Adv. appl. Clifford alg. 20 (2010), 565–573 © 2010 Springer Basel AG, Switzerland 0188-7009/030565-9, *published online* March 12, 2010 DOI 10.1007/s00006-010-0210-3

Advances in Applied Clifford Algebras

Degenerate Spin Groups as Semi-Direct Products

Tekin Dereli, Şahin Koçak and Murat Limoncu

Abstract. Let Q be a symmetric bilinear form on $\mathbb{R}^n = \mathbb{R}^{p+q+r}$ with corank r, rank p+q and signature type (p,q), p resp. q denoting positive resp. negative dimensions. We consider the degenerate spin group Spin(Q) = Spin(p,q,r) in the sense of Crumeyrolle and prove that this group is isomorphic to the semi-direct product of the nondegenerate and indefinite spin group Spin(p,q) with the additive matrix group Mat(p+q,r).

Mathematics Subject Classification (2000). 15A66.

Keywords. Degenerate Spin Groups, Clifford algebras.

1. Degenerate Clifford Algebra

Let \langle,\rangle be a symmetric bilinear form on \mathbb{R}^n and let us consider the subspace W of \mathbb{R}^n

 $W = \{ w \in \mathbb{R}^n \mid \langle w, x \rangle = 0 \text{ for all } x \in \mathbb{R}^n \}.$

W is called the radical and the dimension of W is called the co-rank of \langle, \rangle . If corank is zero/non-zero, then \langle, \rangle is called non-degenerate/degenerate. If $W' \subset \mathbb{R}^n$ is any complementary subspace to W, then the restriction of \langle, \rangle to W' is nondegenerate. If the co-rank of \langle, \rangle is r and the the restriction of \langle, \rangle to W' has signature (p,q) (in the sense that W' has an orthogonal decomposition $W'' \oplus W'''$, where the dimensions of W'' respectively W''' are p resp. q and the restriction of \langle, \rangle to W'' resp. W''' is positive resp. negative definite), then the pair $(\mathbb{R}^n, \langle, \rangle)$ is said to be of type $\mathbb{R}^{p,q,r}$ (see [1], [2]).

Thus we have a linear basis $\{e_1, \ldots, e_p, e_{p+1}, \ldots, e_{p+q}, f_1, \ldots, f_r\}$ of \mathbb{R}^{p+q+r} such that

$$\begin{array}{rcl} \langle e_i, e_j \rangle &=& \delta_{ij} & 1 \leq i, j \leq p \\ \langle e_{p+i}, e_{p+j} \rangle &=& -\delta_{ij} & 1 \leq i, j \leq q \\ \langle f_i, f_j \rangle &=& 0 & 1 \leq i, j \leq r, \end{array}$$

and

$$W = Span \{f_1, ..., f_r\} W' = Span \{e_1, ..., e_p, e_{p+1}, ..., e_{p+q}\} W'' = Span \{e_1, ..., e_p\} W''' = Span \{e_{p+1}, ..., e_{p+q}\}.$$

In the following, for the degenerate Clifford algebra $\mathcal{C}\ell_{p,q,r} = \mathcal{C}\ell(\mathbb{R}^n, \langle, \rangle)$, we will use the algebra basis $\{e_1, \ldots, e_p, e_{p+1}, \ldots, e_{p+q}, f_1, \ldots, f_r\}$. We understand $\mathcal{C}\ell_{p,q} \subseteq \mathcal{C}\ell_{p,q,r}$ and recall the (indefinite) spin group:

Definition 1.1. The group Spin(p,q) is defined by

$$Spin(p,q) = \{v_1 \dots v_m \in \mathcal{C}\ell_{p,q} \mid m \in 2\mathbb{Z}^+, v_i = \sum_{j=1}^{p+q} a_{ij}e_j, \langle v_i, v_i \rangle = \mp 1, 1 \le i \le m\}.$$

Definition 1.2. The group SO(p,q) is defined by

 $SO(p,q) = \{ \sigma \in End(W') \mid \langle \sigma(a), \sigma(b) \rangle = \langle a, b \rangle, \forall a, b \in W' \text{ and } det(\sigma) = 1 \}.$

Lemma 1.3. The map ρ defined by

$$\begin{array}{cccc} \rho: & Spin(p,q) & \longrightarrow & SO(p,q) \\ & s & \longmapsto & \rho(s)(v) := svs^{-1} & (v \in W') \end{array}$$

is a 2:1 group homomorphism.

