−1∑
j=1

dk−1
j , Uk+1}) =

1
2k

(
2k∑
j=1

dkj ).

The validity of formulas (5.5), (5.6) for k + 1 follows from

[U1, U2, . . . , Uk+1] =
1
2
{[U1, U2, . . . , Uk], Uk+1} +

1
2
[{U1, U2, . . . , Uk}, Uk+1],

{U1, U2, . . . , Uk+1} =
1
2
[[U1, U2, . . . , Uk], Uk+1] +

1
2
{{U1, U2, . . . , Uk}, Uk+1}.

Let us prove that all expressions dk−1+

j have quaternion type

(a1 + a2 + . . . + ak + 1 + (−1)
∑k

i<j aiaj )mod 4.

This proves (5.7). Suppose that it is valid for dk−1+

j . Consider dk
+

j . This ex-

pression will be dk
+

j = {dk−1+

j , Uk+1} or dk
+

j = [dk−1−
j , Uk+1]. Let us calculate

quaternion types of these 2 expressions using corresponding expressions for
k = 2. We can get the following expressions:

{(
k∑

l=1

al + 1 + (−1)
∑k

i<j aiaj )mod 4, ak+1}

= (
k+1∑
l=1

al + 1 + (−1)
∑k

i<j aiaj + 1 − (−1)ak+1

∑k
l=1 al+2ak+1)mod 4 =

= (
k+1∑
l=1

al + 1 + (−1)
∑k+1

i<j aiaj ))mod 4;
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[(
k∑

l=1

al + 1 − (−1)
∑k

i<j aiaj )mod 4, ak+1]

= (
k+1∑
l=1

al + 1 − (−1)
∑k

i<j aiaj + 1 + (−1)ak+1

∑k
l=1 al+2ak+1)mod 4 =

= (
k+1∑
l=1

al + 1 + (−1)
∑k+1

i<j aiaj ))mod 4.

The proof of (5.8) is analogous. Using (5.7), (5.8) and (5.3), we get
(5.9). �

Let’s write down the statement of Theorem 5.1 for k = 4 (A,B,C,D –
elements of Clifford algebra C�(p, q)):

ABCD =
1
8
([[[A,B], C], D] + [{{A,B}, C}, D] + [[{A,B}, C], D]

+ [{[A,B], C}, D] + {[[A,B], C], D} + {{{A,B}, C}, D}
+ {[{A,B, }, C], D} + {{[A,B], C}, D}).

[A,B,C,D] =
1
4
([[[A,B], C], D] + [{{A,B}, C}, D]

+ {[{A,B, }, C], D} + {{[A,B], C}, D}).

{A,B,C,D} =
1
4
([[{A,B}, C], D] + [{[A,B], C}, D]

+ {[[A,B], C], D} + {{{A,B}, C}, D}.
[a, b, c, d] = (a + b + c + d + 1 + (−1)ab+ac+ad+bc+bd+cd)mod 4.

{a, b, c, d} = (a + b + c + d + 1 − (−1)ab+ac+ad+bc+bd+cd)mod 4.

a

A
b

B
c

C
d

D=

⎧⎨
⎩

02

W, if a + b + c + d even;
13

W, if a + b + c + d odd.

Remark 5.2. Formula (5.9) displays quaternion type of product of any num-
ber of Clifford algebra elements. Note that this formula doesn’t present any-
thing new since it follows from lemma [2]:

k

U
l

V =
k−l

W +
k−l+2

W + . . .+
k+l

W , where
m

W= 0 for m > n or m < 0.

Consider two Clifford algebra elements U, V of the given quaternion

types k, l respectively. Statement
l

V
k

U
l

V
k

U⊆ 02 is clear without method of
quaternion typification. But for similar expression we have

k

U
l

V
l

V
k

U⊆ 0.

It so, because UV V U = 1
2 ([U, V, V, U ] + {U, V, V, U}) = 1

2{U, V, V, U} and
quaternion type of this expression is 0 (see (5.8)).
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So, now we are able to calculate the quaternion type of product
U1U2 . . . Uk of any number of Clifford algebra elements. We can use formula
(5.9). But in some cases it’s more sensible to calculate at first the quater-
nion type of k-fold commutator [U1, U2, . . . , Uk] and k-fold anticommutator
{U1, U2, . . . , Uk}, and then take into account (5.3).

