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Abstract. Let Q be a symmetric bilinear form on R"=RPT9" with corank r,
rank p + ¢ and signature type (p, q), p resp. g denoting positive resp. negative
dimensions. We consider the degenerate spin group Spin(Q) = Spin(p,q,r)
in the sense of Crumeyrolle and prove that this group is isomorphic to the
semi-direct product of the nondegenerate and indefinite spin group Spin(p, q)
with the additive matrix group Mat (p +q, r).
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1. Degenerate Clifford Algebra

Let (,) be a symmetric bilinear form on R™ and let us consider the subspace W of
R’ﬂ

W ={weR" | (w,z) =0 for all x € R"}.

W is called the radical and the dimension of W is called the co-rank of (). If co-
rank is zero/non-zero, then (,) is called non-degenerate/degenerate. If W/ C R™
is any complementary subspace to W, then the restriction of (,) to W’ is non-
degenerate. If the co-rank of (,) is r and the the restriction of (,) to W’ has
signature (p,q) (in the sense that W’ has an orthogonal decomposition W" @& W'
where the dimensions of W’ respectively W'’ are p resp. ¢ and the restriction of
(,) to W” resp. W' is positive resp. negative definite), then the pair (R™, (,)) is
said to be of type RP?" (see [1], [2]).
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Thus we have a linear basis {e1,...,€p,€pt1,-.-,€ptqg, f1,-.., fr} of RPTLFT
such that
(ei,e5) = by 1<i,j<p
(epriseprj) = —0ij 1<4,7<¢q
<fi’fj> = 0 1<4,5 <,

and

W = Span{fi,.... fr}

W' = Span{ei,...,ep, pi1s---Epiq}
W" = Span{ei,...,ep}
W" = Span{epi1,...,€ptq}-

In the following, for the degenerate Clifford algebra Cl, 4, = CL(R™, (,)), we will
use the algebra basis {e1,...,€p, €pi1,- -y €ptqs f1,-- -, [r}
We understand C¢,,  C Cl,, 4 and recall the (indefinite) spin group:

Definition 1.1. The group Spin(p, q) is defined by

ptq
Spin(p,q)={v1...vm € Cly, | me2ZT v, :Zaijej i, v) =F1,1 <1 <m}.
i=1

Definition 1.2. The group SO(p, q) is defined by
SO(p,q) ={c € End(W') | (¢(a),c(b)) = (a,b) ,Ya,b € W' and det(c) =1}.
Lemma 1.3. The map p defined by

p: Spin(p,q) — SO(p,q)
s — p(s)(v) i=svs™t (ve W)

18 a 2 : 1 group homomorphism.

2. Degenerate Spin Group
Proposition 2.1. The subset of Cl, 4. defined by

Sp,q,r = {871 .. ~'7p+q(1 + G) | s € Spln(pa q)7 vi=1+¢; Zcilflv G e A(f)}
=1

1s a group under the Clifford multiplication.
Here 1 <i<p+gq, ¢y € R, and A(f) is defined by
A(f) :Span{fkl...fk]. ‘ 1<k <ky<... <k‘j ST}

To prove the Proposition 3.1., we need the following Lemmas.
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Lemma 2.2. Let a,b € Span{er, ... ep,epi1,...,€prq} C RPO" C Cly, 4, and let
F,F" € Span{fi,..., fr} CRPO" C Cl, 4, such that (a,b) = 0. Then we have

exp(aF) =1+ aF,
exp(aF) exp(bF') = exp(aF + bF").
Proof. To obtain the first equation, we consider the expression

1
exp(aF):1+aF+2aFaF+...,

and from this, using the properties aFF = —Fa and F? = 0, we find
exp(aF) =1+ aF.

For the second equation, let us compute both exp(aF) exp(bF”) and exp(aF +
bE"). exp(aF) exp(bF’) is directly computed as

exp(aF)exp(bF') = (1+aF)(1+bF")
= 1+aF +bF +aFbF'.
exp(aF + bF’) is computed as follows:

1
exp(aF +bF) = 1+4aF +bF' +  (aF +bF)(aF +bF') + ...

