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Abstract. Let Q be a symmetric bilinear form on R
n=R

p+q+r with corank r,
rank p+ q and signature type (p, q), p resp. q denoting positive resp. negative
dimensions. We consider the degenerate spin group Spin(Q) = Spin(p, q, r)
in the sense of Crumeyrolle and prove that this group is isomorphic to the
semi-direct product of the nondegenerate and indefinite spin group Spin(p, q)
with the additive matrix group Mat

(
p + q, r

)
.
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1. Degenerate Clifford Algebra

Let 〈, 〉 be a symmetric bilinear form on R
n and let us consider the subspace W of

R
n

W = {w ∈ R
n | 〈w, x〉 = 0 for all x ∈ R

n}.

W is called the radical and the dimension of W is called the co-rank of 〈, 〉. If co-
rank is zero/non-zero, then 〈, 〉 is called non-degenerate/degenerate. If W ′ ⊂ R

n

is any complementary subspace to W , then the restriction of 〈, 〉 to W ′ is non-
degenerate. If the co-rank of 〈, 〉 is r and the the restriction of 〈, 〉 to W ′ has
signature (p, q) (in the sense that W ′ has an orthogonal decomposition W ′′⊕W ′′′,
where the dimensions of W ′′ respectively W ′′′ are p resp. q and the restriction of
〈, 〉 to W ′′ resp. W ′′′ is positive resp. negative definite), then the pair (Rn, 〈, 〉) is
said to be of type R

p,q,r (see [1], [2]).
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Thus we have a linear basis {e1, . . . , ep, ep+1, . . . , ep+q, f1, . . . , fr} of R
p+q+r

such that

〈ei, ej〉 = δij 1 ≤ i, j ≤ p

〈ep+i, ep+j〉 = −δij 1 ≤ i, j ≤ q

〈fi, fj〉 = 0 1 ≤ i, j ≤ r,

and

W = Span{f1, . . . , fr}
W ′ = Span{e1, . . . , ep, ep+1, . . . , ep+q}
W ′′ = Span{e1, . . . , ep}
W ′′′ = Span{ep+1, . . . , ep+q}.

In the following, for the degenerate Clifford algebra C�p,q,r = C�(Rn, 〈, 〉), we will
use the algebra basis {e1, . . . , ep, ep+1, . . . , ep+q, f1, . . . , fr}.

We understand C�p,q ⊆ C�p,q,r and recall the (indefinite) spin group:

Definition 1.1. The group Spin(p, q) is defined by

Spin(p, q)={v1 . . . vm ∈ C�p,q | m∈2Z
+, vi =

p+q∑

j=1

aijej , 〈vi, vi〉 = ∓1 , 1 ≤ i ≤ m}.

Definition 1.2. The group SO(p, q) is defined by

SO(p, q) = {σ ∈ End(W ′) | 〈σ(a), σ(b)〉 = 〈a, b〉 , ∀a, b ∈ W ′ and det(σ) = 1}.
Lemma 1.3. The map ρ defined by

ρ : Spin(p, q) −→ SO(p, q)
s �−→ ρ(s)(v) := svs−1 (v ∈ W ′)

is a 2 : 1 group homomorphism.

2. Degenerate Spin Group

Proposition 2.1. The subset of C�p,q,r defined by

Sp,q,r = {sγ1 . . . γp+q(1 + G) | s ∈ Spin(p, q), γi = 1 + ei

r∑

l=1

cilfl, G ∈ Λ(f)}

is a group under the Clifford multiplication.

Here 1 ≤ i ≤ p + q, cil ∈ R, and Λ(f) is defined by

Λ(f) = Span{fk1 . . . fkj | 1 ≤ k1 < k2 < . . . < kj ≤ r}.
To prove the Proposition 3.1., we need the following Lemmas.
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Lemma 2.2. Let a, b ∈ Span{e1, . . . , ep, ep+1, . . . , ep+q} ⊂ R
p,q,r ⊂ C�p,q,r, and let

F, F ′ ∈ Span{f1, . . . , fr} ⊂ R
p,q,r ⊂ C�p,q,r such that 〈a, b〉 = 0. Then we have

exp(aF ) = 1 + aF,

exp(aF ) exp(bF ′) = exp(aF + bF ′).