6. Formulas for Clifford and Exterior Degrees of Clifford
Algebra Elements

We consider the product of Clifford algebra elements in previous sections.
This product is called Clifford product.

Let us define another operation of product:

ea1 ∧ ea2 ∧ . . . ∧ eak = e[a1ea2 . . . eak], (6.1)

where square brackets mean operation of alternation of indexes. This product
is called exterior product of Clifford algebra elements. From this definition we
get

ea1 ∧ ea2 = −ea2 ∧ ea1 for a1, a2 = 1, 2, . . . , n; (6.2)

ea1 ∧ . . . ∧ eak = ea1 . . . eak = ea1...ak for a1 < . . . < ak. (6.3)

So, we have Clifford algebra C�(p, q) with two operation of products (the
Clifford product and the exterior product).

We say that Clifford degree of Clifford algebra element U ∈ C�(p, q) is

(U)m = U ∨ U ∨ U ∨ . . . ∨ U︸ ︷︷ ︸
m

, (6.4)

where ∨ is the Clifford product. We say that exterior degree of Clifford algebra
element U ∈ C�(p, q) is

(∧U)m = U ∧ U ∧ U ∧ . . . ∧ U︸ ︷︷ ︸
m

, (6.5)

where ∧ is the exterior product.
We are interested in rank or quaternion type of Clifford and exterior

degrees of Clifford algebra element.

Theorem 6.1. Let
k

U be a Clifford algebra C�(p, q) element of rank k:

k

U=
∑

a1<...<ak

ua1...ak
ea1...ak .

Then for m ≥ 2 we have

(∧ 0

U)m = ume.

If mk ≤ n and k even, then

(∧ k

U)m =
∑

(m!)ua1...ak
. . . ub1...bk︸ ︷︷ ︸
m

ea1...ak ∧ . . . ∧ eb1...bk︸ ︷︷ ︸
m

,
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where the sum is under condition a1 < . . . < ak, . . . , b1 < . . . < bk – (mk)
different indexes and basis elements ea1...ak , . . . , eb1...bk are ordered.
If k is odd or mk > n, then

(∧ k

U)m = 0.

Thus,

(∧ k

U)m =

⎧⎪⎨
⎪⎩

mk

W, mk ≤ n and k even;

0, other cases.
(6.6)

Proof. The formula for (∧ 0

U)m is obvious. Further,

(∧ k

U)2 = (u1...ke
1...k + . . .) ∧ (u1...ke

1...k + . . .)

=
∑

ua1...ak
ub1...bk(ea1...ak ∧ eb1...bk + eb1...bk ∧ ea1...ak)

=
∑

ua1...ak
ub1...bk(1 + (−1)k

2

)ea1...ak ∧ eb1...bk ,

where a1 < . . . < ak, b1 < . . . < bk and all basis elements are ordered. We
see that for odd k this expression equals to zero. Hence any exterior degree
of Clifford algebra element of odd rank equals to zero. We get formulas for
even k and m ≥ 3 in the recurrent way from the formula for m = 2, where
2! = 1 + (−1)k

2

. �

Theorem 6.2. Let
k

U be a Clifford algebra C�(p, q) element of rank k. Then
for m ≥ 2 we have

(
k

U)m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

W +
4

W + . . .
km

W, k = 4, 8, 12 . . ., m odd ;
2

W +
6

W + . . .
km

W, k = 2, 6, 10 . . ., m odd ;
1

W +
5

W + . . .
km−(m−1)

W , k = 1, 5, 9 . . ., m odd;
3

W +
7

W + . . .
km−(m−1)

W , k = 3, 7, 11 . . ., m odd ;
0

W +
4

W + . . .
km

W, k even, m even ;
0

W +
4

W + . . .
(k−1)m

W , k odd, m even .

(6.7)

In the special cases we have

(
0

U)m = ume ∈ C�0(p, q)

(
1

U)m =

⎧⎪⎨
⎪⎩

(
∑k

j=1(uj)2ηjj)
m
2 e ∈ C�0(p, q)), m even ;

(
∑k

j=1(uj)2ηjj)
m−1

2

∑k
i=1 uie

i ∈ C�1(p, q), m odd.