1
= 1+aF—|—bF’+2(aFaF+anF'+bF'aF+bF'bF’)+... .

Using the facts aF = —Fa, F? =0, bF' = —F’b and F’? = 0, we obtain
1
(

exp(aF +bF") = 1+aF +bF + ) alFbF +bF'aF) + ... .

Since (a,b) = 0, we have ab = —ba. We also have Fb = —bF, F'a = —aF"’ and
FF' = —F'F. Thus we get

1
exp(aF +bF') = 1—|—aF—|—bF’—|—2(ab—ba)F’F+...
exp(aF +bF") = 1+aF +bF +abF'F+ ...
exp(aF +bF") = 1+4+aF +bF +aFbF' +... .

The terms indicated by dots are equal to zero: In fact, from F?2 =0, F’? = 0 and
FF = —F'F,

(aF +bF')? = (aF 4+ bF')*(aF +bF")
(aF +bF')® = 2abF'F(aF + bF")

aF +bF")® = 0.

(

Thus we obtain
exp(aF +bF') =1+ aF + bF' + aFbF’

which gives the second equation. O

One can prove similarly the following
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Lemma 2.3. Let a; € Span{eq,...,ep,€pt1,... €ptq} (i=1,...,N), (a;,a;) =0
fori#j and F; € Span{fi...fr} (i=1,...,N). Then

N
exp(z a;F;) = exp(a1Fy) ...exp(anFn).
i=1
(we note that, in this case the interesting equation

N N
exp(z alFl) =14+ Zale + Z aiFiaij +
i=1

i=1 i<j

i j=1...N
E aiFiaijaka+-~-+a1F1a2F2...aNFN
i<j<k
ijk=1...N

holds.)

Proof of Proposition 3.1. First, we will show that S, 4, is closed with respect to
the Clifford multiplication. Let

O = s172.. Yl +G)
0 = sy +G)
be two elements of S}, 4. Then
00" = s172.. Vgl +G)s Y2 (1 G)

/
i

00" = 57172 YprgS NV - Tprg(1+ G+ G).
We use the notation G” = G + G’ + GG":
00" = 57172 - YprgS V1V - Vpig(1+G”).
Now we set F; = >, ciifi so that v = 1 + e F}:
00’ s(1+erFr)...(1+eprqFprg)s - (1 +G")
= s(I1+eiF1)... (8" +eprgFprgs ) - Yy (1 +G).
From F;s’ = s'F}, one gets
00" = s(l4erF1)... (5" +epiqs Fpig)l - Vprg(1+G")
= s(1+erFr)... (s +88 eprqs Fpig), - Aprg(1+G")
= s(l+erF1)...s'(1+ 5 eprgs Fpig)V - Vpig(l+G").

By virtue of the 2 : 1 group homomorphism

Using the properties Gs' = §'G and G} = /G, we have

p: Spin(p,q) — SO(p,q)
s = pls)(0) = sus,

we find

00" = s(1+erF1)...s'(1+ p(s" ") (eptrq) Fpsa)Vt - - - Vprg(1+ G").
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If this procedure is applied from v,4,-1 to 71, then ©O’ becomes
00 = /(14 (s Ne)F1) .. (1+ p(s" ) (epsa) Fprg 1l -+ Apig(l + G7).

With the notation v/ = 1+e¢;F and using the exponential property, one can write:

00" = s5'(1+ p(s" 1) (e1)F1) ... (1 + p(s'™ 1) (eprq) Fyprq) (1 + €1 FY)
(14 epraFly )1+ G
00’ = ss’exp(p(s' M) (e1)F1) .. .exp(p(s’ ™ ) (eptq) Fpiq) expler FY)
cexplepoFy )1+ G").
Because of p(s'~1) € SO(p,q), we have (p(s'~!)(exr),p(s""1)(e))) = (ex,e;) = 0.
Thus the above expression can be written as

p+q p+q

00" = ss’exp( Zp 1) (e;) Fy) exp( Zeka +G"). (2.1)
Jj=1

If p(s'71)(e;) is expressed as

p+q

m=1

(Pinj € R), then one can write

p+q pt+q

Dol e = > phemE
j=1

m,j=1
p+q

= Z empm] j (2.3)
m,j=1
p+aq

= g emFl.
m=1

where we set
pt+aq

F, = Zplrnij' (24)
j=1

Inserting (2.3) into (2.1), we find

p+q p+q

00" = ss’exp( Z emF)) expl( Zeka 1+G")