2. Degenerate Spin Group

Proposition 2.1. The subset of $C\ell_{p,q,r}$ defined by

$$S_{p,q,r} = \{s\gamma_1 \dots \gamma_{p+q}(1+G) \mid s \in Spin(p,q), \, \gamma_i = 1 + e_i \sum_{l=1}^r c_{il} f_l, \, G \in \Lambda(f)\}$$

is a group under the Clifford multiplication.

Here $1 \leq i \leq p + q$, $c_{il} \in \mathbb{R}$, and $\Lambda(f)$ is defined by

$$\Lambda(f) = Span\{f_{k_1} \dots f_{k_j} \mid 1 \le k_1 < k_2 < \dots < k_j \le r\}.$$

To prove the Proposition 3.1., we need the following Lemmas.

Lemma 2.2. Let $a, b \in Span\{e_1, \ldots, e_p, e_{p+1}, \ldots, e_{p+q}\} \subset \mathbb{R}^{p,q,r} \subset \mathcal{C}\ell_{p,q,r}$, and let $F, F' \in Span\{f_1, \ldots, f_r\} \subset \mathbb{R}^{p,q,r} \subset \mathcal{C}\ell_{p,q,r}$ such that $\langle a, b \rangle = 0$. Then we have

$$\exp(aF) = 1 + aF,$$

$$\exp(aF) \exp(bF') = \exp(aF + bF')$$

Proof. To obtain the first equation, we consider the expression

$$\exp(aF) = 1 + aF + \frac{1}{2}aFaF + \dots,$$

and from this, using the properties aF = -Fa and $F^2 = 0$, we find

$$\exp(aF) = 1 + aF.$$

For the second equation, let us compute both $\exp(aF) \exp(bF')$ and $\exp(aF + bF')$. $\exp(aF) \exp(bF')$ is directly computed as

$$\exp(aF)\exp(bF') = (1+aF)(1+bF')$$
$$= 1+aF+bF'+aFbF'.$$

 $\exp(aF + bF')$ is computed as follows:

$$\exp(aF + bF') = 1 + aF + bF' + \frac{1}{2}(aF + bF')(aF + bF') + \dots$$
$$= 1 + aF + bF' + \frac{1}{2}(aFaF + aFbF' + bF'aF + bF'bF') + \dots$$

Using the facts aF = -Fa, $F^2 = 0$, bF' = -F'b and $F'^2 = 0$, we obtain

$$\exp(aF + bF') = 1 + aF + bF' + \frac{1}{2}(aFbF' + bF'aF) + \dots$$

Since $\langle a, b \rangle = 0$, we have ab = -ba. We also have Fb = -bF, F'a = -aF' and FF' = -F'F. Thus we get

$$\exp(aF + bF') = 1 + aF + bF' + \frac{1}{2}(ab - ba)F'F + \dots$$
$$\exp(aF + bF') = 1 + aF + bF' + abF'F + \dots$$
$$\exp(aF + bF') = 1 + aF + bF' + aFbF' + \dots$$

The terms indicated by dots are equal to zero: In fact, from $F^2 = 0$, $F'^2 = 0$ and FF' = -F'F,

$$(aF + bF')^3 = (aF + bF')^2(aF + bF') (aF + bF')^3 = 2abF'F(aF + bF') (aF + bF')^3 = 0.$$

Thus we obtain

$$\exp(aF + bF') = 1 + aF + bF' + aFbF'$$

which gives the second equation.