Let use the terminology connected with the method of quaternion typ-
ification. Then we can note that
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Corollary 6.3. For Clifford algebra element U ∈ C�(p, q) of the given quater-
nion type k = 0, 1, 2, 3 we have

(
k

U)m =

⎧⎨
⎩

k

W, m odd ,
0

W, m even.
(6.8)

Proof. The formula for (
0

W )m is obvious. Further,

(
1

U)2 = (u1e
1 + u2e

2 + . . . + une
n)(u1e

1 + u2e
2 + . . . + une

n)

=
n∑

i=1

(ui)2ηii +
∑
i �=j

uiuj(eiej + ejei) =
n∑

i=1

(ui)2ηii.

From this equality we get the formula for (
1

U)m. Now let us prove the other
statements. It is clear that

UU =
1
2
(UU + UU) =

1
2
{U,U}.

Furthermore,

(U)4 =
1
8
{{U,U}, {U,U}}.

If we have (U)m in the form of anticommutators of Clifford algebra elements
for even m, then

(U)m+2 = c{Um, {U,U}},
where c is constant. Then, using

{ k

U,
k

U} =
0

U, k = 0, 1, 2, 3,

we get the statement of the theorem for even m (see (2.7)). As above,

(U)3 =
1
4
{{U,U}, U}.

We know the expressions in the form of anticommutators of Clifford algebra
elements for even m. Then we have

(U)m+1 = c{Um, U},
where c is constant. Using

{ k

U,
0

U} =
k

U, k = 1, 2, 3,

we have the statements for odd m (see (2.7)). �

Remark 6.4. Let’s take into account the dimension n of Clifford algebra.
Then we can make these formulas more precise. For example, for m = 2 we
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have 4 different cases (in Theorem 6.2 there are 2 cases). These extra cases
appear when dimension of Clifford algebra n is smaller than km (if mk > n).

(
k

U)2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

W +
4

W + . . .
2k

W, n ≥ 2k, k even ;
0

W +
4

W + . . .
2k−2

W , n ≥ 2k, k odd ;
0

W +
4

W + . . .
2n−2k

W , n ≤ 2k, n, k are of the same parity ;
0

W +
4

W + . . .
4n−4k−4

W ,
n
2 ≤ k, 3n

4 − 1 ≤ k,
n, k are of different parity ;

For m = 8 we have 12 cases (not 2):

(
k

U)4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

W +
4

W + . . .
4k

W, k ≤ n
4 , k even ;

0

W +
4

W + . . .
2n−4k

W , n
4 ≤ k ≤ n

2 , k, n even ;
0

W +
4

W + . . .
2n−4k−2

W , n
4 ≤ k ≤ n

2 , k even, n odd ;
0

W +
4

W + . . .
4k−4

W , k ≤ n
2 , k ≤ n

4 + 1, k odd ;
0

W +
4

W + . . .
2n−4k+4

W , n
4 + 1 ≤ k ≤ n

2 , n even, k odd ;
0

W +
4

W + . . .
2n−4k+2

W , n
4 + 1 ≤ k ≤ n

2 , n, k odd ;
0

W +
4

W + . . .
4n−4k

W , 3n
4 ≤ k, n, k are of same parity ;

0

W +
4

W + . . .
−2n+4k

W , n
2 ≤ k ≤ 3n

4 , n, k even ;
0

W +
4

W + . . .
−2n+4k−2

W , n
2 ≤ k ≤ 3n

4 , n, k odd ;
0

W +
4

W + . . .
4n−4k−4

W ,
n
2 ≤ k, 3n

4 − 1 ≤ k,
n, k are of different parity ;

0

W +
4

W + . . .
−2n+4k+4

W , n
2 ≤ k ≤ 3n

4 − 1, n even, k odd ;
0

W +
4

W + . . .
−2n+4k+2

W , n
2 ≤ k ≤ 3n

4 − 1, n odd, k even .

These and similar formulas are rather massive. So, we will not improve these
formulas for any m. But we note that formulas in Theorem 6.2 can be im-
proved for mk > n.