= ss'(1 +61F) (1 +ep+qF;;/+q)(1+elF1) (1 +ep+qu+q)(1+G”)
= ss'(l+efy)(1+eFy)...(1 +€P+¢1Fp+q)(1+ep+qu+q)(1+GH)
ss'(1+ ey (Fy' + F)) — F{'F}) ...

(U eprg(Flog + o) + Fl Fl ) (1 4+ GY)

p+q° ptq
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ss'(1+ e (F{' + FY))(1 = F{'FY)) ..
(Ut epig(Fply g + Fpyy ))( L4+ F Fpyg)) (L + GY)
(

p+atptaq
(1+el F1//+F1)) (1+ep+q(F;/>/--q+F1;+q))-
(1= F'F))...(0+ F  F )1+ G")
s (FY 4 D) (L epig(Flay + E )AG) (25)
where we have used F"F' = —F'F" F"? = ['2 =,

(£ FF)A + e(F + F)) = 1+ e(F' + F)(1 + FFy)

and set
1+G6G" = (1-FH'F))...(0+F,  F.)1+G").
(2.5) implies that S, 4, is closed with respect to the Clifford multiplication.

Since Clifford algebra is an associative algebra, Clifford multiplication is associative
on Sy 4. Unit element of Sy, 4, is 1 € Clp 4.1

Finally, the inverse of the element © = s(14+e1F1) ... (1+eptqFprq) 1+G) € Spgr,

where Fj, = chlfg and G € A(f), is
1=1

p+q p+q
e 1 —elzplka (L= epra Y Pt FR)(1 =G+ ...+ (=D IG* )
k=1
p+q
where p(s)(e; Z pPmjem (1 <14,j < p+ q) and the positive integer ;1 satisfies
GH" =0 (for any G € A(f)7 there is such an integer). O

The subset of S, 4, defined by
A={14+G|GeA(f)}

is a normal subgroup of S, ;. We adopt the following definition for the degenerate
spin group (see [1]):

Definition 2.4. The quotient group Sy q./A is called the degenerate spin group
and denoted by Spin(p,q,).

3. Semi-Direct Products
Now we recall the notion of semi-direct products (see [3]):

Definition 3.1. Let G be a group, let H < G a subgroup and N < G a normal
subgroup. If G = HN and H N N = 1, then G is called a semi-direct product of
H and N, and denoted by G = H x N.
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The map h — (h)(n) := hnh~"! defines a homomorphism 6 : H — Aut(N),
where Aut(N) denotes the automorphism group of N.

Proposition 3.2. Let H and N be two groups, and let § : H — Aut(N) be a
homomorphism. Then, on H x N, the operation

(h,n) (W', ') = (Wb, O(h'~) (n)n')
has the following properties:

) H x N is a group with the above operation,

) H~H x1y <H XN,

) N~1gxN<HXN,

) HXN:(HX1N)(1H><N) and (HX]N)Q(].HXN):{(lH,].N)},
) HXxN=(Hx1y)xg(lg x N)~H xyN.

We omit the straightforward proof.

Definition 3.3. Let N = M(p+g¢, ) denote the additive group of (p+¢) X r matrices
with real entries and define
p: Spin(p,q) —  Aut(M(p+q,7))
s — p(s)(A) :==p(s)A  (AeM(p+gqr))
where p(s) € SO(p, q) is understood as a (p+ ¢) x (p+ ¢) matrix and p(s)A is the
matrix multiplication.

Now taking H = Spin(p,q), and p : Spin(p,q) — Aut(M(p + ¢,7)), we
consider the semi-direct product Spin(p,q) x; M(p + ¢, 7).