One can prove similarly the following

Lemma 2.3. Let $a_i \in Span\{e_1, \ldots, e_p, e_{p+1}, \ldots, e_{p+q}\}$ $(i = 1, \ldots, N)$, $\langle a_i, a_j \rangle = 0$ for $i \neq j$ and $F_i \in Span\{f_1 \ldots f_r\}$ $(i = 1, \ldots, N)$. Then

$$\exp(\sum_{i=1}^{N} a_i F_i) = \exp(a_1 F_1) \dots \exp(a_N F_N).$$

(we note that, in this case the interesting equation

$$\exp(\sum_{i=1}^{N} a_i F_i) = 1 + \sum_{i=1}^{N} a_i F_i + \sum_{\substack{i < j \\ i, j = 1 \dots N}} a_i F_i a_j F_j a_k F_k + \dots + a_1 F_1 a_2 F_2 \dots a_N F_N$$

holds.)

Proof of Proposition 3.1. First, we will show that $S_{p,q,r}$ is closed with respect to the Clifford multiplication. Let

$$\Theta = s\gamma_1\gamma_2\dots\gamma_{p+q}(1+G)$$

$$\Theta' = s'\gamma'_1\gamma'_2\dots\gamma'_{p+q}(1+G')$$

be two elements of $S_{p,q,r}$. Then

$$\Theta\Theta' = s\gamma_1\gamma_2\ldots\gamma_{p+q}(1+G)s'\gamma_1'\gamma_2'\ldots\gamma_{p+q}'(1+G')$$

Using the properties Gs' = s'G and $G\gamma'_i = \gamma'_iG$, we have

$$\Theta\Theta' = s\gamma_1\gamma_2\ldots\gamma_{p+q}s'\gamma_1'\gamma_2'\ldots\gamma_{p+q}'(1+G)(1+G').$$

We use the notation G'' = G + G' + GG':

$$\Theta\Theta' = s\gamma_1\gamma_2\ldots\gamma_{p+q}s'\gamma_1'\gamma_2'\ldots\gamma_{p+q}'(1+G'').$$

Now we set $F_i = \sum_{l=1}^r c_{il} f_l$ so that $\gamma_i = 1 + e_i F_i$:

$$\Theta\Theta' = s(1+e_1F_1)\dots(1+e_{p+q}F_{p+q})s'\gamma'_1\dots\gamma'_{p+q}(1+G'')$$

= $s(1+e_1F_1)\dots(s'+e_{p+q}F_{p+q}s')\gamma'_1\dots\gamma'_{p+q}(1+G'').$

From $F_i s' = s' F_i$, one gets

$$\begin{split} \Theta\Theta' &= s(1+e_1F_1)\dots(s'+e_{p+q}s'F_{p+q})\gamma'_1\dots\gamma'_{p+q}(1+G'')\\ &= s(1+e_1F_1)\dots(s'+s's'^{-1}e_{p+q}s'F_{p+q})\gamma'_1\dots\gamma'_{p+q}(1+G'')\\ &= s(1+e_1F_1)\dots s'(1+s'^{-1}e_{p+q}s'F_{p+q})\gamma'_1\dots\gamma'_{p+q}(1+G''). \end{split}$$

By virtue of the 2 : 1 group homomorphism

$$\begin{array}{rrrr} \rho: & Spin(p,q) & \longrightarrow & SO(p,q) \\ & s & \longmapsto & \rho(s)(v) := svs^{-1}, \end{array}$$

we find

$$\Theta\Theta' = s(1+e_1F_1)\dots s'(1+\rho(s'^{-1})(e_{p+q})F_{p+q})\gamma'_1\dots \gamma'_{p+q}(1+G'').$$