Proof. To obtain the first equation, we consider the expression

exp(aF ) = 1 + aF +
1
2
aFaF + . . . ,

and from this, using the properties aF = −Fa and F 2 = 0, we find

exp(aF ) = 1 + aF.

For the second equation, let us compute both exp(aF ) exp(bF ′) and exp(aF +
bF ′). exp(aF ) exp(bF ′) is directly computed as

exp(aF ) exp(bF ′) = (1 + aF )(1 + bF ′)
= 1 + aF + bF ′ + aFbF ′.

exp(aF + bF ′) is computed as follows:

exp(aF + bF ′) = 1 + aF + bF ′ +
1
2
(aF + bF ′)(aF + bF ′) + . . .

= 1 + aF + bF ′ +
1
2
(aFaF + aFbF ′ + bF ′aF + bF ′bF ′) + . . . .

Using the facts aF = −Fa, F 2 = 0, bF ′ = −F ′b and F ′ 2 = 0, we obtain

exp(aF + bF ′) = 1 + aF + bF ′ +
1
2
(aFbF ′ + bF ′aF ) + . . . .

Since 〈a, b〉 = 0, we have ab = −ba. We also have Fb = −bF , F ′a = −aF ′ and
FF ′ = −F ′F . Thus we get

exp(aF + bF ′) = 1 + aF + bF ′ +
1
2
(ab − ba)F ′F + . . .

exp(aF + bF ′) = 1 + aF + bF ′ + abF ′F + . . .

exp(aF + bF ′) = 1 + aF + bF ′ + aFbF ′ + . . . .

The terms indicated by dots are equal to zero: In fact, from F 2 = 0, F ′ 2 = 0 and
FF ′ = −F ′F ,

(aF + bF ′)3 = (aF + bF ′)2(aF + bF ′)
(aF + bF ′)3 = 2abF ′F (aF + bF ′)
(aF + bF ′)3 = 0.

Thus we obtain

exp(aF + bF ′) = 1 + aF + bF ′ + aFbF ′

which gives the second equation. �

One can prove similarly the following
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Lemma 2.3. Let ai ∈ Span{e1, . . . , ep, ep+1, . . . , ep+q} (i = 1, . . . , N), 〈ai, aj〉 = 0
for i = j and Fi ∈ Span{f1 . . . fr} (i = 1, . . . , N). Then

exp(
N∑

i=1

aiFi) = exp(a1F1) . . . exp(aNFN ).

(we note that, in this case the interesting equation

exp(
N∑

i=1

aiFi) = 1 +
N∑

i=1

aiFi +
∑

i<j

i,j=1...N

aiFiajFj +

∑

i<j<k

i,j,k=1...N

aiFiajFjakFk + · · · + a1F1a2F2 . . . aNFN

holds.)

Proof of Proposition 3.1. First, we will show that Sp,q,r is closed with respect to
the Clifford multiplication. Let

Θ = sγ1γ2 . . . γp+q(1 + G)
Θ′ = s′γ′

1γ
′
2 . . . γ′

p+q(1 + G′)

be two elements of Sp,q,r. Then

ΘΘ′ = sγ1γ2 . . . γp+q(1 + G)s′γ′
1γ

′
2 . . . γ′

p+q(1 + G′)

Using the properties Gs′ = s′G and Gγ′
i = γ′

iG, we have

ΘΘ′ = sγ1γ2 . . . γp+qs
′γ′

1γ
′
2 . . . γ′

p+q(1 + G)(1 + G′).

We use the notation G′′ = G + G′ + GG′:

ΘΘ′ = sγ1γ2 . . . γp+qs
′γ′

1γ
′
2 . . . γ′

p+q(1 + G′′).

Now we set Fi =
∑r

l=1 cilfl so that γi = 1 + eiFi:

ΘΘ′ = s(1 + e1F1) . . . (1 + ep+qFp+q)s′γ′
1 . . . γ′

p+q(1 + G′′)

= s(1 + e1F1) . . . (s′ + ep+qFp+qs
′)γ′

1 . . . γ′
p+q(1 + G′′).