7. Some Elementary Functions of Clifford Algebra Elements

Consider some elementary functions of Clifford algebra elements.
The following element

expU = e + U +
(U)2

2!
+

(U)3

3!
+ . . . =

∞∑
j=0

(U)j

j!

is called an exponent of Clifford algebra element U ∈ C�(p, q).
In the same way we denote sine, cosine, hyperbolic sine and hyperbolic

cosine of Clifford algebra element:

sinU =
∞∑
j=0

(−1)j
(U)2j+1

(2j + 1)!
, cosU =

∞∑
j=0

(−1)j
(U)2j

(2j)!
,
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sinh U =
∞∑
j=0

(U)2j+1

(2j + 1)!
, cosh U =

∞∑
j=0

(U)2j

(2j)!
.

These power series converge for any element U of Clifford algebra. We know
the rank of any Clifford degree of Clifford algebra element. Then we can find
the rank of written out functions of Clifford algebra element. For example,

exp
0

U= e + ue +
u2

2
e +

u3

3!
e + . . . = (

∞∑
k=0

uk

k!
)e ∈ C�0(p, q),

exp
1

U=
∞∑
j=0

(
∑n

i=1(ui
2ηii)j)

(2j)!
e+

+
∞∑
j=0

(
∑n

i=1(ui
2ηii)j)

(2j + 1)!

n∑
k=1

uke
k ∈ C�0(p, q) + C�1(p, q).

Since these formulas, it follows that

sin
0

U, cos
0

U, sinh
0

U, cosh
0

U∈ C�0(p, q),

sin
1

U, sinh
1

U∈ C�1(p, q),

cos
1

U, cosh
1

U∈ C�0(p, q).

Using Theorem 6.2, we get for k = 0, 1, 2, 3:

exp
k

U=
0k

W, sin
k

U=
k

W, sinh
k

U=
k

W, cos
k

U=
0

W, cosh
k

U=
0

W .

In the same way let’s denote exterior exponent, exterior sine, exterior
cosine, exterior hyperbolic sine, hyperbolic cosine of Clifford algebra element:

∧
exp U = e + U +

(∧U)2

2!
+

(∧U)3

3!
+ . . . =

∞∑
j=0

(∧U)j

j!
,

∧
sin U =

∞∑
j=0

(−1)j
(∧U)2j+1

(2j + 1)!
,

∧
cos U =

∞∑
j=0

(−1)j
(∧U)2j

(2j)!
,

∧
sinh U =

∞∑
j=0

(∧U)2j+1

(2j + 1)!
,

∧
cosh U =

∞∑
j=0

(∧U)2j

(2j)!
.

Using Theorem 6.1, we get

∧
exp

0

U= e + ue +
u2

2
e +

u3

3!
e + . . . = (

∞∑
k=0

uk

k!
)e ∈ C�0(p, q),

∧
sin

0

U,
∧

cos
0

U,
∧

sinh
0

U,
∧

cosh
0

U∈ C�0(p, q),

∧
exp

k

U=

⎧⎨
⎩ e+

k

U∈ C�0(p, q) + C�k(p, q), k odd ;
0

W +
k

W +
2k

W +
3k

W + . . . , k even,
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∧
sin

k

U,
∧

sinh
k

U=

⎧⎨
⎩

k

U∈ C�k(p, q), k odd ;
k

W +
3k

W +
5k

W +
7k

W + . . . , k even,

∧
cos

k

U,
∧

cosh
k

U=

{
e ∈ C�0(p, q), k odd ;
0

W +
2k

W +
4k

W +
6k

W +
8k

W + . . . , k even.

8. Conclusion

The method of quaternion typification in his primary form [6] allowed us to
find quaternion type of commutators and anticommutators of Clifford algebra
elements with given quaternion types. In this paper we have improved the
method. Now we know the quaternion type of all expressions

[U1, U2, . . . , Uk] = U1U2 . . . Uk − Uk . . . U2U1,

{U1, U2, . . . , Uk} = U1U2 . . . Uk + Uk . . . U2U1,

and
U1U2 . . . Uk

where k > 1 is an integer number.
Also we know the quaternion type of different other expressions as Clif-

ford and exterior degrees, elementary functions of Clifford algebra elements.
In many cases, a classification of Clifford algebra elements according to

their quaternion types makes it possible to obtain instructive results having
no rank analogues.
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