If this procedure is applied from γ_{p+q-1} to γ_1 , then $\Theta\Theta'$ becomes

$$\Theta\Theta' = ss'(1+\rho(s'^{-1})(e_1)F_1)\dots(1+\rho(s'^{-1})(e_{p+q})F_{p+q})\gamma'_1\dots\gamma'_{p+q}(1+G'').$$

With the notation $\gamma'_i = 1 + e_i F'_i$ and using the exponential property, one can write: $\Theta \Theta' = e_i e'_i (1 + e_i e'_i) (e_i) F_i (e_i) (e_$

$$\Theta\Theta' = ss'(1+\rho(s'^{-1})(e_1)F_1)\dots(1+\rho(s'^{-1})(e_{p+q})F_{p+q})(1+e_1F'_1)$$

$$\dots(1+e_{p+q}F'_{p+q})(1+G'')$$

$$\Theta\Theta' = ss'\exp(\rho(s'^{-1})(e_1)F_1)\dots\exp(\rho(s'^{-1})(e_{p+q})F_{p+q})\exp(e_1F'_1)$$

$$\dots\exp(e_{p+q}F'_{p+q})(1+G'').$$

Because of $\rho(s'^{-1}) \in SO(p,q)$, we have $\langle \rho(s'^{-1})(e_k), \rho(s'^{-1})(e_l) \rangle = \langle e_k, e_l \rangle = 0$. Thus the above expression can be written as

$$\Theta\Theta' = ss' \exp(\sum_{j=1}^{p+q} \rho(s'^{-1})(e_j)F_j) \exp(\sum_{k=1}^{p+q} e_k F'_k)(1+G'').$$
(2.1)

If $\rho(s'^{-1})(e_j)$ is expressed as

$$\rho(s'^{-1})(e_j) = \sum_{m=1}^{p+q} \rho'_{mj} e_m$$
(2.2)

 $(\rho'_{mj} \in \mathbb{R})$, then one can write

$$\sum_{j=1}^{p+q} \rho(s'^{-1})(e_j) F_j = \sum_{m,j=1}^{p+q} \rho'_{mj} e_m F_j$$

=
$$\sum_{m,j=1}^{p+q} e_m \rho'_{mj} F_j$$
(2.3)
=
$$\sum_{m=1}^{p+q} e_m F''_m.$$

where we set

$$F_m'' = \sum_{j=1}^{p+q} \rho'_{mj} F_j.$$
(2.4)

Inserting (2.3) into (2.1), we find

$$\Theta\Theta' = ss' \exp\left(\sum_{m=1}^{p+q} e_m F_m''\right) \exp\left(\sum_{k=1}^{p+q} e_k F_k'\right) (1+G'')$$

= $ss'(1+e_1F_1'') \dots (1+e_{p+q}F_{p+q}'')(1+e_1F_1') \dots (1+e_{p+q}F_{p+q}')(1+G'')$
= $ss'(1+e_1F_1'')(1+e_1F_1') \dots (1+e_{p+q}F_{p+q}'')(1+e_{p+q}F_{p+q}')(1+G'')$
= $ss'(1+e_1(F_1''+F_1')-F_1''F_1') \dots$
 $\dots (1+e_{p+q}(F_{p+q}''+F_{p+q}')+F_{p+q}''F_{p+q}')(1+G'')$

T. Dereli, S. Koçak and M. Limoncu

$$= ss'(1 + e_1(F_1'' + F_1'))(1 - F_1''F_1')) \dots \\ \dots (1 + e_{p+q}(F_{p+q}'' + F_{p+q}'))(1 + F_{p+q}''F_{p+q}'))(1 + G'')$$

$$= ss'(1 + e_1(F_1'' + F_1')) \dots (1 + e_{p+q}(F_{p+q}'' + F_{p+q}')). \\ (1 - F_1''F_1')) \dots (1 + F_{p+q}''F_{p+q}')(1 + G'')$$

$$= ss'(1 + e_1(F_1'' + F_1')) \dots (1 + e_{p+q}(F_{p+q}'' + F_{p+q}'))(1 + G''')$$
(2.5)

where we have used F''F' = -F'F'', $F''^2 = F'^2 = 0$,

$$(1 \pm F_k''F_k')(1 + e_l(F_l'' + F_l')) = (1 + e_l(F_l'' + F_l'))(1 \pm F_k''F_k')$$

and set

$$1 + G''' = (1 - F_1''F_1') \dots (1 + F_{p+q}''F_{p+q})(1 + G'').$$

(2.5) implies that $S_{p,q,r}$ is closed with respect to the Clifford multiplication.