From Fis
′ = s′Fi, one gets

ΘΘ′ = s(1 + e1F1) . . . (s′ + ep+qs
′Fp+q)γ′

1 . . . γ′
p+q(1 + G′′)

= s(1 + e1F1) . . . (s′ + s′s′−1ep+qs
′Fp+q)γ′

1 . . . γ′
p+q(1 + G′′)

= s(1 + e1F1) . . . s′(1 + s′−1ep+qs
′Fp+q)γ′

1 . . . γ′
p+q(1 + G′′).

By virtue of the 2 : 1 group homomorphism

ρ : Spin(p, q) −→ SO(p, q)
s �−→ ρ(s)(v) := svs−1,

we find

ΘΘ′ = s(1 + e1F1) . . . s′(1 + ρ(s′−1)(ep+q)Fp+q)γ′
1 . . . γ′

p+q(1 + G′′).
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If this procedure is applied from γp+q−1 to γ1, then ΘΘ′ becomes

ΘΘ′ = ss′(1 + ρ(s′−1)(e1)F1) . . . (1 + ρ(s′−1)(ep+q)Fp+q)γ′
1 . . . γ′

p+q(1 + G′′).

With the notation γ′
i = 1+eiF

′
i and using the exponential property, one can write:

ΘΘ′ = ss′(1 + ρ(s′−1)(e1)F1) . . . (1 + ρ(s′−1)(ep+q)Fp+q)(1 + e1F
′
1)

. . . (1 + ep+qF
′
p+q)(1 + G′′)

ΘΘ′ = ss′ exp(ρ(s′−1)(e1)F1) . . . exp(ρ(s′−1)(ep+q)Fp+q) exp(e1F
′
1)

. . . exp(ep+qF
′
p+q)(1 + G′′).

Because of ρ(s′−1) ∈ SO(p, q), we have 〈ρ(s′−1)(ek), ρ(s′−1)(el)〉 = 〈ek, el〉 = 0.
Thus the above expression can be written as

ΘΘ′ = ss′ exp(
p+q∑

j=1

ρ(s′−1)(ej)Fj) exp(
p+q∑

k=1

ekF ′
k)(1 + G′′). (2.1)

If ρ(s′−1)(ej) is expressed as

ρ(s′−1)(ej) =
p+q∑

m=1

ρ′mjem (2.2)

(ρ′mj ∈ R), then one can write

p+q∑

j=1

ρ(s′−1)(ej)Fj =
p+q∑

m,j=1

ρ′mjemFj

=
p+q∑

m,j=1

emρ′mjFj (2.3)

=
p+q∑

m=1

emF ′′
m.

where we set

F ′′
m =

p+q∑

j=1

ρ′mjFj . (2.4)

Inserting (2.3) into (2.1), we find

ΘΘ′ = ss′ exp(
p+q∑

m=1

emF ′′
m) exp(

p+q∑

k=1

ekF ′
k)(1 + G′′)

= ss′(1 + e1F
′′
1 ) . . . (1 + ep+qF

′′
p+q)(1 + e1F

′
1) . . . (1 + ep+qF

′
p+q)(1 + G′′)

= ss′(1 + e1F
′′
1 )(1 + e1F

′
1) . . . (1 + ep+qF

′′
p+q)(1 + ep+qF

′
p+q)(1 + G′′)

= ss′(1 + e1(F ′′
1 + F ′

1) − F ′′
1 F ′

1) . . .

. . . (1 + ep+q(F ′′
p+q + F ′

p+q) + F ′′
p+qF

′
p+q)(1 + G′′)
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= ss′(1 + e1(F ′′
1 + F ′

1))(1 − F ′′
1 F ′

1)) . . .

. . . (1 + ep+q(F ′′
p+q + F ′

p+q))(1 + F ′′
p+qF

′
p+q))(1 + G′′)

= ss′(1 + e1(F ′′
1 + F ′

1)) . . . (1 + ep+q(F ′′
p+q + F ′

p+q)).

(1 − F ′′
1 F ′

1)) . . . (1 + F ′′
p+qF

′
p+q))(1 + G′′)

= ss′(1 + e1(F ′′
1 + F ′

1)) . . . (1 + ep+q(F ′′
p+q + F ′

p+q))(1 + G′′′) (2.5)

where we have used F ′′F ′ = −F ′F ′′, F ′′ 2 = F ′ 2 = 0,

(1 ± F ′′
k F ′

k)(1 + el(F ′′
l + F ′

l )) = (1 + el(F ′′
l + F ′

l ))(1 ± F ′′
k F ′

k)

and set

1 + G′′′ = (1 − F ′′
1 F ′

1)) . . . (1 + F ′′
p+qF

′
p+q))(1 + G′′).