Theorem 3.4. Spin(p,q,r) ~ Spin(p, q) x; M(p + ¢, 7).
Proof. The isomorphism is given by the following map
n: Spin(p,q,r) —  Spin(p,q) x; M(p+q,r)
[s71 - Wprq(1+G)] — (s, (ca))

where ¢;; € M(p + ¢,7) comes from the expression v, = 1+ ¢; Zcilfl-
I=1
The map n is well-defined: We must show that images of two equivalent elements in
Spq.r are equal. Let ©,0' € S, , . with [O] = [©’] € Spin(p, ¢, ) be two equivalent
elements. Then we have
Y g1+ G) =8y o (A + G+ G7).
Using the inverse of the 1+ G, we obtain
SV Yprg = SV YA FG)A+GNA -G+, + (-1 tgr=h

= .o, (1+G7)
with 1+G"” = (1+G)(1+G")(1 -G+ ...+ (=1)*~1G*~1). Moreover, from the
last equation, we have

()7 sV Aprg =V - Y1+ G
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With the notations 1 ...7p+q =1+ A and 7 ..., = 1 + A’, we can write

() s+ 4) = (1+A4)1+G")
()7 ls+(s)lsA = 14+G"+A +A4G" (3.1)
where A and A’ include terms of the form e;, Fj, ...e; F;, and e;, F ...e; Fj ,
respectively (1 < o < p+g¢q, i1 < ia < ... < iy). Now, equating terms not-

containing the fi’s we find (s’)"!'s = 1, i.e., s = s’. Thus the equation (3.1) is
reduced to

A — G/// + A/ + A/G///
or
G/// — A_A/ _A/G///.

G"" must be zero, as there are no terms in the right hand side consisting only of
the f;’s. Then we find A = A', i.e.,

V1 Vprg =V Vpige (3.2)
From this equation, one can write
Vi Yprg—1(1+ epiaFprq) =71 - - 'Yz/H-q—l(l + €p+qF1;+q)~

As before, using the notation 71 ...vp4q-1 =1+Band | ...7,, 1 =1+ B’ we
find

(1+B)(L+eptgfpig) = (1+ B)(1 + ep+qF1’,+q)
B+ eprqlprg + BeprgFprg = B +epigFy +Blepigly,,.

Equating the terms not-containing the e,y, we find B = B’. Multiplying then
both sides by e,, we can see Fj,,, = F,,, and thus 7,1, = 7,,,. Proceeding
in this way inductively we get v,44-1 = 7,4 4-1, ---» 71 = 71 Consequently, the

equation

[s71 - a1+ G)] = [ -+ - Vg (1 + G7)]
implies s = s, 71 =71, .-+, Yp+q = Vpyq Whence we obtain (c;;) = (cj;). Because
of s = s and (¢;;) = (c};), the map 7 is well-defined.
Obviously, the map 7 is both one-to-one and onto.
Homomorphism is obtained as follows:

[©]=[00] = [ss'(1 + ex(F{' + F1)) ... (1 + epsq(Fyrq + Fpig)) (14+G™)] by (2.5)
= [ss'(L+er(FY + F))) ... (L + epg(Fpyq + Fopg))]
pt+aq

= [ss'(L+ea(O_phFi+ F) ...
j=1
Pta
(I ep-&-q(z P/(erq)ij + F;;+q))} by (2.4)

j=1
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r ptq

=[ss'(L+ery (O phyeu+eu)fi)- .
=1 j=1
r  ptq

(T4 epyq Z(Z p/(p+q)jcjz + C/(p+q)z)fl)}-

=1 j=1
Thus 7([0][0']) becomes

p+q

n([0]10']) = (ss', (Y _ pljeit + ci)). (3-3)

On the other hand, 7([0]) = (s, (ca)), n([©']) = (¢, (¢};)) and consequently,
n(©Nn([O) = (ss',p(s"™")((ca)) + (cir)))

ptq
= (s, (Q_ P+ ch))
j=1
where we have used the matrix of p(s'~!) given in (2.2). O
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