Since Clifford algebra is an associative algebra, Clifford multiplication is associative on $S_{p,q,r}$. Unit element of $S_{p,q,r}$ is $1 \in C\ell_{p,q,r}$.

Finally, the inverse of the element $\Theta = s(1+e_1F_1)\dots(1+e_{p+q}F_{p+q})(1+G) \in S_{p,q,r}$, where $F_k = \sum_{l=1}^r c_{kl}f_l$ and $G \in \Lambda(f)$, is $\Theta^{-1} = s^{-1}(1-e_1\sum_{k=1}^{p+q}\rho_{1k}F_k)\dots(1-e_{p+q}\sum_{k=1}^{p+q}\rho_{(p+q)k}F_k)(1-G+\dots+(-1)^{\mu-1}G^{\mu-1})$

where $\rho(s)(e_j) = \sum_{m=1}^{p+q} \rho_{mj} e_m$ $(1 \le i, j \le p+q)$ and the positive integer μ satisfies $G^{\mu} = 0$ (for any $G \in \Lambda(f)$, there is such an integer). \Box

The subset of $S_{p,q,r}$ defined by

$$\Delta = \{1 + G \mid G \in \Lambda(f)\}$$

is a normal subgroup of $S_{p,q,r}$. We adopt the following definition for the degenerate spin group (see [1]):

Definition 2.4. The quotient group $S_{p,q,r}/\Delta$ is called the degenerate spin group and denoted by Spin(p,q,r).

3. Semi-Direct Products

Now we recall the notion of semi-direct products (see [3]):

Definition 3.1. Let G be a group, let $H \leq G$ a subgroup and $N \leq G$ a normal subgroup. If G = HN and $H \cap N = 1$, then G is called a semi-direct product of H and N, and denoted by $G = H \ltimes N$.

570

AACA

The map $h \mapsto \theta(h)(n) := hnh^{-1}$ defines a homomorphism $\theta : H \to Aut(N)$, where Aut(N) denotes the automorphism group of N.

Proposition 3.2. Let H and N be two groups, and let $\theta : H \longrightarrow Aut(N)$ be a homomorphism. Then, on $H \times N$, the operation

$$(h,n)(h',n') = (hh',\theta(h'^{-1})(n)n')$$

has the following properties:

1) $H \times N$ is a group with the above operation,

- 2) $H \simeq H \times 1_N \leq H \times N$,
- 3) $N \simeq 1_H \times N \trianglelefteq H \times N$,
- 4) $H \times N = (H \times 1_N)(1_H \times N)$ and $(H \times 1_N) \cap (1_H \times N) = \{(1_H, 1_N)\},\$
- 5) $H \times N = (H \times 1_N) \ltimes_{\theta} (1_H \times N) \simeq H \ltimes_{\theta} N.$

We omit the straightforward proof.

Definition 3.3. Let $N = \mathbb{M}(p+q, r)$ denote the additive group of $(p+q) \times r$ matrices with real entries and define

$$\begin{array}{cccc} \tilde{\rho}: & Spin(p,q) & \longrightarrow & Aut(\mathbb{M}(p+q,r)) \\ & s & \longmapsto & \tilde{\rho}(s)(A) := \rho(s)A \end{array} \quad (A \in \mathbb{M}(p+q,r))$$

where $\rho(s) \in SO(p,q)$ is understood as a $(p+q) \times (p+q)$ matrix and $\rho(s)A$ is the matrix multiplication.