(2.5) implies that Sp,q,r is closed with respect to the Clifford multiplication.

Since Clifford algebra is an associative algebra, Clifford multiplication is associative
on Sp,q,r. Unit element of Sp,q,r is 1 ∈ C�p,q,r.

Finally, the inverse of the element Θ = s(1+e1F1) . . . (1+ep+qFp+q)(1+G) ∈ Sp,q,r,

where Fk =
r∑

l=1

cklfl and G ∈ Λ(f), is

Θ−1 = s−1(1 − e1

p+q∑

k=1

ρ1kFk) . . . (1 − ep+q

p+q∑

k=1

ρ(p+q)kFk)(1 − G + . . . + (−1)µ−1G µ−1)

where ρ(s)(ej) =
p+q∑

m=1

ρmjem (1 ≤ i, j ≤ p + q) and the positive integer μ satisfies

Gμ = 0 (for any G ∈ Λ(f), there is such an integer). �

The subset of Sp,q,r defined by

Δ = {1 + G | G ∈ Λ(f)}
is a normal subgroup of Sp,q,r. We adopt the following definition for the degenerate
spin group (see [1]):

Definition 2.4. The quotient group Sp,q,r/Δ is called the degenerate spin group
and denoted by Spin(p, q, r).

3. Semi-Direct Products

Now we recall the notion of semi-direct products (see [3]):

Definition 3.1. Let G be a group, let H ≤ G a subgroup and N � G a normal
subgroup. If G = HN and H ∩ N = 1, then G is called a semi-direct product of
H and N , and denoted by G = H � N .
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The map h �−→ θ(h)(n) := hnh−1 defines a homomorphism θ : H → Aut(N),
where Aut(N) denotes the automorphism group of N .

Proposition 3.2. Let H and N be two groups, and let θ : H −→ Aut(N) be a
homomorphism. Then, on H × N , the operation

(h, n)(h′, n′) = (hh′, θ(h′−1)(n)n′)

has the following properties:
1) H × N is a group with the above operation,
2) H � H × 1N ≤ H × N ,
3) N � 1H × N � H × N ,
4) H × N = (H × 1N )(1H × N) and (H × 1N) ∩ (1H × N) = {(1H , 1N)},
5) H × N = (H × 1N ) �θ (1H × N) � H �θ N .

We omit the straightforward proof.

Definition 3.3. Let N = M(p+q, r) denote the additive group of (p+q)×r matrices
with real entries and define

ρ̃ : Spin(p, q) −→ Aut(M(p + q, r))
s �−→ ρ̃(s)(A) := ρ(s)A (A ∈ M(p + q, r))

where ρ(s) ∈ SO(p, q) is understood as a (p + q)× (p + q) matrix and ρ(s)A is the
matrix multiplication.

Now taking H = Spin(p, q), and ρ̃ : Spin(p, q) −→ Aut(M(p + q, r)), we
consider the semi-direct product Spin(p, q) �ρ̃ M(p + q, r).

Theorem 3.4. Spin(p, q, r) � Spin(p, q) �ρ̃ M(p + q, r).

Proof. The isomorphism is given by the following map

η : Spin(p, q, r) −→ Spin(p, q) �ρ̃ M(p + q, r)
[sγ1 . . . γp+q(1 + G)] �−→ (s, (cil))

where cil ∈ M(p + q, r) comes from the expression γi = 1 + ei

r∑

l=1

cilfl.

The map η is well-defined: We must show that images of two equivalent elements in
Sp,q,r are equal. Let Θ, Θ′ ∈ Sp,q,r with [Θ] = [Θ′] ∈ Spin(p, q, r) be two equivalent
elements. Then we have

sγ1 . . . γp+q(1 + G) = s′γ′
1 . . . γ′

p+q(1 + G′)(1 + G′′).