Now taking H = Spin(p,q), and $\tilde{\rho} : Spin(p,q) \longrightarrow Aut(\mathbb{M}(p+q,r))$, we consider the semi-direct product $Spin(p,q) \ltimes_{\tilde{\rho}} \mathbb{M}(p+q,r)$.

Theorem 3.4. $Spin(p,q,r) \simeq Spin(p,q) \ltimes_{\tilde{\rho}} \mathbb{M}(p+q,r).$

Proof. The isomorphism is given by the following map

$$\begin{aligned} \eta : & Spin(p,q,r) & \longrightarrow & Spin(p,q) \ltimes_{\tilde{\rho}} \mathbb{M}(p+q,r) \\ & & [s\gamma_1 \dots \gamma_{p+q}(1+G)] & \longmapsto & (s,(c_{il})) \end{aligned}$$

where $c_{il} \in \mathbb{M}(p+q,r)$ comes from the expression $\gamma_i = 1 + e_i \sum_{l=1}^{r} c_{il} f_l$.

The map η is well-defined: We must show that images of two equivalent elements in $S_{p,q,r}$ are equal. Let $\Theta, \Theta' \in S_{p,q,r}$ with $[\Theta] = [\Theta'] \in Spin(p,q,r)$ be two equivalent elements. Then we have

$$s\gamma_1 \dots \gamma_{p+q}(1+G) = s'\gamma'_1 \dots \gamma'_{p+q}(1+G')(1+G'').$$

Using the inverse of the 1 + G, we obtain

$$s\gamma_1 \dots \gamma_{p+q} = s'\gamma'_1 \dots \gamma'_{p+q} (1+G')(1+G'')(1-G+\dots+(-1)^{\mu-1}G^{\mu-1})$$

= $s'\gamma'_1 \dots \gamma'_{p+q} (1+G''')$

with $1 + G''' = (1 + G')(1 + G'')(1 - G + ... + (-1)^{\mu-1}G^{\mu-1})$. Moreover, from the last equation, we have

$$(s')^{-1}s\gamma_1 \dots \gamma_{p+q} = \gamma'_1 \dots \gamma'_{p+q}(1+G''').$$

With the notations $\gamma_1 \dots \gamma_{p+q} = 1 + A$ and $\gamma'_1 \dots \gamma'_{p+q} = 1 + A'$, we can write

$$(s')^{-1}s(1+A) = (1+A')(1+G''')$$

(s')^{-1}s+(s')^{-1}sA = 1+G'''+A'+A'G''' (3.1)

where A and A' include terms of the form $e_{i_1}F_{i_1}\ldots e_{i_\alpha}F_{i_\alpha}$ and $e_{i_1}F'_{i_1}\ldots e_{i_\alpha}F'_{i_\alpha}$, respectively $(1 \leq \alpha \leq p+q, i_1 < i_2 < \ldots < i_\alpha)$. Now, equating terms notcontaining the f_i 's we find $(s')^{-1}s = 1$, i.e., s = s'. Thus the equation (3.1) is reduced to

$$A = G^{\prime\prime\prime} + A^{\prime} + A^{\prime}G^{\prime\prime\prime},$$

or

$$G^{\prime\prime\prime\prime} = A - A^{\prime} - A^{\prime}G^{\prime\prime\prime}.$$

G''' must be zero, as there are no terms in the right hand side consisting only of the f_i 's. Then we find A = A', i.e.,

$$\gamma_1 \dots \gamma_{p+q} = \gamma'_1 \dots \gamma'_{p+q}. \tag{3.2}$$

From this equation, one can write

$$\gamma_1 \dots \gamma_{p+q-1} (1 + e_{p+q} F_{p+q}) = \gamma'_1 \dots \gamma'_{p+q-1} (1 + e_{p+q} F'_{p+q})$$

As before, using the notation $\gamma_1 \dots \gamma_{p+q-1} = 1 + B$ and $\gamma'_1 \dots \gamma'_{p+q-1} = 1 + B'$, we find

$$(1+B)(1+e_{p+q}F_{p+q}) = (1+B')(1+e_{p+q}F'_{p+q})$$

$$B+e_{p+q}F_{p+q} + Be_{p+q}F_{p+q} = B' + e_{p+q}F'_{p+q} + B'e_{p+q}F'_{p+q}.$$

Equating the terms not-containing the e_{p+q} we find B = B'. Multiplying then both sides by e_{p+q} we can see $F_{p+q} = F'_{p+q}$ and thus $\gamma_{p+q} = \gamma'_{p+q}$. Proceeding in this way inductively we get $\gamma_{p+q-1} = \gamma'_{p+q-1}, \ldots, \gamma_1 = \gamma'_1$. Consequently, the equation

$$[s\gamma_1\dots\gamma_{p+q}(1+G)] = [s'\gamma'_1\dots\gamma'_{p+q}(1+G')]$$

implies s = s', $\gamma_1 = \gamma'_1, \ldots, \gamma_{p+q} = \gamma'_{p+q}$ whence we obtain $(c_{il}) = (c'_{il})$. Because of s = s' and $(c_{il}) = (c'_{il})$, the map η is well-defined. Obviously, the map η is both one-to-one and onto.

Homomorphism is obtained as follows:

$$\begin{aligned} [\Theta'] &= [\Theta\Theta'] = [ss'(1 + e_1(F_1'' + F_1')) \dots (1 + e_{p+q}(F_{p+q}'' + F_{p+q}'))(1 + G''')] & by (2.5) \\ &= [ss'(1 + e_1(F_1'' + F_1')) \dots (1 + e_{p+q}(F_{p+q}'' + F_{p+q}'))] \\ &= [ss'(1 + e_1(\sum_{j=1}^{p+q} \rho_{1j}'F_j + F_1')) \dots \\ \dots (1 + e_{p+q}(\sum_{j=1}^{p+q} \rho_{(p+q)j}'F_j + F_{p+q}'))] & by (2.4) \end{aligned}$$

Vol. 20 (2010)

$$= [ss'(1+e_1\sum_{l=1}^r (\sum_{j=1}^{p+q} \rho'_{1j}c_{jl} + c'_{1l})f_l)\dots$$
$$\dots (1+e_{p+q}\sum_{l=1}^r (\sum_{j=1}^{p+q} \rho'_{(p+q)j}c_{jl} + c'_{(p+q)l})f_l)]$$

Thus $\eta([\Theta][\Theta'])$ becomes

$$\eta([\Theta][\Theta']) = (ss', (\sum_{j=1}^{p+q} \rho'_{ij}c_{jl} + c'_{il})).$$
(3.3)

On the other hand, $\eta([\Theta]) = (s, (c_{il})), \ \eta([\Theta']) = (s', (c'_{il}))$ and consequently,

$$\eta([\Theta])\eta([\Theta']) = (ss', \rho(s'^{-1})((c_{il})) + (c'_{il})))$$

= $(ss', (\sum_{j=1}^{p+q} \rho'_{ij}c_{jl} + c'_{il}))$

where we have used the matrix of $\rho(s'^{-1})$ given in (2.2).

References

- A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras Spinor Structures. (1990).
- [2] K. L. Duggal, & A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. (1996).
- [3] A. Baker, Matrix Groups, An Introduction to Lie Group Theory. (2002).

Tekin Dereli Physics Department Koc University Sariyer-Istanbul Turkey e-mail: tdereli@ku.edu.tr

Şahin Koçak and Murat Limoncu Mathematics Department Anadolu University Eskisehir Turkey e-mail: skocak@anadolu.edu.tr mlimoncu@anadolu.edu.tr

Received: September 20, 2008. Accepted: December 20, 2008.