Using the inverse of the 1 + G, we obtain

sγ1 . . . γp+q = s′γ′
1 . . . γ′

p+q(1 + G′)(1 + G′′)(1 − G + . . . + (−1)μ−1Gμ−1)

= s′γ′
1 . . . γ′

p+q(1 + G′′′)

with 1 + G′′′ = (1 + G′)(1 + G′′)(1−G + . . . + (−1)μ−1Gμ−1). Moreover, from the
last equation, we have

(s′)−1sγ1 . . . γp+q = γ′
1 . . . γ′

p+q(1 + G′′′).
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With the notations γ1 . . . γp+q = 1 + A and γ′
1 . . . γ′

p+q = 1 + A′, we can write

(s′)−1s(1 + A) = (1 + A′)(1 + G′′′)
(s′)−1s + (s′)−1sA = 1 + G′′′ + A′ + A′G′′′ (3.1)

where A and A′ include terms of the form ei1Fi1 . . . eiαFiα and ei1F
′
i1 . . . eiαF ′

iα
,

respectively (1 ≤ α ≤ p + q, i1 < i2 < . . . < iα). Now, equating terms not-
containing the fi’s we find (s′)−1s = 1, i.e., s = s′. Thus the equation (3.1) is
reduced to

A = G′′′ + A′ + A′G′′′,

or

G′′′ = A − A′ − A′G′′′.

G′′′ must be zero, as there are no terms in the right hand side consisting only of
the fi’s. Then we find A = A′, i.e.,

γ1 . . . γp+q = γ′
1 . . . γ′

p+q. (3.2)

From this equation, one can write

γ1 . . . γp+q−1(1 + ep+qFp+q) = γ′
1 . . . γ′

p+q−1(1 + ep+qF
′
p+q).

As before, using the notation γ1 . . . γp+q−1 = 1+B and γ′
1 . . . γ′

p+q−1 = 1+B′, we
find

(1 + B)(1 + ep+qFp+q) = (1 + B′)(1 + ep+qF
′
p+q)

B + ep+qFp+q + Bep+qFp+q = B′ + ep+qF
′
p+q + B′ep+qF

′
p+q.

Equating the terms not-containing the ep+q we find B = B′. Multiplying then
both sides by ep+q we can see Fp+q = F ′

p+q and thus γp+q = γ′
p+q. Proceeding

in this way inductively we get γp+q−1 = γ′
p+q−1, . . ., γ1 = γ′

1. Consequently, the
equation

[sγ1 . . . γp+q(1 + G)] = [s′γ′
1 . . . γ′

p+q(1 + G′)]

implies s = s′, γ1 = γ′
1, . . . , γp+q = γ′

p+q whence we obtain (cil) = (c′il). Because
of s = s′ and (cil) = (c′il), the map η is well-defined.
Obviously, the map η is both one-to-one and onto.
Homomorphism is obtained as follows:

[Θ′]=[ΘΘ′] = [ss′(1 + e1(F ′′
1 + F ′

1)) . . . (1 + ep+q(F ′′
p+q + F ′

p+q))(1+G′′′)] by (2.5)

= [ss′(1 + e1(F ′′
1 + F ′

1)) . . . (1 + ep+q(F ′′
p+q + F ′

p+q))]

= [ss′(1 + e1(
p+q∑

j=1

ρ′1jFj + F ′
1)) . . .

. . . (1 + ep+q(
p+q∑

j=1

ρ′(p+q)jFj + F ′
p+q))] by (2.4)
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= [ss′(1 + e1

r∑

l=1

(
p+q∑

j=1

ρ′1jcjl + c′1l)fl) . . .

. . . (1 + ep+q

r∑

l=1

(
p+q∑

j=1

ρ′(p+q)jcjl + c′(p+q)l)fl)].

Thus η([Θ][Θ′]) becomes

η([Θ][Θ′]) = (ss′, (
p+q∑

j=1

ρ′ijcjl + c′il)). (3.3)

On the other hand, η([Θ]) = (s, (cil)), η([Θ′]) = (s′, (c′il)) and consequently,

η([Θ])η([Θ′]) = (ss′, ρ(s′−1)((cil)) + (c′il)))

= (ss′, (
p+q∑

j=1

ρ′ijcjl + c′il))

where we have used the matrix of ρ(s′−1) given in (2.2). �
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